1
|
Zhang J, Zeng F, Li Y, Mu C, Liu C, Wang L, Peng X, He L, Su Y, Li H, Wang A, Feng L, Gao D, Zhang Z, Xu G, Wang Y, Yue R, Si J, Zheng L, Zhang X, He F, Yi H, Tang Z, Li G, Ma K, Li Q. The characterization of technical design of a virus-like structure (VLS) nanodelivery system as vaccine candidate against SARS-CoV-2 variants. Hum Vaccin Immunother 2025; 21:2473183. [PMID: 40045463 PMCID: PMC11901403 DOI: 10.1080/21645515.2025.2473183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The constant mutation of SARS-CoV-2 has led to the continuous appearance of viral variants and their pandemics and has improved the development of vaccines with a broad spectrum of antigens to curb the spread of the virus. The work described here suggested a novel vaccine with a virus-like structure (VLS) composed of combined mRNA and protein that is capable of stimulating the immune system in a manner similar to that of viral infection. This VLS vaccine is characterized by its ability to specifically target dendritic cells and/or macrophages through S1 protein recognition of the DC-SIGN receptor in cells, which leads to direct mRNA delivery to these innate immune cells for activation of robust immunity with a broad spectrum of neutralizing antibodies and immune protective capacity against variants. Research on its composition characteristics and structural features has suggested its druggability. Compared with the current mRNA vaccine, the VLS vaccine was identified as having no cytotoxicity at its effective application dosage, while the results of safety observations in animals revealed fewer adverse reactions during immunization.
Collapse
MESH Headings
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Animals
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/immunology
- Humans
- Antibodies, Viral/immunology
- Mice
- Dendritic Cells/immunology
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/genetics
- Lectins, C-Type/immunology
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- mRNA Vaccines
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Macrophages/immunology
- Mice, Inbred BALB C
- Female
- Cell Adhesion Molecules
Collapse
Affiliation(s)
- Jingjing Zhang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
- Shandong Weigao Litong Biological Products Co, Ltd, Weihai, China
| | - Fengyuan Zeng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Yanmei Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Changyong Mu
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Change Liu
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Lichun Wang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Xiaowu Peng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Liping He
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Yanrui Su
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Hongbing Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - An Wang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Lin Feng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Dongxiu Gao
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Zhixiao Zhang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Gang Xu
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Yixuan Wang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Rong Yue
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Junbo Si
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Lichun Zheng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Xiong Zhang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Fuyun He
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Hongkun Yi
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Zhongshu Tang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Gaocan Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Kaili Ma
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
- Shandong Weigao Litong Biological Products Co, Ltd, Weihai, China
| | - Qihan Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| |
Collapse
|
2
|
Zubair A, Ahmad H, Arif MM, Ali M. mRNA vaccines against HIV: Hopes and challenges. HIV Med 2025. [PMID: 40195015 DOI: 10.1111/hiv.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/23/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Since the introduction of the first licensed mRNA-based vaccines against COVID-19, there has been significant interest in leveraging this technology for other vaccines. An unprecedented surge of mRNA vaccines has emerged in preclinical, clinical, and various research phases since 2020. The rapid development of mRNA formulations, delivery methods, and manufacturing processes has made this trend foreseeable. There is an urgent demand for effective and easily transportable vaccines in regions where the virus is prevalent, and mRNA technology shows promise in addressing this need. METHODOLOGY The data was retrieved from various databases, including Google Scholar, PubMed, Science Direct, ClinicalTrials.gov, and government websites. The following terms were used in the search strategies: HIV, vaccines, mRNA vaccines, clinical trials, and preclinical trials. A total of 35 articles were identified and subsequently screened for data regarding mRNA vaccines for HIV. RESULTS mRNA vaccines are an effective solution for HIV treatment, as demonstrated by various research studies referenced in the article. CONCLUSION This review evaluates the current state of HIV-1 mRNA vaccine development, clarifies various targeting strategies, highlights recent research findings, and provides insights into the challenges and potential solutions associated with these issues. In this review, we have explored mRNA vaccines, focusing on their functional structure, design, manufacturing, and distribution methodologies.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Hanbal Ahmad
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Muhammad Muaz Arif
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
3
|
D'Oliviera A, Dai X, Mottaghinia S, Olson S, Geissler EP, Etienne L, Zhang Y, Mugridge JS. Recognition and cleavage of human tRNA methyltransferase TRMT1 by the SARS-CoV-2 main protease. eLife 2025; 12:RP91168. [PMID: 39773525 PMCID: PMC11706605 DOI: 10.7554/elife.91168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.
Collapse
Affiliation(s)
- Angel D'Oliviera
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| | - Xuhang Dai
- Department of Chemistry, New York UniversityNew YorkUnited States
| | - Saba Mottaghinia
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonLyonFrance
| | - Sophie Olson
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| | - Evan P Geissler
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| | - Lucie Etienne
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonLyonFrance
| | - Yingkai Zhang
- Department of Chemistry, New York UniversityNew YorkUnited States
- Simons Center for Computational Physical Chemistry at New York UniversityNew YorkUnited States
| | - Jeffrey S Mugridge
- Department of Chemistry & Biochemistry, University of DelawareNewarkUnited States
| |
Collapse
|
4
|
Hao L, Fragoso-Saavedra M, Liu Q. Upregulation of porcine epidemic diarrhea virus (PEDV) RNA translation by the nucleocapsid protein. Virology 2025; 602:110306. [PMID: 39603168 DOI: 10.1016/j.virol.2024.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The role of coronaviral nucleocapsid (N) protein in regulating viral translation remains poorly understood. Here, we showed that the N protein of porcine epidemic diarrhea virus (PEDV) enhances the translation of both virus-like genomic RNA (gRNA) and messenger RNA. Further characterization of the gRNA translation upregulation showed that the N-terminal domain (NTD) + Linker region plays a major role. The stem-loop 1 in the 5' untranslated region (UTR) and the budged stem loop in the 3'UTR are required for viral translation upregulation by PEDV N protein. The signaling kinase Akt exists in three isoforms. We found that Akt1 enhances viral gRNA translation upregulation by the N protein dependent on its kinase activity. We further showed an interaction between Akt1 and PEDV N, that is abolished by the NTD + Linker region. This suggested that the enhancing effect of Akt1 on translation upregulation by the N protein does not require interaction between these two proteins.
Collapse
Affiliation(s)
- Lin Hao
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
5
|
Grelewska‐Nowotko K, Elhag AE, Turowski TW. Transcription Kinetics in the Coronavirus Life Cycle. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70000. [PMID: 39757745 PMCID: PMC11701415 DOI: 10.1002/wrna.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity. We also address steric limitations in coronavirus replication, particularly during early infection phases, and outline hypothesis regarding translation-transcription conflicts, postulating the existence of mechanisms that resolve these issues. In cells infected by coronaviruses, abundant structural proteins are synthesized from subgenomic RNA fragments (sgRNAs) produced via discontinuous transcription. During elongation, RdRP can skip large sections of the viral genome, resulting in the creation of shorter sgRNAs that reflects the stoichiometry of viral structural proteins. Although the precise mechanism of discontinuous transcription remains unknown, we discuss recent hypotheses involving long-distance RNA-RNA interactions, helicase-mediated RdRP backtracking, dissociation and reassociation of RdRP, and RdRP dimerization.
