1
|
Puri S, Nath DK, Lee Y. Regulation of feeding and defecation in Drosophila by trpγ, piezo, and DH44R2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 179:104267. [PMID: 39909166 DOI: 10.1016/j.ibmb.2025.104267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/07/2025]
Abstract
Normal gastrointestinal (GI) motility, including defecation, is crucial for nutrient absorption, energy balance, and overall health in species ranging from insects to humans. Disruptions in GI motility can lead to conditions like constipation or severe diseases. Mechanosensors, including TRP channels and Piezo, are known to play key roles in regulating gut physiology in Drosophila melanogaster, but their precise involvement in defecation is not fully understood. Additionally, neuropeptides like DH44 have been implicated in gut regulation. This study explores the roles of Trpγ, Diuretic hormone 44 Receptor 2 (DH44R2), and Piezo in controlling feeding amount, gut motility, and defecation using genetic mutants and RNAi techniques. Mutants for these genes exhibited increased excreta production and size, whereas Dh44 and Dh44R1 mutants had a reduced number of excreta, but with increased size. Co-expression and rescue experiments further confirmed the critical roles of these genes in the same gut cells. The findings reveal that local gut-specific mechanisms are the primary drivers of defecation. The results highlight the collaboration between Trpγ, Piezo, and DH44R2 in regulating gut motility and defecation. By uncovering how these mechanosensory proteins and cells work together, this research may offer insights into human GI disorders like Irritable Bowel Syndrome (IBS) and Hirschsprung's disease, shedding light on the complex regulatory network underlying defecation.
Collapse
Affiliation(s)
- Sonali Puri
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Dharmendra Kumar Nath
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
2
|
Xie Z, Rose L, Feng J, Zhao Y, Lu Y, Kane H, Hibberd TJ, Hu X, Wang Z, Zang K, Yang X, Richardson Q, Othman R, Venezia O, Zhakyp A, Gao F, Abe N, Vigeland K, Wang H, Branch C, Duizer C, Deng L, Meng X, Zamidar L, Hauptschein M, Bergin R, Dong X, Chiu IM, Kim BS, Spencer NJ, Hu H, Jackson R. Enteric neuronal Piezo1 maintains mechanical and immunological homeostasis by sensing force. Cell 2025:S0092-8674(25)00258-2. [PMID: 40132579 DOI: 10.1016/j.cell.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/19/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
The gastrointestinal (GI) tract experiences a myriad of mechanical forces while orchestrating digestion and barrier immunity. A central conductor of these processes, the enteric nervous system (ENS), detects luminal pressure to regulate peristalsis independently of extrinsic input from the central and peripheral nervous systems. However, how the ∼500 million enteric neurons that reside in the GI tract sense and respond to force remains unknown. Herein, we establish that the mechanosensor Piezo1 is functionally expressed in cholinergic enteric neurons. Optogenetic stimulation of Piezo1+ cholinergic enteric neurons drives colonic motility, while Piezo1 deficiency reduces cholinergic neuronal activity and slows peristalsis. Additionally, Piezo1 deficiency in cholinergic enteric neurons abolishes exercise-induced acceleration of GI motility. Finally, we uncover that enteric neuronal Piezo1 function is required for motility alterations in colitis and acts to prevent aberrant inflammation and tissue damage. This work uncovers how the ENS senses and responds to mechanical force.
Collapse
Affiliation(s)
- Zili Xie
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Lillian Rose
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghui Zhao
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Yisi Lu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Harry Kane
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Xueming Hu
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Zhen Wang
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Kaikai Zang
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Xingliang Yang
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | | | - Rahmeh Othman
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Venezia
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ademi Zhakyp
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Fang Gao
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Nobuya Abe
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Keren Vigeland
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hongshen Wang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Camren Branch
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Coco Duizer
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Meng
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Lydia Zamidar
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
| | - Max Hauptschein
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ronan Bergin
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Issac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian S Kim
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA
| | - Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hongzhen Hu
- Department of Dermatology, The Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63130, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA; The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Bautista GM, Du Y, Matthews MJ, Flores AM, Kushnir NR, Sweeney NK, Nguyen NPN, Tokhtaeva E, Solorzano-Vargas RS, Lewis M, Stelzner M, He X, Dunn JCY, Martin MG. Smooth muscle cell Piezo1 depletion results in impaired contractile properties in murine small bowel. Commun Biol 2025; 8:448. [PMID: 40097724 PMCID: PMC11914552 DOI: 10.1038/s42003-025-07697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Piezo1 is a mechanosensitive cation channel expressed in intestinal muscularis cells (IMCs), including smooth muscle cells (SMCs), interstitial cells of Cajal, and Pdgfrα+ cells, which form the SIP syncytium, crucial for GI contractility. Here, we investigate the effects of SMC-specific Piezo1 deletion on small bowel function. Piezo1 depletion results in weight loss, delayed GI transit, muscularis thinning, and decreased SMCs. Ex vivo analyses demonstrated impaired contractile strength and tone, while in vitro studies using IMC co-cultures show dysrhythmic Ca2+ flux with decreased frequency. Imaging reveal that Piezo1 localizes intracellularly, thereby likely impacting Ca2+ signaling mechanisms modulated by Ca2 + -handling channels located on the sarcoplasmic reticulum and plasma membrane. Our findings suggest that Piezo1 in small bowel SMCs contributes to contractility by maintaining intracellular Ca2+ activity and subsequent signaling within the SIP syncytium. These findings provide new insights into the complex role of Piezo1 in small bowel SMCs and its implications for GI motility.
Collapse
Affiliation(s)
- Geoanna M Bautista
- Department of Pediatrics, Division of Neonatology, University of California Davis Children's Hospital, Sacramento, CA, 95817, USA
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yingjie Du
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael J Matthews
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Allison M Flores
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Nicole R Kushnir
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Nicolle K Sweeney
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Nam Phuong N Nguyen
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Elmira Tokhtaeva
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - R S Solorzano-Vargas
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA
| | - Michael Lewis
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Matthias Stelzner
- Department of Surgery, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James C Y Dunn
- Division of Pediatric Surgery, Departments of Surgery and Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Yan L, Claman A, Bode A, Collins KM. The C. elegans uv1 Neuroendocrine Cells Provide Mechanosensory Feedback of Vulval Opening. J Neurosci 2025; 45:e0678242024. [PMID: 39788737 PMCID: PMC11800740 DOI: 10.1523/jneurosci.0678-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm Caenorhabditis elegans, four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying. We have previously shown uv1 cells are mechanically deformed during egg laying, driving uv1 Ca2+ transients. However, whether egg-laying circuit activity, vulval opening, and/or egg release triggered uv1 Ca2+ activity was unclear. Here, we show uv1 responds directly to mechanical activation. Optogenetic vulval muscle stimulation triggers uv1 Ca2+ activity following muscle contraction even in sterile animals. Direct mechanical prodding with a glass probe placed against the worm cuticle triggers robust uv1 Ca2+ activity similar to that seen during egg laying. Direct mechanical activation of uv1 cells does not require other cells in the egg-laying circuit, synaptic or peptidergic neurotransmission, or transient receptor potential vanilloid and Piezo channels. EGL-19 L-type Ca2+ channels, but not P/Q/N-type or ryanodine receptor Ca2+ channels, promote uv1 Ca2+ activity following mechanical activation. L-type channels also facilitate the coordinated activation of uv1 cells across the vulva, suggesting mechanical stimulation of one uv1 cell cross-activates the other. Our findings show how neuroendocrine cells like uv1 report on the mechanics of tissue deformation and muscle contraction, facilitating feedback to local circuits to coordinate behavior.
