1
|
Palomino GJQ, Celiz HY, Gomes FDR, Tetaping GM, Novaes MAS, Rocha KAD, Raposo RDS, Rocha RMP, Duarte ABG, Pessoa ODL, Figueiredo JR, de Sá NAR, Rodrigues APR. Withanolide derivatives: natural compounds with anticancer potential offer low toxicity to fertility and ovarian follicles in mice. Anim Reprod 2024; 21:e20240027. [PMID: 39494127 PMCID: PMC11529970 DOI: 10.1590/1984-3143-ar2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Anticancer therapy often leads to premature ovarian insufficiency (POI) and infertility due to the extreme sensitivity of the ovarian follicle reserve to the effects of chemotherapy. Withanolides are known for their cytotoxic effect on cancer cells and low cytotoxicity on non-malignant or healthy cells. Therefore, this study aimed to investigate the in vivo effects of three withanolides derivatives: 27-dehydroxy-24,25-epoxywithaferin A (WT1), 27-dehydroxywithaferin A (WT2), and withaferin A (WTA) on fertility, and the ovarian preantral follicles of young female mice. To achieve this, mice received 7 intraperitoneal doses of WT1, WT2, or WTA at a concentration of 2 mg/kg (Experiment I) and 5 or 10 mg/kg (Experiment II) over 15 alternate days. In experiment I, two days after administration of the last dose, half of the mice were mated to evaluate the effects of withanolides on fertility. The other half of the mice, as well as all mice from experiment II, were sacrificed for histological, inflammation, senescence, and immunohistochemical analyses of the follicles present in the ovary. Regardless of the administered withanolide, the concentration of 2 mg/kg did not show toxicity on the follicular morphology, ovarian function, or fertility of the mice. However, at concentrations of 5 and 10 mg/kg, the three derivatives (WT1, WT2, and WTA) increased follicular activation, cell proliferation, and ovarian senescence without affecting inflammatory cells. Furthermore, at a concentration of 10 mg/kg, the three withanolides showed intensified toxic effects, leading to DNA damage as evidenced by the labeling of γH2AX, activated Caspase 3, and TUNEL. We conclude that the cytotoxic effect of the tested withanolide derivatives (WT1, WT2, and WTA) in the concentration of 2 mg/kg did not show toxicity on the ovary. However, in higher concentrations, such as 10 mg/kg, toxic effects are potentiated, causing DNA damage.
Collapse
Affiliation(s)
- Gaby Judith Quispe Palomino
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Homero Ygnacio Celiz
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Francisco Denilson Rodrigues Gomes
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Gildas Mbemya Tetaping
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | | | - Késya Amanda Dantas Rocha
- Laboratório de Análise Fitoquímica de Plantas Medicinais, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | | | - Ana Beatriz Graça Duarte
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | - José Ricardo Figueiredo
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Naiza Arcângela Ribeiro de Sá
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Ana Paula Ribeiro Rodrigues
- Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-antrais – LAMOFOPA, Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
2
|
Yu TJ, Shiau JP, Tang JY, Farooqi AA, Cheng YB, Hou MF, Yen CH, Chang HW. Physapruin A Exerts Endoplasmic Reticulum Stress to Trigger Breast Cancer Cell Apoptosis via Oxidative Stress. Int J Mol Sci 2023; 24:ijms24108853. [PMID: 37240198 DOI: 10.3390/ijms24108853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Khan AU, Khan A, Shal B, Khan S, Khan M, Ahmad R, Riaz M. The critical role of the phytosterols in modulating tumor microenvironment via multiple signaling: A comprehensive molecular approach. Phytother Res 2023; 37:1606-1623. [PMID: 36757068 DOI: 10.1002/ptr.7755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
Cancer is the leading cause of mortality and morbidity worldwide, and its cases are rapidly increasing every year. Several factors contribute to the development of tumorigenesis. including radiation, dietary lifestyle, smoking, environmental, and genetic factors. The cell cycle is regulated by a variety of molecular signaling proteins. However, when the proteins involved in the cell cycle regulation are altered, cellular growth and proliferation are significantly affected. Natural products provide an important source of new drug development for a variety of ailments. including cancer. Phytosterols (PSs) are an important class of natural compounds reported for numerous pharmacological activities, including cancer. Various PSs, such as ergosterol, stigmasterol, sitosterol, withaferin A, etc., have been reported for their anti-cancer activities against a variety of cancer by modulating the tumor microenvironment via molecular signaling pathways discussed within the article. These signaling pathways are associated with the production of pro-inflammatory mediators, growth factors, chemokines, and pro-apoptotic and anti-apoptotic genes. These mediators and their upstream signaling are very active within the variety of tumors and by modulating these signalings, thus PS exhibits promising anti-cancer activities. However, further high-quality studies are needed to firmly establish the clinical efficacy as well the safety of the phytosterols.
