1
|
Zuo T, Gautam A, Saghaei S, Khobragade SN, Ahmed R, Mahdavinia A, Zarghami M, Pacheco GA, Green K, Travers M, Garcia N, Allahyari Z, Rao V, Kumar S, Novak R, Hwang JK, Wesemann DR. Somatic hypermutation unlocks antibody specificities beyond the primary repertoire. Immunity 2025:S1074-7613(25)00177-3. [PMID: 40339575 DOI: 10.1016/j.immuni.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/30/2025] [Accepted: 04/12/2025] [Indexed: 05/10/2025]
Abstract
B cell somatic hypermutation (SHM) and selection in germinal centers (GCs) enhance antibody affinity for antigen. Here, we investigated whether SHM-based antibody evolution is restricted to specificities established through V(D)J recombination in the primary repertoire. Tracking pre-defined non-specific B cells across multiple immunization models revealed that non-cognate B cells within GCs undergo SHM. Under conditions of limited B cell competition, these B cells generated de novo antigen recognition to multiple epitopes across diverse model antigens. Phylogenetic analyses identified diverse mutational pathways leading to new antigen affinities, and enhanced T cell co-stimulation further promoted new antigen recognition. Our data support a model in which B cell competition-rather than an intrinsic requirement for specific affinity-limits the emergence of new affinities through SHM, highlighting the mammalian adaptive immune system's ability to explore antibody-antigen interactions beyond those encoded by the V(D)J-dependent primary repertoire, demonstrating the flexibility of SHM in not only ripening but also reshaping specificity.
Collapse
Affiliation(s)
- Teng Zuo
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Avneesh Gautam
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Shahab Saghaei
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sweta N Khobragade
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rahaman Ahmed
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Azadeh Mahdavinia
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Mehrdad Zarghami
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Gaspar A Pacheco
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kenneth Green
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Meghan Travers
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Nicholas Garcia
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Zahra Allahyari
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Vishal Rao
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sachin Kumar
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Robert Novak
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Joyce K Hwang
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Li T, Raja BR, Liao J, Zheng L, Yin F, Gan S, Sun X, Lyu G, Ma J. The characteristics, influence factors, and regulatory strategies of growth retardation in ruminants: a review. Front Vet Sci 2025; 12:1566427. [PMID: 40206254 PMCID: PMC11979133 DOI: 10.3389/fvets.2025.1566427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Growth retardation represents a main barrier to affect the productivity and efficiency of ruminants production, which is characterized by low growth rate, a disparity between skeletal and physiological maturation, gastrointestinal dysfunction and reduced reproductive performance. This review provides a concise overview of growth retardation in ruminants, and summarizes the key factors that influence their growth and development, including genetics, nutrition, microbiota and environment. Also, this review emphasizes the central role of nutritional management and gastrointestinal development, as well as the regulatory mechanisms involved in growth processes. In addition, recent advances in these aspects are discussed to form an integrative framework aimed at improving physiological function in ruminants. This review provides a comprehensive perspective for understanding the complex mechanism of growth retardation in ruminants, puts forward a theoretical basis for optimizing the production efficiency of ruminants industry and emphasizes the importance of multidisciplinary collaboration to provide a reference for advancing systematic research on growth and development of ruminants.