Collapse
Affiliation(s)
- Lijie Yan
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - Alexander Claman
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - Addys Bode
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| | - Kevin M Collins
- Department of Biology, University of Miami, Coral Gables, Florida 33143
| |
Collapse
|
5
|
Spencer NJ, Keating DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol 2025; 182:471-483. [PMID: 35861711 DOI: 10.1111/bph.15930] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Since the 1950s, considerable circumstantial evidence had been presented that endogenous 5-HT (serotonin) synthesized from within the wall of the gastrointestinal (GI) tract played an important role in GI motility and transit. However, identifying the precise functional role of gut-derived 5-HT has been difficult to ascertain, for a number of reasons. Over the past decade, as recording techniques have advanced significantly and access to new genetically modified animals improved, there have been major new insights and major changes in our understanding of the functional role of endogenous 5-HT in the GI tract. Data from many different laboratories have shown that major patterns of GI motility and transit still occur with minor or no, change when all endogenous 5-HT is pharmacologically or genetically ablated from the gut. Furthermore, antagonists of 5-HT3 receptors are equally, or more potent at inhibiting GI motility in segments of intestine that are completely depleted of endogenous 5-HT. Here, the most recent findings are discussed with regard to the functional role of endogenous 5-HT in enterochromaffin cells and enteric neurons in gut motility and more broadly in some major homeostatic pathways.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
6
|
Moneme C, Olutoye OO, Sobstel MF, Zhang Y, Zhou X, Kaminer JL, Hsu BA, Shen C, Mandal A, Li H, Yu L, Balaji S, Keswani SG, Cheng LS. Activation of mechanoreceptor Piezo1 inhibits enteric neuronal growth and migration in vitro. Front Mol Neurosci 2024; 17:1474025. [PMID: 39759870 PMCID: PMC11695422 DOI: 10.3389/fnmol.2024.1474025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS. Methods Enteric neural crest-derived progenitor cells (ENPC) were isolated from adult mouse intestine and propagated in culture as neurospheres. ENPC-derived neurons were then subject to in vitro stretch in the presence or absence of Piezo1 antagonist (GsMTx4). Transcriptomes of stretched and unstretched ENPC-derived cells were compared using bulk RNA sequencing. Enteric neurons were also cultured under static conditions in the presence of Piezo1 agonist (Yoda1) or antagonist. Neuronal phenotype, migration, and recovery from injury were compared between groups. Results Though stretch did not cause upregulation of Piezo1 expression in enteric neurons, both stretch and Piezo1 activation produced similar alterations in neuronal morphology. Compared to control, neurite length was significantly shorter when stretched and in the presence of Piezo1 activation. Piezo1 inhibition prevented a significant reduction in neurite length in stretched neurons. Piezo1 inhibition also led to significantly increased neuronal migration, whereas Piezo1 activation resulted in significantly decreased neuronal migration and slower neuronal recovery from injury. Conclusion Mechanotransduction plays an important role in regulating normal GI function. Our results suggest that the Piezo1 mechanoreceptor may play an important role in the ENS as its activation leads to decreased neuronal growth and migration. Piezo1 could be an important target for diseases of ENS dysfunction and development.
Collapse
Affiliation(s)
- Chioma Moneme
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Oluyinka O. Olutoye
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Michał F. Sobstel
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Yuwen Zhang
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Xinyu Zhou
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Jacob L. Kaminer
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Britney A. Hsu
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Chengli Shen
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Arabinda Mandal
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Hui Li
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Ling Yu
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Swathi Balaji
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| | - Lily S. Cheng
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatric Surgery, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
7
|
Jiang Q, Li Z, Dang D, Wei J, Wu H. Role of mechanosensitive channel Piezo1 protein in intestinal inflammation regulation: A potential target. FASEB J 2024; 38:e70122. [PMID: 39425504 PMCID: PMC11580726 DOI: 10.1096/fj.202401323r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The intestine is a hollow tract that primarily transports and digests food. It often encounters mechanical forces and exotic threats, resulting in increased intestinal inflammation attributed to the consistent threat of foreign pathogens. Piezo1, a mechanosensitive ion channel, is distributed broadly and abundantly in the intestinal tissue. It transduces mechanical signals into electrochemical signals and participates in many critical life activities, such as proliferation, differentiation, cell apoptosis, immune cell activation, and migration. Its effect on inflammation has been discussed in detail in systems, such as musculoskeletal (osteoarthritis) and cardiac (myocarditis), but the effects on intestinal inflammation remain unelucidated. Piezo1 regulates mucosal layer and epithelial barrier homeostasis during the complex intestinal handling of foreign antigens and tissue trauma. It initiates and spreads immune responses and causes distant effects of inflammation in the vascular and lymphatic systems, but reports of the effects of Piezo1 in intestinal inflammation are scarce. Therefore, this study aimed to discuss the role of Piezo1 in intestinal inflammation and explore novel therapeutic targets.
Collapse
Affiliation(s)
- Qinlei Jiang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Zhenyu Li
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Dan Dang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Jiaqi Wei
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Hui Wu
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| |
Collapse
|
8
|
Guo J, Li L, Chen F, Fu M, Cheng C, Wang M, Hu J, Pei L, Sun J. Forces Bless You: Mechanosensitive Piezo Channels in Gastrointestinal Physiology and Pathology. Biomolecules 2024; 14:804. [PMID: 39062518 PMCID: PMC11274378 DOI: 10.3390/biom14070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The gastrointestinal (GI) tract is an organ actively involved in mechanical processes, where it detects forces via a mechanosensation mechanism. Mechanosensation relies on specialized cells termed mechanoreceptors, which convert mechanical forces into electrochemical signals via mechanosensors. The mechanosensitive Piezo1 and Piezo2 are widely expressed in various mechanosensitive cells that respond to GI mechanical forces by altering transmembrane ionic currents, such as epithelial cells, enterochromaffin cells, and intrinsic and extrinsic enteric neurons. This review highlights recent research advances on mechanosensitive Piezo channels in GI physiology and pathology. Specifically, the latest insights on the role of Piezo channels in the intestinal barrier, GI motility, and intestinal mechanosensation are summarized. Additionally, an overview of Piezo channels in the pathogenesis of GI disorders, including irritable bowel syndrome, inflammatory bowel disease, and GI cancers, is provided. Overall, the presence of mechanosensitive Piezo channels offers a promising new perspective for the treatment of various GI disorders.
Collapse
Affiliation(s)
- Jing Guo
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Li Li
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Feiyi Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Minhan Fu
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Cheng Cheng
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Meizi Wang
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Jun Hu
- Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.G.); (C.C.); (M.W.); (J.H.)
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210029, China; (L.L.); (F.C.); (M.F.)
| |
Collapse
|
9
|
He H, Zhou J, Xu X, Zhou P, Zhong H, Liu M. Piezo channels in the intestinal tract. Front Physiol 2024; 15:1356317. [PMID: 38379701 PMCID: PMC10877011 DOI: 10.3389/fphys.2024.1356317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The intestine is the largest mechanosensitive organ in the human body whose epithelial cells, smooth muscle cells, neurons and enteroendocrine cells must sense and respond to various mechanical stimuli such as motility, distension, stretch and shear to regulate physiological processes including digestion, absorption, secretion, motility and immunity. Piezo channels are a newly discovered class of mechanosensitive ion channels consisting of two subtypes, Piezo1 and Piezo2. Piezo channels are widely expressed in the intestine and are involved in physiological and pathological processes. The present review summarizes the current research progress on the expression, function and regulation of Piezo channels in the intestine, with the aim of providing a reference for the future development of therapeutic strategies targeting Piezo channels.
Collapse
Affiliation(s)
- Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan Xu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pinxi Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huan Zhong
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
10
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
11
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
12
|
Utegaliev T, Ermakhanova M, Sarsembayev B, Kuzikeev M, Shley I. Pathogenetic justification of digestive tract dysfunction correction to reduce the risk of ventricular extrasystoles after coronary bypass grafting. PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:421-429. [PMID: 38572465 PMCID: PMC10985738 DOI: 10.5114/pg.2023.133223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 04/05/2024]
Abstract
Introduction In heart pathology, abdominal pathology is often detected, but due attention has not been paid to this issue, and algorithms for predicting, preventing, and correcting the coefficient of endothelial dysfunction (CED) after coronary artery bypass grafting (CABG) with the use of artificial circulation (AC) have not been developed. Aim To substantiate the pathogenetic expediency of correction of postoperative intestinal paresis after coronary artery bypass grafting for the prevention of functional cardiac complications. Material and methods 147 men were divided into 2 groups. Statistical processing of the obtained data was performed using Windows Microsoft Excel software and parametric methods of variational statistics, and the reliability of differences was determined using Student's formula and table. Results It was found that in group II, after coronary artery bypass grafting, the clinical symptoms of intestinal dysfunction were significantly less (p = 0.019), and the recovery of defecation was significantly faster (p = 0.033) than in group I. After coronary artery bypass grafting, the frequency of high-grade extrasystoles in group II was significantly lower than in group I (p = 0.033). Conclusions The application of the digestive tract dysfunction correction program is pathogenetically justified because it provides a reduction in the frequency of intestinal paresis and hence a reduction in the frequency of development of ventricular extrasystoles of high gradations after coronary artery bypass grafting.
