1
|
Tu L, Zou Z, Yang Y, Wang S, Xing B, Feng J, Jin Y, Cheng M. Targeted drug delivery systems for atherosclerosis. J Nanobiotechnology 2025; 23:306. [PMID: 40269931 PMCID: PMC12016489 DOI: 10.1186/s12951-025-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Atherosclerosis is a complex cardiovascular disease driven by multiple factors, including aging, inflammation, oxidative stress, and plaque rupture. The progression of this disease is often covert, emphasizing the need for early biomarkers and effective intervention measures. In recent years, advancements in therapeutic strategies have highlighted the potential of targeting specific processes in atherosclerosis, such as plaque localization, macrophage activity, and key enzymes. Based on this, this review discusses the potential role of targeted drugs in the treatment of atherosclerosis. It also focuses on their clinical efficacy in anti-atherosclerosis treatment and their ability to provide more precise therapeutic approaches. The findings underscore that future research can concentrate on exploring newer drug delivery systems and biomarkers to further refine clinical treatment strategies and enhance the long-term dynamic management of atherosclerosis.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Ye Yang
- Wenzhou Yining Geriatric Hospital, Wenzhou, 325041, P.R. China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China
- Guangxi University of Chinese Medicine, Nanning, 530200, P.R. China
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330006, P.R. China.
| |
Collapse
|
2
|
Liu S, Liao S, He J, Zhou Y, He Q. IGF2BP2: an m 6A reader that affects cellular function and disease progression. Cell Mol Biol Lett 2025; 30:43. [PMID: 40205577 PMCID: PMC11983839 DOI: 10.1186/s11658-025-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2) is a widely studied N6-methyladenosine (m6A) modification reader, primarily functioning to recognize and bind to m6A modification sites on the mRNA of downstream target genes, thereby enhancing their stability. Previous studies have suggested that the IGF2BP2-m6A modification plays an essential role in cellular functions and the progression of various diseases. In this review, we focus on summarizing the molecular mechanisms by which IGF2BP2 enhances the mRNA stability of downstream target genes through m6A modification, thereby regulating cell ferroptosis, epithelial-mesenchymal transition (EMT), stemness, angiogenesis, inflammatory responses, and lipid metabolism, ultimately affecting disease progression. Additionally, we update the related research progress on IGF2BP2. This article aims to elucidate the effects of IGF2BP2 on cell ferroptosis, EMT, stemness, angiogenesis, inflammatory responses, and lipid metabolism, providing a new perspective for a comprehensive understanding of the relationship between IGF2BP2 and cell functions such as ferroptosis and EMT, as well as the potential for targeted IGF2BP2 therapy for tumors and other diseases.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Department of Clinical Laboratory, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, 410007, Hunan, People's Republic of China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Qian He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Marques JC, Marques MF, Ribeiro H, Neves AP, Zlatanovic P, Neves JR. The Impact of Elevated Lipoprotein (a) Levels on Postoperative Outcomes in Carotid Endarterectomy: A Systematic Review. J Clin Med 2025; 14:2253. [PMID: 40217703 PMCID: PMC11989823 DOI: 10.3390/jcm14072253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Numerous studies have highlighted lipoprotein (a) (Lp(a)) as a significant, independent risk factor for the development and progression of cardiovascular diseases, including carotid artery disease, which is strongly correlated with an elevated risk of ischemic events and stroke. This systematic review aims to determine the impact of elevated Lp(a) levels on the postoperative outcomes in patients undergoing carotid endarterectomy (CEA). Methods: Four electronic databases-PubMed, Scopus, Web of Science, and Cochrane Library-were employed to search for studies assessing the association between elevated Lp(a) levels and the postoperative outcomes following CEA. The effect of elevated Lp(a) levels was systematically reviewed, and the outcomes reported in each study were evaluated. The quality of the studies was evaluated using the National Heart, Lung, and Blood Institute Study Quality Assessment Tool for observational cohorts and cross-sectional studies. Results: A total of five observational studies were included, with 1450 patients. The mean age of the participants in the studies ranged from 57 to 74 years, and the percentage of males ranged from 37.22% to 68.96%. One study showed that elevated Lp(a) levels were significantly associated with major adverse cardiovascular events (MACEs) after CEA, particularly periprocedural stroke, with another manuscript suggesting a long-term predictive value for acute coronary syndromes (ACSs) within 24 months following surgery. There was no association in the included studies with carotid plaque instability, inflammation biomarkers, or restenosis. Conclusions: This systematic review suggests an association of Lp(a) levels with MACEs and ACSs after CEA although no association with restenosis and carotid plaque inflammation and/or instability.
Collapse
Affiliation(s)
| | | | - Hugo Ribeiro
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (M.F.M.); (H.R.)
- Community Palliative Care Support Team Gaia, Health Local Unit Gaia and Espinho, 4434-502 Vila Nova de Gaia, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Coimbra Institute for Biomedical Research, 3000-548 Coimbra, Portugal
| | - António Pereira Neves
- Department of Vascular Surgery, Health Local Unit of São João, 4200-319 Porto, Portugal;
- Department of Biomedicine, Unity of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Peter Zlatanovic
- Clinic for Vascular and Endovascular Surgery, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
| | - João Rocha Neves
- Department of Biomedicine, Unity of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- RISE-Health, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Li Z, Yang Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Dendritic cells immunotargeted therapy for atherosclerosis. Acta Pharm Sin B 2025; 15:792-808. [PMID: 40177571 PMCID: PMC11959979 DOI: 10.1016/j.apsb.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/15/2024] [Accepted: 11/20/2024] [Indexed: 04/05/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease, is markedly influenced by both immune and inflammatory reactions throughout its progression. Dendritic cells, as pivotal antigen-presenting entities, play a crucial role in the initiation of immune responses and the preservation of immunological homeostasis. Accumulating data indicates that dendritic cells are present in healthy arteries and accumulate significantly in atherosclerotic plaques. Novel immunotherapeutic approaches and vaccination protocols have yielded substantial clinical advancements in managing chronic inflammatory diseases, with dendritic cell-centric modalities emerging for atherosclerotic management. In this review, we delineate the essential functions and underlying mechanisms of dendritic cells and their subsets in the modulation of atherosclerotic inflammation and immune responses. We underscore the immense promise of dendritic cell-based immunotherapeutic strategies, including vaccines and innovative combinations with nanotechnological drug delivery platforms for atherosclerosis treatment. We also discuss the challenges associated with dendritic cell immunotherapy and provide perspectives on the future direction of this field.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Vascular Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266400, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hongzhao Qi
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Tao Yu
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Yongxin Li
- Department of Vascular Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266400, China
| |
Collapse
|
5
|
Chermiti R, Burtey S, Dou L. Role of Uremic Toxins in Vascular Inflammation Associated with Chronic Kidney Disease. J Clin Med 2024; 13:7149. [PMID: 39685608 DOI: 10.3390/jcm13237149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular disease (CVD) is a major complication of chronic kidney disease (CKD), despite improvements in patient care. Vascular inflammation is a crucial process in the pathogenesis of CVD and a critical factor in the cardiovascular complications in CKD patients. CKD promotes a pro-inflammatory environment that impacts the vascular wall, leading to endothelial dysfunction, increased oxidative stress, and vascular remodeling. The uremic toxins that accumulate as kidney function declines are key contributors to vascular inflammatory processes. Our review will examine how CKD leads to vascular inflammation, paving the way to CVD. We will provide an overview of the mechanisms of vascular inflammation induced by uremic toxins, with a particular focus on those derived from tryptophan metabolism. These toxins, along with their receptor, the aryl hydrocarbon receptor (AHR), have emerged as key players linking inflammation and thrombosis. A deeper understanding of the mechanisms underlying inflammation in CKD, particularly those driven by uremic toxins, could reveal valuable therapeutic targets to alleviate the burden of CVD in CKD patients.
Collapse
Affiliation(s)
- Rania Chermiti
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| | - Stéphane Burtey
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
- Centre de Néphrologie et Transplantation Rénale, APHM, Hôpital Conception, 13005 Marseille, France
| | - Laetitia Dou
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| |
Collapse
|
6
|
Wang A, Yue K, Zhong W, Zhang G, Zhang X, Wang L. Targeted delivery of rapamycin and inhibition of platelet adhesion with multifunctional peptide nanoparticles for atherosclerosis treatment. J Control Release 2024; 376:S0168-3659(24)00724-7. [PMID: 39490419 DOI: 10.1016/j.jconrel.2024.10.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
There is increasing evidence supporting the unique benefits of targeted therapy in treating atherosclerotic disease. Given the complex nature of atherosclerosis development, we proposed a novel strategy for the efficient delivery of rapamycin (RAPA) by targeting both the exposed subendothelial collagen and oxidized low-density lipoprotein (oxLDL) present in plaques. In response, we developed multifunctional peptide (MP) nanoparticles for targeted drug delivery. The ability of MP nanoparticles to load RAPA and target collagen/oxLDL was investigated through molecular dynamics simulations and in vitro experiments. The efficacy of MP nanoparticles in atherosclerosis treatment was assessed via in vivo experiments on ApoE-/- mice. Results indicate that MP nanoparticles have encapsulation and drug loading efficiencies for RAPA of 78.3 % and 43.9 %, respectively. By targeting collagen, MP nanoparticles create steric hindrance that inhibits 77.2 % of platelet adhesion. These nanoparticles can also target oxLDL, delivering RAPA into plaques and significantly reducing macrophage uptake of oxLDL. In vivo experiments showed that MP nanoparticles effectively targeted and accumulated in plaques. Treating mice with MP@RAPA nanoparticles for 10 weeks led to an 81.3 % reduction in the aortic vascular plaque area and decreased concentrations of MCP-1, hs-CRP, MMP-1, P-selectin, IL-1β, and IL-8 inflammatory factors, as well as the optical density of platelet-associated proteins (CD42, CD61, and PECAM-1). These results highlight the promising potential of MP nanoparticles for atherosclerotic disease treatment.
Collapse
Affiliation(s)
- Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| |
Collapse
|
7
|
Panduga S, Vasishta S, Subramani R, Vincent S, Mutalik S, Joshi MB. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises. Eur J Pharmacol 2024; 980:176827. [PMID: 39038635 DOI: 10.1016/j.ejphar.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.
Collapse
Affiliation(s)
- Sushma Panduga
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India; PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramamoorthy Subramani
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Sthevaan Vincent
- Department of Pathology, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
8
|
Suryan V, Chandra NC. Cholesterol and Cytokines: Molecular Links to Atherosclerosis and Carcinogenesis. Cell Biochem Biophys 2024; 82:1837-1844. [PMID: 38943010 DOI: 10.1007/s12013-024-01383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
An increase of cholesterol concentration within the artery obstructs arterial blood flow once it deposits alongside the arterial wall. This results in atherosclerosis. Carcinogenesis causes a quicker clearance of vascular cholesterol to meet the demands of tumour cell development. Both illnesses have an increased concentration of pro-inflammatory cytokines in the blood. To search the comparative characteristics of cholesterol and pro-inflammatory cytokines in the pathogenesis of atherosclerosis and carcinogenesis, a comprehensive online survey using MEDLINE, Scopus, PubMed, and Google Scholar was conducted for relevant journals with key search term cholesterol and cytokines in atherosclerotic and cancerous patients. According to reports, hypercholesterolaemia related dyslipidemia causes atherosclerosis in blood arteries and hypercholesterolaemia in cell nucleus is a reason for developing carcinogenesis. It is also noted that pro-inflammatory cytokines are involved in both of the aforementioned pathogenesis. Changes in anti-inflammatory cytokines are only the characteristic features of each kind. Thus, Cholesterol and pro-inflammatory cytokines are intensely interlinked in the genesis of atherosclerotic and carcinogenic consequences.
