1
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Wang M, Shen Q, Pang J, Mao Y, Li X, Tao Y, Tang W, Sun R, Zhou X. Study on chemical constituents and antioxidant activities of Dianthus caryophyllus L. FRONTIERS IN PLANT SCIENCE 2024; 15:1438967. [PMID: 39239204 PMCID: PMC11374617 DOI: 10.3389/fpls.2024.1438967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
Objective Carnation is a plant that holds high value in terms of its edibility, medicinal properties, and ornamental appeal. Creating no sense he aim of this study was to evaluate the antioxidant and antitumor properties of extracts derived from various parts of the carnation plant. Metabolomics technology was employed to identify the primary chemical constituents. Methods Initially, we measured the total phenolic and total flavonoid contents in carnation roots, stems, leaves, and flowers, followed by assessing the antioxidant and anti-tumor capabilities of each component using diverse experimental methods. Subsequently, UPLC-MS/MS was employed to identify metabolites in different parts of carnation and investigate their roles in antioxidant and anti-tumor activities. Results Mention numerical value- for better underatnding- Results of the study indicated that the methanol extract obtained from carnation flowers and roots exhibited superior antioxidant capacity compared to that from the stems and leaves. This disparity may be attributed to the abundance of polyphenols, flavonoids, and antioxidants present in the flowers, including methyl ferulate and luteolin-4'-O-glucoside. Furthermore, the significant presence of the anthraquinone compound rhein-8-O-glucoside in carnation roots may contribute to their enhanced antioxidant properties. Ten distinct compounds were isolated and recognized in carnation flowers, with Isoorientin 2"-O-rhamnoside and Kurarinone demonstrating notable antioxidant activity and binding affinity to SOD1 and SOD3, as validated through antioxidant screening and molecular docking. Conclusion Overall, the findings from this study have expanded our knowledge of the phytochemical composition across different anatomical regions of the carnation plant, providing valuable insights for its holistic utilization.
Collapse
Affiliation(s)
- Miaomiao Wang
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Pharmacy, Bozhou Hospital of Traditional Chinese Medicine, Bozhou, Anhui, China
| | - Qiuyu Shen
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jianyu Pang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Mao
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaofei Li
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yanxia Tao
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wenru Tang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ruifen Sun
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xuhong Zhou
- Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
3
|
Ghosh S, Bornman C, Meskini M, Joghataei M. Microbial Diversity in African Foods and Beverages: A Systematic Assessment. Curr Microbiol 2023; 81:19. [PMID: 38008849 PMCID: PMC10678836 DOI: 10.1007/s00284-023-03481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 11/28/2023]
Abstract
This article provides a comprehensive and in-depth examination of the microbial diversity inherent in African food and beverages, with a particular emphasis on fermented products. It identifies and characterizes the dominant microorganisms, including both prokaryotes and yeasts, prevalent in these foods, and furthermore, critically analyzes the health benefits of these microbial strains, especially their probiotic properties, which could potentially improve digestion and contribute to human health. Notably, it underscores the vital role these microorganisms play in bolstering food security across Africa by enhancing and preserving food quality and safety. It also delves into the potential applications of microbial products, such as metabolites, in the food industry, suggesting their possible use in food processing and preservation. Conclusively, with a summarization of the key findings, emphasizing the importance of gaining a deep understanding of microbial diversity in African beverages and foods. Such knowledge is crucial not only in promoting food security but also in advancing public health.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Charné Bornman
- Department of Engineering Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Maryam Meskini
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Microbiology Research Centre, Pasteur Institute of Iran, Teheran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Teheran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Mehri Joghataei
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Pratelli G, Tamburini B, Carlisi D, De Blasio A, D’Anneo A, Emanuele S, Notaro A, Affranchi F, Giuliano M, Seidita A, Lauricella M, Di Liberto D. Foodomics-Based Approaches Shed Light on the Potential Protective Effects of Polyphenols in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:14619. [PMID: 37834065 PMCID: PMC10572570 DOI: 10.3390/ijms241914619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environmental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy;
| | - Bartolo Tamburini
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Aurelio Seidita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| |
Collapse
|
5
|
Garcia-Vaquero M, Mirzapour-Kouhdasht A. A review on proteomic and genomic biomarkers for gelatin source authentication: Challenges and future outlook. Heliyon 2023; 9:e16621. [PMID: 37303544 PMCID: PMC10248112 DOI: 10.1016/j.heliyon.2023.e16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Biomarkers are compounds that could be detected and used as indicators of normal and/or abnormal functioning of different biological systems, including animal tissues and food matrices. Gelatin products of animal origin, mainly bovine and porcine, are currently under scrutiny mainly due to the specific needs of some sectors of the population related to religious beliefs and their dietary prohibitions, as well as some potential health threats associated with these products. Thus, manufacturers are currently in need of a reliable, convenient, and easy procedure to discern and authenticate the origin of animal-based gelatins (bovine, porcine, chicken, or fish). This work aims to review current advances in the creation of reliable gelatin biomarkers for food authentication purposes based on proteomic and DNA biomarkers that could be applied in the food sector. Overall, the presence of specific proteins and peptides in gelatin can be chemically analysed (i.e., by chromatography, mass spectroscopy, electrophoresis, lateral flow devices, and enzyme-linked immunosorbent assay), and different polymerase chain reaction (PCR) methods have been applied for the detection of nucleic acid substances in gelatin. Altogether, despite the fact that numerous methods are currently being developed for the purpose of detecting gelatin biomarkers, their widespread application is highly dependent on the cost of the equipment and reagents as well as the ease of use of the various methods. Combining different methods and approaches targeting multiple biomarkers may be key for manufacturers to achieve reliable authentication of gelatin's origin.