Collapse
Affiliation(s)
| | - Ahmed Eisa Elhag
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
- Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary SciencesUniversity of GadarifAl QadarifSudan
| | | |
Collapse
|
6
|
Wang J, Zhang XZ, Sun XY, Tian WJ, Wang XJ. Cellular RNA-binding proteins LARP4 and PABPC1 synergistically facilitate viral translation of coronavirus PEDV. Vet Microbiol 2024; 298:110219. [PMID: 39182469 DOI: 10.1016/j.vetmic.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Coronaviruses are causing epizootic diseases and thus are a substantial threat for both domestic and wild animals. These viruses depend on the host translation machinery to complete their life cycle. The current paper identified cellular RNA-binding proteins (RBPs), La-related protein 4 (LARP4) and polyadenylate-binding protein cytoplasmic 1 (PABPC1), as critical regulators of efficient translation of the coronavirus porcine epidemic diarrhea virus (PEDV) mRNA. In Vero cells, PEDV infection caused LARP4 to migrate from the nucleus to the cytoplasm in a chromosome region maintenance1 (CRM1)-independent pathway. In the absence of the nuclear export signal of LARP4, viral translation was not promoted by LARP4. A further study unveiled that the cytoplasmic LARP4 binds to the 3'-terminal untranslated region (3'UTR) of PEDV mRNA with the assistance of PABPC1 to facilitate viral translation. LARP4 knockdown reduced the promotion of the PABPC1-induced 3'UTR translation activity. Moreover, the rabbit reticulocyte lysate (RRL) system revealed that the prokaryotic expressed protein LARP4 and PABPC1 enhance PEDV mRNA translation. To our knowledge, this is the first study demonstrating that PEDV induces nucleo-cytoplasmic shuttling of LARP4 to enhance its own replication, which broadens our insights into how viruses use host's RBPs for the efficient translation of viral mRNA.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin-Yue Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wen-Jun Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiao-Jia Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
D’Oliviera A, Dai X, Mottaghinia S, Olson S, Geissler EP, Etienne L, Zhang Y, Mugridge JS. Recognition and Cleavage of Human tRNA Methyltransferase TRMT1 by the SARS-CoV-2 Main Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.20.529306. [PMID: 36865253 PMCID: PMC9980103 DOI: 10.1101/2023.02.20.529306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The SARS-CoV-2 main protease (Mpro, or Nsp5) is critical for the production of functional viral proteins during infection and, like many viral proteases, can also target host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 can be recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N 2,N 2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes global protein synthesis and cellular redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. TRMT1 proteolysis results in elimination of TRMT1 tRNA methyltransferase activity and reduced tRNA binding affinity. Evolutionary analysis shows that the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. In primates, regions outside the cleavage site with rapid evolution could indicate adaptation to ancient viral pathogens. Furthermore, we determined the structure of a TRMT1 peptide in complex with Mpro, revealing a substrate binding conformation distinct from the majority of available Mpro-peptide complexes. Kinetic parameters for peptide cleavage show that the TRMT1(526-536) sequence is cleaved with comparable efficiency to the Mpro-targeted nsp8/9 viral cleavage site. Mutagenesis studies and molecular dynamics simulations together indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis that follows substrate binding. Our results provide new information about the structural basis for Mpro substrate recognition and cleavage, the functional roles of the TRMT1 zinc finger domain in tRNA binding and modification, and the regulation of TRMT1 activity by SARS-CoV-2 Mpro. These studies could inform future therapeutic design targeting Mpro and raise the possibility that proteolysis of human TRMT1 during SARS-CoV-2 infection suppresses protein translation and oxidative stress response to impact viral pathogenesis. Significance Statement Viral proteases can strategically target human proteins to manipulate host biochemistry during infection. Here, we show that the SARS-CoV-2 main protease (Mpro) can specifically recognize and cleave the human tRNA methyltransferase enzyme TRMT1, and that cleavage of TRMT1 cripples its ability to install a key modification on human tRNAs that is critical for protein translation. Our structural and functional analysis of the Mpro-TRMT1 interaction shows how the flexible Mpro active site engages a conserved sequence in TRMT1 in an uncommon binding mode to catalyze its cleavage and inactivation. These studies provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.
Collapse
Affiliation(s)
- Angel D’Oliviera
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - Xuhang Dai
- Department of Chemistry, New York University, New York, NY 10003
| | - Saba Mottaghinia
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Sophie Olson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - Evan P. Geissler
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| | - Lucie Etienne
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
- Simons Center for Computational Physical Chemistry at New York University, New York, NY 10003
| | - Jeffrey S. Mugridge
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716
| |
Collapse
|
8
|
Shao R, Visser I, Fros JJ, Yin X. Versatility of the Zinc-Finger Antiviral Protein (ZAP) As a Modulator of Viral Infections. Int J Biol Sci 2024; 20:4585-4600. [PMID: 39309436 PMCID: PMC11414379 DOI: 10.7150/ijbs.98029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is a restriction factor that proficiently impedes the replication of a variety of RNA and DNA viruses. In recent years, the affinity of ZAP's zinc-fingers for single-stranded RNA (ssRNA) rich in CpG dinucleotides was uncovered. High frequencies of CpGs in RNA may suggest a non-self origin, which underscores the importance of ZAP as a potential cellular sensor of (viral) RNA. Upon binding viral RNA, ZAP recruits cellular cofactors to orchestrate a finely tuned antiviral response that limits virus replication via distinct mechanisms. These include promoting degradation of viral RNA, inhibiting RNA translation, and synergizing with other immune pathways. Depending on the viral species and experimental set-up, different isoforms and cellular cofactors have been reported to be dominant in shaping the ZAP-mediated antiviral response. Here we review how ZAP differentially affects viral replication depending on distinct interactions with RNA, cellular cofactors, and viral proteins to discuss how these interactions shape the antiviral mechanisms that have thus far been reported for ZAP. Importantly, we zoom in on the unknown aspects of ZAP's antiviral system and its therapeutic potential to be employed in vaccine design.
Collapse
Affiliation(s)
- Ran Shao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Imke Visser
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Allan MF, Aruda J, Plung JS, Grote SL, des Taillades YJM, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. RESEARCH SQUARE 2024:rs.3.rs-4814547. [PMID: 39149495 PMCID: PMC11326378 DOI: 10.21203/rs.3.rs-4814547/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
Affiliation(s)
- Matthew F. Allan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Justin Aruda
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Jesse S. Plung
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Scott L. Grote
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | | | - Albéric A. de Lajarte
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| |
Collapse
|
10
|
Allan MF, Aruda J, Plung JS, Grote SL, Martin des Taillades YJ, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591762. [PMID: 38746332 PMCID: PMC11092567 DOI: 10.1101/2024.04.29.591762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
|
11
|
Abstract
Coronavirus Disease-19 (COVID-19) pandemic is caused by SARS-CoV-2 that has infected more than 600 million people and killed more than 6 million people worldwide. This infection affects mainly certain groups of people that have high susceptibility to present severe COVID-19 due to comorbidities. Moreover, the long-COVID-19 comprises a series of symptoms that may remain in some patients for months after infection that further compromises their health. Thus, since this pandemic is profoundly affecting health, economy, and social life of societies, a deeper understanding of viral replication cycle could help to envisage novel therapeutic alternatives that limit or stop COVID-19. Several findings have unexpectedly discovered that mitochondria play a critical role in SARS-CoV-2 cell infection. Indeed, it has been suggested that this organelle could be the origin of its replication niches, the double membrane vesicles (DMV). In this regard, mitochondria derived vesicles (MDV), involved in mitochondria quality control, discovered almost 15 years ago, comprise a subpopulation characterized by a double membrane. MDV shedding is induced by mitochondrial stress, and it has a fast assembly dynamic, reason that perhaps has precluded their identification in electron microscopy or tomography studies. These and other features of MDV together with recent SARS-CoV-2 protein interactome and other findings link SARS-CoV-2 to mitochondria and support that these vesicles are the precursors of SARS-CoV-2 induced DMV. In this work, the morphological, biochemical, molecular, and cellular evidence that supports this hypothesis is reviewed and integrated into the current model of SARS-CoV-2 cell infection. In this scheme, some relevant questions are raised as pending topics for research that would help in the near future to test this hypothesis. The intention of this work is to provide a novel framework that could open new possibilities to tackle SARS-CoV-2 pandemic through mitochondria and DMV targeted therapies.
Collapse
Affiliation(s)
- Pavel Montes de Oca-B
- Neurociencia Cognitiva, Instituto de Fisiologia-UNAM, CDMX, CDMX, 04510, Mexico
- Unidad de Neurobiologia Dinamica, Instituto Nacional de Neurologia y Neurocirugia, CDMX, CDMX, 14269, Mexico
| |
Collapse
|
12
|
Ueno S, Amarbayasgalan S, Sugiura Y, Takahashi T, Shimizu K, Nakagawa K, Kawabata-Iwakawa R, Kamitani W. Eight-amino-acid sequence at the N-terminus of SARS-CoV-2 nsp1 is involved in stabilizing viral genome replication. Virology 2024; 595:110068. [PMID: 38593595 DOI: 10.1016/j.virol.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Coronavirus disease 19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enveloped virus with a single-stranded positive-sense ribonucleic acid (RNA) genome. The CoV non-structural protein (nsp) 1 is a multifunctional protein that undergoes translation shutoff, messenger RNA (mRNA) cleavage, and RNA binding. The C-terminal region is involved in translational shutoff and RNA cleavage. The N-terminal region of SARS-CoV-2 nsp1 is highly conserved among isolated SARS-CoV-2 variants. However, the I-004 variant, isolated during the early SARS-CoV-2 pandemic, lost eight amino acids in the nsp1 region. In this study, we showed that the eight amino acids are important for viral replication in infected interferon-incompetent cells and that the recombinant virus that lost these amino acids had low pathogenicity in the lungs of hamster models. The loss of eight amino acids-induced mutations occurred in the 5' untranslated region (UTR), suggesting that nsp1 contributes to the stability of the viral genome during replication.
Collapse
Affiliation(s)
- Shiori Ueno
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | | | - Yoshiro Sugiura
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tatsuki Takahashi
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Kenta Shimizu
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Keisuke Nakagawa
- Laboratory of Veterinary Microbiology, Joint Department of Veterinary Medicine, Gifu University, Yanagido, Gifu, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan.
| |
Collapse
|
13
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Deng S, Tian X, Belshaw R, Zhou J, Zhang S, Yang Y, Huang C, Chen W, Qiu H, Choo SW. An RNA-Seq analysis of coronavirus in the skin of the Pangolin. Sci Rep 2024; 14:910. [PMID: 38195813 PMCID: PMC10776870 DOI: 10.1038/s41598-024-51261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Protection of the Critically Endangered East Asian Pangolin species is hampered by the vulnerability of captive individuals to infection. Studies have previously shown the pangolin to have a unique pseudogenisation of many immunity genes (including IFNE, IFIH1, cGAS, STING, TLR5, and TLR11), and we suspected that these losses could account for this vulnerability. Here we used RNA-Seq data to show the effect of these gene losses on the transcriptional response to a viral skin infection in a deceased pangolin. This virus is very closely related to the one causing the current COVID-19 pandemic in the human population (SARS-CoV2), and we found the most upregulated pathway was the same one previously identified in the lungs of SARS-CoV2-infected humans. As predicted, we found that the pathways downstream of the lost genes were not upregulated. For example, the pseudogenised interferon epsilon (IFNE) is known to be particularly important in epithelial immunity, and we show that interferon-related responses were not upregulated in the infected pangolin skin. We suggest that the pangolin's innate gene pseudogenisation is indeed likely to be responsible for the animal's vulnerability to infection.