Collapse
Affiliation(s)
- Tao Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Bakhtawar Riaz Raja
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jie Liao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Longqing Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Fuquan Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xuemei Sun
- Xinjiang Taikun Group Co., Ltd., Changji, China
| | - Gang Lyu
- Xinjiang Taikun Group Co., Ltd., Changji, China
| | - Jian Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Xinjiang Taikun Group Co., Ltd., Changji, China
| |
Collapse
|
3
|
Liu S, Yang L, Zhang Y, Chen H, Li X, Xu Z, Du R, Li X, Ma J, Liu D. Review of yeast culture concerning the interactions between gut microbiota and young ruminant animals. Front Vet Sci 2024; 11:1335765. [PMID: 38496306 PMCID: PMC10940410 DOI: 10.3389/fvets.2024.1335765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024] Open
Abstract
Microorganisms inhabit the gastrointestinal tract of ruminants and regulate body metabolism by maintaining intestinal health. The state of gastrointestinal health is influenced not only by the macro-level factors of optimal development and the physiological structure integrity but also by the delicate equilibrium between the intestinal flora and immune status at the micro-level. Abrupt weaning in young ruminants causes incomplete development of the intestinal tract resulting in an unstable and unformed microbiota. Abrupt weaning also induced damages to the microecological homeostasis of the intestinal tract, resulting in the intestinal infections and diseases, such as diarrhea. Recently, nutritional and functional yeast culture has been researched to tackle these problems. Herein, we summarized current known interactions between intestinal microorganisms and the body of young ruminants, then we discussed the regulatory effects of using yeast culture as a feed supplement. Yeast culture is a microecological preparation that contains yeast, enriched with yeast metabolites and other nutrient-active components, including β-glucan, mannan, digestive enzymes, amino acids, minerals, vitamins, and some other unknown growth factors. It stimulates the proliferation of intestinal mucosal epithelial cells and the reproduction of intestinal microorganisms by providing special nutrient substrates to support the intestinal function. Additionally, the β-glucan and mannan effectively stimulate intestinal mucosal immunity, promote immune response, activate macrophages, and increase acid phosphatase levels, thereby improving the body's resistance to several disease. The incorporation of yeast culture into young ruminants' diet significantly alleviated the damage caused by weaning stress to the gastrointestinal tract which also acts an effective strategy to promote the balance of intestinal flora, development of intestinal tissue, and establishment of mucosal immune system. Our review provides a theoretical basis for the application of yeast culture in the diet of young ruminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dacheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Silverman GJ, Azzouz DF, Gisch N, Amarnani A. The gut microbiome in systemic lupus erythematosus: lessons from rheumatic fever. Nat Rev Rheumatol 2024; 20:143-157. [PMID: 38321297 DOI: 10.1038/s41584-023-01071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
For more than a century, certain bacterial infections that can breach the skin and mucosal barriers have been implicated as common triggers of autoimmune syndromes, especially post-infection autoimmune diseases that include rheumatic fever and post-streptococcal glomerulonephritis. However, only in the past few years has the importance of imbalances within our own commensal microbiota communities, and within the gut, in the absence of infection, in promoting autoimmune pathogenesis become fully appreciated. A diversity of species and mechanisms have been implicated, including disruption of the gut barrier. Emerging data suggest that expansions (or blooms) of pathobiont species are involved in autoimmune pathogenesis and stimulate clonal expansion of T cells and B cells that recognize microbial antigens. This Review discusses the relationship between the gut microbiome and the immune system, and the potential consequence of disrupting the community balance in terms of autoimmune development, focusing on systemic lupus erythematosus. Notably, inter-relationships between expansions of certain members within gut microbiota communities and concurrent autoimmune responses bear features reminiscent of classical post-infection autoimmune disease. From such insights, new therapeutic opportunities are being considered to restore the balance within microbiota communities or re-establishing the gut-barrier integrity to reinforce immune homeostasis in the host.
Collapse
Affiliation(s)
- Gregg J Silverman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA.