Collapse
|
6
|
Ramos-Garcia V, Ten-Doménech I, Moreno-Giménez A, Campos-Berga L, Parra-Llorca A, Gormaz M, Vento M, Karipidou M, Poulimeneas D, Mamalaki E, Bathrellou E, Kuligowski J. Joint Microbiota Activity and Dietary Assessment through Urinary Biomarkers by LC-MS/MS. Nutrients 2023; 15:1894. [PMID: 37111113 PMCID: PMC10146414 DOI: 10.3390/nu15081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Accurate dietary assessment in nutritional research is a huge challenge, but essential. Due to the subjective nature of self-reporting methods, the development of analytical methods for food intake and microbiota biomarkers determination is needed. This work presents an ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) method for the quantification and semi quantification of 20 and 201 food intake biomarkers (BFIs), respectively, as well as 7 microbiota biomarkers applied to 208 urine samples from lactating mothers (M) (N = 59). Dietary intake was assessed through a 24 h dietary recall (R24h). BFI analysis identified three distinct clusters among samples: samples from clusters 1 and 3 presented higher concentrations of most biomarkers than those from cluster 2, with dairy products and milk biomarkers being more concentrated in cluster 1, and seeds, garlic and onion in cluster 3. Significant correlations were observed between three BFIs (fruits, meat, and fish) and R24h data (r > 0.2, p-values < 0.01, Spearman correlation). Microbiota activity biomarkers were simultaneously evaluated and the subgroup patterns detected were compared to clusters from dietary assessment. These results evidence the feasibility, usefulness, and complementary nature of the determination of BFIs, R24h, and microbiota activity biomarkers in observational nutrition cohort studies.
Collapse
Affiliation(s)
- Victoria Ramos-Garcia
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - Isabel Ten-Doménech
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - Alba Moreno-Giménez
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - Laura Campos-Berga
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - Anna Parra-Llorca
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| | - María Gormaz
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Melina Karipidou
- Department of Nutrition and Dietetics, Harokopio University of Athens, El. Venizelou 70, 17676 Kallithea, Greece; (M.K.); (D.P.); (E.M.); (E.B.)
| | - Dimitrios Poulimeneas
- Department of Nutrition and Dietetics, Harokopio University of Athens, El. Venizelou 70, 17676 Kallithea, Greece; (M.K.); (D.P.); (E.M.); (E.B.)
| | - Eirini Mamalaki
- Department of Nutrition and Dietetics, Harokopio University of Athens, El. Venizelou 70, 17676 Kallithea, Greece; (M.K.); (D.P.); (E.M.); (E.B.)
| | - Eirini Bathrellou
- Department of Nutrition and Dietetics, Harokopio University of Athens, El. Venizelou 70, 17676 Kallithea, Greece; (M.K.); (D.P.); (E.M.); (E.B.)
| | - Julia Kuligowski
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain; (V.R.-G.); (I.T.-D.); (A.M.-G.); (L.C.-B.); (A.P.-L.); (M.V.)