Collapse
Affiliation(s)
- Varsha Suryan
- Department of Biochemistry, Faculty of Medicine & Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India
- Department of Paramedical Science, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India
| | - Nimai Chand Chandra
- Department of Biochemistry, Faculty of Medicine & Health Sciences, Shree Guru Gobind Singh Tricentenary University, Budhera, Gurugram (Delhi-NCR), Haryana, 122505, India.
| |
Collapse
|
9
|
Yue L, Wang Y, Wang C, Niu S, Dong X, Guan Y, Chen S. Empagliflozin improves aortic injury in obese mice by regulating fatty acid metabolism. Open Med (Wars) 2024; 19:20241012. [PMID: 39176252 PMCID: PMC11340858 DOI: 10.1515/med-2024-1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Background Empagliflozin has been shown in clinical studies to lower the risk of adverse cardiovascular events. Using proteomics, the current study aims to determine whether empagliflozin reduces aortic alterations in obese mice and to investigate its molecular mechanism of action. Methods We constructed obese mice and then treated them with empagliflozin. Changes in the weight of the mice were recorded. Blood glucose and lipid levels were measured in each group of mice, and changes in pulse wave velocity and aortic structure were recorded. In addition, changes in aortic protein expression were detected by proteomics and analyzed bioinformatically. Results Proteomics results showed that 507 differentially expressed proteins (DEPs) were identified in the comparison of normal and obese mice, while 90 DEPs were identified in the comparison of obese and empagliflozin-treated mice. Examination of these three groups revealed that DEPs were largely associated with the digestion of unsaturated fats. Among them, empagliflozin significantly reduced the expression of fatty acid synthase (FASN), acyl-CoA desaturase 3 (SCD3), ACSL1. and ACSL5 in the aorta of obesity-induced mice, and there was a close relationship between the four. Conclusion Empagliflozin reduced the protein expression of FASN, SCD3, ACSL1, and ACSL5 in the aorta of obese mice and improved aortic fatty acid metabolism and reduced vascular stiffness for vasoprotective effects.
Collapse
Affiliation(s)
- Lin Yue
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yue Wang
- Department of Ultrasonography, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Cuiying Wang
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Shu Niu
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, 050000, P.R. China
| | - Xihong Dong
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yaqing Guan
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, P.R. China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050000, P.R. China
| |
Collapse
|
10
|
Nagar N, Naidu G, Panda SK, Gulati K, Singh RP, Poluri KM. Elucidating the role of chemokines in inflammaging associated atherosclerotic cardiovascular diseases. Mech Ageing Dev 2024; 220:111944. [PMID: 38782074 DOI: 10.1016/j.mad.2024.111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Age-related inflammation or inflammaging is a critical deciding factor of physiological homeostasis during aging. Cardiovascular diseases (CVDs) are exquisitely associated with aging and inflammation and are one of the leading causes of high mortality in the elderly population. Inflammaging comprises dysregulation of crosstalk between the vascular and cardiac tissues that deteriorates the vasculature network leading to development of atherosclerosis and atherosclerotic-associated CVDs in elderly populations. Leukocyte differentiation, migration and recruitment holds a crucial position in both inflammaging and atherosclerotic CVDs through relaying the activity of an intricate network of inflammation-associated protein-protein interactions. Among these interactions, small immunoproteins such as chemokines play a major role in the progression of inflammaging and atherosclerosis. Chemokines are actively involved in lymphocyte migration and severe inflammatory response at the site of injury. They relay their functions via chemokine-G protein-coupled receptors-glycosaminoglycan signaling axis and is a principal part for the detection of age-related atherosclerosis and related CVDs. This review focuses on highlighting the detailed intricacies of the effects of chemokine-receptor interaction and chemokine oligomerization on lymphocyte recruitment and its evident role in clinical manifestations of atherosclerosis and related CVDs. Further, the role of chemokine mediated signaling for formulating next-generation therapeutics against atherosclerosis has also been discussed.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Santosh Kumar Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar, Gujarat 382355, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
11
|
Zhang Y, Huang F, Wu Y, Jiao L, Wang Y, Ding T. Protective effect of rubber seed oil on human endothelial cells. J Mol Histol 2024; 55:589-598. [PMID: 38890233 PMCID: PMC11306359 DOI: 10.1007/s10735-024-10198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE This study was conducted to characterize the antioxidant and anti-inflammatory properties of Rubber Seed Oil (RSO) against atherosclerosis (AS) through the study of the protective effects and mechanisms on human umbilical vein endothelial cells (HUVECs) injury induced by oxidized low-density lipoprotein (ox-LDL). METHODS HUVECs were treated with RSO, ox-LDL, RSO + ox-LDL, respectively, followed by cell activity testing, levels of IL-1β, IL-6, IL-10, TNF-α, ROS, NO, the mRNA expression of eNOS and protein expression of MCP-1, VCAM-1, eNOS, TLR4, NF-κB p65、p-NF-κB p65. RESULTS Compared with the ox-LDL group, cell viability, NO level and the expression of eNOS mRNA significantly increased. and the levels of pro-inflammatory factors such as IL-1β, IL-6, TNF-α, IL-10, ROS were significantly decreased, which was accompanied by decreases in TLR4 mRNA, TLR4, MCP-1, VCAM-1 protein expression, as well as the ratio of NF-κB p-p65/p65 in the group treated with 250 μg/ml ox-LDL + 50 μg/ml RSO, 250 μg/ml ox-LDL + 100 μg/ml RSO, 250 μg/ml ox-LDL + 150 μg/ml RSO. CONCLUSIONS RSO can reduce the expression of pro-inflammatory mediators, oxidative factors involved in injured vascular endothelial cells, exhibiting anti-inflammatory and antioxidant properties HUVECs exposed to ox-LDL. In addition, it may alleviate endothelial cell damage by inhibiting the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhang
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Fuchuan Huang
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Yiran Wu
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Linmei Jiao
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China
| | - Yun Wang
- Xishuangbanna Huakun Biotechnology Co., Ltd, Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan, China
| | - Tao Ding
- The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Wuhua District, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Zhou L, Wu J, Wei Z, Zheng Y. Legumain in cardiovascular diseases. Exp Biol Med (Maywood) 2024; 249:10121. [PMID: 39104790 PMCID: PMC11298360 DOI: 10.3389/ebm.2024.10121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, having become a global public health problem, so the pathophysiological mechanisms and therapeutic strategies of CVDs need further study. Legumain is a powerful enzyme that is widely distributed in mammals and plays an important role in a variety of biological processes. Recent research suggests that legumain is associated with the occurrence and progression of CVDs. In this review, we provide a comprehensive overview of legumain in the pathogenesis of CVDs. The role of legumain in CVDs, such as carotid atherosclerosis, pulmonary hypertension, coronary artery disease, peripheral arterial disease, aortic aneurysms and dissection, is discussed. The potential applications of legumain as a biomarker of these diseases are also explored. By understanding the role of legumain in the pathogenesis of CVDs, we aim to support new therapeutic strategies to prevent or treat these diseases.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Nicolosi G, Donzella M, Polizzi A, Angjelova A, Santonocito S, Zanoli L, Annunziata M, Isola G. Early detection of cardiovascular risk markers through non-invasive ultrasound methodologies in periodontitis patients. Open Med (Wars) 2024; 19:20241003. [PMID: 39034949 PMCID: PMC11260002 DOI: 10.1515/med-2024-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Objectives This narrative review aims to update the current evidence and offer insight into the new non-invasive ultrasound techniques used to early identify degenerative vascular changes in subjects with periodontitis and to investigate if these methodologies could be useful to identify subclinical cardiovascular disease (CVD) dysfunction in periodontitis patients and to monitor changes in CVD risk after periodontal treatment. Methods Studies examining the assessment of vascular endothelial function through the latest methodologies were analyzed. Systematic reviews, observational studies, and clinical trials in the English language were identified using PubMed, Web of Science, and Google Scholar databases with key search terms such as "periodontitis," "endothelial dysfunction (ED)," "arterial stiffness," and "periodontal therapy." Results Several mechanisms are involved in the association between periodontitis and CVD. The key players are periodontal bacteria and their toxins, which can enter the circulation and infiltrate blood vessel walls. The increase in proinflammatory molecules such as interleukins and chemokines, c-reactive protein, fibrinogen, and oxidative stress also plays a decisive role. In addition, an increase in parameters of ED, arterial stiffness, and atherosclerosis, such as carotid intima-media thickness, pulse wave velocity, and flow-mediated dilatation, has been shown in periodontal patients. Conclusions The literature today agrees on the association of periodontitis and CVD and the positive role of periodontal therapy on systemic inflammatory indices and cardiovascular outcomes. Hopefully, these non-invasive methodologies could be extended to periodontal patients to provide a comprehensive understanding of the CVD-periodontitis link from the perspective of a personalized medicine approach in periodontology.
Collapse
Affiliation(s)
- Giada Nicolosi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| | - Martina Donzella
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| | - Angela Angjelova
- University Dental Clinical Center St. Pantelejmon, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000, Skopje, North Macedonia
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| | - Luca Zanoli
- Department of Clinical and Experimental Medicine, University of Catania, 95123, Catania, Italy
| | - Marco Annunziata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124, Catania, Italy
| |
Collapse
|
14
|
Zhu B, Yang Y, Wang X, Sun D, Yang X, Zhu X, Ding S, Xiao C, Zou Y, Yang X. Blocking H 1R signal aggravates atherosclerosis by promoting inflammation and foam cell formation. J Mol Med (Berl) 2024; 102:887-897. [PMID: 38733386 DOI: 10.1007/s00109-024-02453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory arterial disease, in which abnormal lipid metabolism and foam cell formation play key roles. Histamine is a vital biogenic amine catalyzed by histidine decarboxylase (HDC) from L-histidine. Histamine H1 receptor (H1R) antagonist is a commonly encountered anti-allergic agent in the clinic. However, the role and mechanism of H1R in atherosclerosis have not been fully elucidated. Here, we explored the effect of H1R on atherosclerosis using Apolipoprotein E-knockout (ApoE-/-) mice with astemizole (AST, a long-acting H1R antagonist) treatment. The results showed that AST increased atherosclerotic plaque area and hepatic lipid accumulation in mice. The result of microarray study identified a significant change of endothelial lipase (LIPG) in CD11b+ myeloid cells derived from HDC-knockout (HDC-/-) mice compared to WT mice. Blocking H1R promoted the formation of foam cells from bone marrow-derived macrophages (BMDMs) of mice by up-regulating p38 mitogen-activated protein kinase (p38 MAPK) and LIPG signaling pathway. Taken together, these findings demonstrate that blocking H1R signal aggravates atherosclerosis by promoting abnormal lipid metabolism and macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway. KEY MESSAGES: Blocking H1R signal with AST aggravated atherosclerosis and increased hepatic lipid accumulation in high-fat diet (HFD)-fed ApoE-/- mice. Blocking H1R signal promoted macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway.