| | - Doua F Azzouz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Abhimanyu Amarnani
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Silverman GJ, Deng J, Azzouz DF. Sex-dependent Lupus Blautia (Ruminococcus) gnavus strain induction of zonulin-mediated intestinal permeability and autoimmunity. Front Immunol 2022; 13:897971. [PMID: 36032126 PMCID: PMC9405438 DOI: 10.3389/fimmu.2022.897971] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Imbalances in the gut microbiome are suspected contributors to the pathogenesis of Systemic Lupus Erythematosus, and our studies and others have documented that patients with active Lupus nephritis have expansions of the obligate anaerobe, Blautia (Ruminococcus) gnavus (RG). To investigate whether the RG strains in Lupus patients have in vivo pathogenic properties in a gnotobiotic system, we colonized C57BL/6 mice with individual RG strains from healthy adults or those from Lupus patients. These strains were similar in their capacity for murine intestinal colonization of antibiotic-preconditioned specific-pathogen-free, as well as of germ-free adults and of their neonatally colonized litters. Lupus-derived RG strains induced high levels of intestinal permeability that was significantly greater in female than male mice, whereas the RG species-type strain (ATCC29149/VPI C7-1) from a healthy donor had little or no effects. These Lupus RG strain-induced functional alterations were associated with RG translocation to mesenteric lymph nodes, and raised serum levels of zonulin, a regulator of tight junction formation between cells that form the gut barrier. Notably, the level of Lupus RG-induced intestinal permeability was significantly correlated with serum IgG anti RG cell-wall lipoglycan antibodies, and with anti-native DNA autoantibodies that are a biomarker for SLE. Strikingly, gut permeability was completely reversed by oral treatment with larazotide acetate, an octapeptide that is a specific molecular antagonist of zonulin. Taken together, these studies document a pathway by which RG strains from Lupus patients contribute to a leaky gut and features of autoimmunity implicated in the pathogenesis of flares of clinical Lupus disease.
Collapse
|
6
|
Hahn MA, Piecyk A, Jorge F, Cerrato R, Kalbe M, Dheilly NM. Host phenotype and microbiome vary with infection status, parasite genotype, and parasite microbiome composition. Mol Ecol 2022; 31:1577-1594. [PMID: 35000227 DOI: 10.1111/mec.16344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/09/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
A growing literature demonstrates the impact of helminths on their host gut microbiome. We investigated whether the stickleback host microbiome depends on eco-evolutionary variables by testing the impact of exposure to the cestode parasite Schistocephalus solidus with respect to infection success, host genotype, parasite genotype, and parasite microbiome composition. We observed constitutive differences in the microbiome of sticklebacks of different origin, and those differences increased when sticklebacks exposed to the parasite resisted infection. In contrast, the microbiome of successfully infected sticklebacks varied with parasite genotype. More specifically, we revealed that the association between microbiome and immune gene expression increased in infected individuals and varied with parasite genotype. In addition, we showed that S. solidus hosts a complex endo- microbiome and that bacterial abundance in the parasite correlates with expression of host immune genes. Within this comprehensive analysis we demonstrated that (i) parasites contribute to modulating the host microbiome through both successful and unsuccessful infection, (ii) when infection is successful, the host microbiome varies with parasite genotype due to genotype-dependent variation in parasite immunomodulation, and (iii) the parasite-associated microbiome is distinct from its host's and impacts the host immune response to infection.
Collapse
Affiliation(s)
- Megan A Hahn
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Agnes Piecyk
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz, Centre for Ocean Research Kiel, Germany
| | - Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Robert Cerrato
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Martin Kalbe
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz, Centre for Ocean Research Kiel, Germany
| | - Nolwenn M Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.,ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, Ploufragan, France.,UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, 94704, Maisons-Alfort, France
| |
Collapse
|
7
|
Yu B, Wang L, Chu Y. Gut microbiota shape B cell in health and disease settings. J Leukoc Biol 2021; 110:271-281. [PMID: 33974295 DOI: 10.1002/jlb.1mr0321-660r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Recent accumulating evidence supports the hypothesis that the intricate interaction between gut microbiota and the immune system profoundly affects health and disease in humans and mice. In this context, microbiota plays an important role in educating and shaping the host immune system which, in turn, regulates gut microbiota diversity and function to maintain homeostasis. Studies have demonstrated that intestinal microbiota participates in shaping B cells in health and disease settings. Herein, we review the recent progress in understanding how microbiota regulates B-cell development, focusing on early-life B-cell repertoire generation in GALT and how microbial products, including microbial antigens and metabolites, affect B-cell activation and differentiation to ultimately regulate B-cell function. We also discuss the interaction between gut microbiota and B cells under pathogenic conditions and highlight new approaches that can be applied to treat various diseases.