Collapse
Affiliation(s)
- Siwei Deng
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Xuechen Tian
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Robert Belshaw
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Jinfeng Zhou
- China Biodiversity Conservation and Green Development Foundation (CBCGDF), Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Siyuan Zhang
- China Biodiversity Conservation and Green Development Foundation (CBCGDF), Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Yixin Yang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Chang Huang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Weikang Chen
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Hailu Qiu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China
| | - Siew Woh Choo
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China.
- Zhejiang Bioinformatics International Science and Technology Cooperation Centre, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China.
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang, 325060, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| |
Collapse
|
15
|
Karousis ED, Schubert K, Ban N. Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective. EMBO J 2024; 43:151-167. [PMID: 38200146 PMCID: PMC10897431 DOI: 10.1038/s44318-023-00019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Wang H, Cheng L, Yu L, Guo Z. Targeting the mammalian target of rapamycin pathway in neurological manifestations of Covid-19. Rev Med Virol 2024; 34:e2503. [PMID: 38282397 DOI: 10.1002/rmv.2503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
The diverse and severe nature of neurological manifestations associated with coronavirus disease 2019 (Covid-19) has garnered increasing attention. Exploring the potential to decrease neurological complications in Covid-19 patients involves targeting the mammalian target of rapamycin (mTOR) pathway as a therapeutic strategy. The mTOR pathway, widely recognised for its central role in essential cellular processes like synthesising proteins, facilitating autophagy, and modulating immune responses, has implications in various neurological disorders. Drawing parallels between these disorders and the observed neurological complications in Covid-19, we present a comprehensive review on the current understanding of mTOR signalling in the context of severe acute respiratory syndrome coronavirus 2 infection and neuroinflammation.
Collapse
Affiliation(s)
- Han Wang
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun, University of Chinese Medicine, Changchun, China
| | - Li Cheng
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun, University of Chinese Medicine, Changchun, China
| | - Lanlan Yu
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun, University of Chinese Medicine, Changchun, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Yuan X, Zhang X, Wang H, Mao X, Sun Y, Tan L, Song C, Qiu X, Ding C, Liao Y. The Ubiquitin-Proteasome System Facilitates Membrane Fusion and Uncoating during Coronavirus Entry. Viruses 2023; 15:2001. [PMID: 37896778 PMCID: PMC10610886 DOI: 10.3390/v15102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Although the involvement of the ubiquitin-proteasome system (UPS) in several coronavirus-productive infections has been reported, whether the UPS is required for infectious bronchitis virus (IBV) and porcine epidemic diarrhea virus (PEDV) infections is unclear. In this study, the role of UPS in the IBV and PEDV life cycles was investigated. When the UPS was suppressed by pharmacological inhibition at the early infection stage, IBV and PEDV infectivity were severely impaired. Further study showed that inhibition of UPS did not change the internalization of virus particles; however, by using R18 and DiOC-labeled virus particles, we found that inhibition of UPS prevented the IBV and PEDV membrane fusion with late endosomes or lysosomes. In addition, proteasome inhibitors blocked the degradation of the incoming viral protein N, suggesting the uncoating process and genomic RNA release were suppressed. Subsequently, the initial translation of genomic RNA was blocked. Thus, UPS may target the virus-cellular membrane fusion to facilitate the release of incoming viruses from late endosomes or lysosomes, subsequently blocking the following virus uncoating, initial translation, and replication events. Similar to the observation of proteasome inhibitors, ubiquitin-activating enzyme E1 inhibitor PYR-41 also impaired the entry of IBV, enhanced the accumulation of ubiquitinated proteins, and depleted mono-ubiquitin. In all, this study reveals an important role of UPS in coronavirus entry by preventing membrane fusion and identifies UPS as a potential target for developing antiviral therapies for coronavirus.
Collapse
Affiliation(s)
- Xiao Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xiaoman Zhang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xiang Mao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (X.Y.); (X.Z.); (H.W.); (X.M.); (Y.S.); (L.T.); (C.S.); (X.Q.); (C.D.)
| |
Collapse
|
18
|
Adam L, Stanifer M, Springer F, Mathony J, Brune M, Di Ponzio C, Eils R, Boulant S, Niopek D, Kallenberger SM. Transcriptomics-inferred dynamics of SARS-CoV-2 interactions with host epithelial cells. Sci Signal 2023; 16:eabl8266. [PMID: 37751479 DOI: 10.1126/scisignal.abl8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Virus-host interactions can reveal potentially effective and selective therapeutic targets for treating infection. Here, we performed an integrated analysis of the dynamics of virus replication and the host cell transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using human Caco-2 colon cancer cells as a model. Time-resolved RNA sequencing revealed that, upon infection, cells immediately transcriptionally activated genes associated with inflammatory pathways that mediate the antiviral response, which was followed by an increase in the expression of genes involved in ribosome and mitochondria function, thus suggesting rapid alterations in protein production and cellular energy supply. At later stages, between 24 and 48 hours after infection, the expression of genes involved in metabolic processes-in particular, those related to xenobiotic metabolism-was decreased. Mathematical modeling incorporating SARS-CoV-2 replication suggested that SARS-CoV-2 proteins inhibited the host antiviral response and that virus transcripts exceeded the translation capacity of the host cells. Targeting kinase-dependent pathways that exhibited increases in transcription in host cells was as effective as a virus-targeted inhibitor at repressing viral replication. Our findings in this model system delineate a sequence of SARS-CoV-2 virus-host interactions that may facilitate the identification of druggable host pathways to suppress infection.
Collapse
Affiliation(s)
- Lukas Adam
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Megan Stanifer
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg 69120, Germany
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Fabian Springer
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
| | - Jan Mathony
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
- Center for Synthetic Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
- BZH Graduate School, Heidelberg University, Heidelberg 69120, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Heidelberg 69120, Germany
| | - Maik Brune
- Clinic of Endocrinology, Diabetology, Metabolism, and Clinical Chemistry, Central Laboratory, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Chiara Di Ponzio
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany
| | - Roland Eils
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg 69120, Germany
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Dominik Niopek
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
- Center for Synthetic Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Heidelberg 69120, Germany
| | - Stefan M Kallenberger
- Health Data Science Unit, University Hospital Heidelberg and Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg 69120, Germany
- Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany
| |
Collapse
|
19
|
Pang X, Xu W, Liu Y, Li H, Chen L. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Eur J Med Chem 2023; 257:115491. [PMID: 37244162 DOI: 10.1016/j.ejmech.2023.115491] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication and transcription and represents an attractive drug target for fighting COVID-19. Many SARS-CoV-2 Mpro inhibitors have been reported, including covalent and noncovalent inhibitors. The SARS-CoV-2 Mpro inhibitor PF-07321332 (Nirmatrelvir) designed by Pfizer has been put on the market. This paper briefly introduces the structural characteristics of SARS-CoV-2 Mpro and summarizes the research progress of SARS-CoV-2 Mpro inhibitors from the aspects of drug repurposing and drug design. These information will provide a basis for the drug development of treating the infection of SARS-CoV-2 and even other coronaviruses in the future.
Collapse
Affiliation(s)
- Xiaojing Pang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
20
|
Korneeva N, Khalil MI, Ghosh I, Fan R, Arnold T, De Benedetti A. SARS-CoV-2 viral protein Nsp2 stimulates translation under normal and hypoxic conditions. Virol J 2023; 20:55. [PMID: 36998012 PMCID: PMC10060939 DOI: 10.1186/s12985-023-02021-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractWhen viruses like SARS-CoV-2 infect cells, they reprogram the repertoire of cellular and viral transcripts that are being translated to optimize their strategy of replication, often targeting host translation initiation factors, particularly eIF4F complex consisting of eIF4E, eIF4G and eIF4A. A proteomic analysis of SARS-CoV-2/human proteins interaction revealed viral Nsp2 and initiation factor eIF4E2, but a role of Nsp2 in regulating translation is still controversial. HEK293T cells stably expressing Nsp2 were tested for protein synthesis rates of synthetic and endogenous mRNAs known to be translated via cap- or IRES-dependent mechanism under normal and hypoxic conditions. Both cap- and IRES-dependent translation were increased in Nsp2-expressing cells under normal and hypoxic conditions, especially mRNAs that require high levels of eIF4F. This could be exploited by the virus to maintain high translation rates of both viral and cellular proteins, particularly in hypoxic conditions as may arise in SARS-CoV-2 patients with poor lung functioning.
Collapse
|
21
|
Abstract
SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been associated with substantial global morbidity and mortality. Despite a tropism that is largely confined to the airways, COVID-19 is associated with multiorgan dysfunction and long-term cognitive pathologies. A major driver of this biology stems from the combined effects of virus-mediated interference with the host antiviral defences in infected cells and the sensing of pathogen-associated material by bystander cells. Such a dynamic results in delayed induction of type I and III interferons (IFN-I and IFN-III) at the site of infection, but systemic IFN-I and IFN-III priming in distal organs and barrier epithelial surfaces, respectively. In this Review, we examine the relationship between SARS-CoV-2 biology and the cellular response to infection, detailing how antagonism and dysregulation of host innate immune defences contribute to disease severity of COVID-19.