Collapse
Affiliation(s)
- Timur Utegaliev
- Department of Interventional Cardiology, Mangystau Regional Multidisciplinary Hospital, Aktau, Republic of Kazakhstan
| | - Marshan Ermakhanova
- Department of Cardiology, Scientific Research Institute of Cardiology and Internal Diseases, Almaty, Republic of Kazakhstan
| | - Bauyrzhan Sarsembayev
- Department of Anaesthesiology, Medical Centre “Rakhat Clinic”, Almaty, Republic of Kazakhstan
| | - Marat Kuzikeev
- Department of Surgery and Course of Anaesthesiology, Kazakh-Russian Medical University, Almaty, Republic of Kazakhstan
| | - Irina Shley
- Department of Cardiology, Ayaguz Central Regional Hospital, Ayaguz, Republic of Kazakhstan
| |
Collapse
|
13
|
Kelley B, Zhang EY, Khalfaoui L, Schiliro M, Wells N, Pabelick CM, Prakash YS, Vogel ER. Piezo channels in stretch effects on developing human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2023; 325:L542-L551. [PMID: 37697925 PMCID: PMC11068394 DOI: 10.1152/ajplung.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The use of respiratory support strategies such as continuous positive airway pressure in premature infants can substantially stretch highly compliant perinatal airways, leading to airway hyperreactivity and remodeling in the long term. The mechanisms by which stretch detrimentally affects the airway are unknown. Airway smooth muscle cells play a critical role in contractility and remodeling. Using 18-22-wk gestation human fetal airway smooth muscle (fASM) as an in vitro model, we tested the hypothesis that mechanosensitive Piezo (PZ) channels contribute to stretch effects. We found that PZ1 and PZ2 channels are expressed in the smooth muscle of developing airways and that their expression is influenced by stretch. PZ activation via agonist Yoda1 or stretch results in significant [Ca2+]i responses as well as increased extracellular matrix production. These data suggest that functional PZ channels may play a role in detrimental stretch-induced airway changes in the context of prematurity.NEW & NOTEWORTHY Piezo channels were first described just over a decade ago and their function in the lung is largely unknown. We found that piezo channels are present and functional in the developing airway and contribute to intracellular calcium responses and extracellular matrix remodeling in the setting of stretch. This may improve our understanding of the mechanisms behind development of chronic airway diseases, such as asthma, in former preterm infants exposed to respiratory support, such as continuous positive airway pressure (CPAP).
Collapse
Affiliation(s)
- Brian Kelley
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Emily Y Zhang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Natalya Wells
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Elizabeth R Vogel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
14
|
Liu X, Niu W, Zhao S, Zhang W, Zhao Y, Li J. Piezo1:the potential new therapeutic target for fibrotic diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:42-49. [PMID: 37722629 DOI: 10.1016/j.pbiomolbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.
Collapse
Affiliation(s)
- Xin Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weipin Niu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuqing Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
15
|
Lu Q, Liu Q, Chen S, Wang J, Chen Y, Sun B, Yang Z, Feng H, Yi S, Chen W, Zhu J. The expression and distribution of TACAN in human and rat bladders. Low Urin Tract Symptoms 2023; 15:256-264. [PMID: 37649457 DOI: 10.1111/luts.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVES A lot of ion channels participate in the regulation of bladder function. TACAN, a new mechanosensitive ion channel, was first discovered in 2020. TACAN has been found to be expressed in many tissues, such as the dorsal root ganglia (DRG) and adipose tissue. However, it is unclear whether or not TACAN is expressed in the bladder. In this work, we decided to study the expression and distribution of TACAN in human and rat bladders. Meanwhile, the expression of TACAN in the rat model of interstitial cystitis/bladder pain syndrome (IC/BPS) was studied. METHODS Human bladder tissues were obtained from female patients. Cyclophosphamide (CYP) was used to build the rat model of IC/BPS. Real-time polymerase chain reaction, agarose gel electrophoresis, and western blotting were used to assess the expression of TACAN in human and rat bladders. Immunohistochemistry and immunofluorescence were used to observe the distribution of TACAN in human and rat bladders. Hematoxylin-eosin stain, withdrawal threshold, and micturition interval were used to evaluate animal models. RESULTS The results of agarose gel electrophoresis and western blotting suggested that TACAN was expressed in human and rat bladders. Immunohistochemical results suggested that TACAN showed positive immunoreaction in the urothelial and detrusor layers. The immunofluorescence results indicated that TACAN was co-stained with UPKIII, α-SMA, and PGP9.5. The IC/BPS model was successfully established with CYP. The mRNA and protein expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. CONCLUSIONS TACAN was found in human and rat bladders. TACAN was mainly distributed in the urothelial and detrusor layers and bladder nerves. The expression of TACAN was upregulated in the CYP-induced rat model of IC/BPS. This new discovery will provide a theoretical basis for future research on the function of TACAN in the bladder and a potential therapeutic target for IC/BPS.
Collapse
Affiliation(s)
- Qudong Lu
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Liu
- Clinical Medicine Postdoctoral Research Station, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiwei Chen
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Jiaolian Wang
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Yongjie Chen
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Huan Feng
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shanhong Yi
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Wei Chen
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
16
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
17
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1’s cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|
18
|
Toft PB, Vanslette AM, Trošt K, Moritz T, Gillum MP, Bäckhed F, Arora T. Microbial metabolite p-cresol inhibits gut hormone expression and regulates small intestinal transit in mice. Front Endocrinol (Lausanne) 2023; 14:1200391. [PMID: 37534214 PMCID: PMC10391832 DOI: 10.3389/fendo.2023.1200391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
p-cresol is a metabolite produced by microbial metabolism of aromatic amino acid tyrosine. p-cresol and its conjugated forms, p-cresyl sulfate and p-cresyl glucuronide, are uremic toxins that correlate positively with chronic kidney disease and diabetes pathogenesis. However, how p-cresol affects gut hormones is unclear. Here, we expose immortalized GLUTag cells to increasing concentrations of p-cresol and found that p-cresol inhibited Gcg expression and reduced glucagon-like peptide-1 (GLP-1) secretion in vitro. In mice, administration of p-cresol in the drinking water for 2 weeks reduced the transcript levels of Gcg and other gut hormones in the colon; however, it did not affect either fasting or glucose-induced plasma GLP-1 levels. Furthermore, it did not affect glucose tolerance but promoted faster small intestinal transit in mice. Overall, our data suggest that microbial metabolite p-cresol suppresses transcript levels of gut hormones and regulates small intestinal transit in mice.
Collapse
Affiliation(s)
- Pernille Baumann Toft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Marie Vanslette
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kajetan Trošt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Paul Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Geier B, Neely L, Coronado E, Reiter LT. Drosophila UBE3A regulates satiety signaling through the Piezo mechanosensitive ion channel. RESEARCH SQUARE 2023:rs.3.rs-3101314. [PMID: 37461494 PMCID: PMC10350227 DOI: 10.21203/rs.3.rs-3101314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder characterized by developmental delays, speech impairments, ataxic movements, and in some cases, hyperphagic feeding behavior. Loss of function mutations, loss of expression from the maternal allele or absence of maternal UBE3A result in AS. Recent studies have established a connection between UBE3A and the mechanosensitive ion channel PIEZO2, suggesting the potential role of UBE3A in the regulation of PIEZO channels. In this study, we investigated the role of Drosophila UBE3A (Dube3a) in Piezo associated hyperphagic feeding behavior. We developed a novel assay using green fluorescent protein (GFP) expressing yeast to quantify gut distention in flies with Piezo and Dube3a mutations. We confirmed that Dube3a15b loss of function flies displayed gut distention to almost identical levels as PiezoKO flies. Further analysis using deficiency (Df) lines encompassing the Dube3a locus provided proof for a role of Dube3a in satiety signaling. We also investigated endogenous Piezo expression across the fly midgut and tracheal system. Piezo protein could be detected in both neurons and trachea of the midgut. Overexpression of Dube3a driven by the Piezo promoter resulted in distinct tracheal remodeling within the midgut. These findings suggest that Dube3a plays a key role in the regulation of Piezo and that subsequent dysregulation of these ion channels may explain the hyperphagic behavior observed in 32% of cases of AS. Further investigation will be needed to identify the intermediate protein(s) interacting between the Dube3a ubiquitin ligase and Piezo channels, as Piezo does not appear to be a direct ubiquitin substrate for UBE3A in mice and humans.