Collapse
Affiliation(s)
- Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110:525-537. [PMID: 33884666 DOI: 10.1002/jlb.3mr0321-755r] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract is colonized by trillions of microorganisms, consisting of bacteria, fungi, and viruses, known as the "second gene pool" of the human body. In recent years, the microbiota-gut-bone axis has attracted increasing attention in the field of skeletal health/disorders. The involvement of gut microbial dysbiosis in multiple bone disorders has been recognized. The gut microbiota regulates skeletal homeostasis through its effects on host metabolism, immune function, and hormonal secretion. Owing to the essential role of the gut microbiota in skeletal homeostasis, novel gut microbiota-targeting therapeutics, such as probiotics and prebiotics, have been proven effective in preventing bone loss. However, more well-controlled clinical trials are still needed to evaluate the long-term efficacy and safety of these ecologic modulators in the treatment of bone disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ran Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
9
|
Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T, Taylor JR, Zan H, Casali P. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun 2020; 11:60. [PMID: 31896754 PMCID: PMC6940392 DOI: 10.1038/s41467-019-13603-6] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Short-chain fatty acids (SCFAs) butyrate and propionate are metabolites from dietary fiber's fermentation by gut microbiota that can affect differentiation or functions of T cells, macrophages and dendritic cells. We show here that at low doses these SCFAs directly impact B cell intrinsic functions to moderately enhance class-switch DNA recombination (CSR), while decreasing at higher doses over a broad physiological range, AID and Blimp1 expression, CSR, somatic hypermutation and plasma cell differentiation. In human and mouse B cells, butyrate and propionate decrease B cell Aicda and Prdm1 by upregulating select miRNAs that target Aicda and Prdm1 mRNA-3′UTRs through inhibition of histone deacetylation (HDAC) of those miRNA host genes. By acting as HDAC inhibitors, not as energy substrates or through GPR-engagement signaling in these B cell-intrinsic processes, these SCFAs impair intestinal and systemic T-dependent and T-independent antibody responses. Their epigenetic impact on B cells extends to inhibition of autoantibody production and autoimmunity in mouse lupus models. Dietary fiber-derived short-chain fatty acids (SCFA) act as histone deacetylase (HDAC) inhibitors on Tregs and innate immune cells, promoting immune tolerance by altering gene expression. Here the authors show that SCFA HDAC inhibitor activity impacts B cell differentiation, antibody responses and antibody-driven autoimmunity.
Collapse
Affiliation(s)
- Helia N Sanchez
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA
| | - Justin B Moroney
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA
| | - Huoqun Gan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Tian Shen
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA.,Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - John L Im
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA
| | - Julia R Taylor
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA
| | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA.
| | - Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
10
|
Hao ML, Wang GY, Zuo XQ, Qu CJ, Yao BC, Wang DL. Gut microbiota: an overlooked factor that plays a significant role in osteoporosis. J Int Med Res 2019; 47:4095-4103. [PMID: 31436117 PMCID: PMC6753565 DOI: 10.1177/0300060519860027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gut microbes are known as the body’s second gene pool. Symbiotic intestinal
bacteria play a major role in maintaining balance in humans. Bad eating habits,
antibiotic abuse, diseases, and a poor living environment have a negative effect
on intestinal flora. Abnormal intestinal microbes are prone to cause a variety
of diseases, affecting life expectancy and long-term quality of life, especially
in older people. Several recent studies have found a close association between
intestinal microorganisms and osteoporosis. The potential mechanism of
intestinal flora affecting bone formation or destruction by mediating nitric
oxide, the immune and endocrine systems, and other factors is briefly described
in this review. All of these factors may be responsible for the intestinal flora
that causes osteoporosis. Studying the relationship between intestinal flora and
bone health not only provides new ideas for studying the role of intestinal
microorganism in osteoporosis, but also provides a new therapeutic direction for
clinically refractory osteoporosis. Study of the relationship between intestinal
microbiota and osteoporosis is important for maintaining bone health and
minimizing osteoporosis.