| |
Collapse
|
7
|
Brachem C, Oluwagbemigun K, Langenau J, Weinhold L, Alexy U, Schmid M, Nöthlings U. Exploring the association between habitual food intake and the urine and blood metabolome in adolescents and young adults: a cohort study. Mol Nutr Food Res 2022; 66:e2200023. [PMID: 35785518 DOI: 10.1002/mnfr.202200023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/08/2022] [Indexed: 11/07/2022]
Abstract
SCOPE Habitual diet may be reflected in metabolite profiles that can improve accurate assessment of dietary exposure and further enhance our understanding of their link to health conditions. We aimed to explore the relationship of habitual food intake with blood and urine metabolites in adolescents and young adults. METHODS The study population comprised 228 participants (94 male and 134 female) of the DONALD study. Dietary intake was assessed by yearly repeated 3d-food records. Habitual diet was estimated as the average consumption of 23 food groups in adolescence. Using an untargeted metabolomics approach, we quantified 2638 metabolites in plasma and 1407 metabolites in urine. In each sex, we determined unique diet-metabolite associations using orthogonal projection to latent structures (oPLS) and random forests (RF). RESULTS We observed 6 metabolites in agreement between oPLS and RF in urine, 1 in females (vanillylmandelate to processed/ other meat) and 5 in males (indole-3-acetamide, and N6-methyladenosine to eggs; hippurate, citraconate/glutaconate, and X - 12111 to vegetables). We observed no association in blood in agreement. CONCLUSION We observed a limited reflection of habitual food group intake by single metabolites in urine and not in blood. The explored biomarkers should be confirmed in additional studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christian Brachem
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Julia Langenau
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Leonie Weinhold
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Alexy
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, DONALD Study, Heinstück 11, 44225, Dortmund, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany.,Nutritional Epidemiology, Department of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, DONALD Study, Heinstück 11, 44225, Dortmund, Germany
| |
Collapse
|
8
|
Hysi PG, Mangino M, Christofidou P, Falchi M, Karoly ED, Mohney RP, Valdes AM, Spector TD, Menni C. Metabolome Genome-Wide Association Study Identifies 74 Novel Genomic Regions Influencing Plasma Metabolites Levels. Metabolites 2022; 12:61. [PMID: 35050183 PMCID: PMC8777659 DOI: 10.3390/metabo12010061] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/27/2023] Open
Abstract
Metabolites are small products of metabolism that provide a snapshot of the wellbeing of an organism and the mechanisms that control key physiological processes involved in health and disease. Here we report the results of a genome-wide association study of 722 circulating metabolite levels in 8809 subjects of European origin, providing both breadth and depth. These analyses identified 202 unique genomic regions whose variations are associated with the circulating levels of 478 different metabolites. Replication with a subset of 208 metabolites that were available in an independent dataset for a cohort of 1768 European subjects confirmed the robust associations, including 74 novel genomic regions not associated with any metabolites in previous works. This study enhances our knowledge of genetic mechanisms controlling human metabolism. Our findings have major potential for identifying novel targets and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (P.G.H.); (M.M.); (P.C.); (M.F.); (A.M.V.)
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (P.G.H.); (M.M.); (P.C.); (M.F.); (A.M.V.)
- NIHR Biomedical Research Centre at Guy’s and St. Thomas’ Foundation Trust, London SE1 9RT, UK
| | - Paraskevi Christofidou
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (P.G.H.); (M.M.); (P.C.); (M.F.); (A.M.V.)
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (P.G.H.); (M.M.); (P.C.); (M.F.); (A.M.V.)
| | - Edward D. Karoly
- Discovery and Translational Sciences, Metabolon Inc., Raleigh-Durham, NC 27560, USA; (E.D.K.); (R.P.M.)
| | | | - Robert P. Mohney
- Discovery and Translational Sciences, Metabolon Inc., Raleigh-Durham, NC 27560, USA; (E.D.K.); (R.P.M.)
| | - Ana M. Valdes
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (P.G.H.); (M.M.); (P.C.); (M.F.); (A.M.V.)
- Inflammation, Injury and Recovery Sciences, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (P.G.H.); (M.M.); (P.C.); (M.F.); (A.M.V.)
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK; (P.G.H.); (M.M.); (P.C.); (M.F.); (A.M.V.)
| |
Collapse
|
9
|
Sempionatto JR, Montiel VRV, Vargas E, Teymourian H, Wang J. Wearable and Mobile Sensors for Personalized Nutrition. ACS Sens 2021; 6:1745-1760. [PMID: 34008960 DOI: 10.1021/acssensors.1c00553] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While wearable and mobile chemical sensors have experienced tremendous growth over the past decade, their potential for tracking and guiding nutrition has emerged only over the past three years. Currently, guidelines from doctors and dietitians represent the most common approach for maintaining optimal nutrition status. However, such recommendations rely on population averages and do not take into account individual variability in responding to nutrients. Precision nutrition has recently emerged to address the large heterogeneity in individuals' responses to diet, by tailoring nutrition based on the specific requirements of each person. It aims at preventing and managing diseases by formulating personalized dietary interventions to individuals on the basis of their metabolic profile, background, and environmental exposure. Recent advances in digital nutrition technology, including calories-counting mobile apps and wearable motion tracking devices, lack the ability of monitoring nutrition at the molecular level. The realization of effective precision nutrition requires synergy from different sensor modalities in order to make timely reliable predictions and efficient feedback. This work reviews key opportunities and challenges toward the successful realization of effective wearable and mobile nutrition monitoring platforms. Non-invasive wearable and mobile electrochemical sensors, capable of monitoring temporal chemical variations upon the intake of food and supplements, are excellent candidates to bridge the gap between digital and biochemical analyses for a successful personalized nutrition approach. By providing timely (previously unavailable) dietary information, such wearable and mobile sensors offer the guidance necessary for supporting dietary behavior change toward a managed nutritional balance. Coupling of the rapidly emerging wearable chemical sensing devices-generating enormous dynamic analytical data-with efficient data-fusion and data-mining methods that identify patterns and make predictions is expected to revolutionize dietary decision-making toward effective precision nutrition.