Collapse
Affiliation(s)
- Baoling Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong, 266071, China
| | - Yi Yang
- Department of Medical Laboratory, College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Xiangfei Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dili Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiyang Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaowei Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University Shanghai, Shanghai, 200940, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chun Xiao
- Department of Cardiology, Third People's Hospital of Huizhou, Guangdong, 516003, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University Shanghai, Shanghai, 200940, China.
- Department of Cardiology, Third People's Hospital of Huizhou, Guangdong, 516003, China.
| |
Collapse
|
15
|
Woźniak A, Satała J, Gorzelak‐Pabiś P, Pawlos A, Broncel M, Kaźmierski P, Woźniak E. OxLDL as a prognostic biomarker of plaque instability in patients qualified for carotid endarterectomy. J Cell Mol Med 2024; 28:e18459. [PMID: 39039803 PMCID: PMC11263466 DOI: 10.1111/jcmm.18459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 07/24/2024] Open
Abstract
Atherosclerotic plaque instability increases the risk of stroke. As such, determining the nature of an instability atherosclerotic plaque may speed up qualification for carotid endarterectomy (CEA), thus reducing the risk of acute vascular events. The aim of the study was to determine the diagnostic value of oxidized LDL cholesterol (ox-LDL), matrix metalloproteinase 9 (MMP-9) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in serum as a prognostic markers of instability atherosclerotic plaques. Serum was collected from 67 patients who underwent CEA in accordance with the qualification criteria. The levels of ox-LDL, MMP-9 and 8-OHdG were assessed by ELISA. The predictive value of the markers was determined based on an ROC curve, and the cut-off points with the highest sensitivity and specificity were determined. Patients with unstable atherosclerotic plaque had significantly higher serum ox-LDL, MMP-9 and 8-OHdG values. It was found that in patients before CEA, ox-LDL >31.4 ng/mL was associated with an 82.5% probability of unstable atherosclerotic plaque, MMP-9 >113.1 ng/mL with 78.6%, and 8-OHdG >2.15 ng/mL with 64.7%. Multivariate regression analysis found ox-LDL to be an independent factor associated with plaque instability. Patients with unstable plaques tend to have higher serum levels of ox-LDL, MMP-9 and 8-OHdG compared to those with stable plaques. The optimal cut-off point for ox-LDL (AUC 0.86, p <0.0001) was 31.14 ng/mL, with 91.18% sensitivity and 78.79% specificity. The high sensitivity and specificity of ox-LDL suggests that it can be used as an independent marker of plaque instability.
Collapse
Affiliation(s)
- Agnieszka Woźniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Joanna Satała
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Paulina Gorzelak‐Pabiś
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Agnieszka Pawlos
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| | - Piotr Kaźmierski
- Department of Vascular, General, and Oncologic SurgeryMedical University of LodzLodzPoland
| | - Ewelina Woźniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue ImmunopharmacologyMedical University of LodzLodzPoland
| |
Collapse
|
16
|
Mayer MS, Portella AF, Maçalai C, Zambra AL, Mori NC, Kessler Nunes VC, Bortolotto JW, Azzolin GB, Parisi MM. Yerba Mate as a Protectant against Lipoproteins Oxidation. Chem Biodivers 2024; 21:e202301770. [PMID: 38330241 DOI: 10.1002/cbdv.202301770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Oxidative modification of low-density lipoproteins (LDL) and high-density lipoproteins (HDL) are important factors determining cardiovascular risk. This study investigated the antioxidant mechanisms and potential protective effect of a hydroethanolic extract of yerba mate (Ilex paraguaiensis; EHEM) on the in vitro oxidation of LDL and HDL. EHEM was found to possess ferric reducing power, DPPH free radical scavenging capacity, metal chelating activity, and NO radical scavenging activity. In addition, EHEM reduced the lipoperoxidation induced by α,α'-Azodiisobutyramidine dihydrochloride (AAPH) in HDL and LDL at all tested concentrations. In this study, we demonstrate the antioxidant properties of yerba mate and its phytochemical compounds. These properties may effectively prevent the in vitro oxidation of LDL and HDL molecules, a phenomenon linked to the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Mariana Spanamberg Mayer
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Amanda Felipe Portella
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
| | - Camila Maçalai
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
| | - Andressa Leal Zambra
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Natacha Cossettin Mori
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
| | - Viviane Cecília Kessler Nunes
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Josiane Woutheres Bortolotto
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Gabriela Bonfanti Azzolin
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
| | - Mariana Migliorini Parisi
- Group of Integral Attention to Health, Center for Health and Rural Sciences, University of Cruz Alta, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS) Unicruz, URI-Erechim, Unijuí, University of Cruz Alta, Brazil
- Center for Health and Rural Sciences, University of Cruz Alta, Rodovia Municipal Jacob Della Mea, s/n km 5,6 - Parada Benito, Cruz Alta, RS-98020-290, Brazil
| |
Collapse
|
17
|
Zhao Y, Liu N, Zhang J, Zhao L. PCSK9i promoting the transformation of AS plaques into a stable plaque by targeting the miR-186-5p/Wipf2 and miR-375-3p/Pdk1/Yap1 in ApoE-/- mice. Front Med (Lausanne) 2024; 11:1284199. [PMID: 38596793 PMCID: PMC11002805 DOI: 10.3389/fmed.2024.1284199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Atherosclerosis (AS) is a multifaceted disease characterized by disruptions in lipid metabolism, vascular inflammation, and the involvement of diverse cellular constituents. Recent investigations have progressively underscored the role of microRNA (miR) dysregulation in cardiovascular diseases, notably AS. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) can effectively reduce circulating levels of low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp (a)], potentially fostering a more enduring phenotype for AS plaques. However, the underlying mechanisms by which PCSK9i enhances plaque stability remain unclear. In this study, we used microarray and bioinformatics techniques to analyze the regulatory impacts on gene expression pertinent to AS, thereby unveiling potential mechanisms underlying the plaque-stabilizing attributes of PCSK9i. Methods ApoE-/- mice were randomly allocated into control, AS, PCSK9i, and Atorvastatin groups. The AS model was induced through a high-fat diet (HFD), succeeded by interventions: the PCSK9i group was subjected to subcutaneous SBC-115076 injections (8 mg/kg, twice weekly), and the Atorvastatin group received daily oral Atorvastatin (10 mg/kg) while on the HFD. Subsequent to the intervention phase, serum analysis, histological assessment using hematoxylin and eosin (H&E) and Oil Red O staining, microarray-centered miRNA analysis utilizing predictions from TargetScan and miRTarBase, and analyses using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were executed to illuminate potential pathways. Real-time fluorescence quantitative PCR (RT-qPCR) was employed to quantify the expression levels of target genes. Results In comparison to the control group, the AS group displayed a significant elevation in blood lipid levels. Both PCSK9i and Atorvastatin effectively attenuated blood lipid levels, with PCSK9i exhibiting a more pronounced lipid-lowering impact, particularly concerning TG and LDL-C levels. Over the course of AS progression, the expression levels of mmu-miR-134, mmu-miR-141-5p, mmu-miR-17-3p, mmu-miR-195-3p, mmu-miR-210, mmu-miR-33-5p, mmu-miR-410, mmu-miR-411-5p, mmu-miR-499, mmu-miR-672-5p, mmu-miR-675-3p, and mmu-miR-301b underwent dynamic fluctuations. PCSK9i significantly down-regulated the expression of mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p. Further enrichment analysis disclosed that mmu-miR-186-5p, mmu-miR-222, mmu-miR-375-3p, and mmu-miR-494-3p were functionally enriched for cardiovascular smooth muscle cell proliferation, migration, and regulation. RT-qPCR results manifested that, in comparison to the AS group, PCSK9i significantly upregulated the expression of Wipf2, Pdk1, and Yap1 (p < 0.05). Conclusion Aberrant miRNA expression may play a pivotal role in AS progression in murine models of AS. The subcutaneous administration of PCSK9i exerted anti-atherosclerotic effects by targeting the miR-186-5p/Wipf2 and miR-375-3p/Pdk1/Yap1 axes, thereby promoting the transition of AS plaques into a more stable form.
Collapse
Affiliation(s)
- Yanlong Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jifeng Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Luo H, Zhao L, Dong B, Liu Y. MiR-375 Inhibitor Alleviates Inflammation and Oxidative Stress by Upregulating the GPR39 Expression in Atherosclerosis. Int Heart J 2024; 65:135-145. [PMID: 38296567 DOI: 10.1536/ihj.23-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Atherosclerosis may be caused or developed by an immune response and antioxidation imbalance. MicroRNA-375 (miR-375) or G-protein-coupled receptor 39 (GPR39) is involved in vascular endothelial cell injury, but their role in atherosclerosis is unknown. This experiment aimed to determine the action of the miR-375/GPR39 axis in atherosclerosis.Human aortic endothelial cells (HAECs) were treated with 10 ng/mL of oxidised low-density lipoprotein (ox-LDL) for 24 hours to induce HAEC injury, which was treated by the miR-375 inhibitor, GPR39 inhibitor, or agonist. High-fat diet (HFD) -induced ApoE-/- mice were made as an atherosclerosis model for miR-375 inhibitor treatment. Cell Counting Kit-8 was applied to detect HAEC viability. HAEC apoptosis and ROS levels were measured using flow cytometry. Vascular histopathology and the GPR39 expression were detected using hematoxylin-eosin and immunohistochemistry. The expressions of interleukin (IL) -6, IL-1β, and tumour necrosis factor-α (TNF-α) were assessed using an enzyme-linked immunosorbent assay. The miR-375, GPR39, NOX-4, and p-IκBα/IκBα levels were measured using quantitative reverse transcription polymerase chain reaction or western blot.MiR-375 and GPR39 levels increased and decreased in ox-LDL-treated HAECs, respectively. The miR-375 inhibitor or GPR39 agonist promoted cell viability and inhibited apoptosis in ox-LDL-induced HAEC injury. The miR-375 inhibitor also significantly downregulated the IL-6, IL-1β, TNF-α, p-IκBα/IκBα, ROS, and NOX-4 expressions to alleviate oxidative stress and inflammation, which were reversed by the GPR39 inhibitor. An in vivo experiment proved that the miR-375 inhibitor upregulated the GPR39 expression and improved inflammation, oxidative stress, and endothelial cell damage associated with atherosclerosis.The miR-375 inhibitor improved inflammation, oxidative stress, and cell damage in ox-LDL-induced HAECs and HFD-induced ApoE-/- mice by promoting the GPR39 expression, which provided a new theoretical basis for the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hui Luo
- Department of Cardiology, The First Hospital of Changsha
| | - Lin Zhao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University
| | - Bo Dong
- Department of Cardiology, The First Hospital of Changsha
| | - Yanghong Liu
- Center for Reproductive Medicine, The Third Xiangya Hospital, Central South University
| |
Collapse
|
19
|
Chen J, Xu F, Mo X, Cheng Y, Wang L, Yang H, Li J, Zhang S, Zhang S, Li N, Cao Y. Exploratory Study of Differentially Expressed Genes of Peripheral Blood Monocytes in Patients with Carotid Atherosclerosis. Comb Chem High Throughput Screen 2024; 27:1344-1357. [PMID: 37608666 DOI: 10.2174/1386207326666230822122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The abundance of circulating monocytes is closely associated with the development of atherosclerosis in humans. OBJECTIVE This study aimed to further research into diagnostic biomarkers and targeted treatment of carotid atherosclerosis (CAS). METHODS We performed transcriptomics analysis through weighted gene co-expression network analysis (WGCNA) of monocytes from patients in public databases with and without CAS. Differentially expressed genes (DEGs) were screened by R package limma. Diagnostic molecules were derived by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithms. NetworkAnalyst, miRWalk, and Star- Base databases assisted in the construction of diagnostic molecule regulatory networks. The Drug- Bank database predicted drugs targeting the diagnostic molecules. RT-PCR tested expression profiles. RESULTS From 14,369 hub genes and 61 DEGs, six differentially expressed monocyte-related hub genes were significantly associated with immune cells, immune responses, monocytes, and lipid metabolism. LASSO and SVM-RFE yielded five genes for CAS prediction. RT-PCR of these genes showed HMGB1 was upregulated, and CCL3, CCL3L1, CCL4, and DUSP1 were downregulated in CAS versus controls. Then, we constructed and visualized the regulatory networks of 9 transcription factors (TFs), which significantly related to 5 diagnostic molecules. About 11 miRNAs, 19 lncRNAs, and 39 edges centered on four diagnostic molecules (CCL3, CCL4, DUSP1, and HMGB1) were constructed and displayed. Eleven potential drugs were identified, including ibrutinib, CTI-01, roflumilast etc. Conclusion: A set of five biomarkers were identified for the diagnosis of CAS and for the study of potential therapeutic targets.