Collapse
Affiliation(s)
| | - Logan Neely
- University of Tennessee Health Science Center
| | | | | |
Collapse
|
20
|
Mayeli A, Al Zoubi O, White EJ, Chappelle S, Kuplicki R, Morton A, Bruce J, Smith R, Feinstein JS, Bodurka J, Paulus MP, Khalsa SS. Parieto-occipital ERP indicators of gut mechanosensation in humans. Nat Commun 2023; 14:3398. [PMID: 37311748 PMCID: PMC10264354 DOI: 10.1038/s41467-023-39058-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Understanding the neural processes governing the human gut-brain connection has been challenging due to the inaccessibility of the body's interior. Here, we investigated neural responses to gastrointestinal sensation using a minimally invasive mechanosensory probe by quantifying brain, stomach, and perceptual responses following the ingestion of a vibrating capsule. Participants successfully perceived capsule stimulation under two vibration conditions (normal and enhanced), as evidenced by above chance accuracy scores. Perceptual accuracy improved significantly during the enhanced relative to normal stimulation, which was associated with faster stimulation detection and reduced reaction time variability. Capsule stimulation induced late neural responses in parieto-occipital electrodes near the midline. Moreover, these 'gastric evoked potentials' showed intensity-dependent increases in amplitude and were significantly correlated with perceptual accuracy. Our results replicated in a separate experiment, and abdominal X-ray imaging localized most capsule stimulations to the gastroduodenal segments. Combined with our prior observation that a Bayesian model is capable of estimating computational parameters of gut-brain mechanosensation, these findings highlight a unique form of enterically-focused sensory monitoring within the human brain, with implications for understanding gut feelings and gut-brain interactions in healthy and clinical populations.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Obada Al Zoubi
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Harvard Medical School/McLean Hospital, Boston, MA, USA
| | - Evan J White
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | | | | | - Alexa Morton
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Jaimee Bruce
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Ryan Smith
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | | | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA.
| |
Collapse
|
21
|
Zaher EA, Patel P, Sigdel S, Atia GA. Persistent Post-endoscopic Retrograde Cholangiopancreatography Hiccups: An Unusual Presentation of Bile Reflux. Cureus 2023; 15:e39105. [PMID: 37332414 PMCID: PMC10270706 DOI: 10.7759/cureus.39105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Bile reflux is a pathological retrograde flow of bile into the stomach that may lead to gastric overdistension and gastritis. It generally manifests as abdominal pain, nausea, vomiting, or heartburn. Hiccups have thus far not been described as part of its presentation. Here, we describe a case of excessive post-endoscopic retrograde cholangiopancreatography bile accumulation in the stomach that caused persistent hiccups requiring endoscopic suctioning.
Collapse
Affiliation(s)
- Eli A Zaher
- Department of Internal Medicine, Ascension St. Joseph Hospital, Chicago, USA
| | - Parth Patel
- Department of Internal Medicine, Ascension St. Joseph Hospital, Chicago, USA
| | - Surendra Sigdel
- Department of Internal Medicine, Ascension St. Joseph Hospital, Chicago, USA
| | - George A Atia
- Department of Gastroenterology and Hepatology, Ascension St. Joseph Hospital, Chicago, USA
| |
Collapse
|
22
|
Madar J, Tiwari N, Smith C, Sharma D, Shen S, Elmahdi A, Qiao LY. Piezo2 regulates colonic mechanical sensitivity in a sex specific manner in mice. Nat Commun 2023; 14:2158. [PMID: 37061508 PMCID: PMC10105732 DOI: 10.1038/s41467-023-37683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
The mechanosensitive ion channel Piezo2 in mucosa and primary afferents transduces colonic mechanical sensation. Here we show that chemogenetic activation or nociceptor-targeted deletion of Piezo2 is sufficient to regulate colonic mechanical sensitivity in a sex dependent manner. Clozapine N-oxide-induced activation of Piezo2;hM3Dq-expressing sensory neurons evokes colonic hypersensitivity in male mice, and causes dyspnea in female mice likely due to effects on lung sensory neurons. Activation of Piezo2-expressing colonic afferent neurons also induces colonic hypersensitivity in male but not female mice. Piezo2 levels in nociceptive neurons are higher in female than in male mice. We also show that Piezo2 conditional deletion from nociceptive neurons increases body weight growth, slows colonic transits, and reduces colonic mechanosensing in female but not male mice. Piezo2 deletion blocks colonic hypersensitivity in male but not female mice. These results suggest that Piezo2 in nociceptive neurons mediates innocuous colonic mechanosensing in female mice and painful sensation in male mice, suggesting a sexual dimorphism of Piezo2 function in the colonic sensory system.
Collapse
Affiliation(s)
- Jonathan Madar
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Cristina Smith
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Alsiddig Elmahdi
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Liya Y Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
23
|
Cobine CA. Making 'sense' of what happens on the inside: il'LUMEN'ating the effects of intestinal distention on calcium activity in enteric neurons. J Physiol 2023; 601:1153-1154. [PMID: 36859817 DOI: 10.1113/jp284397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Affiliation(s)
- Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, NV, Reno, USA
| |
Collapse
|
24
|
Salami AT, Oyagbemi AA, Alabi MV, Olaleye SB. Naringenin modulates Cobalt activities on gut motility through mechanosensors and serotonin signalling. Biomarkers 2023; 28:11-23. [PMID: 36250715 DOI: 10.1080/1354750x.2022.2137235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
IntroductionCobalt chloride-(CoCl2) exerts beneficial and toxic activities depending on dose however Naringenin-(Nar) a flavonoid, chelates heavy metals. Absorption of ingested heavy metals, or chelates are dependent on gut motility (gastric emptying and intestinal transit time) and mechanosensor regulation. Literature is vague on CoCl2 activities on gut motility and mechanosensor nor probable chelating actions with naringenin which was investigated in this study.MethodOne hundred male Wistar rats were grouped viz; A to D (25, 62, 150 and 300 mg/kg CoCl2), E to H doses of CoCl2+Nar (50 mg/kg), I-Narigenin and J-Control. Gastric emptying and intestinal transit time were evaluated by day eight, intestinal tissue assayed for biochemical, histological and immunohistochemistry reactivity.ResultCoCl2 significantly increased Gastric emptying (150 and 300 mg/kg) and Intestinal transit time unlike Naringenin. CoCl2 (150 mg/kg) significantly increased Catalase and Nitric oxide but ameliorated by Naringenin. ATPase activities significantly increased in 150 mg/kg-CoCl2 but ameliorated by Naringenin. Carbonyl levels increased in all CoCl2+Nar groups. High Enterochromaffin-cell count in 25 and 62 mg/kg-CoCl2 were ameliorated by Naringenin. Serotonin immunoreactivity increased in CoCl2 (25, 62, 300 mg/kg) but reduced in CoCl2+Nar groups.ConclusionCobalt chloride enhanced gastric motility via increased mechanosensor activities and serotonin expression at low doses. Naringenin ameliorated toxicity of high cobalt chloride via metal-flavonoid chelates.
Collapse
Affiliation(s)
- Adeola Temitope Salami
- Gastrointestinal Secretion and Inflammation Research Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokubo Oyagbemi
- Cardiorenal Laboratory, Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moyosore Victoria Alabi
- Gastrointestinal Secretion and Inflammation Research Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Samuel Babafemi Olaleye
- Gastrointestinal Secretion and Inflammation Research Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
25
|
Elfers K, Schäuffele S, Hoppe S, Michel K, Zeller F, Demir IE, Schemann M, Mazzuoli-Weber G. Distension evoked mucosal secretion in human and porcine colon in vitro. PLoS One 2023; 18:e0282732. [PMID: 37053302 PMCID: PMC10101454 DOI: 10.1371/journal.pone.0282732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/20/2023] [Indexed: 04/15/2023] Open
Abstract
It was suggested that intestinal mucosal secretion is enhanced during muscle relaxation and contraction. Mechanisms of mechanically induced secretion have been studied in rodent species. We used voltage clamp Ussing technique to investigate, in human and porcine colonic tissue, secretion evoked by serosal (Pser) or mucosal (Pmuc) pressure application (2-60 mmHg) to induce distension into the mucosal or serosal compartment, respectively. In both species, Pser or Pmuc caused secretion due to Cl- and, in human colon, also HCO3- fluxes. In the human colon, responses were larger in proximal than distal regions. In porcine colon, Pmuc evoked larger responses than Pser whereas the opposite was the case in human colon. In both species, piroxicam revealed a strong prostaglandin (PG) dependent component. Pser and Pmuc induced secretion was tetrodotoxin (TTX) sensitive in porcine colon. In human colon, a TTX sensitive component was only revealed after piroxicam. However, synaptic blockade by ω-conotoxin GVIA reduced the response to mechanical stimuli. Secretion was induced by tensile rather than compressive forces as preventing distension by a filter inhibited the secretion. In conclusion, in both species, distension induced secretion was predominantly mediated by PGs and a rather small nerve dependent response involving mechanosensitive somata and synapses.