Collapse
Affiliation(s)
- Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Eva Vargas
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Abstract
The human lifespan and quality of life depend on complex interactions among genetic, environmental, and lifestyle factors. Aging research has been remarkably advanced by the development of high-throughput "omics" technologies. Differences between chronological and biological ages, and identification of factors (eg, nutrition) that modulate the rate of aging can now be assessed at the individual level on the basis of telomere length, the epigenome, and the metabolome. Nevertheless, the understanding of the different responses of people to dietary factors, which is the focus of precision nutrition research, remains incomplete. The lack of reliable dietary assessment methods constitutes a significant challenge in nutrition research, especially in elderly populations. For practical and successful personalized diet advice, big data techniques are needed to analyze and integrate the relevant omics (ie, genomic, epigenomic, metabolomics) with an objective and longitudinal capture of individual nutritional and environmental information. Application of such techniques will provide the scientific evidence and knowledge needed to offer actionable, personalized health recommendations to transform the promise of personalized nutrition into reality.
Collapse
Affiliation(s)
- Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA-HNRCA at Tufts University, Boston, Massachusetts, USA
| | - Silvia Berciano
- Nutrition and Genomics Laboratory, JM-USDA-HNRCA at Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Letertre MPM, Dervilly G, Giraudeau P. Combined Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry Approaches for Metabolomics. Anal Chem 2020; 93:500-518. [PMID: 33155816 DOI: 10.1021/acs.analchem.0c04371] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Di Pietro N, Baldassarre MPA, Cichelli A, Pandolfi A, Formoso G, Pipino C. Role of Polyphenols and Carotenoids in Endothelial Dysfunction: An Overview from Classic to Innovative Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6381380. [PMID: 33133348 PMCID: PMC7593735 DOI: 10.1155/2020/6381380] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Nowadays, the dramatically increased prevalence of metabolic diseases, such as obesity and diabetes mellitus and their related complications, including endothelial dysfunction and cardiovascular disease, represents one of the leading causes of death worldwide. Dietary nutrients together with healthy lifestyles have a crucial role in the endothelium health-promoting effects. From a growing body of evidence, active natural compounds from food, including polyphenols and carotenoids, have attracted particular attention as a complementary therapy on atherosclerosis and cardiovascular disease, as well as preventive approaches through the attenuation of inflammation and oxidative stress. They mainly act as radical scavengers by promoting a variety of biological mechanisms, such as improvements in endothelial function, blood pressure, platelet activity, and insulin sensitivity, and by modulating various known biomarkers. The present review highlights the role of polyphenols and carotenoids in early endothelial dysfunction with attention to their beneficial effect in modulating both classical and recent technologically generated emerging biomarkers. These, alone or in combination, can play an important role in the prediction, diagnosis, and evolution of cardiovascular disease. However, a main challenge is to speed up early and prompt new interventions in order to prevent or slow down disease progression, even with an adequate intake of bioactive compounds. Hence, there is an urgent need of new more validated, appropriate, and reliable diagnostic and therapeutic biomarkers useful to diagnose endothelial dysfunction at an earlier stage.
Collapse
Affiliation(s)
- Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
13
|
Kim YJ, Lee DY, Park HE, Yoon D, Lee B, Kim JG, Im KH, Lee YS, Lee WK, Kim JK. Serum Metabolic Profiling Reveals Potential Anti-Inflammatory Effects of the Intake of Black Ginseng Extracts in Beagle Dogs. Molecules 2020; 25:molecules25163759. [PMID: 32824755 PMCID: PMC7465512 DOI: 10.3390/molecules25163759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Black ginseng (BG) has better health benefits than white ginseng. The intake of BG changes the levels of metabolites, such as amino acids, fatty acids, and other metabolites. However, there is no research on the effect of BG extract intake on the metabolic profile of dog serum. In this study, serum metabolic profiling was conducted to investigate metabolic differences following the intake of BG extracts in beagle dogs. The beagle dogs were separated into three groups and fed either a regular diet (RD, control), RD with a medium concentration of BG extract (BG-M), or RD with a high concentration of BG extract (BG-H). Differences were observed among the three groups after the dogs ingested the experimental diet for eight weeks. The concentrations of alanine, leucine, isoleucine, and valine changed with the intake of BG extracts. Furthermore, levels of glycine and β-alanine increased in the BG-H group compared to the control and BG-M groups, indicating that BG extracts are associated with anti-inflammatory processes. Our study is the first to demonstrate the potential anti-inflammatory effect of BG extract in beagle dogs. Glycine and β-alanine are proposed as candidate serum biomarkers in dogs that can discriminate between the effects of ingesting BG-H.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (D.Y.L.); (D.Y.); (Y.-S.L.)
| | - Ho-Eun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (H.-E.P.); (W.-K.L.)
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (D.Y.L.); (D.Y.); (Y.-S.L.)
| | - Bumkyu Lee
- Department of Environment Science & Biotechnology, Jeonju University, Jeonju 55069, Korea;
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
| | - Kyung-Hoan Im
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea; (D.Y.L.); (D.Y.); (Y.-S.L.)
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (H.-E.P.); (W.-K.L.)
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsugu, Incheon 22012, Korea; (Y.J.K.); (J.G.K.); (K.-H.I.)