Collapse
Affiliation(s)
- Juhai Chen
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
- Internal Medicine Department Three Ward, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Fengyan Xu
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Xiangang Mo
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yiju Cheng
- The Department of Respiratory and Critical Medicine, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Lan Wang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Hui Yang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Jiajing Li
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shiyue Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shuping Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Nannan Li
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yang Cao
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| |
Collapse
|
20
|
Zhang X, Chen S, Yin G, Liang P, Feng Y, Yu W, Meng D, Liu H, Zhang F. The Role of JAK/STAT Signaling Pathway and Its Downstream Influencing Factors in the Treatment of Atherosclerosis. J Cardiovasc Pharmacol Ther 2024; 29:10742484241248046. [PMID: 38656132 DOI: 10.1177/10742484241248046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Atherosclerosis is now widely considered to be a chronic inflammatory disease, with increasing evidence suggesting that lipid alone is not the main factor contributing to its development. Rather, atherosclerotic plaques contain a significant amount of inflammatory cells, characterized by the accumulation of monocytes and lymphocytes on the vessel wall. This suggests that inflammation may play a crucial role in the occurrence and progression of atherosclerosis. As research deepens, other pathological factors have also been found to influence the development of the disease. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is a recently discovered target of inflammation that has gained attention in recent years. Numerous studies have provided evidence for the causal role of this pathway in atherosclerosis, and its downstream signaling factors play a significant role in this process. This brief review aims to explore the crucial role of the JAK/STAT pathway and its representative downstream signaling factors in the development of atherosclerosis. It provides a new theoretical basis for clinically affecting the development of atherosclerosis by interfering with the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Suwen Chen
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Guoliang Yin
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Pengpeng Liang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Yanan Feng
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Wenfei Yu
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Decheng Meng
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Hongshuai Liu
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Fengxia Zhang
- Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| |
Collapse
|
21
|
Huang F, Mu J, Liu Z, Lin Q, Fang Y, Liang Y. The Nutritional Intervention of Ingredients from Food Medicine Homology Regulating Macrophage Polarization on Atherosclerosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20441-20452. [PMID: 38108290 DOI: 10.1021/acs.jafc.3c06375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The polarization of macrophages plays a crucial regulatory role in a range of physiological and pathological processes involving macrophages. There are numerous concerns with macrophage polarization in atherosclerosis; however, most focus on modulating macrophage polarization to improve the microenvironment, and the mechanism of action remains unknown. In recent years, the advantages of natural and low-toxicity side effects of food medicine homology-derived substances have been widely explored. Few reports have started from ingredients from food medicine homology to regulate the polarization of macrophages so that early intervention can reduce or delay the process of atherosclerosis. This review summarizes the classification of macrophage polarization and related markers in the process of atherosclerosis. It summarizes the regulatory role of ingredients from food medicine homology in macrophage polarization and their possible mechanisms to provide ideas and inspiration for the nutritional intervention in vascular health.
Collapse
Affiliation(s)
- Fang Huang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zihan Liu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu 210023, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and Byproduct Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
22
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Xiong Y, Huang H, Chen F, Tang Y. CircDLGAP4 induces autophagy and improves endothelial cell dysfunction in atherosclerosis by targeting PTPN4 with miR-134-5p. ENVIRONMENTAL TOXICOLOGY 2023; 38:2952-2966. [PMID: 37615249 DOI: 10.1002/tox.23930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Circular RNAs (circRNAs), a new subgroup of non-coding RNAs in the human transcriptome, are crucial in atherosclerosis (AS). Here, a newly identified circRNA circDLGAP4 was demonstrated to be downregulated in oxidized forms of low-density lipoprotein (ox-LDL)-induced HUVECs. METHODS This research adopted ox-LDL to stimulate human umbilical vein endothelial cells (HUVECs) to mimic AS in vitro. To further validate the protective action of circDLGAP4 in AS, a mouse model of AS was constructed with a high-fat diet. Functional assays evaluated circDLGAP4 role in AS in vitro and in vivo. Moreover, mechanism assays evaluated association of circDLGAP4/miR-134-5p/PTPN4. RESULTS CircDLGAP4 was induced to promote cell proliferative behavior and autophagy, inhibit apoptotic and inflammatory activities in ox-LDL-treated HUVECs, and attenuated endothelial barrier function. CircDLGAP4 regulated PTPN4 by directly targeting miR-134-5p. Meanwhile, inhibiting miR-134-5p reduced ox-LDL-induced cell dysfunction. Knockout of PTPN4 reversed circDLGAP4 overexpression or miR-134-5p downregulation in vitro. In addition, reducing circDLGAP4 or overexpressing miR-134-5p increased the red atherosclerotic plaque and lesion area of AS mice, reduced autophagy level, and promoted the release of inflammatory cytokines. CONCLUSION This study extends the role of circRNA in AS by inducing autophagy and improving endothelial dysfunction in AS via the circDLGAP4/miR-134-5p/PTPN4 axis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Cardiology and Cardiovascular Disease Research Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Hui Huang
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Fuli Chen
- Department of Cardiology and Cardiovascular Disease Research Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yijia Tang
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Zhang T, Wu S, Xu R, Zhang S, Wang M, Li J. Musashi-2 binds with Fbxo6 to induce Rnaset2 ubiquitination and chemokine signaling pathway during vascular smooth muscle cell phenotypic switch in atherosclerosis. Cell Signal 2023; 111:110869. [PMID: 37633478 DOI: 10.1016/j.cellsig.2023.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE The objective of this study is to determine how Musashi-2 (MSI2) affects vascular smooth muscle cell (VSMC) phenotypic switch and contributes to atherosclerosis (AS). METHODS Primary mouse VSMCs were transfected with MSI2 specific siRNA and treated with platelet-derived growth factor-BB (PDGF-BB). The proliferation, cell-cycle, and migration of VSMCs were determined by CCK-8, flow cytometry, wound healing, and transwell assays. Western blot and qRT-PCR were conducted to analyze the protein and mRNA expression. Moreover, the correlation between MSI2, Fbxo6, Rnaset2, and chemokine signaling was predicted and verified using RNAct database, KEGG, wiki, RNA-binding protein immunoprecipitation and co-immunoprecipitation. Moreover, H&E and Oil Red O staining were employed for assessing necrotic core and lipid accumulation in AS mouse aorta tissues. The numbers of B lymphocytes and monocytes, and the levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDLC), and low-density lipoprotein cholesterol (LDL-C) in AS mice blood were investigated using flow cytometry and corresponding commercial kits, respectively. RESULTS MSI2 was up-regulated in the PDGF-BB-treated VSMCs. Knockdown of MSI2 inhibited VSMC proliferation, cell-cycle, and migration. Moreover, MSI2 regulated VSMC phenotypic switch through binding with Fbxo6 to induce Rnaset2 ubiquitination. MSI2 knockdown inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. In AS mice, knockdown of MSI2 inhibited the formation of necrotic core and atherosclerotic plaque, and inhibited chemokine signaling via regulating Fbxo6/Rnaset2 axis. CONCLUSION Our findings demonstrated that MSI2 could bind with Fbxo6 to induce Rnaset2 ubiquitination and the activation of chemokine signaling pathway during VSMC phenotypic switch in AS.
Collapse
Affiliation(s)
- Tao Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China; Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China
| | - Shusheng Wu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China; Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China
| | - Rongwei Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China; Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China
| | - Shuguang Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China; Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China
| | - Minghai Wang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China; Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China.
| | - Jie Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong, China; Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China.
| |
Collapse
|
25
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
26
|
Chen Y, You N, Yang C, Zhang J. Helicobacter pylori infection increases the risk of carotid plaque formation: Clinical samples combined with bioinformatics analysis. Heliyon 2023; 9:e20037. [PMID: 37809782 PMCID: PMC10559771 DOI: 10.1016/j.heliyon.2023.e20037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Infection with Helicobacter pylori (H. pylori) may increase atherosclerosis, which can lead to carotid plaque formation. Our study examined the relationship between H. pylori infection and carotid plaque formation, and its underlying mechanisms. Methods A total of 36,470 people who underwent physical examination in Taizhou Hospital Health Examination Center from June 2017 to June 2022 were included in this study. All people participated in the urease test, neck ultrasound, blood pressure detection, anthropometric measurement and biochemical laboratory examination. In addition, the GSE27411 and GSE28829 datasets in the Gene Expression Omnibus (GEO) database were used to analyze the mechanism of H. pylori infection and atherosclerosis progression. Results H. pylori infection, sex, age, blood lipids, blood pressure, fasting blood glucose, glycated hemoglobin and body mass index were risk factors for carotid plaque formation. An independent risk factor was still evident in the multivariate logistic regression analysis, indicating H. pylori infection. Furthermore, after weighted gene coexpression network analysis (WGCNA), we discovered 555 genes linked to both H. pylori infection and the advancement of atherosclerosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed a strong correlation between these genes and immunity, infection, and immune disorders. SsGSEA analysis showed that H. pylori infection and atherosclerosis included changes in the immune microenvironment. Finally, three genes MS4A6A, ADAMDEC1 and AQP9 were identified to be involved in the formation of atherosclerosis after H. pylori infection. Conclusion: Our research affirms that H. pylori is a unique contributor to the formation of carotid plaque, examines the immune microenvironment associated with H. pylori infection and advanced carotid atherosclerosis, and offers fresh perspectives on how H. pylori infection leads to atherosclerosis.