Collapse
Affiliation(s)
- Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Susanne Hoppe
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Michel
- Chair of Human Biology, Technical University of Munich, Freising, Germany
| | | | - Ihsan Ekin Demir
- University Hospital Rechts der Isar, Technical University of Munich, München, Germany
| | - Michael Schemann
- Chair of Human Biology, Technical University of Munich, Freising, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
26
|
Yang H, Hou C, Xiao W, Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front Physiol 2022; 13:904203. [PMID: 36060694 PMCID: PMC9437298 DOI: 10.3389/fphys.2022.904203] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanosensation is essential for normal gastrointestinal (GI) function, and abnormalities in mechanosensation are associated with GI disorders. There are several mechanosensitive ion channels in the GI tract, namely transient receptor potential (TRP) channels, Piezo channels, two-pore domain potassium (K2p) channels, voltage-gated ion channels, large-conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis transmembrane conductance regulator (CFTR). These channels are located in many mechanosensitive intestinal cell types, namely enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these cells, mechanosensitive ion channels can alter transmembrane ion currents in response to mechanical forces, through a process known as mechanoelectrical coupling. Furthermore, mechanosensitive ion channels are often associated with a variety of GI tract disorders, including irritable bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could therefore provide a new perspective for the treatment of GI diseases. This review aims to highlight recent research advances regarding the function of mechanosensitive ion channels in the GI tract. Moreover, it outlines the potential role of mechanosensitive ion channels in related diseases, while describing the current understanding of interactions between the GI tract and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Haoyu Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Chaofeng Hou
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Yuan Qiu,
| |
Collapse
|
27
|
Mechanosensitive body–brain interactions in Caenorhabditis elegans. Curr Opin Neurobiol 2022; 75:102574. [DOI: 10.1016/j.conb.2022.102574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022]
|
28
|
Song S, Zhang H, Wang X, Chen W, Cao W, Zhang Z, Shi C. The role of mechanosensitive Piezo1 channel in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:39-49. [PMID: 35436566 DOI: 10.1016/j.pbiomolbio.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Mechanotransduction is associated with organ development and homoeostasis. Piezo1 and Piezo2 are novel mechanosensitive ion channels (MSCs) in mammals. MSCs are membrane proteins that are critical for the mechanotransduction of living cells. Current studies have demonstrated that the Piezo protein family not only functions in volume regulation, cellular migration, proliferation, and apoptosis but is also important for human diseases of various systems. The complete loss of Piezo1 and Piezo2 function is fatal in the embryonic period. This review summarizes the role of Piezo1 in diseases of different systems and perspectives potential treatments related to Piezo1 for these diseases.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Hong Zhang
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Chen
- Department of Urology, The Affiliated Xinqiao Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zhe Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
29
|
Abstract
The vertebrate intestine experiences a range of intrinsically generated and external forces during both development and adult homeostasis. It is increasingly understood how the coordination of these forces shapes the intestine through organ-scale folding and epithelial organization into crypt-villus compartments. Moreover, accumulating evidence shows that several cell types in the adult intestine can sense and respond to forces to regulate key cellular processes underlying adult intestinal functions and self-renewal. In this way, transduction of forces may direct both intestinal homeostasis as well as adaptation to external stimuli, such as food ingestion or injury. In this review, we will discuss recent insights from complementary model systems into the force-dependent mechanisms that establish and maintain the unique architecture of the intestine, as well as its homeostatic regulation and function throughout adult life.
Collapse
|
30
|
Gao DD, Huang JH, Ding N, Deng WJ, Li PL, Mai YN, Wu JR, Hu M. Mechanosensitive Piezo1 channel in rat epididymal epithelial cells promotes transepithelial K+ secretion. Cell Calcium 2022; 104:102571. [DOI: 10.1016/j.ceca.2022.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
|
31
|
Elsaafien K, Harden SW, Johnson DN, Kimball AK, Sheng W, Smith JA, Scott KA, Frazier CJ, de Kloet AD, Krause EG. A Novel Organ-Specific Approach to Selectively Target Sensory Afferents Innervating the Aortic Arch. Front Physiol 2022; 13:841078. [PMID: 35399269 PMCID: PMC8987286 DOI: 10.3389/fphys.2022.841078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
The brain maintains cardiovascular homeostasis, in part, via the arterial baroreflex which senses changes in blood pressure (BP) at the level of the aortic arch. Sensory afferents innervating the aortic arch employ baroreceptors to convert stretch exerted on the arterial wall into action potentials carried by the vagus nerve to second order neurons residing within the nucleus of the solitary tract (NTS). Although the baroreflex was described more than 80 years ago, the specific molecular, structural, and functional phenotype of the baroreceptors remain uncharacterized. This is due to the lack of tools that provide the genetic and target organ specificity that is required to selectively characterize baroreceptor afferents. Here, we use a novel approach to selectively target baroreceptors. Male mice on a C57BL/6J background were anesthetized with isoflurane, intubated, and artificially ventilated. Following sternotomy, the aortic arch was exposed, and a retrograde adeno-associated virus was applied to the aortic arch to direct the expression of channelrhoropsin-2 (ChR2) and/or tdTomato (tdTom) to sensory afferents presumably functioning as baroreceptors. Consistent with the structural characteristics of arterial baroreceptors, robust tdTom expression was observed in nerve endings surrounding the aortic arch, within the fibers of the aortic depressor and vagus nerves, cell bodies of the nodose ganglia (NDG), and neural projections to the caudal NTS (cNTS). Additionally, the tdTom labeled cell bodies within the NDG also expressed mRNAs coding for the mechanically gated ion channels, PIEZO-1 and PIEZO-2. In vitro electrophysiology revealed that pulses of blue light evoked excitatory post-synaptic currents in a subset of neurons within the cNTS, suggesting a functional connection between the labeled aortic arch sensory afferents and second order neurons. Finally, the in vivo optogenetic stimulation of the cell bodies of the baroreceptor expressing afferents in the NDG produced robust depressor responses. Together, these results establish a novel approach for selectively targeting sensory neurons innervating the aortic arch. This approach may be used to investigate arterial baroreceptors structurally and functionally, and to assess their role in the etiology or reversal of cardiovascular disease.
Collapse
Affiliation(s)
- Khalid Elsaafien
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
| | - Scott W. Harden
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
| | - Dominique N. Johnson
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aecha K. Kimball
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Wanhui Sheng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
| | - Justin A. Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Karen A. Scott
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
| | - Charles J. Frazier
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
| | - Annette D. de Kloet
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Annette D. de Kloet,
| | - Eric G. Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, United States
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: Eric G. Krause,
| |
Collapse
|
32
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
33
|
Barth BB, Spencer NJ, Grill WM. Activation of ENS Circuits in Mouse Colon: Coordination in the Mouse Colonic Motor Complex as a Robust, Distributed Control System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:113-123. [PMID: 36587151 DOI: 10.1007/978-3-031-05843-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The characteristic motor patterns of the colon are coordinated by the enteric nervous system (ENS) and involve enterochromaffin (EC) cells, enteric glia, smooth muscle fibers, and interstitial cells. While the fundamental control mechanisms of colonic motor patterns are understood, greater complexity in the circuitry underlying motor patterns has been revealed by recent advances in the field. We review these recent advances and new findings from our laboratories that provide insights into how the ENS coordinates motor patterns in the isolated mouse colon. We contextualize these observations by describing the neuromuscular system underling the colonic motor complex (CMC) as a robust, distributed control system. Framing the colonic motor complex as a control system reveals a new perspective on the coordinated motor patterns in the colon. We test the control system by applying electrical stimulation in the isolated mouse colon to disrupt the coordination and propagation of the colonic motor complex.