Collapse
Affiliation(s)
- Judith M Minkoff
- Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Benjamin tenOever
- Department of Microbiology, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
22
|
Dong HJ, Wang J, Zhang XZ, Li CC, Liu JF, Wang XJ. Proteomic screening identifies RPLp2 as a specific regulator for the translation of coronavirus. Int J Biol Macromol 2023; 230:123191. [PMID: 36632964 PMCID: PMC9827737 DOI: 10.1016/j.ijbiomac.2023.123191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Viral mRNA of coronavirus translates in an eIF4E-dependent manner, and the phosphorylation of eIF4E can modulate this process, but the role of p-eIF4E in coronavirus infection is not yet entirely evident. p-eIF4E favors the translation of selected mRNAs, specifically the mRNAs that encode proteins associated with cell proliferation, inflammation, the extracellular matrix, and tumor formation and metastasis. In the present work, two rounds of TMT relative quantitative proteomics were used to screen 77 cellular factors that are upregulated upon infection by coronavirus PEDV and are potentially susceptible to a high level of p-eIF4E. PEDV infection increased the translation level of ribosomal protein lateral stalk subunit RPLp2 (but not subunit RPLp0/1) in a p-eIF4E-dependent manner. The bicistronic dual-reporter assay and polysome profile showed that RPLp2 is essential for translating the viral mRNA of PEDV. RNA binding protein and immunoprecipitation assay showed that RPLp2 interacted with PEDV 5'UTR via association with eIF4E. Moreover, the cap pull-down assay showed that the viral nucleocapsid protein is recruited in m7GTP-precipitated complexes with the assistance of RPLp2. The heterogeneous ribosomes, which are different in composition, regulate the selective translation of specific mRNAs. Our study proves that viral mRNA and protein utilize translation factors and heterogeneous ribosomes for preferential translation initiation. This previously uncharacterized process may be involved in the selective translation of coronavirus.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jian-Feng Liu
- College of Animal Science and Technol, China Agricultural University, Beijing 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Yadav S, Ahamad S, Gupta D, Mathur P. Lead optimization, pharmacophore development and scaffold design of protein kinase CK2 inhibitors as potential COVID-19 therapeutics. J Biomol Struct Dyn 2023; 41:1811-1827. [PMID: 35014595 DOI: 10.1080/07391102.2021.2024449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Therapeutic agents being designed against COVID-19 have targeted either the virus directly or the host cellular machinery. A particularly attractive host target is the ubiquitous and constitutively active serine-threonine kinase, Protein kinase CK2 (CK2). CK2 enhances viral protein synthesis by inhibiting the sequestration of host translational machinery as stress granules and assists in viral egression via association with the N-protein at filopodial protrusions of the infected cell. CK2 inhibitors such as Silmitasertib have been proposed as possible therapeutic candidates in COVID-19 infections. The present study aims to optimize Silmitasertib, develop pharmacophore models and design unique scaffolds to modulate CK2. The lead optimization phase involved the generation of compounds structurally similar to Silmitasertib via bioisostere replacement followed by a multi-stage docking approach to identify drug-like candidates. Molecular dynamics (MD) simulations were performed for two promising candidates (ZINC-43206125 and PC-57664175) to estimate their binding stability and interaction. Top scoring candidates from the lead optimization phase were utilized to build ligand-based pharmacophore models. These models were then merged with structure-based pharmacophores (e-pharmacophores) to build a hybrid hypothesis. This hybrid hypothesis was validated against a decoy set and used to screen a diverse kinase inhibitors library to identify favored chemical features in the retrieved actives. These chemical features include; an anion, an aromatic ring and an H-bond acceptor. Based on the knowledge of these features; de-novo scaffold design was carried out which identified phenindiones, carboxylated steroids, macrocycles and peptides as novel scaffolds with the potential to modulate CK2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Siddharth Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Puniti Mathur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
24
|
Gao B, Zhu S. Mutation-driven parallel evolution in emergence of ACE2-utilizing sarbecoviruses. Front Microbiol 2023; 14:1118025. [PMID: 36910184 PMCID: PMC9996049 DOI: 10.3389/fmicb.2023.1118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Mutation and recombination are two major genetic mechanisms that drive the evolution of viruses. They both exert an interplay during virus evolution, in which mutations provide a first ancestral source of genetic diversity for subsequent recombination. Sarbecoviruses are a group of evolutionarily related β-coronaviruses including human severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 and a trove of related animal viruses called SARS-like CoVs (SL-CoVs). This group of members either use or not use angiotensin-converting enzyme 2 (ACE2) as their entry receptor, which has been linked to the properties of their spike protein receptor binding domains (RBDs). This raises an outstanding question regarding how ACE2 binding originated within sarbecoviruses. Using a combination of analyses of phylogenies, ancestral sequences, structures, functions and molecular dynamics, we provide evidence in favor of an evolutionary scenario, in which three distinct ancestral RBDs independently developed the ACE2 binding trait via parallel amino acid mutations. In this process, evolutionary intermediate RBDs might be firstly formed through loop extensions to offer key functional residues accompanying point mutations to remove energetically unfavorable interactions and to change the dynamics of the functional loops, all required for ACE2 binding. Subsequent optimization in the context of evolutionary intermediates led to the independent emergence of ACE2-binding RBDs in the SARS-CoV and SARS-CoV-2 clades of Asian origin and the clade comprising SL-CoVs of European and African descent. These findings will help enhance our understanding of mutation-driven evolution of sarbecoviruses in their early history.
Collapse
Affiliation(s)
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Structural insights into the activity regulation of full-length non-structural protein 1 from SARS-CoV-2. Structure 2023; 31:128-137.e5. [PMID: 36610391 PMCID: PMC9817231 DOI: 10.1016/j.str.2022.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Non-structural protein 1 (Nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major virulence factor and thus an attractive drug target. The last 33 amino acids of Nsp1 have been shown to bind within the mRNA entry tunnel of the 40S ribosomal subunit, shutting off host gene expression. Here, we report the solution-state structure of full-length Nsp1, which features an α/β fold formed by a six-stranded, capped β-barrel-like globular domain (N-terminal domain [NTD]), flanked by short N-terminal and long C-terminal flexible tails. The NTD has been found to be critical for 40S-mediated viral mRNA recognition and promotion of viral gene expression. We find that in free Nsp1, the NTD mRNA-binding surface is occluded by interactions with the acidic C-terminal tail, suggesting a mechanism of activity regulation based on the interplay between the folded NTD and the disordered C-terminal region. These results are relevant for drug-design efforts targeting Nsp1.
Collapse
|
26
|
Oke SI, Ekum MI, Akintande OJ, Adeniyi MO, Adekiya TA, Achadu OJ, Matadi MB, Iyiola OS, Salawu SO. Optimal control of the coronavirus pandemic with both pharmaceutical and non-pharmaceutical interventions. INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL 2023; 11:1-25. [PMID: 36743263 PMCID: PMC9891200 DOI: 10.1007/s40435-022-01112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023]
Abstract
Coronaviruses are types of viruses that are widely spread in humans, birds, and other mammals, leading to hepatic, respiratory, neurologic, and enteric diseases. The disease is presently a pandemic with great medical, economical, and political impacts, and it is mostly spread through physical contact. To extinct the virus, keeping physical distance and taking vaccine are key. In this study, a dynamical transmission compartment model for coronavirus (COVID-19) is designed and rigorously analyzed using Routh-Hurwitz condition for the stability analysis. A global dynamics of mathematical formulation was investigated with the help of a constructed Lyapunov function. We further examined parameter sensitivities (local and global) to identify terms with greater impact or influence on the dynamics of the disease. Our approach is data driven to test the efficacy of the proposed model. The formulation was incorporated with available confirmed cases from January 22, 2020, to December 20, 2021, and parameterized using real-time series data that were collected on a daily basis for the first 705 days for fourteen countries, out of which the model was simulated using four selected countries: USA, Italy, South Africa, and Nigeria. A least square technique was adopted for the estimation of parameters. The simulated solutions of the model were analyzed using MAPLE-18 with Runge-Kutta-Felberg method (RKF45 solver). The model entrenched parameters analysis revealed that there are both disease-free and endemic equilibrium points. The solutions depicted that the free equilibrium point for COVID-19 is asymptotic locally stable, when the epidemiological reproduction number condition ( R 0 < 1 ) . The simulation results unveiled that the pandemic can be controlled if other control measures, such as face mask wearing in public areas and washing of hands, are combined with high level of compliance to physical distancing. Furthermore, an autonomous derivative equation for the five-dimensional deterministic was done with two control terms and constant rates for the pharmaceutical and non-pharmaceutical strategies. The Lagrangian and Hamilton were formulated to study the model optimal control existence, using Pontryagin's Maximum Principle describing the optimal control terms. The designed objective functional reduced the intervention costs and infections. We concluded that the COVID-19 curve can be flattened through strict compliance to both pharmaceutical and non-pharmaceutical strategies. The more the compliance level to physical distance and taking of vaccine, the earlier the curve is flattened and the earlier the economy will be bounce-back.