Collapse
Affiliation(s)
- Meng-Lei Hao
- Department of Geriatric Medicine, Affiliated Hospital of Qinghai University, Xining, Qinghai Province, P.R. China
| | - Guang-Yao Wang
- Juxian Hospital of Traditional Chinese Medicine, Juxian, Shandong Provence, P.R. China
| | - Xiao-Qin Zuo
- Department of Geriatric Medicine, Affiliated Hospital of Qinghai University, Xining, Qinghai Province, P.R. China
| | - Chan-Juan Qu
- Department of Radiology, Peking Union Medical Hospital, Beijing, P.R. China
| | - Bo-Chen Yao
- Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, P. R. China
| | - Dong-Lai Wang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Provence, P.R. China
| |
Collapse
|
11
|
McCoy KD, Thomson CA. The Impact of Maternal Microbes and Microbial Colonization in Early Life on Hematopoiesis. THE JOURNAL OF IMMUNOLOGY 2019; 200:2519-2526. [PMID: 29632252 DOI: 10.4049/jimmunol.1701776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 12/24/2022]
Abstract
All body surfaces are colonized by microbes, which occurs through a dynamic process over the first few years of life. Initial colonizing microbes are transferred from the maternal microbiota to the newborn through vertical transmission. Postnatal maturation of the immune system is heavily influenced by these microbes, particularly during early life. Although microbial-mediated education of the immune system is better understood at mucosal sites, recent data indicate that the systemic immune system is also shaped by the microbiota. Bacterial products and metabolites produced through microbial metabolism can reach distal sites, and metabolites derived from the maternal microbiota can cross the placenta and are present in milk. Recent studies show that the microbiota can even influence immune development in primary lymphoid organs like the bone marrow. This review outlines our current knowledge of how the microbiota can impact hematopoiesis, with a focus on the effects of maternal and early-life microbiota.
Collapse
Affiliation(s)
- Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
12
|
Characterization of whole blood transcriptome and early-life fecal microbiota in high and low responder pigs before, and after vaccination for Mycoplasma hyopneumoniae. Vaccine 2019; 37:1743-1755. [PMID: 30808565 DOI: 10.1016/j.vaccine.2019.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
We investigated gene expression patterns in whole blood and fecal microbiota profile as potential predictors of immune response to vaccination, using healthy M. hyopneumoniae infection free piglets (n = 120). Eighty piglets received a dose of prophylactic antibiotics during the first two days of life, whereas the remaining 40 did not. Blood samples for RNA-Seq analysis were collected on experimental Day 0 (D0; 28 days of age) just prior to vaccination, D2, and D6 post-vaccination. A booster vaccine was given at D24. Fecal samples for microbial 16SrRNA sequencing were collected at 7 days of age, and at D0 and D35 post-vaccination. Pigs were ranked based on the levels of M. hyopneumoniae-specific antibodies in serum samples collected at D35, and groups of 'high' (HR) and 'low' (LR) responder pigs (n = 15 each) were selected. Prophylactic antibiotics did not influence antibody titer levels and differential expression analysis did not reveal differences between HR and LR at any time-point (FDR > 0.05); however, based on functional annotation with Ingenuity Pathway Analysis, D2 post-vaccination, HR pigs were enriched for biological terms relating to increased activation of immune cells. In contrast, the immune activation decreased in HR, 6 days post-vaccination. No significant differences were observed prior to vaccination (D0). Two days post-vaccination, multivariate analysis revealed that ADAM8, PROSER3, B4GALNT1, MAP7D1, SPP1, HTRA4, and ENO3 genes were the most promising potential biomarkers. At D0, OTUs annotated to Prevotella, CF21, Bacteroidales and S24-7 were more abundant in HR, whereas Fibrobacter, Paraprevotella, Anaerovibrio, [Prevotella], YRC22, and Helicobacter positively correlated with the antibody titer as well as MYL1, SPP1, and ENO3 genes. Our study integrates gene differential expression and gut microbiota to predict vaccine response in pigs. The results indicate that post-vaccination gene-expression and early-life gut microbiota profile could potentially predict vaccine response in pigs, and inform a direction for future research.