Collapse
Affiliation(s)
- Bradley B Barth
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
34
|
Otarola G, Hu JC, Athanasiou KA. INTRACELLULAR CALCIUM AND SODIUM MODULATION OF SELF-ASSEMBLED NEOCARTILAGE USING COSTAL CHONDROCYTES. Tissue Eng Part A 2021; 28:595-605. [PMID: 34877888 DOI: 10.1089/ten.tea.2021.0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ion signaling via Ca2+ and Na+ plays a key role in mechanotransduction and encourages a chondrogenic phenotype and tissue maturation. Here, we propose that the pleiotropic effects of Ca2+ and Na+ modulation can be used to induce maturation and improvement of neocartilage derived from re-differentiated expanded chondrocytes from minipig rib cartilage. Three ion modulators were employed: 1) 4α-phorbol-12,13-didecanoate (4-αPDD), an agonist of the Ca2+-permeable transient receptor potential vanilloid 4 (TRPV4), 2) ouabain, an inhibitor of the Na+/K+ pump, and 3) ionomycin, a Ca2+ ionophore. These ion modulators were used individually or in combination. While no beneficial effects were observed when using combinations of the ion modulators, single treatment of constructs with the three ion modulators resulted in multiple effects in structure-function relationships. The most significant findings were related to ionomycin. Treatment of neocartilage with ionomycin produced 61% and 115% increases in glycosaminoglycan and pyridinoline crosslink content, respectively, compared to the control. Moreover, treatment with this Ca2+ ionophore resulted in a 45% increase of the aggregate modulus, and a 63% increase in the tensile Young's modulus, resulting in aggregate and Young's moduli of 567 kPa and 8.43 MPa, respectively. These results support the use of ion modulation to develop biomimetic neocartilage using expanded re-differentiated costal chondrocytes.
Collapse
Affiliation(s)
- Gaston Otarola
- University of California, Irvine, BME, Irvine, California, United States;
| | - Jerry C Hu
- University of California, Irvine, BME, Irvine, California, United States;
| | | |
Collapse
|
35
|
Berntson GG, Khalsa SS. Neural Circuits of Interoception. Trends Neurosci 2021; 44:17-28. [PMID: 33378653 DOI: 10.1016/j.tins.2020.09.011] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/30/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
The present paper considers recent progress in our understanding of the afferent/ascending neural pathways and neural circuits of interoception. Of particular note is the extensive role of rostral neural systems, including cortical systems, in the recognition of internal body states, and the reciprocal role of efferent/descending systems in the regulation of those states. Together these reciprocal interacting networks entail interoceptive circuits that play an important role in a broad range of functions beyond the homeostatic maintenance of physiological steady-states. These include the regulation of behavioral, cognitive, and affective processes across conscious and nonconscious levels of processing. We highlight recent advances and knowledge gaps that are important for accelerating progress in the study of interoception.
Collapse
Affiliation(s)
- Gary G Berntson
- Department of Psychology, Ohio State University, Columbus, OH, USA.
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA; Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
36
|
Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation. Front Immunol 2021; 12:679055. [PMID: 34322118 PMCID: PMC8312561 DOI: 10.3389/fimmu.2021.679055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Kofoed-Branzk
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divija Deshpande
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shaira Murugan
- Department of BioMedical Research, Group of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
Abstract
Nearly all structures in our body experience mechanical forces. At a molecular scale, these forces are detected by ion channels that function as mechanotransducers converting physical forces into electrochemical responses. Here we focus on PIEZOs, a family of mechanically activated ion channels comprising PIEZO1 and PIEZO2. The significance of these channels is highlighted by their roles in touch and pain sensation as well as in cardiovascular and respiratory physiology, among others. Moreover, mutations in PIEZOs cause somatosensory, proprioceptive, and blood disorders. The goal here is to present the diverse physiology and pathophysiology of these unique channels, discuss ongoing research and critical gaps in the field, and explore the pharmaceutical interest in targeting PIEZOs for therapeutic development.
Collapse
Affiliation(s)
- Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA;
| |
Collapse
|
38
|
Fang J, Hou F, Wu S, Liu Y, Wang L, Zhang J, Wang N, Wang K, Zhu W. Piezo2 downregulation via the Cre-lox system affects aqueous humor dynamics in mice. Mol Vis 2021; 27:354-364. [PMID: 34220183 PMCID: PMC8219506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Proper aqueous humor (AH) dynamics is crucial for maintaining the intraocular pressure (IOP) in the eye. This study aims to investigate the function of Piezo2, a newly discovered mechanosensitive ion channel, in regulating AH dynamics. Methods Immunohistochemistry (IHC) analysis and western blotting were performed to detect Piezo2 expression. The Cre-lox system was applied to create a conditional knockout model of Piezo2. IOP and aqueous humor outflow facility in live animals were recorded with a Tonometer and a syringe-pump system for up to 2 weeks. Results We first detected Piezo2 with robust expression in the human trabecular meshwork (TM), Schlemm's canal (SC), the ciliary body's epithelium, and ciliary muscle. In addition, we found Piezo2 in human retinal ganglion cells (RGCs) and astrocytes in the optic nerve head (ONH). Through the Cre-lox system, Piezo2 can be successfully downregulated in mouse iridocorneal angle tissues. However, Piezo2 downregulation cannot significantly influence the IOP and outflow facility through the conventional pathway. Instead, we observed an effect of downregulated Piezo2 on decreasing the intercept in the flow rate versus pressure plot. According to the Goldmann equation, Piezo2 may function in regulating unconventional outflow, AH production, and episcleral venous pressure. Conclusions These findings, for the first time, demonstrate that Piezo2 acts as an essential mechanosensor in maintaining the proper aqueous humor dynamics in the eye.
Collapse
Affiliation(s)
- Jingwang Fang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fei Hou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Linna Wang
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China,Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University of Aeronautics and Astronautics-Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Abstract
Epigenetic modifications have been implicated to mediate several complications of diabetes mellitus (DM), especially nephropathy and retinopathy. Our aim was to ascertain whether epigenetic alterations in whole blood discriminate among patients with DM with normal, delayed, and rapid gastric emptying (GE).
Collapse
|
40
|
Joshi V, Strege PR, Farrugia G, Beyder A. Mechanotransduction in gastrointestinal smooth muscle cells: role of mechanosensitive ion channels. Am J Physiol Gastrointest Liver Physiol 2021; 320:G897-G906. [PMID: 33729004 PMCID: PMC8202201 DOI: 10.1152/ajpgi.00481.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanosensation, the ability to properly sense mechanical stimuli and transduce them into physiologic responses, is an essential determinant of gastrointestinal (GI) function. Abnormalities in this process result in highly prevalent GI functional and motility disorders. In the GI tract, several cell types sense mechanical forces and transduce them into electrical signals, which elicit specific cellular responses. Some mechanosensitive cells like sensory neurons act as specialized mechanosensitive cells that detect forces and transduce signals into tissue-level physiological reactions. Nonspecialized mechanosensitive cells like smooth muscle cells (SMCs) adjust their function in response to forces. Mechanosensitive cells use various mechanoreceptors and mechanotransducers. Mechanoreceptors detect and convert force into electrical and biochemical signals, and mechanotransducers amplify and direct mechanoreceptor responses. Mechanoreceptors and mechanotransducers include ion channels, specialized cytoskeletal proteins, cell junction molecules, and G protein-coupled receptors. SMCs are particularly important due to their role as final effectors for motor function. Myogenic reflex-the ability of smooth muscle to contract in response to stretch rapidly-is a critical smooth muscle function. Such rapid mechanotransduction responses rely on mechano-gated and mechanosensitive ion channels, which alter their ion pores' opening in response to force, allowing fast electrical and Ca2+ responses. Although GI SMCs express a variety of such ion channels, their identities remain unknown. Recent advancements in electrophysiological, genetic, in vivo imaging, and multi-omic technologies broaden our understanding of how SMC mechano-gated and mechanosensitive ion channels regulate GI functions. This review discusses GI SMC mechanosensitivity's current developments with a particular emphasis on mechano-gated and mechanosensitive ion channels.