Collapse
Affiliation(s)
- Segun I. Oke
- Department of Mathematics, Ohio University, Athens, OH 45701-2979 USA
| | - Matthew I. Ekum
- Department of Mathematical Sciences, Lagos State University of Science and Technology, Ikorodu, Lagos Nigeria
| | - Olalekan J. Akintande
- Computational Statistics Unit, Department of Statistics, University of Ibadan, Ibadan, Nigeria
| | - Michael O. Adeniyi
- Department of Mathematical Sciences, Lagos State University of Science and Technology, Ikorodu, Lagos Nigeria
| | - Tayo A. Adekiya
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC USA
| | - Ojodomo J. Achadu
- Department of Science, School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA UK
| | - Maba B. Matadi
- Department of Mathematical Sciences, University of Zululand, Richards Bay, South Africa
| | | | | |
Collapse
|
27
|
Lamkiewicz K, Esquivel Gomez LR, Kühnert D, Marz M. Genome Structure, Life Cycle, and Taxonomy of Coronaviruses and the Evolution of SARS-CoV-2. Curr Top Microbiol Immunol 2023; 439:305-339. [PMID: 36592250 DOI: 10.1007/978-3-031-15640-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coronaviruses have a broad host range and exhibit high zoonotic potential. In this chapter, we describe their genomic organization in terms of encoded proteins and provide an introduction to the peculiar discontinuous transcription mechanism. Further, we present evolutionary conserved genomic RNA secondary structure features, which are involved in the complex replication mechanism. With a focus on computational methods, we review the emergence of SARS-CoV-2 starting with the 2019 strains. In that context, we also discuss the debated hypothesis of whether SARS-CoV-2 was created in a laboratory. We focus on the molecular evolution and the epidemiological dynamics of this recently emerged pathogen and we explain how variants of concern are detected and characterised. COVID-19, the disease caused by SARS-CoV-2, can spread through different transmission routes and also depends on a number of risk factors. We describe how current computational models of viral epidemiology, or more specifically, phylodynamics, have facilitated and will continue to enable a better understanding of the epidemic dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743, Jena, Germany
- European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Luis Roger Esquivel Gomez
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, 07745, Jena, Germany
- European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743, Jena, Germany.
- European Virus Bioinformatics Center, Leutragraben 1, 07743, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745, Jena, Germany.
| |
Collapse
|
28
|
Alipoor R, Ranjbar R. Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review. Biol Chem 2022; 404:569-584. [PMID: 36490203 DOI: 10.1515/hsz-2022-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread all over the world. In this respect, traditional medicinal chemistry, repurposing, and computational approaches have been exploited to develop novel medicines for treating this condition. The effectiveness of chemicals and testing methods in the identification of new promising therapies, and the extent of preparedness for future pandemics, have been further highly advantaged by recent breakthroughs in introducing noble small compounds for clinical testing purposes. Currently, numerous studies are developing small-molecule (SM) therapeutic products for inhibiting SARS-CoV-2 infection and replication, as well as managing the disease-related outcomes. Transmembrane serine protease (TMPRSS2)-inhibiting medicinal products can thus prevent the entry of the SARS-CoV-2 into the cells, and constrain its spreading along with the morbidity and mortality due to the coronavirus disease 2019 (COVID-19), particularly when co-administered with inhibitors such as chloroquine (CQ) and dihydroorotate dehydrogenase (DHODH). The present review demonstrates that the clinical-stage therapeutic agents, targeting additional viral proteins, might improve the effectiveness of COVID-19 treatment if applied as an adjuvant therapy side-by-side with RNA-dependent RNA polymerase (RdRp) inhibitors.
Collapse
Affiliation(s)
- Reza Alipoor
- Student Research Committee , Hormozgan University of Medical Sciences , Bandar Abbas , Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
29
|
Bu F, Guan R, Wang W, Liu Z, Yin S, Zhao Y, Chai J. Bioinformatics and systems biology approaches to identify the effects of COVID-19 on neurodegenerative diseases: A review. Medicine (Baltimore) 2022; 101:e32100. [PMID: 36626425 PMCID: PMC9750669 DOI: 10.1097/md.0000000000032100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease (COVID-19), has been devastated by COVID-19 in an increasing number of countries and health care systems around the world since its announcement of a global pandemic on 11 March 2020. During the pandemic, emerging novel viral mutant variants have caused multiple outbreaks of COVID-19 around the world and are prone to genetic evolution, causing serious damage to human health. As confirmed cases of COVID-19 spread rapidly, there is evidence that SARS-CoV-2 infection involves the central nervous system (CNS) and peripheral nervous system (PNS), directly or indirectly damaging neurons and further leading to neurodegenerative diseases (ND), but the molecular mechanisms of ND and CVOID-19 are unknown. We employed transcriptomic profiling to detect several major diseases of ND: Alzheimer 's disease (AD), Parkinson' s disease (PD), and multiple sclerosis (MS) common pathways and molecular biomarkers in association with COVID-19, helping to understand the link between ND and COVID-19. There were 14, 30 and 19 differentially expressed genes (DEGs) between COVID-19 and Alzheimer 's disease (AD), Parkinson' s disease (PD) and multiple sclerosis (MS), respectively; enrichment analysis showed that MAPK, IL-17, PI3K-Akt and other signaling pathways were significantly expressed; the hub genes (HGs) of DEGs between ND and COVID-19 were CRH, SST, TAC1, SLC32A1, GAD2, GAD1, VIP and SYP. Analysis of transcriptome data suggests multiple co-morbid mechanisms between COVID-19 and AD, PD, and MS, providing new ideas and therapeutic strategies for clinical prevention and treatment of COVID-19 and ND.
Collapse
Affiliation(s)
- Fan Bu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- * Correspondence: Fan Bu, Heilongjiang University of Chinese Medicine, Haerbin 150040, Heilongjiang Province, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Wanyu Wang
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Zhao Liu
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Shijie Yin
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| | - Yonghou Zhao
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Haerbin, Heilongjiang Province, China
| | - Jianbo Chai
- Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang Province, China
| |
Collapse
|
30
|
Jayabal K, Elumalai D, Leelakrishnan S, Bhattacharya S, Rengarajan V, Kannan T, Chuang SC. Green and Regioselective Approach for the Synthesis of 3-Substituted Indole Based 1,2-Dihydropyridine and Azaxanthone Derivatives as a Potential Lead for SARS-CoV-2 and Delta Plus Mutant Virus: DFT and Docking Studies. ACS OMEGA 2022; 7:43856-43876. [PMID: 36506171 PMCID: PMC9730777 DOI: 10.1021/acsomega.2c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Great attempts have been done for the development of novel antiviral compounds against SAR-CoV-2 to end this pandemic situation and save human society. Herewith, we have synthesized 3-substituted indole/2-substituted pyrrole 1,2-dihydropyridine and azaxanthone scaffolds using simple, commercially available starting materials in a one-pot, green, and regioselective manner. Further, the regioselectivity of product formation was confirmed by various studies such as controlled experiments, density functional theory (DFT), Mulliken atomic charge, and electrostatic potential (ESP) surface. In addition, 3-substituted indole 1,2-dihydropyridine was successfully converted into a biologically enriched pharmacophore scaffold, viz., indolylimidazopyridinylbenzofuran scaffold, in excellent yield. Moreover, the synthesized 3-substituted indole 1,2-dihydropyridine/2-substituted pyrroles were analyzed in docking studies for anti-SARS-CoV-2 properties against their main protease (Mpro) and anti-Delta plus properties against their protein of the Delta plus K417N mutant. Further, the drug-likeness prediction was analyzed by the Lipinski rule and other pharmacokinetic properties like absorption, distribution, metabolism, excretion, and toxicity using preADMET prediction. Interestingly, the docking results show that out of 20 synthesized compounds, 5 of them for Mpro of SAR-CoV-2 and 9 of them for 7NX7 spike glycoprotein's A chain of Delta plus K417N show greater binding affinity when compared with remdesivir that is the first to receive FDA approval and is currently used as a potent drug for the treatment of COVID-19. These results suggest that indole/pyrrole substituted 1,2-dihydropyridine derivatives are capable of combating SARS-CoV-2 and its Delta plus mutant.
Collapse
Affiliation(s)
- Kamalraja Jayabal
- Department
of Chemistry, Pondicherry University, Puducherry 605014, India
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan R.O.C
| | | | - Saraswathi Leelakrishnan
- Department
of Chemistry, Pondicherry University, Puducherry 605014, India
- Department
of Chemistry, Nirmala College for Women, Coimbatore 641018, India
| | - Suman Bhattacharya
- Department
of Physics, University of Limerick, Castletroy, Limerick V94
T9PX , Republic of Ireland
| | | | | | - Shih-Ching Chuang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan R.O.C
| |
Collapse
|
31
|
Abstract
Infection by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has posed a severe threat to global public health. The current study revealed that several inhibitors of protein kinases C (PKCs) possess protective activity against SARS-CoV-2 infection. Four pan-PKC inhibitors, Go 6983, bisindolylmaleimide I, enzastaurin, and sotrastaurin, reduced the replication of a SARS-CoV-2 replicon in both BHK-21 and Huh7 cells. A PKCδ-specific inhibitor, rottlerin, was also effective in reducing viral infection. The PKC inhibitors acted at an early step of SARS-CoV-2 infection. Finally, PKC inhibitors blocked the replication of wild-type SARS-CoV-2 in ACE2-expressing A549 cells. Our work highlights the importance of the PKC signaling pathway in infection by SARS-CoV-2 and provides evidence that PKC-specific inhibitors are potential therapeutic agents against SARS-CoV-2. IMPORTANCE There is an urgent need for effective therapeutic drugs to control the pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). We found that several inhibitors of protein kinases C (PKCs) dramatically decrease the replication of SARS-CoV-2 in cultured cells. These PKC inhibitors interfere with an early step of viral infection. Therefore, the rapid and prominent antiviral effect of PKC inhibitors underscores that they are promising antiviral agents and suggests that PKCs are important host factors involved in infection by SARS-CoV-2.