Collapse
Affiliation(s)
- Yi Chen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Ningning You
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Chaoyu Yang
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Jinshun Zhang
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
27
|
Ji L, Song T, Ge C, Wu Q, Ma L, Chen X, Chen T, Chen Q, Chen Z, Chen W. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation. Biomed Pharmacother 2023; 165:115210. [PMID: 37499457 DOI: 10.1016/j.biopha.2023.115210] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE This study aims at investigating the potential targets and functional mechanisms of Scutellariae Radix-Coptidis Rhizoma (QLYD) against atherosclerosis (AS) through network pharmacology, molecular docking, bioinformatic analysis and experimental validation. METHODS The compositions of QLYD were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, where the main active components of QLYD and corresponding targets were identified. The potential therapeutic targets of AS were excavated using the OMIM database, DrugBank database, DisGeNET database, CTD database and GEO datasets. The protein-protein interaction (PPI) network of common targets was constructed and visualized by Cytoscape 3.7.2 software. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed to analyze the function of core targets in the PPI network. Molecular docking was carried out using AutoDockTools, AutoDock Vina, and PyMOL software to verify the correlation between the main components of QLYD and the core targets. Mouse AS model was established and the results of network pharmacology were verified by in vivo experiments. RESULTS Totally 49 active components and 225 corresponding targets of QLYD were obtained, where 68 common targets were identified by intersecting with AS-related targets. Five hub genes including IL6, VEGFA, AKT1, TNF, and IL1B were screened from the PPI network. GO functional analysis reported that these targets had associations mainly with cellular response to oxidative stress, regulation of inflammatory response, epithelial cell apoptotic process, and blood coagulation. KEGG pathway analysis demonstrated that these targets were correlated to AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, and NF-kappa B signaling pathway. Results of molecular docking indicated good binding affinity of QLYD to FOS, AKT1, and TNF. Animal experiments showed that QLYD could inhibit inflammation, improve blood lipid levels and reduce plaque area in AS mice to prevent and treat AS. CONCLUSION QLYD may exert anti-inflammatory and anti-oxidative stress effects through multi-component, multi-target and multi-pathway to treat AS.
Collapse
Affiliation(s)
- Lingyun Ji
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Ting Song
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250011, China
| | - Chunlei Ge
- Department of Respiratory Medicine, Linyi Tradition Chinese Medical Hospital, Linyi, Shandong Province 276600, China
| | - Qiaolan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Lanying Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Xiubao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250011, China
| | - Ting Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China
| | - Zetao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250011, China; Subject of Integrated Chinese and Western Medicine,Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250355, China.
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province 250011, China.
| |
Collapse
|
28
|
Han Z, Hu H, Yin M, Lin Y, Yan Y, Han P, Liu B, Jing B. HOXA1 participates in VSMC-to-macrophage-like cell transformation via regulation of NF-κB p65 and KLF4: a potential mechanism of atherosclerosis pathogenesis. Mol Med 2023; 29:104. [PMID: 37528397 PMCID: PMC10394793 DOI: 10.1186/s10020-023-00685-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Macrophage-like transformation of vascular smooth muscle cells (VSMCs) is a risk factor of atherosclerosis (AS) progression. Transcription factor homeobox A1 (HOXA1) plays functional roles in differentiation and development. This study aims to explore the role of HOXA1 in VSMC transformation, thereby providing evidence for the potential mechanism of AS pathogenesis. METHODS High fat diet (HFD)-fed apolipoprotein E knockout (ApoE-/-) mice were applied as an in vivo model to imitate AS, while 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POV-PC)-treated VSMCs were applied as an in vitro model. Recombinant adeno-associated-virus-1 (AAV-1) vectors that express short-hairpin RNAs targeting HOXA1, herein referred as AAV1-shHOXA1, were generated for the loss-of-function experiments throughout the study. RESULTS In the aortic root of AS mice, lipid deposition was severer and HOXA1 expression was higher than the wide-type mice fed with normal diet or HFD. Silencing of HOXA1 inhibited the AS-induced weight gain, inflammatory response, serum and liver lipid metabolism disorder and atherosclerotic plaque formation. Besides, lesions from AS mice with HOXA1 knockdown showed less trans-differentiation of VSMCs to macrophage-like cells, along with a suppression of krüppel-like factor 4 (KLF4) and nuclear factor (NF)-κB RelA (p65) expression. In vitro experiments consistently confirmed that HOXA1 knockdown suppressed lipid accumulation, VSMC-to-macrophage phenotypic switch and inflammation in POV-PC-treated VSMCs. Mechanism investigations further illustrated that HOXA1 transcriptionally activated RelA and KLF4 to participate in the pathological manifestations of VSMCs. CONCLUSIONS HOXA1 participates in AS progression by regulating VSMCs plasticity via regulation of NF-κB p65 and KLF4. HOXA1 has the potential to be a biomarker or therapeutic target for AS.
Collapse
Affiliation(s)
- Zhiyang Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Haidi Hu
- Department of General and Vascular Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - MingZhu Yin
- Department of Dermatology, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
- Human Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Yu Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Yan Yan
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Peng Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bing Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bao Jing
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
29
|
Ji J, Zhao X, Huang J, Wu X, Xie F, Li L, Wang T, Mi S. Apolipoprotein A-IV of diabetic-foot patients upregulates tumor necrosis factor α expression in microfluidic arterial models. Exp Biol Med (Maywood) 2023; 248:691-701. [PMID: 36775868 PMCID: PMC10408548 DOI: 10.1177/15353702221147562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 02/14/2023] Open
Abstract
Diabetic peripheral arterial atherosclerosis is one of the important characteristics of diabetic foot syndrome. Apolipoprotein (Apo A-IV) participates in various physiological processes, and animal studies have shown that it has roles of anti-atherosclerosis, prevention of platelet aggregation and thrombosis. Apo A-IV glycosylation is closely related to the occurrence and development of diabetic peripheral atherosclerosis. This study aimed to explore the mechanism of diabetic peripheral arterial lesions caused by glycosylated Apo A-IV. Type 2 diabetes mellitus (T2DM) and T2DM with diabetic foot patients (T2DM-F; n = 45, 30) were enrolled in this study, and individuals without diabetes (n = 35) served as normal controls (NC). In T2DM group, serum Apo A-IV content was higher than those in NC and T2DM-F group, as carboxymethyl lysine (CML) glycosylation of Apo A-IV in mixed serum from T2DM-F group was identified to be more significant than those in two other groups. Within a microfluidic arterial chip model, Apo A-IV from T2DM and T2DM-F group significantly increased transcription and protein levels of tumor necrosis factor alpha (TNF-α) in chip arteries, and CML expression was observed in T2DM-F group, which were associated with increased nuclear receptor subfamily 4 group A member 3 (NR4A3) expression. Recombinant human Apo A-IV could reverse the stimulating effect of serum Apo A-IV from T2DM-F group on TNF-α expression, and NR4A3 blocking peptide downregulated TNF-α expression by inhibiting NR4A3 expression. In the chip arteries, Apo A-IV from T2DM and T2DM-F increased TNF-α expression and turn them into a pre-atherosclerotic state, which might be one of the important mechanisms of glycosylated Apo A-IV to induce diabetic peripheral arterial lesions and eventually lead to diabetic foot.
Collapse
Affiliation(s)
- Jun Ji
- Department of Cardiovascular Surgery, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen 518027, China
| | - Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055 China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055 China
| | - Xuanqin Wu
- Department of Cardiovascular Surgery, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen 518027, China
| | - Fang Xie
- Department of Endocrinology, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen 518027, China
| | - Liang Li
- Department of Cardiovascular Surgery, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen 518027, China
| | - Tao Wang
- Department of Cardiovascular Surgery, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen 518027, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055 China
| |
Collapse
|
30
|
Markin AM, Markina YV, Bogatyreva AI, Tolstik TV, Chakal DA, Breshenkov DG, Charchyan ER. The Role of Cytokines in Cholesterol Accumulation in Cells and Atherosclerosis Progression. Int J Mol Sci 2023; 24:ijms24076426. [PMID: 37047399 PMCID: PMC10094347 DOI: 10.3390/ijms24076426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Atherosclerosis is the most common cardiovascular disease and is the number one cause of death worldwide. Today, atherosclerosis is a multifactorial chronic inflammatory disease with an autoimmune component, accompanied by the accumulation of cholesterol in the vessel wall and the formation of atherosclerotic plaques, endothelial dysfunction, and chronic inflammation. In the process of accumulation of atherogenic lipids, cells of the immune system, such as monocytes, macrophages, dendritic cells, etc., play an important role, producing and/or activating the production of various cytokines—interferons, interleukins, chemokines. In this review, we have tried to summarize the most important cytokines involved in the processes of atherogenesis.
Collapse
|
31
|
Germano DB, Oliveira SB, Bachi ALL, Juliano Y, Novo NF, Bussador do Amaral J, França CN. Monocyte chemokine receptors as therapeutic targets in cardiovascular diseases. Immunol Lett 2023; 256-257:1-8. [PMID: 36893859 DOI: 10.1016/j.imlet.2023.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Chemokine receptors are fundamental in many processes related to cardiovascular diseases, such as monocyte migration to vessel walls, cell adhesion, and angiogenesis, among others. Even though many experimental studies have shown the utility of blocking these receptors or their ligands in the treatment of atherosclerosis, the findings in clinical research are still poor. Thus, in the current review we aimed to describe some promising results concerning the blockade of chemokine receptors as therapeutic targets in the treatment of cardiovascular diseases and also to discuss some challenges that need to be overcome before using these strategies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Neil Ferreira Novo
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology -Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil.
| |
Collapse
|
32
|
NLRP3 Inflammasome in Atherosclerosis: Putting Out the Fire of Inflammation. Inflammation 2023; 46:35-46. [PMID: 35953687 DOI: 10.1007/s10753-022-01725-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease with thickening or hardening of the arteries, which led to the built-up of plaques in the inner lining of an artery. Among all the clarified pathogenesis, the over-activation of inflammatory reaction is one of the most acknowledged one. The nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome, as a vital and special form of inflammation and innate immunity, has been widely revealed to participate in the onset and development of AS. This review will introduce the process of the pathogenesis and progression of AS, and will describe the biological features of the NLRP3 inflammasome. Furthermore, the role of the NLRP3 inflammasome in AS and the possible mechanisms will be discussed. In addition, several kinds of agents with the effect of anti-atherosclerotic taking advantage of the NLRP3 inflammasome intervention will be described and discussed in detail, including natural compounds (baicalin, dihydromyricetin, luteolin, 5-deoxy-rutaecarpine (R3) and Salvianolic acid A, etc.), microRNAs (microRNA-30c-5p, microRNA-9, microRNA-146a-5p, microRNA-16-5p and microRNA-181a, etc.), and autophagy regulators (melatonin, dietary PUFA and arglabin, etc.). We aim to provide novel insights in the exploration of the specific mechanisms of AS and the development of new treatments of AS.