Collapse
Affiliation(s)
- Vikram Joshi
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota
| | - Peter R. Strege
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota,2Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- 1Division of Gastroenterology & Hepatology, Enteric NeuroScience Program (ENSP), Mayo Clinic, Rochester, Minnesota,2Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
41
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
42
|
Jiang L, Zhang Y, Lu D, Huang T, Yan K, Yang W, Gao J. Mechanosensitive Piezo1 channel activation promotes ventilator-induced lung injury via disruption of endothelial junctions in ARDS rats. Biochem Biophys Res Commun 2021; 556:79-86. [PMID: 33839418 DOI: 10.1016/j.bbrc.2021.03.163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study aimed to investigate the role of endothelial Piezo1 in mediating ventilator-induced lung injury secondary to acute respiratory distress syndrome (ARDS). METHODS Rats and lung endothelial cells (ECs) were transfected with Piezo1 shRNA (shPiezo1) and Piezo1 siRNA, respectively, to knock down Piezo1. Intratracheal instillation or incubation with lipopolysaccharide (LPS) was used to establish an ARDS model, and high tidal volume (HVT) ventilation or 20% cyclic stretch (CS) was administered to simulate a two-hit injury. Lung injury, alterations in lung endothelial barrier, disruption of adherens junctions (AJs), and Ca2+ influx were assessed. RESULTS Lung vascular hyperpermeability was further increased in ARDS rats following HVT ventilation, which was abrogated in shPiezo1-treated rats. 20% CS led to severer rupture of AJs following LPS stimulation as indicated by immunofluorescence staining. The internalization and degradation of VE-cadherin were blocked by knockdown of Piezo1. Additionally, 20% CS induced Piezo1 activation, manifesting as elevated intracellular Ca2+ concentration in LPS-treated ECs, and subsequently increased calcium-dependent calpain activity. Pharmacological inhibition of calpain or Piezo1 knockdown prevented the loss of VE-cadherin, p120-catenin, and β-catenin in ARDS rats undergoing HVT ventilation and LPS-treated ECs exposed to 20% CS. CONCLUSION Excessive mechanical stretch during ARDS induces the activation of Piezo1 channel and its downstream target, calpain, via Ca2+ influx. This results in the disassembly of endothelial AJs and further facilitates lung endothelial barrier breakdown and vascular hyperpermeability.
Collapse
Affiliation(s)
- Lulu Jiang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yang Zhang
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, 225001, China
| | - Dahao Lu
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, 225001, China
| | - Tianfeng Huang
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, 225001, China
| | - Keshi Yan
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, 225001, China
| | - Wenjun Yang
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, 225001, China
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
43
|
Wen J, Chen Z, Zhao M, Zu S, Zhao S, Wang S, Zhang X. Cell Deformation at the Air-Liquid Interface Evokes Intracellular Ca 2+ Increase and ATP Release in Cultured Rat Urothelial Cells. Front Physiol 2021; 12:631022. [PMID: 33613324 PMCID: PMC7886682 DOI: 10.3389/fphys.2021.631022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Urothelial cells have been implicated in bladder mechanosensory transduction, and thus, initiation of the micturition reflex. Cell deformation caused by tension forces at an air-liquid interface (ALI) can induce an increase in intracellular Ca2+ concentration ([Ca2+]i) and ATP release in some epithelial cells. In this study, we aimed to examine the cellular mechanisms underlying ALI-induced [Ca2+]i increase in cultured urothelial cells. The ALI was created by stopping the influx of the perfusion but maintaining efflux. The [Ca2+]i increase was measured using the Ca2+ imaging method. The ALI evoked a reversible [Ca2+]i increase and ATP release in urothelial cells, which was almost abolished by GdCl3. The specific antagonist of the transient receptor potential vanilloid (TRPV4) channel (HC0674) and the antagonist of the pannexin 1 channel (10panx) both diminished the [Ca2+]i increase. The blocker of Ca2+-ATPase pumps on the endoplasmic reticulum (thapsigargin), the IP3 receptor antagonist (Xest-C), and the ryanodine receptor antagonist (ryanodine) all attenuated the [Ca2+]i increase. Degrading extracellular ATP with apyrase or blocking ATP receptors (P2X or P2Y) with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) significantly attenuated the [Ca2+]i increase. Our results suggest that both Ca2+ influx via TRPV4 or pannexin 1 and Ca2+ release from intracellular Ca2+ stores via IP3 or ryanodine receptors contribute to the mechanical responses of urothelial cells. The release of ATP further enhances the [Ca2+]i increase by activating P2X and P2Y receptors via autocrine or paracrine mechanisms.
Collapse
Affiliation(s)
- Jiliang Wen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenghao Chen
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shulu Zu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengtian Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
44
|
A New Hope in Spinal Degenerative Diseases: Piezo1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6645193. [PMID: 33575334 PMCID: PMC7857891 DOI: 10.1155/2021/6645193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
As a newly discovered mechanosensitive ion channel protein, the piezo1 protein participates in the transmission of mechanical signals on the cell membrane and plays a vital role in mammalian biomechanics. Piezo1 has attracted widespread attention since it was discovered in 2010. In recent years, studies on piezo1 have gradually increased and deepened. In addition to the discovery that piezo1 is expressed in the respiratory, cardiovascular, gastrointestinal, and urinary systems, it is also stably expressed in cells such as mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, chondrocytes, and nucleus pulposus cells that constitute vertebral bodies and intervertebral discs. They can all receive external mechanical stimulation through the piezo1 protein channel to affect cell proliferation, differentiation, migration, and apoptosis to promote the occurrence and development of lumbar degenerative diseases. Through reviewing the relevant literature of piezo1 in the abovementioned cells, this paper discusses the effect of piezo1 protein expression under mechanical stress stimuli on spinal degenerative disease, providing the molecular basis for the pathological mechanism of spinal degenerative disease and also a new basis, ideas, and methods for the prevention and treatment of this degenerative disease.
Collapse
|
45
|
Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J, Harzman A, Christofi FL. Postoperative Ileus and Postoperative Gastrointestinal Tract Dysfunction: Pathogenic Mechanisms and Novel Treatment Strategies Beyond Colorectal Enhanced Recovery After Surgery Protocols. Front Pharmacol 2020; 11:583422. [PMID: 33390950 PMCID: PMC7774512 DOI: 10.3389/fphar.2020.583422] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Postoperative ileus (POI) and postoperative gastrointestinal tract dysfunction (POGD) are well-known complications affecting patients undergoing intestinal surgery. GI symptoms include nausea, vomiting, pain, abdominal distention, bloating, and constipation. These iatrogenic disorders are associated with extended hospitalizations, increased morbidity, and health care costs into the billions and current therapeutic strategies are limited. This is a narrative review focused on recent concepts in the pathogenesis of POI and POGD, pipeline drugs or approaches to treatment. Mechanisms, cellular targets and pathways implicated in the pathogenesis include gut surgical manipulation and surgical trauma, neuroinflammation, reactive enteric glia, macrophages, mast cells, monocytes, neutrophils and ICC's. The precise interactions between immune, inflammatory, neural and glial cells are not well understood. Reactive enteric glial cells are an emerging therapeutic target that is under intense investigation for enteric neuropathies, GI dysmotility and POI. Our review emphasizes current therapeutic strategies, starting with the implementation of colorectal enhanced recovery after surgery protocols to protect against POI and POGD. However, despite colorectal enhanced recovery after surgery, it remains a significant medical problem and burden on the healthcare system. Over 100 pipeline drugs or treatments are listed in Clin.Trials.gov. These include 5HT4R agonists (Prucalopride and TAK 954), vagus nerve stimulation of the ENS-macrophage nAChR cholinergic pathway, acupuncture, herbal medications, peripheral acting opioid antagonists (Alvimopen, Methlnaltexone, Naldemedine), anti-bloating/flatulence drugs (Simethiocone), a ghreline prokinetic agonist (Ulimovelin), drinking coffee, and nicotine chewing gum. A better understanding of the pathogenic mechanisms for short and long-term outcomes is necessary before we can develop better prophylactic and treatment strategies.