Collapse
|
32
|
Tulimilli SV, Dallavalasa S, Basavaraju CG, Kumar Rao V, Chikkahonnaiah P, Madhunapantula SV, Veeranna RP. Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Vaccine Effectiveness. Vaccines (Basel) 2022; 10:1751. [PMID: 36298616 PMCID: PMC9607623 DOI: 10.3390/vaccines10101751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The incidence and death toll due to SARS-CoV-2 infection varied time-to-time; and depended on several factors, including severity (viral load), immune status, age, gender, vaccination status, and presence of comorbidities. The RNA genome of SARS-CoV-2 has mutated and produced several variants, which were classified by the SARS-CoV-2 Interagency Group (SIG) into four major categories. The first category; “Variant Being Monitored (VBM)”, consists of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon (B.1.427, B.1.429), Eta (B.1.525), Iota (B.1.526), Kappa (B.1.617.1), Mu (B.1.621), and Zeta (P.2); the second category; “Variants of Concern” consists of Omicron (B.1.1.529). The third and fourth categories include “Variants of Interest (VOI)”, and “Variants of High Consequence (VOHC)”, respectively, and contain no variants classified currently under these categories. The surge in VBM and VOC poses a significant threat to public health globally as they exhibit altered virulence, transmissibility, diagnostic or therapeutic escape, and the ability to evade the host immune response. Studies have shown that certain mutations increase the infectivity and pathogenicity of the virus as demonstrated in the case of SARS-CoV-2, the Omicron variant. It is reported that the Omicron variant has >60 mutations with at least 30 mutations in the Spike protein (“S” protein) and 15 mutations in the receptor-binding domain (RBD), resulting in rapid attachment to target cells and immune evasion. The spread of VBM and VOCs has affected the actual protective efficacy of the first-generation vaccines (ChAdOx1, Ad26.COV2.S, NVX-CoV2373, BNT162b2). Currently, the data on the effectiveness of existing vaccines against newer variants of SARS-CoV-2 are very scanty; hence additional studies are immediately warranted. To this end, recent studies have initiated investigations to elucidate the structural features of crucial proteins of SARS-CoV-2 variants and their involvement in pathogenesis. In addition, intense research is in progress to develop better preventive and therapeutic strategies to halt the spread of COVID-19 caused by variants. This review summarizes the structure and life cycle of SARS-CoV-2, provides background information on several variants of SARS-CoV-2 and mutations associated with these variants, and reviews recent studies on the safety and efficacy of major vaccines/vaccine candidates approved against SARS-CoV-2, and its variants.
Collapse
Affiliation(s)
- SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Chaithanya G. Basavaraju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Vinay Kumar Rao
- Department of Medical Genetics, JSS Medical College & Hospital, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India
| | - Prashanth Chikkahonnaiah
- Department of Pulmonary Medicine, Mysore Medical College and Research Institute, Mysuru 570001, Karnataka, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570004, Karnataka, India
| | - Ravindra P. Veeranna
- Department of Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysuru 570020, Karnataka, India
| |
Collapse
|
33
|
Bedada FB, Gorfu G, Teng S, Neita ME. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:917201. [PMID: 39157715 PMCID: PMC11328875 DOI: 10.3389/fmmed.2022.917201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 08/20/2024]
Abstract
SARS-CoV-2 is a novel zoonotic positive-sense RNA virus (ssRNA+) belonging to the genus beta coronaviruses (CoVs) in the Coronaviridae family. It is the causative agent for the outbreak of the disease, COVID-19. It is the third CoV causing pneumonia around the world in the past 2 decades. To date, it has caused significant deaths worldwide. Notably, the emergence of new genetic variants conferring efficient transmission and immune evasion remained a challenge, despite the reduction in the number of death cases, owing to effective vaccination regimen (boosting) and safety protocols. Thus, information harnessed from SARS-CoV-2 genomic organization is indispensable for seeking laboratory diagnosis and treatment options. Here in, we review previously circulating variants of SARS-CoV-2 designated variant of concern (VOC) including the Alpha (United Kingdom), Beta (South Africa), Gamma (Brazil), Delta (India), and recently circulating VOC, Omicron (South Africa) and its divergent subvariants (BA.1, BA.2, BA.3, BA.2.12.1, BA.4 and BA.5) with BA.5 currently becoming dominant and prolonging the COVID pandemic. In addition, we address the role of computational models for mutagenesis analysis which can predict important residues that contribute to transmissibility, virulence, immune evasion, and molecular detections of SARS-CoV-2. Concomitantly, the importance of harnessing the immunobiology of SARS-CoV-2 and host interaction for therapeutic purpose; and use of an in slilico based biocomputational approaches to achieve this purpose via predicting novel therapeutic agents targeting PRR such as toll like receptor, design of universal vaccine and chimeric antibodies tailored to the emergent variant have been highlighted.
Collapse
Affiliation(s)
- Fikru B. Bedada
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Gezahegn Gorfu
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
- Department of Pathology, College of Medicine, Howard University, Washington, DC, United States
| | - Shaolei Teng
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, United States
| | - Marguerite E. Neita
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| |
Collapse
|
34
|
Wang J, Tian WJ, Li CC, Zhang XZ, Fan K, Li SL, Wang XJ. Small-Molecule RAF265 as an Antiviral Therapy Acts against PEDV Infection. Viruses 2022; 14:v14102261. [PMID: 36298816 PMCID: PMC9611448 DOI: 10.3390/v14102261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the family Coronaviridae, causes acute diarrhea, vomiting, dehydration, and high mortality in newborn piglets, and has caused significant economic losses in the pig industry. There are currently no specific drugs available to treat PEDV. Viruses depend exclusively on the cellular machinery to ensure an efficient replication cycle. In the present study, we found that small-molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of RAF, reduced viral loads of PEDV by 4 orders of magnitude in Vero cells, and protected piglets from virus challenge. RAF265 reduced PEDV production by mediating cytoskeleton arrangement and targeting the host cell’s translation machinery. Treatment with RAF265 inhibited viral entry of PEDV S-glycoprotein pseudotyped viral vector particle (PEDV-pp), at half maximal effective concentrations (EC50) of 79.1 nM. RAF265 also presented potent inhibitory activity against viral infection by SARS-CoV-2-pp and SARS-CoV-pp. The present work may provide a starting point for further progress toward the development of antiviral strategies effective against coronavirus PEDV.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wen-Jun Tian
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiu-Zhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kai Fan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (K.F.); (S.-L.L.); (X.-J.W.)
| | - Song-Li Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (K.F.); (S.-L.L.); (X.-J.W.)
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (K.F.); (S.-L.L.); (X.-J.W.)
| |
Collapse
|
35
|
Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022; 14:v14091991. [PMID: 36146796 PMCID: PMC9506350 DOI: 10.3390/v14091991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117545, Singapore
- Correspondence: (V.T.K.C.); (S.K.L.)
| | - Sunil K. Lal
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Malaysia
- Correspondence: (V.T.K.C.); (S.K.L.)
| |
Collapse
|
36
|
Campos JHC, Alves GV, Maricato JT, Braconi CT, Antoneli FM, Janini LMR, Briones MRS. The epitranscriptome of Vero cells infected with SARS-CoV-2 assessed by direct RNA sequencing reveals m6A pattern changes and DRACH motif biases in viral and cellular RNAs. Front Cell Infect Microbiol 2022; 12:906578. [PMID: 36051243 PMCID: PMC9425070 DOI: 10.3389/fcimb.2022.906578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
The epitranscriptomics of the SARS-CoV-2 infected cell reveals its response to viral replication. Among various types of RNA nucleotide modifications, the m6A is the most common and is involved in several crucial processes of RNA intracellular location, maturation, half-life and translatability. This epitranscriptome contains a mixture of viral RNAs and cellular transcripts. In a previous study we presented the analysis of the SARS-CoV-2 RNA m6A methylation based on direct RNA sequencing and characterized DRACH motif mutations in different viral lineages. Here we present the analysis of the m6A transcript methylation of Vero cells (derived from African Green Monkeys) and Calu-3 cells (human) upon infection by SARS-CoV-2 using direct RNA sequencing data. Analysis of these data by nonparametric statistics and two computational methods (m6anet and EpiNano) show that m6A levels are higher in RNAs of infected cells. Functional enrichment analysis reveals increased m6A methylation of transcripts involved in translation, peptide and amine metabolism. This analysis allowed the identification of differentially methylated transcripts and m6A unique sites in the infected cell transcripts. Results here presented indicate that the cell response to viral infection not only changes the levels of mRNAs, as previously shown, but also its epitranscriptional pattern. Also, transcriptome-wide analysis shows strong nucleotide biases in DRACH motifs of cellular transcripts, both in Vero and Calu-3 cells, which use the signature GGACU whereas in viral RNAs the signature is GAACU. We hypothesize that the differences of DRACH motif biases, might force the convergent evolution of the viral genome resulting in better adaptation to target sequence preferences of writer, reader and eraser enzymes. To our knowledge, this is the first report on m6A epitranscriptome of the SARS-CoV-2 infected Vero cells by direct RNA sequencing, which is the sensu stricto RNA-seq.