- Correspondence: ; Tel.: +82-32-835-8241
| |
Collapse
|
14
|
Gherasim A, Arhire LI, Niță O, Popa AD, Graur M, Mihalache L. The relationship between lifestyle components and dietary patterns. Proc Nutr Soc 2020; 79:311-323. [PMID: 32234085 PMCID: PMC7663317 DOI: 10.1017/s0029665120006898] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We conducted a narrative review on the interaction between dietary patterns with demographic and lifestyle variables in relation to health status assessment. The food pattern has the advantage of taking into account the correlations that may exist between foods or groups of foods, but also between nutrients. It is an alternative and complementary approach in analysing the relationship between nutrition and the risk of chronic diseases. For the determination of dietary patterns one can use indices/scores that evaluate the conformity of the diet with the nutrition guidelines or the established patterns (a priori approach). The methods more commonly used are based on exploratory data (a posteriori): cluster analysis and factor analysis. Dietary patterns may vary according to sex, socio-economic status, ethnicity, culture and other factors, but more, they may vary depending on different associations between these factors. The dietary pattern exerts its effects on health in a synergistic way or even in conjunction with other lifestyle factors, and we can therefore refer to a 'pattern of lifestyle'.
Collapse
Affiliation(s)
- Andreea Gherasim
- ‘Grigore T. Popa’ University of Medicine and Pharmacy, Faculty of Medicine, 16 Universității street, Iași 700115, Romania
- ‘Sf. Spiridon’ Clinical Emergency Hospital, 1 Independenței boulevard, Iași 700111, Romania
| | - Lidia I. Arhire
- ‘Grigore T. Popa’ University of Medicine and Pharmacy, Faculty of Medicine, 16 Universității street, Iași 700115, Romania
- ‘Sf. Spiridon’ Clinical Emergency Hospital, 1 Independenței boulevard, Iași 700111, Romania
| | - Otilia Niță
- ‘Grigore T. Popa’ University of Medicine and Pharmacy, Faculty of Medicine, 16 Universității street, Iași 700115, Romania
- ‘Sf. Spiridon’ Clinical Emergency Hospital, 1 Independenței boulevard, Iași 700111, Romania
| | - Alina D. Popa
- ‘Grigore T. Popa’ University of Medicine and Pharmacy, Faculty of Medicine, 16 Universității street, Iași 700115, Romania
- ‘Sf. Spiridon’ Clinical Emergency Hospital, 1 Independenței boulevard, Iași 700111, Romania
| | - Mariana Graur
- ‘Grigore T. Popa’ University of Medicine and Pharmacy, Faculty of Medicine, 16 Universității street, Iași 700115, Romania
- ‘Sf. Spiridon’ Clinical Emergency Hospital, 1 Independenței boulevard, Iași 700111, Romania
| | - Laura Mihalache
- ‘Grigore T. Popa’ University of Medicine and Pharmacy, Faculty of Medicine, 16 Universității street, Iași 700115, Romania
- ‘Sf. Spiridon’ Clinical Emergency Hospital, 1 Independenței boulevard, Iași 700111, Romania
| |
Collapse
|
15
|
Lacalle-Bergeron L, Portolés T, López FJ, Sancho JV, Ortega-Azorín C, Asensio EM, Coltell O, Corella D. Ultra-Performance Liquid Chromatography-Ion Mobility Separation-Quadruple Time-of-Flight MS (UHPLC-IMS-QTOF MS) Metabolomics for Short-Term Biomarker Discovery of Orange Intake: A Randomized, Controlled Crossover Study. Nutrients 2020; 12:nu12071916. [PMID: 32610451 PMCID: PMC7400617 DOI: 10.3390/nu12071916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
A major problem with dietary assessments is their subjective nature. Untargeted metabolomics and new technologies can shed light on this issue and provide a more complete picture of dietary intake by measuring the profile of metabolites in biological samples. Oranges are one of the most consumed fruits in the world, and therefore one of the most studied for their properties. The aim of this work was the application of untargeted metabolomics approach with the novel combination of ion mobility separation coupled to high resolution mass spectrometry (IMS-HRMS) and study the advantages that this technique can bring to the area of dietary biomarker discovery, with the specific case of biomarkers associated with orange consumption (Citrus reticulata) in plasma samples taken during an acute intervention study (consisting of a randomized, controlled crossover trial in healthy individuals). A total of six markers of acute orange consumption, including betonicines and conjugated flavonoids, were identified with the experimental data and previous literature, demonstrating the advantages of ion mobility in the identification of dietary biomarkers and the benefits that an additional structural descriptor, as the collision cross section value (CCS), can provide in this area.
Collapse
Affiliation(s)
- Leticia Lacalle-Bergeron
- Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, 12071 Castellón, Spain; (L.L.-B.); (T.P.); (F.J.L.); (J.V.S.)
| | - Tania Portolés
- Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, 12071 Castellón, Spain; (L.L.-B.); (T.P.); (F.J.L.); (J.V.S.)
| | - Francisco J. López
- Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, 12071 Castellón, Spain; (L.L.-B.); (T.P.); (F.J.L.); (J.V.S.)
| | - Juan Vicente Sancho
- Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, 12071 Castellón, Spain; (L.L.-B.); (T.P.); (F.J.L.); (J.V.S.)