Collapse
|
33
|
Hu W, Li P, Zeng N, Tan S. Exploring the hub mechanisms of ischemic stroke based on protein-protein interaction networks related to ischemic stroke and inflammatory bowel disease. Sci Rep 2023; 13:1741. [PMID: 36720935 PMCID: PMC9887582 DOI: 10.1038/s41598-023-27459-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023] Open
Abstract
Ischemic stroke is highly concerning because it often leads to severe long-term neurological disability. Among clinical trials, ischemic stroke and inflammatory bowel disease interactions have been increasingly reported in recent years. Therefore, using bioinformatics approaches to explore novel protein interactions between them is of interest. We performed this exploratory analysis by using bioinformatics tools such as string to analyze gene data downloaded from NHGRI-GWAS data related to ischemic stroke and inflammatory bowel disease. We constructed a prospective protein interaction network for ischemic stroke and inflammatory bowel disease, identifying cytokine and interleukin-related signaling pathways, Spliceosome, Ubiquitin-Proteasome System (UPS), Thrombus, and Anticoagulation pathways as the crucial biological mechanisms of the network. Furthermore, we also used data-independent acquisition mass spectrometry (DIA-MS) to detect differential protein expression in eight samples, which also suggested that immune system, signal transduction, and hemostasis-related pathways are key signaling pathways. These findings may provide a basis for understanding the interaction between these two states and exploring possible molecular and therapeutic studies in the future.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.,Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, 410004, China
| | - Ping Li
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, 410004, China
| | - Nianju Zeng
- Department of Rehabilitation, Xiangya Bo'ai Rehabilitation Hospital, Changsha, 410004, China.
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
34
|
Guo Y, Kong Q, Zhang Y, Zhao J, Yu Z, He D, Huang H, Luo X. Elevated RANTES levels are associated with increased risk of cerebral atherosclerotic stenosis. BMC Neurol 2023; 23:39. [PMID: 36698075 PMCID: PMC9875531 DOI: 10.1186/s12883-023-03079-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cerebral atherosclerotic stenosis (CAS) is a significant factor in the development of acute ischemic stroke (AIS). Previous studies have reported that cytokines are involved in atherosclerotic diseases, although the relationship between serum levels of the chemokine RANTES (regulated on activation, normal T-cell expressed and secreted) and the presence of CAS remains unclear. METHODS In total, 127 participants (65 non-AIS controls and 62 patients with AIS) were involved in this study. CAS was defined as the presence of ≥ 50% stenosis in major intracranial or extracranial artery by a Digital Substraction Angiography (DSA) examination, and we classified all participants into four groups according to stroke and CAS status. Serum concentrations of 8 cytokines, including RANTES, were measured by the Human ProcartaPlex Multiplex Immunoassay Kit. RESULTS Seventy-eight participants (61.41%) had CAS, of which 39 cases with AIS and 39 case with non-AIS. Patients with CAS had higher RANTES levels compared to non-CAS patients in both the non-AIS group (10.54 ± 0.80 vs. 13.20 ± 0.71, p = 0.016) and stroke group (11.96 ± 0.87 vs. 15.03 ± 0.75, p = 0.011), and multivariate logistic regression analysis showed that the RANTES level is independently associated with CAS in both the non-AIS group (adjusted odds ratio (OR), 1.07; 95% CI, 1.02-1.12, P = 0.004) and stroke group (adjusted OR, 1.32; 95% CI, 1.10-1.58, P = 0.003). CONCLUSION Patients with CAS have higher levels of serum RANTES than non-CAS patients regardless of stroke status suggesting that RANTES may play an important role in the formation of CAS.
Collapse
Affiliation(s)
- Yinping Guo
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 P.R. China
| | - Qianqian Kong
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 P.R. China
| | - Yi Zhang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 P.R. China
| | - Jing Zhao
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 P.R. China
| | - Zhiyuan Yu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 P.R. China
| | - Dan He
- grid.412615.50000 0004 1803 6239Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Hao Huang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 P.R. China
| | - Xiang Luo
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 P.R. China
| |
Collapse
|
35
|
Jia Z, Mei J, Zhang Y, Wang Y, Wang H, Wang A, Xu F, Zhou Q. Whole genome methylation combined with RNA-seq reveals the protective effects of Gualou-Xiebai herb pair in foam cells through DNA methylation mediated PI3K-AKT signaling pathway. Front Immunol 2023; 14:1054014. [PMID: 36911738 PMCID: PMC9992180 DOI: 10.3389/fimmu.2023.1054014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
DNA methylation, including aberrant hypomethylation and hypermethylation, plays a significant role in atherosclerosis (AS); therefore, targeting the unbalanced methylation in AS is a potential treatment strategy. Gualou-xiebai herb pair (GXHP), a classic herb combination, have been used for the treatment of atherosclerotic-associated diseases in traditional Chinese medicine. However, the effects and underlying mechanism of GXHP on AS remain nebulous. In this study, the CCK-8 method was applied to determine the non-toxic treatment concentrations for GXHP. The formation of foam cells played a critical role in AS, so the foam cells model was established after RAW264.7 cells were treated with ox-LDL. The contents of total cholesterol (TC) and free cholesterol (FC) were determined by Gas chromatography-mass spectrometry (GC-MS). Enzyme-linked immunosorbent assay (ELISA) was used to check the expressions of inflammatory factors including IL-1β, TNF-α, and VCAM-1. Methyl-capture sequencing (MC-seq) and RNA-seq were applied to observe the changes in genome-wide DNA methylation and gene expression, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyze differentially methylated genes (DMGs) and differentially expressed genes (DEGs). The targeted signaling pathway was selected and verified using western blotting (WB). The results showed that the lipids and inflammatory factors in foam cells significantly increased. GXHP significantly reduced the expression of TC, FC, and inflammatory factors. MC-seq and RNA-seq showed that GXHP not only corrected the aberrant DNA hypermethylation, but also DNA hypomethylation, thus restored the aberrant DEGs in foam cells induced by ox-LDL. GXHP treatment may target the PI3K-Akt signaling pathway. GXHP reduced the protein levels of phosphorylated(p)-PI3K and p-AKT in foam cells. Our data suggest that treatment with GXHP showed protective effects against AS through the inhibition of DNA methylation mediated PI3K-AKT signaling pathway, suggesting GXHP as a novel methylation-based agent.
Collapse
Affiliation(s)
- Zijun Jia
- Xiyuan Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Mei
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya Wang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongqin Wang
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anlu Wang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingbing Zhou
- Institute of Geriatric Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Xiong T, Chen Y, Han S, Zhang TC, Pu L, Fan YX, Fan WC, Zhang YY, Li YX. Development and analysis of a comprehensive diagnostic model for aortic valve calcification using machine learning methods and artificial neural networks. Front Cardiovasc Med 2022; 9:913776. [PMID: 36531717 PMCID: PMC9751025 DOI: 10.3389/fcvm.2022.913776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Although advanced surgical and interventional treatments are available for advanced aortic valve calcification (AVC) with severe clinical symptoms, early diagnosis, and intervention is critical in order to reduce calcification progression and improve patient prognosis. The aim of this study was to develop therapeutic targets for improving outcomes for patients with AVC. MATERIALS AND METHODS We used the public expression profiles of individuals with AVC (GSE12644 and GSE51472) to identify potential diagnostic markers. First, the R software was used to identify differentially expressed genes (DEGs) and perform functional enrichment analysis. Next, we combined bioinformatics techniques with machine learning methodologies such as random forest algorithms and support vector machines to screen for and identify diagnostic markers of AVC. Subsequently, artificial neural networks were employed to filter and model the diagnostic characteristics for AVC incidence. The diagnostic values were determined using the receiver operating characteristic (ROC) curves. Furthermore, CIBERSORT immune infiltration analysis was used to determine the expression of different immune cells in the AVC. Finally, the CMap database was used to predict candidate small compounds as prospective AVC therapeutics. RESULTS A total of 78 strong DEGs were identified. The leukocyte migration and pid integrin 1 pathways were highly enriched for AVC-specific DEGs. CXCL16, GPM6A, BEX2, S100A9, and SCARA5 genes were all regarded diagnostic markers for AVC. The model was effectively constructed using a molecular diagnostic score system with significant diagnostic value (AUC = 0.987) and verified using the independent dataset GSE83453 (AUC = 0.986). Immune cell infiltration research revealed that B cell naive, B cell memory, plasma cells, NK cell activated, monocytes, and macrophage M0 may be involved in the development of AVC. Additionally, all diagnostic characteristics may have varying degrees of correlation with immune cells. The most promising small molecule medicines for reversing AVC gene expression are Doxazosin and Terfenadine. CONCLUSION It was identified that CXCL16, GPM6A, BEX2, S100A9, and SCARA5 are potentially beneficial for diagnosing and treating AVC. A diagnostic model was constructed based on a molecular prognostic score system using machine learning. The aforementioned immune cell infiltration may have a significant influence on the development and incidence of AVC.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Chen
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shen Han
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tian-Chen Zhang
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lei Pu
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu-Xin Fan
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei-Chen Fan
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ya-Yong Zhang
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ya-Xiong Li
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
37
|
Liu R, Liu L, Wei C, Li D. IL-33/ST2 immunobiology in coronary artery disease: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:990007. [PMID: 36337880 PMCID: PMC9630943 DOI: 10.3389/fcvm.2022.990007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
The IL-33/ST2 axis is reported to be controversially associated with coronary artery disease (CAD). A systematic review of the association between the IL-33/ST2 axis and CAD revealed that IL-33/ST2 plays a protective role in CAD and serum sST2 and IL-33 levels are increased in patients with cardiovascular disease. Therefore, the association of IL-33/ST2 single nucleotide polymorphisms (SNPs) with CAD prevalence, prognosis, and risk factors was assessed by performing a meta-analysis. Through a literature search of relevant articles in various databases using the relevant keywords, seven studies were included in the analysis. The meta-analysis showed that the IL-33/ST2 axis was associated with increased CAD risk [pooled odds ratio (OR) = 1.17, 95% confidence interval (CI): 1.13–1.20]. Gene subgroup analysis showed a close association of IL1RL1 (OR = 1.25, 95% CI: 1.20–1.30; I2 = 85.9%; p = 0.000) and IL1RAcP (OR = 1.42, 95% CI: 1.26–1.60; I2 = 27.1%; p = 0.203) with increased CAD risk. However, the association for the IL-33 gene was not statistically significant. SNPs rs7044343 (T), rs10435816 (G), rs11792633 (C) in IL-33 gene were associated with a protective effect in CAD. However, rs7025417 (T) in IL-33, rs11685424 (G) in IL1RL1, rs950880 (A) in sST2, and rs4624606 (A) in IL1RAcP were related to increased CAD risk. Overall, polymorphisms in IL-33/ST2 axis components were associated with increased CAD risk. These results may help identify key features of IL-33/ST2 immunobiology in CAD along with potential treatment strategies to lower disease burden.