Collapse
Affiliation(s)
- João H. C. Campos
- Center for Medical Bioinformatics, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Gustavo V. Alves
- Center for Medical Bioinformatics, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Juliana T. Maricato
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Carla T. Braconi
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Fernando M. Antoneli
- Center for Medical Bioinformatics, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Luiz Mario R. Janini
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| | - Marcelo R. S. Briones
- Center for Medical Bioinformatics, Escola Paulista de Medicina, UNIFESP, São Paulo, Brazil
| |
Collapse
|
37
|
Gupta A, Ahmad R, Siddiqui S, Yadav K, Srivastava A, Trivedi A, Ahmad B, Khan MA, Shrivastava AK, Singh GK. Flavonol morin targets host ACE2, IMP-α, PARP-1 and viral proteins of SARS-CoV-2, SARS-CoV and MERS-CoV critical for infection and survival: a computational analysis. J Biomol Struct Dyn 2022; 40:5515-5546. [PMID: 33526003 PMCID: PMC7869441 DOI: 10.1080/07391102.2021.1871863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022]
Abstract
A sudden outbreak of a novel coronavirus SARS-CoV-2 in 2019 has now emerged as a pandemic threatening to efface the existence of mankind. In absence of any valid and appropriate vaccines to combat this newly evolved agent, there is need of novel resource molecules for treatment and prophylaxis. To this effect, flavonol morin which is found in fruits, vegetables and various medicinal herbs has been evaluated for its antiviral potential in the present study. PASS analysis of morin versus reference antiviral drugs baricitinib, remdesivir and hydroxychloroquine revealed that morin displayed no violations of Lipinski's rule of five and other druglikeness filters. Morin also displayed no tumorigenic, reproductive or irritant effects and exhibited good absorption and permeation through GI (clogP <5). In principal component analysis, morin appeared closest to baricitinib in 3D space. Morin displayed potent binding to spike glycoprotein, main protease 3CLPro and papain-like protease PLPro of SARS-CoV-2, SARS-CoV and MERS-CoV using molecular docking and significant binding to three viral-specific host proteins viz. human ACE2, importin-α and poly (ADP-ribose) polymerase (PARP)-1, further lending support to its antiviral efficacy. Additionally, morin displayed potent binding to pro-inflammatory cytokines IL-6, 8 and 10 also supporting its anti-inflammatory activity. MD simulation of morin with SARS-CoV-2 3CLPro and PLPro displayed strong stability at 300 K. Both complexes exhibited constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In conclusion, morin might hold considerable therapeutic potential for the treatment and management of not only COVID-19, but also SARS and MERS if studied further. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Anchal Trivedi
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Bilal Ahmad
- Research Cell, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | | | - Amit Kumar Shrivastava
- Department of Pharmacology, Universal College of Medical Sciences & Hospital, Ranigaon, Bhairahawa, Rupandehi, Nepal
| | - Girish Kumar Singh
- Department of Orthopedics, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| |
Collapse
|
38
|
Trugilho MRO, Azevedo-Quintanilha IG, Gesto JSM, Moraes ECS, Mandacaru SC, Campos MM, Oliveira DM, Dias SSG, Bastos VA, Santos MDM, Carvalho PC, Valente RH, Hottz ED, Bozza FA, Souza TML, Perales J, Bozza PT. Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19. Cell Death Discov 2022; 8:324. [PMID: 35842415 PMCID: PMC9287722 DOI: 10.1038/s41420-022-01122-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity.
Collapse
Affiliation(s)
- Monique R O Trugilho
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | - João S M Gesto
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Emilly Caroline S Moraes
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Samuel C Mandacaru
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana M Campos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Douglas M Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Suelen S G Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Viviane A Bastos
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, and D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Thiago Moreno L Souza
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations, Rio de Janeiro, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The Translational Landscape of SARS-CoV-2-infected Cells Reveals Suppression of Innate Immune Genes. mBio 2022; 13:e0081522. [PMID: 35604092 PMCID: PMC9239271 DOI: 10.1128/mbio.00815-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2-infected model cell lines and primary airway cells grown at an air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We found that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy despite notable accumulation of ribosomes within the slippery sequence on the frameshifting element. In a highly permissive cell line model, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokine, cytokine, and interferon-stimulated genes, many of these mRNAs were not translated efficiently. The impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development. IMPORTANCE SARS-CoV-2 utilizes a number of strategies to modulate host responses to ensure efficient propagation. Here, we used ribosome profiling in SARS-CoV-2-infected cells to gain a deeper understanding of the translationally regulated events in infected cells. We found that although viral mRNAs are abundantly expressed, they are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy and alternative translation initiation sites that help increase the coding potential of its RNAs. In permissive cells, SARS-CoV-2 infection induced the translational repression of numerous innate immune mediators. Though the impact of SARS-CoV-2 on host mRNA translation was more subtle in primary airway cell cultures, we noted marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data provide new insight into how SARS-CoV-2 modulates innate host responses and highlight unique mechanisms for therapeutic intervention.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung R. Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean P. Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James B. Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Steven L. Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
40
|
Fisher T, Gluck A, Narayanan K, Kuroda M, Nachshon A, Hsu JC, Halfmann PJ, Yahalom-Ronen Y, Tamir H, Finkel Y, Schwartz M, Weiss S, Tseng CTK, Israely T, Paran N, Kawaoka Y, Makino S, Stern-Ginossar N. Parsing the role of NSP1 in SARS-CoV-2 infection. Cell Rep 2022; 39:110954. [PMID: 35671758 PMCID: PMC9133101 DOI: 10.1016/j.celrep.2022.110954] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to shutoff of protein synthesis, and nsp1, a central shutoff factor in coronaviruses, inhibits cellular mRNA translation. However, the diverse molecular mechanisms employed by nsp1 as well as its functional importance are unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant, we show that nsp1, through inhibition of translation and induction of mRNA degradation, targets translated cellular mRNA and is the main driver of host shutoff during infection. The propagation of nsp1 mutant virus is inhibited exclusively in cells with intact interferon (IFN) pathway as well as in vivo, in hamsters, and this attenuation is associated with stronger induction of type I IFN response. Therefore, although nsp1's shutoff activity is broad, it plays an essential role, specifically in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover nsp1's explicit role in blocking the IFN response.
Collapse
Affiliation(s)
- Tal Fisher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Gluck
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Makoto Kuroda
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jason C Hsu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hadas Tamir
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA; Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan.
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA.
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
41
|
Sharma NK, Sarode SC. Do compromised mitochondria aggravate severity and fatality by SARS-CoV-2? Curr Med Res Opin 2022; 38:911-916. [PMID: 35403526 PMCID: PMC9115783 DOI: 10.1080/03007995.2022.2065140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022]
Abstract
At global level, the pandemic coronavirus disease 2019 (COVID-19) is known to be caused by an etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Numerous evidence and propositions have emerged on the molecular and cellular attributes that cause COVID-19. Notwithstanding, still several key questions with reference to molecular aspects of severity of infection by SARS-CoV-2 need to be answered. In the same line, the role of healthy mitochondria to maintain intracellular temperature and their association with the severity of SARS-CoV-2 is completely missing. In this direction, preclinical and clinical data on the comorbidities in the case of mitochondrial defective disease and COVID-19 are not available. The authors propose that patients harboring primary mitochondrial disease and secondary mitochondrial dysfunction will display a higher severity and death rate compared to healthy mitochondria harboring patients.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Cancer and Translational Research Lab, Pune, Maharashtra, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Pune, India
| |
Collapse
|
42
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
43
|
Jun HCW, Marzo RR, Chia TH, Mawazi SM, Essar MY. One mutation away, the potential zoonotic threat – NeoCoV, planetary health impacts and the call for sustainability. J Public Health Res 2022; 10:10.4081_jphr.2021.2941. [PMID: 35912394 PMCID: PMC9335191 DOI: 10.4081/jphr.2021.2941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
|
44
|
Fisher T, Gluck A, Narayanan K, Kuroda M, Nachshon A, Hsu JC, Halfmann PJ, Yahalom-Ronen Y, Finkel Y, Schwartz M, Weiss S, Tseng CTK, Israely T, Paran N, Kawaoka Y, Makino S, Stern-Ginossar N. Parsing the role of NSP1 in SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.14.484208. [PMID: 35313595 PMCID: PMC8936099 DOI: 10.1101/2022.03.14.484208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite its urgency, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. SARS-CoV-2 leads to shutoff of cellular protein synthesis and over-expression of nsp1, a central shutoff factor in coronaviruses, inhibits cellular gene translation. However, the diverse molecular mechanisms nsp1 employs as well as its functional importance in infection are still unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant in which nsp1 does not bind ribosomes, we untangle the effects of nsp1. We uncover that nsp1, through inhibition of translation and induction of mRNA degradation, is the main driver of host shutoff during SARS-CoV-2 infection. Furthermore, we find the propagation of nsp1 mutant virus is inhibited specifically in cells with intact interferon (IFN) response as well as in-vivo , in infected hamsters, and this attenuation is associated with stronger induction of type I IFN response. This illustrates that nsp1 shutoff activity has an essential role mainly in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover the central role it plays in SARS-CoV-2 pathogenesis, explicitly through blockage of the IFN response.