| | - Carolina Ortega-Azorín
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Eva M. Asensio
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-963-86-4800
| |
Collapse
|
16
|
Bai H, Bao F, Fan X, Han S, Zheng W, Sun L, Yan N, Du H, Zhao H, Yang Z. Metabolomics study of different parts of licorice from different geographical origins and their anti-inflammatory activities. J Sep Sci 2020; 43:1593-1602. [PMID: 32032980 DOI: 10.1002/jssc.201901013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/04/2023]
Abstract
Glycyrrhiza uralensis Fisch., known as licorice, is one of the most famous traditional Chinese medicines. In this study, we perform a metabolome analysis using liquid chromatography-tandem mass spectrometry to assign bioactive components in different parts of licorice from different geographical origins in Gansu province of China. Sixteen potential biomarkers of taproots from different geographical origins were annotated, such as glycycoumarin, gancaonin Z, licoricone, and dihydroxy kanzonol H mainly exist in the sample of Jiuquan; neoliquiritin, 6'-acetylliquiritin, licochalcone B, isolicoflavonol, glycyrol, and methylated uralenin mainly exist in Glycyrrhiza uralensis from Lanzhou; gancaonin L, uralenin, and glycybridin I mainly exist in licorice from Wuwei for the first time.
Collapse
Affiliation(s)
- Haiying Bai
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Fang Bao
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Xiaorui Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Shu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wenhui Zheng
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Lili Sun
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
17
|
Nie C, Wang Y, Liu Y, Liu J, Ge W, Ma X, Zhang W. Impacts of Dietary Protein from Fermented Cottonseed Meal on Lipid Metabolism and Metabolomic Profiling in the Serum of Broilers. Curr Protein Pept Sci 2020; 21:812-820. [PMID: 32013830 DOI: 10.2174/1389203721666200203152643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/01/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022]
Abstract
Dietary protein from fermented cottonseed meal (FCSM), widely used in poultry diets in China, had regulating effects on lipid metabolism. To understand the effects of FCSM on lipid metabolism in broilers, we analyzed the biochemical indexes, enzyme activity, hormone level and metabolites in serum responses to FCSM intake. One hundred and eighty 21-d-old Chinese yellow feathered broilers (536.07±4.43 g) were randomly divided into 3 groups with 6 replicates and 3 diets with 6 % supplementation of unfermented CSM (control group), FCSM by C. Tropicalis (Ct CSM) or C. tropicalis plus S. Cerevisae (Ct-Sc CSM). Result showed that: (1) FCSM intake decreased significantly the content of triglyceride (TAG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P<0.05) in serum; (2) FCSM intake could significantly increase enzyme activity of acetyl CoA carboxylase (ACC), lipoprotein lipase (LPL), fatty acid synthase (FAS) and hormone sensitive lipase (HSL) (P<0.05); (3) Ct-Sc CSM intake increased significantly the levels of adiponectin (ADP) (P<0.05); (4) FCSM intake caused significant metabolic changes involving glycolysis, TCA cycle, synthesis of fatty acid and glycogen, and metabolism of glycerolipid, vitamins B group and amino acids. Our results strongly suggested that FCSM intake could significantly affect lipid metabolism via multiple pathways. These findings provided new essential information about the effect of FCSM on broilers and demonstrated the great potential of nutrimetabolomics, through which the research complex nutrients are included in animal diet.
Collapse
Affiliation(s)
- Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanfeng Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jiancheng Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenxia Ge
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xi Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Ferreira H, Vasconcelos M, Gil AM, Pinto E. Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 61:85-96. [PMID: 31983216 DOI: 10.1080/10408398.2020.1716680] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulses are nutrient-dense foods that have for a long time been empirically known to have beneficial effects in human health. In the last decade, several studies have gathered evidence of the metabolic benefits of pulse intake. However, it remains unclear at what amounts these effects may be attained. This study aimed to systematically review the scientific outputs of the last two decades regarding health benefits of pulse consumption and the amounts necessary for positive outcomes to be achieved. A PubMed search including keywords [("dietary pulses", "pulses", "legumes", "grain legumes", "bean", "chickpea", "pea", "lentil", "cowpea", "faba bean", "lupin") and ("inflammation", "inflammatory markers", "C-reactive protein", "blood lipids", "cholesterol", "cardiometabolic health", "cardiovascular disease", "diabetes", "glycaemia", "insulin", "HOMA-IR", "body weight", "body fat", "obesity", "overweight", "metabolome", "metabolic profile", "metabolomics", "biomarkers", "microbiome", "microbiota", "gut")] was performed. Only English written papers referring to human dietary interventions, longer than one day, focusing on whole pulses intake, were included. Most of the twenty eligible publications reported improvements in blood lipid profile, blood pressure, inflammation biomarkers, as well as, in body composition, resulting from pulse daily amounts of 150 g (minimum-maximum: 54-360 g/day; cooked). Concerns regarding methodological approaches are evident and the biochemical mechanisms underlying such effects require further investigation.