Collapse
|
38
|
Chumakova SP, Urazova OI, Shipulin VM, Denisenko OA, Kononova TE, Nevskaya KV, Andreev SL. Differentiation and subpopulation composition of VEGFR2+ cells in the blood and bone marrow in ischemic cardiomyopathy. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-120-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim. To identify disturbances of differentiation and subpopulation composition of VEGFR2+ cells in the blood and bone marrow associated with the features of the cytokine profile in the blood and bone marrow in patients with coronary artery disease (CAD) with and without ischemic cardiomyopathy (ICM).Materials and methods. The study included 74 patients with СAD with and without ICM (30 and 44 people, respectively) and 18 healthy donors. In all patients with СAD, peripheral blood sampling was performed immediately before coronary artery bypass grafting, and bone marrow samples were taken during the surgery via a sternal incision. In the healthy donors, only peripheral blood sampling was performed. In the bone marrow and blood samples, the number of VEGFR2+ cells (CD14+VEGFR2+ cells) and their immunophenotypes CD14++CD16-VEGFR2+, CD14++CD16+VEGFR2+, CD14+CD16++VEGFR2+, and CD14+CD16-VEGFR2+ was determined by flow cytometry. Using enzyme-linked immunosorbent assay, the levels of VЕGF-А, TNFα, M-CSF, and IL-13, as well as the content of MCP-1 (only in the blood) and the M-CSF / IL-13 ratio (only in the bone marrow) were determined.Results. The content of CD14+VEGFR2+ cells in the blood of CAD patients with and without ICM was higher than normal values due to the greater number of CD14++CD16-VEGFR2+, CD14++CD16+VEGFR2+, and CD14+CD16++VEGFR2+. In the bone marrow of the patients with ICM, the content of CD14++CD16-VEGFR2+, CD14+CD16++VEGFR2+, and CD14+CD16-VEGFR2+ was lower than in patients with CAD without ICM, and the number of CD14++CD16+VEGFR2+ cells corresponded to that in the controls. Regardless of the presence of ICM in CAD, a high concentration of TNFα and normal levels of VEGF-A and IL-13 were observed in the blood. In CAD without ICM, an excess of MCP-1 and deficiency of M-CSF were revealed in the blood. In the bone marrow, the levels of VEGF-A, TNFα, M-CSF, and IL-13 were comparable between the groups of patients against the background of a decrease in the M-CSF / IL-13 ratio in the patients with ICM.Conclusion. Unlike CAD without cardiomyopathy, in ICM, no excess of VEGFR2+ cells and MCP-1 in the blood is observed, which hinders active migration of CD14+CD16++VEGFR2+ cells from the myeloid tissue, and a decrease in the M-CSF / IL-13 ratio in the bone marrow disrupts differentiation of other forms of VEGFR2+ cells, preventing vascular repair.
Collapse
Affiliation(s)
| | - O. I. Urazova
- Siberian State Medical University; Tomsk State University of Control Systems and Radioelectronics (TUSUR)
| | - V. M. Shipulin
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - O. A. Denisenko
- Siberian State Medical University; Tomsk Regional Blood Center
| | | | | | - S. L. Andreev
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
39
|
Demos C, Johnson J, Andueza A, Park C, Kim Y, Villa-Roel N, Kang DW, Kumar S, Jo H. Sox13 is a novel flow-sensitive transcription factor that prevents inflammation by repressing chemokine expression in endothelial cells. Front Cardiovasc Med 2022; 9:979745. [PMID: 36247423 PMCID: PMC9561411 DOI: 10.3389/fcvm.2022.979745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and occurs preferentially in arterial regions exposed to disturbed blood flow (d-flow) while the stable flow (s-flow) regions are spared. D-flow induces endothelial inflammation and atherosclerosis by regulating endothelial gene expression partly through the flow-sensitive transcription factors (FSTFs). Most FSTFs, including the well-known Kruppel-like factors KLF2 and KLF4, have been identified from in vitro studies using cultured endothelial cells (ECs). Since many flow-sensitive genes and pathways are lost or dysregulated in ECs during culture, we hypothesized that many important FSTFs in ECs in vivo have not been identified. We tested the hypothesis by analyzing our recent gene array and single-cell RNA sequencing (scRNAseq) and chromatin accessibility sequencing (scATACseq) datasets generated using the mouse partial carotid ligation model. From the analyses, we identified 30 FSTFs, including the expected KLF2/4 and novel FSTFs. They were further validated in mouse arteries in vivo and cultured human aortic ECs (HAECs). These results revealed 8 FSTFs, SOX4, SOX13, SIX2, ZBTB46, CEBPβ, NFIL3, KLF2, and KLF4, that are conserved in mice and humans in vivo and in vitro. We selected SOX13 for further studies because of its robust flow-sensitive regulation, preferential expression in ECs, and unknown flow-dependent function. We found that siRNA-mediated knockdown of SOX13 increased endothelial inflammatory responses even under the unidirectional laminar shear stress (ULS, mimicking s-flow) condition. To understand the underlying mechanisms, we conducted an RNAseq study in HAECs treated with SOX13 siRNA under shear conditions (ULS vs. oscillatory shear mimicking d-flow). We found 94 downregulated and 40 upregulated genes that changed in a shear- and SOX13-dependent manner. Several cytokines, including CXCL10 and CCL5, were the most strongly upregulated genes in HAECs treated with SOX13 siRNA. The robust induction of CXCL10 and CCL5 was further validated by qPCR and ELISA in HAECs. Moreover, the treatment of HAECs with Met-CCL5, a specific CCL5 receptor antagonist, prevented the endothelial inflammation responses induced by siSOX13. In addition, SOX13 overexpression prevented the endothelial inflammation responses. In summary, SOX13 is a novel conserved FSTF, which represses the expression of pro-inflammatory chemokines in ECs under s-flow. Reduction of endothelial SOX13 triggers chemokine expression and inflammatory responses, a major proatherogenic pathway.
Collapse
Affiliation(s)
- Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Janie Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Aitor Andueza
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
40
|
Yuan L, Wang D, Zhou Z. LINC00452 overexpression reverses oxLDL-induced injury of human umbilical vein endothelial cells (HUVECs) via regulating miR-194-5p/IGF1R axis. Front Cardiovasc Med 2022; 9:975640. [PMID: 36158838 PMCID: PMC9500390 DOI: 10.3389/fcvm.2022.975640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
It has been reported that atherosclerosis (AS) is the basis of the development of coronary artery disease (CAD). In addition, a previous study demonstrated that long non-coding RNA LINC00452 was notably downregulated in the whole blood of patients with CAD. However, the role of LINC00452 in the progression of AS remains unclear. Therefore, to mimic AS in vitro, HUVECs were treated with 100 μg/ml oxLDL for 24 h. Reverse transcription-quantitative PCR was performed to detect the expression levels of LINC00452 and IGF1R in HUVECs. Additionally, the cell angiogenetic ability was assessed by tube formation assay, while dual-luciferase reporter assay was carried out to explore the association among LINC00452, miR-194-5p, and IGF1R. The results showed that LINC00452 was downregulated in oxLDL-treated HUVECs. In addition, HUVEC treatment with oxLDL significantly inhibited cell viability, proliferation, and angiogenesis. However, the above effects were all reversed by LINC00452 overexpression. Furthermore, LINC00452 overexpression in HUVECs remarkably inhibited oxLDL-induced cell apoptosis and endothelial to mesenchymal transition. In addition, LINC00452 overexpression could markedly reverse oxLDL-induced inhibition of angiogenesis in HUVEC. The results of dual-luciferase reporter assay indicated that LINC00452 could bind with miR-194-5p. In addition, IGF1R was identified as a downstream target of miR-194-5p. And LINC00452 was able to regulate the miR-194-5p/IGF1R axis in HUVECs. Moreover, LINC00452 overexpression obviously reversed oxLDL-mediated growth inhibition of HUVEC via regulating the miR-194-5p/IGF1R axis. Overall, the current study demonstrated that LINC00452 overexpression reversed oxLDL-induced growth inhibition of HUVECs via regulating the miR-194-5p/IGF1R axis, thus providing a potential beneficial targets for AS.
Collapse
Affiliation(s)
- Liang Yuan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dajie Wang
- Department of Cardiology, Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
- *Correspondence: Dajie Wang
| | - Zhaofeng Zhou
- Department of Cardiology, Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
- Zhaofeng Zhou
| |
Collapse
|
41
|
Looking beyond the Skin: Pathophysiology of Cardiovascular Comorbidity in Psoriasis and the Protective Role of Biologics. Pharmaceuticals (Basel) 2022; 15:ph15091101. [PMID: 36145322 PMCID: PMC9503011 DOI: 10.3390/ph15091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a chronic systemic inflammatory disease associated with a higher incidence of cardiovascular disease, especially in patients with moderate to severe psoriasis. It has been estimated that severe psoriasis confers a 25% increase in relative risk of cardiovascular disease, regardless of traditional risk factors. Although the underlying pathogenic mechanisms relating psoriasis to increased cardiovascular risk are not clear, atherosclerosis is emerging as a possible link between skin and vascular affection. The hypothesis that the inflammatory cascade activated in psoriasis contributes to the atherosclerotic process provides the underlying basis to suggest that an anti-inflammatory therapy that improved atherosclerosis would also reduce the risk of MACEs. In this sense, the introduction of biological drugs which specifically target cytokines implicated in the inflammatory cascade have increased the expectations of control over the cardiovascular comorbidity present in psoriasis patients, however, their role in vascular damage processes remains controversial. The aim of this paper is to review the mechanistic link between psoriasis and cardiovascular disease development, as well as analyzing which of the biological treatments could also reduce the cardiovascular risk in these patients, fueling a growing debate on the modification of the general algorithm of treatment.
Collapse
|
42
|
Liu H, Zhu L, Chen L, Li L. Therapeutic potential of traditional Chinese medicine in atherosclerosis: A review. Phytother Res 2022; 36:4080-4100. [PMID: 36029188 DOI: 10.1002/ptr.7590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Atherosclerosis is the onset of endothelial cell damage and is characterized by abnormal accumulation of fibrinogen and lipid in large and middle arteries. Recent researches indicate that traditional Chinese medicine including Notoginseng Radix et Rhizoma, Astragali Radix, Salviae Miltiorrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Fructus Crataegi, Glycyrrhizae Radix et Rhizoma, Polygoni Multiflori Radix, Fructus Lycii, and Coptidis Rhizoma have therapeutic effects on atherosclerosis. Furthermore, the pharmacological roles of these kinds of traditional Chinese medicine in atherosclerosis refer to endothelial function influences, cell proliferation and migration, platelet aggregation, thrombus formation, oxidative stress, inflammation, angiogenesis, apoptosis, autophagy, lipid metabolism, and the gut microbiome. Traditional Chinese medicine may serve as potential and effective anti-atherosclerosis drugs. However, a critical study has shown that Notoginseng Radix et Rhizoma may also have toxic effects including pustules, fever, and elevate circulating neutrophil count. Further high-quality studies are still required to determine the clinical safety and efficacy of traditional Chinese medicine and its active ingredients.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Zhu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
43
|
On the Aggregation of Apolipoprotein A-I. Int J Mol Sci 2022; 23:ijms23158780. [PMID: 35955915 PMCID: PMC9369196 DOI: 10.3390/ijms23158780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In vivo, apolipoprotein A-I (ApoA-I) is commonly found together with lipids in so-called lipoprotein particles. The protein has also been associated with several diseases—such as atherosclerosis and amyloidosis—where insoluble aggregates containing ApoA-I are deposited in various organs or arteries. The deposited ApoA-I has been found in the form of amyloid fibrils, suggesting that amyloid formation may be involved in the development of these diseases. In the present study we investigated ApoA-I aggregation into amyloid fibrils and other aggregate morphologies. We studied the aggregation of wildtype ApoA-I as well as a disease-associated mutant, ApoA-I K107Δ, under different solution conditions. The aggregation was followed using thioflavin T fluorescence intensity. For selected samples the aggregates formed were characterized in terms of size, secondary structure content, and morphology using circular dichroism spectroscopy, dynamic light scattering, atomic force microscopy and cryo transmission electron microscopy. We find that ApoA-I may form globular protein-only condensates, in which the α-helical conformation of the protein is retained. The protein in its unmodified form appears resistant to amyloid formation; however, the conversion into amyloid fibrils rich in β-sheet is facilitated by oxidation or mutation. In particular, the K107Δ mutant shows higher amyloid formation propensity, and the end state appears to be a co-existence of β-sheet rich amyloid fibrils and α-helix-rich condensates.