Collapse
|
13
|
Abstract
Intestinal microbial flora, known as the second gene pool of the human body, play an important role in immune function, nutrient uptake, and various activities of host cells, as well as in human disease. Intestinal microorganisms are involved in a variety of mechanisms that affect bone health. Gut microbes are closely related to genetic variation, and gene regulation plays an important part in the development of bone-related diseases such as osteoporosis. Intestinal microorganisms can disrupt the balance between bone formation and resorption by indirectly stimulating or inhibiting osteoblasts and osteoclasts. In addition, intestinal microorganisms affect bone metabolism by regulating growth factors or altering bone immune status and can also alter the metabolism of serotonin, cortisol, and sex hormones, thereby affecting bone mass in mice. Moreover, probiotics, antibiotics, and diet can change the composition of the intestinal microbial flora, thus affecting bone health and also potentially helping to treat bone disease. Studying the relationship between intestinal flora and osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells may provide a basis for preventing and treating bone diseases. This paper reviews recent advances in the study of the relationship between intestinal microflora and bone disease.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanqin Lu
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Jinxiang Han and Dr. Yanqin Lu, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail: (JH); (YL)
| | - Yanzhou Wang
- Department of Paediatric Surgery, Shandong Provincial Hospital, Ji'nan, China
| | - Xiuzhi Ren
- Department of Orthopaedic Surgery, The People’s Hospital of Wuqing District, Tianjin, China
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Jinxiang Han and Dr. Yanqin Lu, Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail: (JH); (YL)
| |
Collapse
|
14
|
Chen Y, Chaudhary N, Yang N, Granato A, Turner JA, Howard SL, Devereaux C, Zuo T, Shrestha A, Goel RR, Neuberg D, Wesemann DR. Microbial symbionts regulate the primary Ig repertoire. J Exp Med 2018; 215:1397-1415. [PMID: 29588346 PMCID: PMC5940265 DOI: 10.1084/jem.20171761] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/23/2018] [Accepted: 03/09/2018] [Indexed: 01/26/2023] Open
Abstract
Symbiotic relationships help shape immune fitness. Chen et al. demonstrate that microbial symbionts influence host immunity by enriching frequencies of antibacterial specificities within the naive B cell receptor repertoire and that this may have consequences for mucosal and systemic immunity. The ability of immunoglobulin (Ig) to recognize pathogens is critical for optimal immune fitness. Early events that shape preimmune Ig repertoires, expressed on IgM+ IgD+ B cells as B cell receptors (BCRs), are poorly defined. Here, we studied germ-free mice and conventionalized littermates to explore the hypothesis that symbiotic microbes help shape the preimmune Ig repertoire. Ig-binding assays showed that exposure to conventional microbial symbionts enriched frequencies of antibacterial IgM+ IgD+ B cells in intestine and spleen. This enrichment affected follicular B cells, involving a diverse set of Ig-variable region gene segments, and was T cell–independent. Functionally, enrichment of microbe reactivity primed basal levels of small intestinal T cell–independent, symbiont-reactive IgA and enhanced systemic IgG responses to bacterial immunization. These results demonstrate that microbial symbionts influence host immunity by enriching frequencies of antibacterial specificities within preimmune B cell repertoires and that this may have consequences for mucosal and systemic immunity.
Collapse
Affiliation(s)
- Yuezhou Chen
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Neha Chaudhary
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Nicole Yang
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Alessandra Granato
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jacob A Turner
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Shannon L Howard
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Colby Devereaux
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Teng Zuo
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Akritee Shrestha
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rishi R Goel
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Duane R Wesemann
- Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The gut microbiota can be considered a hidden organ that plays essential roles in host homeostasis. Exploration of the effects of microbiota on bone has just begun. Complimentary studies using germ-free mice, antibiotic, and probiotic treatments reveal a complicated relationship between microbiota and bone. Here, we review recent reports addressing the effect of gut microbiota on bone health, discuss potential reasons for discrepant findings, and explore potential mechanisms for these effects. RECENT FINDINGS Manipulation of microbiota by colonization of germ-free mice, antibiotics, or probiotic supplementation significantly alters bone remodeling, bone development and growth, as well as bone mechanical strength. Different experimental models reveal context-dependent effects of gut microbiota on bone. By examining phenotypic effects, experimental context, and proposed mechanisms, revealed by recent reports, we hope to provide comprehensive and fresh insights into the many facets of microbiota and bone interactions.