Collapse
Affiliation(s)
- Helena Ferreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Marta Vasconcelos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana M Gil
- Department of Chemistry and, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Elisabete Pinto
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Ren X, Li X. Advances in Research on Diabetes by Human Nutriomics. Int J Mol Sci 2019; 20:ijms20215375. [PMID: 31671732 PMCID: PMC6861882 DOI: 10.3390/ijms20215375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence and prevalence of diabetes mellitus (DM) have increased rapidly worldwide over the last two decades. Because the pathogenic factors of DM are heterogeneous, determining clinically effective treatments for DM patients is difficult. Applying various nutrient analyses has yielded new insight and potential treatments for DM patients. In this review, we summarized the omics analysis methods, including nutrigenomics, nutritional-metabolomics, and foodomics. The list of the new targets of SNPs, genes, proteins, and gut microbiota associated with DM has been obtained by the analysis of nutrigenomics and microbiomics within last few years, which provides a reference for the diagnosis of DM. The use of nutrient metabolomics analysis can obtain new targets of amino acids, lipids, and metal elements, which provides a reference for the treatment of DM. Foodomics analysis can provide targeted dietary strategies for DM patients. This review summarizes the DM-associated molecular biomarkers in current applied omics analyses and may provide guidance for diagnosing and treating DM.
Collapse
Affiliation(s)
- Xinmin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiangdong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
YILMAZ İ, ÖZPINAR H. Beslenme ve Gıda Alanlarında Metabolomik Uygulamalar: Genel Bir Değerlendirme. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2019. [DOI: 10.38079/igusabder.550904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
Tebani A, Bekri S. Paving the Way to Precision Nutrition Through Metabolomics. Front Nutr 2019; 6:41. [PMID: 31024923 PMCID: PMC6465639 DOI: 10.3389/fnut.2019.00041] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Nutrition is an interdisciplinary science that studies the interactions of nutrients with the body in relation to maintenance of health and well-being. Nutrition is highly complex due to the underlying various internal and external factors that could model it. Thus, hacking this complexity requires more holistic and network-based strategies that could unveil these dynamic system interactions at both time and space scales. The ongoing omics era with its high-throughput molecular data generation is paving the way to embrace this complexity and is deeply reshaping the whole field of nutrition. Understanding the future paths of nutrition science is of importance from both translational and clinical perspectives. Basic nutrients which might include metabolites are important in nutrition science. Moreover, metabolites are key biological communication channels and represent an appealing functional readout at the interface of different major influential factors that define health and disease. Metabolomics is the technology that enables holistic and systematic analyses of metabolites in a biological system. Hence, given its intrinsic functionality, its tight connection to metabolism and its high clinical actionability potential, metabolomics is a very appealing technology for nutrition science. The ultimate goal is to deliver a tailored and clinically relevant nutritional recommendations and interventions to achieve precision nutrition. This work intends to present an update on the applications of metabolomics to personalize nutrition in translational and clinical settings. It also discusses the current conceptual shifts that are remodeling clinical nutrition practices in this Precision Medicine era. Finally, perspectives of clinical nutrition in the ever-growing, data-driven healthcare landscape are presented.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France.,Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| |
Collapse
|
22
|
Urine and fecal samples targeted metabolomics of carobs treated rats. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1114-1115:76-85. [PMID: 30933879 DOI: 10.1016/j.jchromb.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Ceratonia siliqua, known as the carob, is considered to be of high nutritional value and of great economic significance due to its unique composition. The beneficial effects of carob against cancer, metabolic syndrome, diabetes, diarrhea, hyperlipidemia and gastro esophageal reflux disease are only a few of its therapeutic actions. Metabolomics-based analysis provides an ultimate tool, for the deciphering of nutritional intervention derived metabolic alterations. In the present study, 16 male Wistar rats were treated with carob powder for a 15-day period. Fecal and urine samples were collected at 5 time points (0, 1, 5, 10 and 15 days). By the applied HILIC-MS/MS method, 63 and 67 hydrophilic metabolites were detected in the fecal and urine samples, respectively, including amino acids, organic acids, sugars, vitamins and other endogenous compounds. A clear group separation based on fecal metabolome was observed after 1 day and 15 days treatment, while only a mild differentiation at day 1 was observed based on urine metabolome. Twenty-one fecal metabolites were responsible for the separation including amino acids and their derivatives, vitamins and organic acids. However, only 7 metabolites were altered in rat urine samples. Metabolic alterations in fecal samples could be attributed to physiological and biochemical adaptations derived from the nutritional intervention. Fecal targeted metabolomics were proven to be suitable for uplifting and highlighting such alterations.
Collapse
|
23
|
Wei R, Ross AB, Su M, Wang J, Guiraud SP, Draper CF, Beaumont M, Jia W, Martin FP. Metabotypes Related to Meat and Vegetable Intake Reflect Microbial, Lipid and Amino Acid Metabolism in Healthy People. Mol Nutr Food Res 2018; 62:e1800583. [PMID: 30098305 DOI: 10.1002/mnfr.201800583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/25/2018] [Indexed: 01/05/2023]
Abstract
SCOPE The objective of this study is to develop a new methodology to identify the relationship between dietary patterns and metabolites indicative of food intake and metabolism. METHODS AND RESULTS Plasma and urine samples from healthy Swiss subjects (n = 89) collected over two time points are analyzed for a panel of host-microbial metabolites using GC- and LC-MS. Dietary intake is evaluated using a validated food frequency questionnaire. Dietary pattern clusters and relationships with metabolites are determined using Non-Negative Matrix Factorization (NNMF) and Sparse Generalized Canonical Correlation Analysis (SGCCA). Use of NNMF allows detection of latent diet clusters in this population, which describes a high intake of meat or vegetables. SGCCA associates these clusters to i) diet-host microbial and lipid associated bile acid metabolism, and ii) essential amino acid metabolism. CONCLUSION This novel application of NNMF and SGCCA allows detection of distinct metabotypes for meat and vegetable dietary patterns in a heterogeneous population. As many of the metabolites associated with meat or vegetable intake are the result of host-microbiota interactions, the findings support a role for microbiota mediating the metabolic imprinting of different dietary choices.