Collapse
Affiliation(s)
- Elvio Mazzotta
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Juan Fiorda-Diaz
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Alan Harzman
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Fievos L. Christofi
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
46
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
47
|
Vaahtera L, Schulz J, Hamann T. Cell wall integrity maintenance during plant development and interaction with the environment. NATURE PLANTS 2019; 5:924-932. [PMID: 31506641 DOI: 10.1038/s41477-019-0502-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/23/2019] [Indexed: 05/18/2023]
Abstract
Cell walls are highly dynamic structures that provide mechanical support for plant cells during growth, development and adaptation to a changing environment. Thus, it is important for plants to monitor the state of their cell walls and ensure their functional integrity at all times. This monitoring involves perception of physical forces at the cell wall-plasma membrane interphase. These forces are altered during cell division and morphogenesis, as well as in response to various abiotic and biotic stresses. Mechanisms responsible for the perception of physical stimuli involved in these processes have been difficult to separate from other regulatory mechanisms perceiving chemical signals such as hormones, peptides or cell wall fragments. However, recently developed technologies in combination with more established genetic and biochemical approaches are beginning to open up this exciting field of study. Here, we will review our current knowledge of plant cell wall integrity signalling using selected recent findings and highlight how the cell wall-plasma membrane interphase can act as a venue for sensing changes in the physical forces affecting plant development and stress responses. More importantly, we discuss how these signals may be integrated with chemical signals derived from established signalling cascades to control specific adaptive responses during exposure to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Lauri Vaahtera
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia Schulz
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
48
|
Morley LC, Shi J, Gaunt HJ, Hyman AJ, Webster PJ, Williams C, Forbes K, Walker JJ, Simpson NAB, Beech DJ. Piezo1 channels are mechanosensors in human fetoplacental endothelial cells. Mol Hum Reprod 2019; 24:510-520. [PMID: 30085186 PMCID: PMC6311101 DOI: 10.1093/molehr/gay033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023] Open
Abstract
STUDY QUESTION Does the shear stress sensing ion channel subunit Piezo1 have an important mechanotransduction role in human fetoplacental endothelium? SUMMARY ANSWER Piezo1 is present and functionally active in human fetoplacental endothelial cells, and disruption of Piezo1 prevents the normal response to shear stress. WHAT IS KNOWN ALREADY Shear stress is an important stimulus for maturation and function of placental vasculature but the molecular mechanisms by which the force is detected and transduced are unclear. Piezo1 channels are Ca2+-permeable non-selective cationic channels which are critical for shear stress sensing and maturation of murine embryonic vasculature. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We investigated the relevance of Piezo1 to placental vasculature by studying human fetoplacental endothelial cells (FpECs) from healthy pregnancies. Endothelial cells were isolated from placental cotyledons and cultured, for the study of tube formation and cell alignment to shear stress. In addition, human placental arterial endothelial cells were isolated and studied immediately by patch-clamp electrophysiology. MAIN RESULTS AND THE ROLE OF CHANCE The synthetic Piezo1 channel agonist Yoda1 caused strong elevation of the intracellular Ca2+ concentration with a 50% effect occurring at about 5.4 μM. Knockdown of Piezo1 by RNA interference suppressed the Yoda1 response, consistent with it being mediated by Piezo1 channels. Alignment of cells to the direction of shear stress was also suppressed by Piezo1 knockdown without loss of cell viability. Patch-clamp recordings from freshly isolated endothelium showed shear stress-activated single channels which were characteristic of Piezo1. LIMITATIONS, REASONS FOR CAUTION The in vitro nature of fetoplacental endothelial cell isolation and subsequent culture may affect FpEC characteristics and PIEZO1 expression. In addition to Piezo1, alternative shear stress sensing mechanisms have been suggested in other systems and might also contribute in the placenta. WIDER IMPLICATIONS OF THE FINDINGS These data suggest that Piezo1 is an important molecular determinant of blood flow sensitivity in the placenta. Establishing and manipulating the molecular mechanisms regulating shear stress sensing could lead to novel therapeutic strategies to improve blood flow in the placenta. LARGE-SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) LCM was funded by a Clinical Research Training Fellowship from the Medical Research Council and by the Royal College of Obstetricians and Gynaecologists, and has received support from a Wellcome Trust Institutional Strategic Support Fund. JS was supported by the Wellcome Trust and a BHF Intermediate Research Fellowship. HJG, CW, AJH and PJW were supported by PhD Studentships from BHF, BBSRC and the Leeds Teaching Hospitals Charitable Foundation respectively. All authors declare no conflict of interest.
Collapse
Affiliation(s)
- L C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, 6 Clarendon Way, Leeds, UK
| | - J Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, 6 Clarendon Way, Leeds, UK
| | - H J Gaunt
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, 6 Clarendon Way, Leeds, UK
| | - A J Hyman
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, 6 Clarendon Way, Leeds, UK
| | - P J Webster
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, 6 Clarendon Way, Leeds, UK
| | - C Williams
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, 6 Clarendon Way, Leeds, UK
| | - K Forbes
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, 6 Clarendon Way, Leeds, UK
| | - J J Walker
- Academic Department of Obstetrics and Gynaecology, Level 9 Worsley Building, School of Medicine, University of Leeds, Leeds, UK
| | - N A B Simpson
- Academic Department of Obstetrics and Gynaecology, Level 9 Worsley Building, School of Medicine, University of Leeds, Leeds, UK
| | - D J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, 6 Clarendon Way, Leeds, UK
| |
Collapse
|
49
|
Zhao J, Liao D, Gregersen H. Mechanical analysis of intestinal contractility in a neonatal maternal deprivation irritable bowel syndrome rat model. J Biomech 2019; 93:42-51. [PMID: 31213281 DOI: 10.1016/j.jbiomech.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The aims of the present study are to investigate biomechanical properties and provide mechanical analysis of contractility in ileum and colon in a neonatal maternal deprivation (NMD) irritable bowel syndrome (IBS) rat model. Mechanical testing was done on segments from ileum and colon in 25 IBS rats and 13 Control rats. Morphometric data were obtained from digitized images of the segments at no-load and zero-stress states. Pressure and diameter changes were measured during flow and ramp distensions under active and passive experimental conditions. Circumferential stresses (force per area) and strains (deformation) were computed with referenced to the zero-stress state. The contraction frequency was analyzed. Contraction thresholds and maximum contraction amplitude were calculated in terms of mechanical stress and strain. Compared with controls, the IBS rats had lower body weight (P < 0.01), smaller colonic opening angle (P < 0.05), higher colonic contraction frequency (P < 0.05 and P < 0.01) and lower contraction thresholds of pressure, stress and strain in both ileum and colon (P < 0.05 and P < 0.01). The maximum contraction pressure, stress and strain did not differ between IBS and Control groups (P > 0.05). In conclusion, the pressure, stress, and strain to evoke contractility in ileum and colon were lower whereas the frequency of induced colon contractions was higher in NMD IBS rats compared to normal rats. Furthermore, zero-stress state remodeling occur in colon in NMD IBS rats. Further studies on the association between intestinal biomechanical properties, hypersensitivity and afferent signaling in the IBS animal models are warranted.
Collapse
Affiliation(s)
- Jingbo Zhao
- GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark.
| | - Donghua Liao
- GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Hans Gregersen
- GIOME, Department of Surgery, Prince of Wales Hospital and Chinese University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
50
|
Treichel AJ, Farrugia G, Beyder A. The touchy business of gastrointestinal (GI) mechanosensitivity. Brain Res 2019; 1693:197-200. [PMID: 29903622 DOI: 10.1016/j.brainres.2018.02.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/06/2018] [Accepted: 02/24/2018] [Indexed: 12/26/2022]
Abstract
The gastrointestinal (GI) tract's normal function depends on its ability to propel, mix, and store contents in a highly coordinated fashion. An ability to sense mechanical forces is therefore fundamental to normal GI tract operation. There are several mechanosensory circuits distributed throughout the GI tract. These circuits rely on a range of proposed specialized and non-specialized mechanosensory cells that include epithelial enterochromaffin (EC) cells, both intrinsic and extrinsic sensory neurons, glia, interstitial cells of Cajal (ICC), and smooth muscle cells. While the anatomy of these circuits is established, the molecular mechanisms and functions are still poorly understood. In this review, we focus on the neuro-epithelial mechanosensory circuit in the gut, composed of epithelial EC cells and sensory neurons, both intrinsic and extrinsic. Intriguingly, this circuit closely resembles the light touch circuit in the skin that is composed of an epithelial Merkel cell and an afferent sensory neuron, suggesting that the basic building blocks may be retained in diverse mechanosensory systems. We compare the gross and molecular anatomy and physiology of these circuits and dissect the roles of GI neuro-epithelial mechanosensory, or "GI touch", circuitry in GI health and disease.
Collapse
Affiliation(s)
- Anthony J Treichel
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| |
Collapse
|