Collapse
Affiliation(s)
- Jing Yan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, 60 Fenwood Road, 6002Q, Boston, MA, 02115, USA
| | - Julia F Charles
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, 60 Fenwood Road, 6002Q, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
The Impact of the Gut Microbiota on Humoral Immunity to Pathogens and Vaccination in Early Infancy. PLoS Pathog 2016; 12:e1005997. [PMID: 28006021 PMCID: PMC5179050 DOI: 10.1371/journal.ppat.1005997] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
17
|
Abstract
Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth.
Collapse
|
18
|
Parra D, Korytář T, Takizawa F, Sunyer JO. B cells and their role in the teleost gut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:150-66. [PMID: 26995768 PMCID: PMC5125549 DOI: 10.1016/j.dci.2016.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 05/03/2023]
Abstract
Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system.
Collapse
Affiliation(s)
- David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Tomáš Korytář
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Rubic-Schneider T, Christen B, Brees D, Kammüller M. Minipigs in Translational Immunosafety Sciences: A Perspective. Toxicol Pathol 2016; 44:315-24. [PMID: 26839327 DOI: 10.1177/0192623315621628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The porcine immune system has been studied especially with regard to infectious diseases of the domestic pig, highlighting the economic importance of the pig in agriculture. Recently, in particular, minipigs have received attention as alternative species to dogs or nonhuman primates in drug safety evaluations. The increasing number of new drug targets investigated to modulate immunological pathways has triggered renewed interest to further explore the porcine immune system. Comparative immunological studies of minipigs with other species broaden the translational models investigated in drug safety evaluations. The porcine immune system overall seems functionally similar to other mammalian species, but there are some anatomical, immunophenotypical, and functional differences. Here, we briefly review current knowledge of the innate and adaptive immune system in pigs and minipigs. In conclusion, more systematic and cross-species comparisons are needed to assess the significance of immunological findings in minipigs in the context of translational safety sciences.
Collapse
Affiliation(s)
| | | | - Dominique Brees
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
20
|
Granato A, Chen Y, Wesemann DR. Primary immunoglobulin repertoire development: time and space matter. Curr Opin Immunol 2015; 33:126-31. [PMID: 25797714 DOI: 10.1016/j.coi.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/07/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
The primary immunoglobulin repertoire develops via opposing forces of expanding diversification balanced by contracting selection mechanisms. The resulting shape is essential for host health and immune fitness. While the molecular mechanisms of Ig diversification have largely been defined, selection forces shaping emerging Ig repertoires are poorly understood. During lifetime, human and mouse early B cell development occurs at distinct locations-beginning in fetal liver before transferring to bone marrow and spleen by the end of gestation. During an early life window of time, the murine gut lamina propria harbors developing immature B cells in proximity to intestinal contents such as commensal microbes and dietary antigens. Location and timing of early B cell development may thus endow neighboring antigens with primary repertoire-shaping capabilities.
Collapse
Affiliation(s)
- Alessandra Granato
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yuezhou Chen
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Jamieson AM. Influence of the microbiome on response to vaccination. Hum Vaccin Immunother 2015; 11:2329-31. [PMID: 26090701 PMCID: PMC4635895 DOI: 10.1080/21645515.2015.1022699] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/19/2015] [Indexed: 12/18/2022] Open
Abstract
In order for vaccines to be effective within a given population not only do large numbers of people need to be vaccinated, but a large proportion of those vaccinated must develop protective immunity. The mechanisms that lead to a poor immune response to vaccination are complex and poorly understood, but include both genetic and environmental factors. The bacteria that exist throughout the human body, known as the microbiome, play a variety of roles in the development of the immune system. This is particularly true during infancy when the microbiome and the immune response are developing in tandem. Most vaccines are administered in early childhood to prevent outbreaks of devastating childhood diseases. Understanding the impact that the early microbiome plays in response to vaccination will improve our understanding of vaccine efficacy.
Collapse
Affiliation(s)
- Amanda M Jamieson
- Department of Molecular Microbiology and Immunology; Brown University; Providence, RI USA
| |
Collapse
|