Collapse
Affiliation(s)
- Runmin Wei
- University of Hawaii Cancer Center (UHCC), Honolulu, HI, 96813, USA.,Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Alastair B Ross
- Analytical Science Department, Nestlé Research Center, Lausanne, Switzerland.,Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - MingMing Su
- University of Hawaii Cancer Center (UHCC), Honolulu, HI, 96813, USA
| | - Jingye Wang
- University of Hawaii Cancer Center (UHCC), Honolulu, HI, 96813, USA
| | - Seu-Ping Guiraud
- Nutrition and Metabolic health Department, Nestle Institute of Health Sciences (NIHS), Lausanne, Switzerland
| | - Colleen Fogarty Draper
- Nutrition and Metabolic health Department, Nestle Institute of Health Sciences (NIHS), Lausanne, Switzerland
| | - Maurice Beaumont
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Wei Jia
- University of Hawaii Cancer Center (UHCC), Honolulu, HI, 96813, USA
| | - Francois-Pierre Martin
- Nutrition and Metabolic health Department, Nestle Institute of Health Sciences (NIHS), Lausanne, Switzerland
| |
Collapse
|
24
|
de Toro-Martín J, Arsenault BJ, Després JP, Vohl MC. Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome. Nutrients 2017; 9:E913. [PMID: 28829397 PMCID: PMC5579706 DOI: 10.3390/nu9080913] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023] Open
Abstract
The translation of the growing increase of findings emerging from basic nutritional science into meaningful and clinically relevant dietary advices represents nowadays one of the main challenges of clinical nutrition. From nutrigenomics to deep phenotyping, many factors need to be taken into account in designing personalized and unbiased nutritional solutions for individuals or population sub-groups. Likewise, a concerted effort among basic, clinical scientists and health professionals will be needed to establish a comprehensive framework allowing the implementation of these new findings at the population level. In a world characterized by an overwhelming increase in the prevalence of obesity and associated metabolic disturbances, such as type 2 diabetes and cardiovascular diseases, tailored nutrition prescription represents a promising approach for both the prevention and management of metabolic syndrome. This review aims to discuss recent works in the field of precision nutrition analyzing most relevant aspects affecting an individual response to lifestyle/nutritional interventions. Latest advances in the analysis and monitoring of dietary habits, food behaviors, physical activity/exercise and deep phenotyping will be discussed, as well as the relevance of novel applications of nutrigenomics, metabolomics and microbiota profiling. Recent findings in the development of precision nutrition are highlighted. Finally, results from published studies providing examples of new avenues to successfully implement innovative precision nutrition approaches will be reviewed.
Collapse
Affiliation(s)
- Juan de Toro-Martín
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Benoit J Arsenault
- Department of Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada.
- Quebec Heart and Lung Institute, Quebec City, QC G1V 4G5, Canada.
| | - Jean-Pierre Després
- Quebec Heart and Lung Institute, Quebec City, QC G1V 4G5, Canada.
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
25
|
Dudzik D, Barbas-Bernardos C, García A, Barbas C. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. J Pharm Biomed Anal 2017; 147:149-173. [PMID: 28823764 DOI: 10.1016/j.jpba.2017.07.044] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/16/2022]
Abstract
Untargeted metabolomics, as a global approach, has already proven its great potential and capabilities for the investigation of health and disease, as well as the wide applicability for other research areas. Although great progress has been made on the feasibility of metabolomics experiments, there are still some challenges that should be faced and that includes all sources of fluctuations and bias affecting every step involved in multiplatform untargeted metabolomics studies. The identification and reduction of the main sources of unwanted variation regarding the pre-analytical, analytical and post-analytical phase of metabolomics experiments is essential to ensure high data quality. Nowadays, there is still a lack of information regarding harmonized guidelines for quality assurance as those available for targeted analysis. In this review, sources of variations to be considered and minimized along with methodologies and strategies for monitoring and improvement the quality of the results are discussed. The given information is based on evidences from different groups among our own experiences and recommendations for each stage of the metabolomics workflow. The comprehensive overview with tools presented here might serve other researchers interested in monitoring, controlling and improving the reliability of their findings by implementation of good experimental quality practices in the untargeted metabolomics study.
Collapse
Affiliation(s)
- Danuta Dudzik
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| | - Cecilia Barbas-Bernardos
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| | - Antonia García
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| |
Collapse
|
26
|
|