Collapse
Affiliation(s)
- Tal Fisher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- T. Fisher, A. Gluck, K. Narayanan, and K. Makoto contributed equally to the studies
| | - Avi Gluck
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- T. Fisher, A. Gluck, K. Narayanan, and K. Makoto contributed equally to the studies
| | - Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- T. Fisher, A. Gluck, K. Narayanan, and K. Makoto contributed equally to the studies
| | - Makoto Kuroda
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
- T. Fisher, A. Gluck, K. Narayanan, and K. Makoto contributed equally to the studies
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jason C. Hsu
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
- Department of Virology, Institute of Medical Science, University of Tokyo, 108-8639 Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, 162-8655 Tokyo, Japan
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Department of Virology, Institute of Medical Science, University of Tokyo, 108-8639 Tokyo, Japan
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
45
|
Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. J Med Chem 2022; 65:2716-2746. [PMID: 33186044 PMCID: PMC7688049 DOI: 10.1021/acs.jmedchem.0c01140] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 02/07/2023]
Abstract
The newly emerged coronavirus, called SARS-CoV-2, is the causing pathogen of pandemic COVID-19. The identification of drugs to treat COVID-19 and other coronavirus diseases is an urgent global need, thus different strategies targeting either virus or host cell are still under investigation. Direct-acting agents, targeting protease and polymerase functionalities, represent a milestone in antiviral therapy. The 3C-like (or Main) protease (3CLpro) and the nsp12 RNA-dependent RNA-polymerase (RdRp) are the best characterized SARS-CoV-2 targets and show the highest degree of conservation across coronaviruses fostering the identification of broad-spectrum inhibitors. Coronaviruses also possess a papain-like protease, another essential enzyme, still poorly characterized and not equally conserved, limiting the identification of broad-spectrum agents. Herein, we provide an exhaustive comparative analysis of SARS-CoV-2 proteases and RdRp with respect to other coronavirus homologues. Moreover, we highlight the most promising inhibitors of these proteins reported so far, including the possible strategies for their further development.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department
of Pharmacy, University of Naples “Federico
II”, via D. Montesano 49, 80131 Napoli, Italy
| | - Carmen Cerchia
- Department
of Pharmacy, University of Naples “Federico
II”, via D. Montesano 49, 80131 Napoli, Italy
| | | | - Francesco Saverio Di Leva
- Department
of Pharmacy, University of Naples “Federico
II”, via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Summa
- Department
of Pharmacy, University of Naples “Federico
II”, via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
46
|
Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. J Med Chem 2022. [PMID: 33186044 DOI: 10.1021/acs.jmedchem.0c01140/suppl_file/jm0c01140_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The newly emerged coronavirus, called SARS-CoV-2, is the causing pathogen of pandemic COVID-19. The identification of drugs to treat COVID-19 and other coronavirus diseases is an urgent global need, thus different strategies targeting either virus or host cell are still under investigation. Direct-acting agents, targeting protease and polymerase functionalities, represent a milestone in antiviral therapy. The 3C-like (or Main) protease (3CLpro) and the nsp12 RNA-dependent RNA-polymerase (RdRp) are the best characterized SARS-CoV-2 targets and show the highest degree of conservation across coronaviruses fostering the identification of broad-spectrum inhibitors. Coronaviruses also possess a papain-like protease, another essential enzyme, still poorly characterized and not equally conserved, limiting the identification of broad-spectrum agents. Herein, we provide an exhaustive comparative analysis of SARS-CoV-2 proteases and RdRp with respect to other coronavirus homologues. Moreover, we highlight the most promising inhibitors of these proteins reported so far, including the possible strategies for their further development.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Carmen Cerchia
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
47
|
Possible Therapeutic Intervention Strategies for COVID-19 by Manipulating the Cellular Proteostasis Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1352:125-147. [PMID: 35132598 DOI: 10.1007/978-3-030-85109-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The recent outbreak of coronavirus infection by SARS-CoV-2 that started from the Wuhan Province of China in 2019 has spread to most parts of the world infecting millions of people. Although the case fatality rate of SARS-CoV-2 infection is less than the previous epidemics by other closely related coronaviruses, due to its high infectivity, the total number of SARS-CoV-2 infection-associated disease, called Covid-19, is a matter of global concern. Despite drastic preventive measures, the number of Covid-19 cases are steadily increasing, and the future course of this pandemic is highly unpredictable. The most concerning fact about Covid-19 is the absence of specific and effective preventive or therapeutic agents against the disease. Finding an immediate intervention against Covid-19 is the need of the hour. In this chapter, we have discussed the role of different branches of the cellular proteostasis network, represented by Hsp70-Hsp40 chaperone system, Ubiquitin-Proteasome System (UPS), autophagy, and endoplasmic reticulum-Unfolded Protein Response (ER-UPR) pathway in the pathogenesis of coronavirus infections and in the host antiviral defense mechanisms. RESULTS Based on scientific literature, we present that pharmacological manipulation of proteostasis network can alter the fate of coronavirus infections and may help to prevent the resulting pathologies like Covid-19.
Collapse
|
48
|
Hu LC, Ding CH, Li HY, Li ZZ, Chen Y, Li LP, Li WZ, Liu WS. Identification of potential target endoribonuclease NSP15 inhibitors of SARS-COV-2 from natural products through high-throughput virtual screening and molecular dynamics simulation. J Food Biochem 2022; 46:e14085. [PMID: 35128681 PMCID: PMC9114918 DOI: 10.1111/jfbc.14085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
SARS‐CoV‐2 wreaks havoc around the world, triggering the COVID‐19 pandemic. It has been confirmed that the endoribonuclease NSP15 is crucial to the viral replication, and thus identified as a potential drug target against COVID‐19. The NSP15 protein was used as the target to conduct high‐throughput virtual screening on 30,926 natural products from the NPASS database to identify potential NSP15 inhibitors. And 100 ns molecular dynamics simulations were performed on the NSP15 and NSP15‐NPC198199 system. In all, 10 natural products with high docking scores with NSP15 protein were obtained, among which compound NPC198199 scored the highest. The analysis of the binding mode between NPC198199 and NSP15 found that NPC198199 would form H‐bond interactions with multiple key residues at the catalytic site. Subsequently, a series of post‐dynamics simulation analyses (including RMSD, RMSF, PCA, DCCM, RIN, binding free energy, and H‐bond occupancy) were performed to further explore inhibitory mechanism of compound NPC198199 on NSP15 protein at the molecular level. The research strongly indicates that the 10 natural compounds screened can be used as potential inhibitors of NSP15, and provides valuable information for the subsequent drug discovery of anti‐SARS‐CoV‐2.
Collapse
Affiliation(s)
- Liang-Chang Hu
- Department of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chuan-Hua Ding
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hong-Ying Li
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zhen-Zhen Li
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ying Chen
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Li-Peng Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wan-Zhong Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Wen-Shan Liu
- Shandong Key Laboratory of Clinical Applied Pharmacology, Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
49
|
Xia J, Chen S, Li Y, Li H, Gan M, Wu J, Prohaska CC, Bai Y, Gao L, Gu L, Zhang D. Immune Response Is Key to Genetic Mechanisms of SARS-CoV-2 Infection With Psychiatric Disorders Based on Differential Gene Expression Pattern Analysis. Front Immunol 2022; 13:798538. [PMID: 35185890 PMCID: PMC8854505 DOI: 10.3389/fimmu.2022.798538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Existing evidence demonstrates that coronavirus disease 2019 (COVID-19) leads to psychiatric illness, despite its main clinical manifestations affecting the respiratory system. People with mental disorders are more susceptible to COVID-19 than individuals without coexisting mental health disorders, with significantly higher rates of severe illness and mortality in this population. The incidence of new psychiatric diagnoses after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also remarkably high. SARS-CoV-2 has been reported to use angiotensin-converting enzyme-2 (ACE2) as a receptor for infecting susceptible cells and is expressed in various tissues, including brain tissue. Thus, there is an urgent need to investigate the mechanism linking psychiatric disorders to COVID-19. Using a data set of peripheral blood cells from patients with COVID-19, we compared this to data sets of whole blood collected from patients with psychiatric disorders and used bioinformatics and systems biology approaches to identify genetic links. We found a large number of overlapping immune-related genes between patients infected with SARS-CoV-2 and differentially expressed genes of bipolar disorder (BD), schizophrenia (SZ), and late-onset major depressive disorder (LOD). Many pathways closely related to inflammatory responses, such as MAPK, PPAR, and TGF-β signaling pathways, were observed by enrichment analysis of common differentially expressed genes (DEGs). We also performed a comprehensive analysis of protein-protein interaction network and gene regulation networks. Chemical-protein interaction networks and drug prediction were used to screen potential pharmacologic therapies. We hope that by elucidating the relationship between the pathogenetic processes and genetic mechanisms of infection with SARS-CoV-2 with psychiatric disorders, it will lead to innovative strategies for future research and treatment of psychiatric disorders linked to COVID-19.
Collapse
Affiliation(s)
- Jing Xia
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Shuhan Chen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Yaping Li
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Li
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Minghong Gan
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Clare Colette Prohaska
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lu Gao
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Li Gu
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Dongfang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
50
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|