Collapse
|
44
|
Wang Y, Wang Q, Xu D. New insights into macrophage subsets in atherosclerosis. J Mol Med (Berl) 2022; 100:1239-1251. [PMID: 35930063 DOI: 10.1007/s00109-022-02224-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022]
Abstract
Macrophages in atherosclerotic patients are notably plastic and heterogeneous. Single-cell RNA sequencing (Sc RNA-seq) can provide information about all the RNAs in individual cells, and it is used to identify cell subpopulations in atherosclerosis (AS) and reveal the heterogeneity of these cells. Recently, some findings from Sc RNA-seq experiments have suggested the existence of multiple macrophage subsets in atherosclerotic plaque lesions, and these subsets exhibit significant differences in their gene expression levels and functions. These cells affect various aspects of plaque lesion development, stabilization, and regression, as well as plaque rupture. This article aims to review the content and results of current studies that used RNA-seq to explore the different types of macrophages in AS and the related molecular mechanisms as well as to identify the potential roles of these macrophage types in the pathogenesis of atherosclerotic plaques. Also, this review listed some new therapeutic targets for delaying atherosclerotic lesion progression and treatment based on the experimental results.
Collapse
Affiliation(s)
- Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
45
|
Luo B, Li Y, Zhu M, Cui J, Liu Y, Liu Y. Intermittent Hypoxia and Atherosclerosis: From Molecular Mechanisms to the Therapeutic Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1438470. [PMID: 35965683 PMCID: PMC9365608 DOI: 10.1155/2022/1438470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Intermittent hypoxia (IH) has a dual nature. On the one hand, chronic IH (CIH) is an important pathologic feature of obstructive sleep apnea (OSA) syndrome (OSAS), and many studies have confirmed that OSA-related CIH (OSA-CIH) has atherogenic effects involving complex and interacting mechanisms. Limited preventive and treatment methods are currently available for this condition. On the other hand, non-OSA-related IH has beneficial or detrimental effects on the body, depending on the degree, duration, and cyclic cycle of hypoxia. It includes two main states: intermittent hypoxia in a simulated plateau environment and intermittent hypoxia in a normobaric environment. In this paper, we compare the two types of IH and summarizes the pathologic mechanisms and research advances in the treatment of OSA-CIH-induced atherosclerosis (AS), to provide evidence for the systematic prevention and treatment of OSAS-related AS.
Collapse
Affiliation(s)
- Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
46
|
Xu J, Chen C, Yang Y. Identification and Validation of Candidate Gene Module Along With Immune Cells Infiltration Patterns in Atherosclerosis Progression to Plaque Rupture via Transcriptome Analysis. Front Cardiovasc Med 2022; 9:894879. [PMID: 35811739 PMCID: PMC9257180 DOI: 10.3389/fcvm.2022.894879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the differentially expressed genes (DEGs) along with infiltrating immune cells landscape and their potential mechanisms in the progression of atherosclerosis from onset to plaque rupture. Methods In this study, three atherosclerosis-related microarray datasets were downloaded from the NCBI-GEO database. The gene set enrichment analysis (GSEA) was performed for interpreting the biological insights of gene expression data. The CIBERSORTx algorithm was applied to infer the relative proportions of infiltrating immune cells of the atherosclerotic samples. DEGs of the datasets were screened using R. The protein interaction network was constructed via STRING. The cluster genes were analyzed by the Cytoscape software. Gene ontology (GO) enrichment was performed via geneontology.org. The least absolute shrinkage and selection operator (LASSO) logistic regression algorithm and receiver operating characteristics (ROC) analyses were performed to build machine learning models for differentiating atherosclerosis status. The Pearson correlation analysis was carried out to illustrate the relationship between cluster genes and immune cells. The expression levels of the cluster genes were validated in two external cohorts. Transcriptional factors and drug-gene interaction analysis were performed to investigate the promising targets for atherosclerosis intervention. Results Pathways related to immunoinflammatory responses were identified according to GSEA analysis, and the detailed fractions infiltrating immune cells were compared between the early and advanced atherosclerosis. Additionally, we identified 170 DEGs in atherosclerosis progression (|log2FC|≥1 and adjusted p < 0.05). They were mainly enriched in GO terms relating to inflammatory response and innate immune response. A cluster of nine genes, such as ITGB2, C1QC, LY86, CTSS, C1QA, CSF1R, LAPTM5, VSIG4, and CD163, were found to be significant, and their correlations with infiltrating immune cells were calculated. The cluster genes were also validated to be upregulated in two external cohorts. Moreover, C1QA and ITGB2 may exert pathogenic functions in the entire process of atherogenesis. Conclusions We reanalyzed the transcriptomic signature of atherosclerosis development from onset to plaque rupture along with the landscape of the immune cell, as well as revealed new insights and specific prospective DEGs for the investigation of disease-associated dynamic molecular processes and their regulations with immune cells.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital and National Center for Cardiovascular Diseases, Beijing, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital and National Center for Cardiovascular Diseases, Beijing, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital and National Center for Cardiovascular Diseases, Beijing, China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Yuejin Yang
| |
Collapse
|
47
|
Zhang D, Li X, Jing B, Shi H, Chang S, Chen Z, Zheng Y, Pan Y, Qian G, Zhao G. Identification of pathways and key genes in male late‑stage carotid atherosclerosis using bioinformatics analysis. Exp Ther Med 2022; 24:460. [PMID: 35747144 PMCID: PMC9204528 DOI: 10.3892/etm.2022.11387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xin Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Huimei Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shiquan Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhenni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yachun Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuwei Pan
- Department of Preventive Treatment of Disease, Tianhe Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510665, P.R. China
| | - Guoqiang Qian
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Guoping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
48
|
Wang Y, Shi R, Zhai R, Yang S, Peng T, Zheng F, Shen Y, Li M, Li L. Matrix stiffness regulates macrophage polarization in atherosclerosis. Pharmacol Res 2022; 179:106236. [PMID: 35483516 DOI: 10.1016/j.phrs.2022.106236] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease and the pathological basis of many fatal cardiovascular diseases. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a paradox role in disease progression. In response to different microenvironments, macrophages mainly have two polarized directions: pro-inflammatory macrophages and anti-inflammatory macrophages. More and more evidence shows that macrophage is mechanosensitive and matrix stiffness regulate macrophage phenotypes in atherosclerosis. However, the molecular mechanism of matrix stiffness regulating macrophage polarization still lacks in-depth research, which hinders the development of new anti-atherosclerotic therapies. In this review, we discuss the important role of matrix stiffness in regulating macrophage polarization through mechanical signal transduction (Hippo, Piezo, cytoskeleton, and integrin) and epigenetic mechanisms (miRNA, DNA methylation, and histone). We hope to provide a new perspective for atherosclerosis therapy by targeting matrix stiffness and macrophage polarization.
Collapse
Affiliation(s)
- Yin Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruotong Shi
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Ran Zhai
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Shiyan Yang
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Tianqi Peng
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Fuwen Zheng
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - YanNan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
49
|
Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Gąsecka A, Buczkowski P, Perek B, Jemielity M. Neutrophil Counts, Neutrophil-to-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery. Cells 2022; 11:cells11071124. [PMID: 35406687 PMCID: PMC8997598 DOI: 10.3390/cells11071124] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Several perioperative inflammatory markers are postulated to be significant factors for long-term survival after off-pump coronary artery bypass surgery (OPCAB). Hematological parameters, whether single or combined as indices, provide higher predictive values. Methods: The study group comprised 538 consecutive patients (125 (23%) females and 413 (77%) males) with a mean age of 65 ± 9 years, who underwent OPCAB with a mean follow-up time of 4.7 ± 1.7 years. This single-center retrospective analysis included perioperative inflammatory markers such as the neutrophil-to-lymphocyte ratio (NLR), systemic inflammatory response index (SIRI), aggregate index of systemic inflammation (AISI), and systemic inflammatory index (SII). Results: Multivariable analysis identified levels of neutrophils above 4.3 × 109/L (HR 13.44, 95% CI 1.05−3.68, p = 0.037), values of SIRI above 5.4 (HR 0.29, 95% CI 0.09−0.92, p = 0.036) and values of NLR above 3.5 (HR 2.21, 95% CI 1.48−3.32, p < 0.001) as being significant predictors of long-term mortality. The multifactorial models revealed the possibility of strong prediction by combining preoperative factors (COPD, stroke, PAD, and preoperative PLR) and postoperative neutrophil counts (p = 0.0136) or NLR (p = 0.0136) or SIRI (p = 0.0136). Conclusions: Among the postoperative inflammatory indices, the levels of neutrophils, NLR, and SIRI are the most prominent markers for long-term survival after off-pump coronary artery bypass surgery, when combined with preoperative characteristics.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
- Correspondence: ; Tel.: +48-61-854-9210
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-806 Poznan, Poland;
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Michał Rodzki
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Anna Witkowska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Piotr Buczkowski
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| |
Collapse
|
50
|
Jin X, Yang S, Lu J, Wu M. Small, Dense Low-Density Lipoprotein-Cholesterol and Atherosclerosis: Relationship and Therapeutic Strategies. Front Cardiovasc Med 2022; 8:804214. [PMID: 35224026 PMCID: PMC8866335 DOI: 10.3389/fcvm.2021.804214] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays an important role in the formation, incidence, and development of atherosclerosis (AS). Low-density lipoproteins can be divided into two categories: large and light LDL-C and small, dense low-density lipoprotein cholesterol (sdLDL-C). In recent years, an increasing number of studies have shown that sdLDL-C has a strong ability to cause AS because of its unique characteristics, such as having small-sized particles and low density. Therefore, this has become the focus of further research. However, the specific mechanisms regarding the involvement of sdLDL-C in AS have not been fully explained. This paper reviews the possible mechanisms of sdLDL-C in AS by reviewing relevant literature in recent years. It was found that sdLDL-C can increase the atherogenic effect by regulating the activity of gene networks, monocytes, and enzymes. This article also reviews the research progress on the effects of sdLDL-C on endothelial function, lipid metabolism, and inflammation; it also discusses its intervention effect. Diet, exercise, and other non-drug interventions can improve sdLDL-C levels. Further, drug interventions such as statins, fibrates, ezetimibe, and niacin have also been found to improve sdLDL-C levels.
Collapse
Affiliation(s)
- Xiao Jin
- General Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- General Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- General Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|