Collapse
Affiliation(s)
- Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Health Sciences, IQRA University, Islamabad Campus, (Chak Shahzad), Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Majid Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, Pakistan
| | - Rizwan Ahmad
- Natural Products & Alternative Medicines College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Sheringal, Pakistan
| |
Collapse
|
4
|
Holvoet H, Long DM, Law A, McClure C, Choi J, Yang L, Marney L, Poeck B, Strauss R, Stevens JF, Maier CS, Soumyanath A, Kretzschmar D. Withania somnifera Extracts Promote Resilience against Age-Related and Stress-Induced Behavioral Phenotypes in Drosophila melanogaster; a Possible Role of Other Compounds besides Withanolides. Nutrients 2022; 14:nu14193923. [PMID: 36235577 PMCID: PMC9573261 DOI: 10.3390/nu14193923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Withania somnifera (WS) extracts have been used in traditional medicine for millennia to promote healthy aging and wellbeing. WS is now also widely used in Western countries as a nutritional supplement to extend healthspan and increase resilience against age-related changes, including sleep deficits and depression. Although human trials have supported beneficial effects of WS, the study designs have varied widely. Plant material is intrinsically complex, and extracts vary widely with the origin of the plant material and the extraction method. Commercial supplements can contain various other ingredients, and the characteristics of the study population can also be varied. To perform maximally controlled experiments, we used plant extracts analyzed for their composition and stability. We then tested these extracts in an inbred Drosophila line to minimize effects of the genetic background in a controlled environment. We found that a water extract of WS (WSAq) was most potent in improving physical fitness, while an ethanol extract (WSE) improved sleep in aged flies. Both extracts provided resilience against stress-induced behavioral changes. WSE contained higher levels of withanolides, which have been proposed to be active ingredients, than WSAq. Therefore, withanolides may mediate the sleep improvement, whereas so-far-unknown ingredients enriched in WSAq likely mediate the effects on fitness and stress-related behavior.
Collapse
Affiliation(s)
- Helen Holvoet
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Dani M. Long
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alexander Law
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
| | - Christine McClure
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jaewoo Choi
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Liping Yang
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Luke Marney
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Burkhard Poeck
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Roland Strauss
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia S. Maier
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Amala Soumyanath
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Doris Kretzschmar
- Botanicals Enhancing Neurological and Functional Resilience in Aging, Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
5
|
Computational studies evidenced the potential of steroidal lactone to disrupt surface interaction of SARS-CoV-2 spike protein and hACE2. Comput Biol Med 2022; 146:105598. [PMID: 35596971 PMCID: PMC9098575 DOI: 10.1016/j.compbiomed.2022.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 12/16/2022]
Abstract
The critical event in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis is recognition of host cells by the virus, which is facilitated by protein-protein interaction (PPI) of viral Spike-Receptor Binding Domain (S-RBD) and Human Angiotensin Converting Enzyme 2-Receptor (hACE2-R). Thus, disrupting the interaction between S-RBD and hACE2-R is widely accepted as a primary strategy for managing COVID-19. The purpose of this study is to assess the ability of three steroidal lactones (SL) (4-Dehydrowithaferin A, Withaferin A, and Withalongolide A) derived from plants to disrupt the PPI of S-RBD and hACE2-R under two conditions (CON-I and CON-II) using in-silico methods. Under CON-I, 4-Dehydrowithaferin A destabilizing the interactions between S-RBD and hACE2-R, as indicated by an increase in binding energy (BE) from -1028.5 kJ/mol (control) to -896.12 kJ/mol 4-Dehydrowithaferin A exhibited a strong interaction with S-RBD GLY496 with a hydrogen bond occupancy (HBO) of 37.33%. Under CON-II, Withalongolide A was capable of disrupting all types of PPI, as evidenced by an increased BE from -913 kJ/mol (control) to -133.69 kJ/mol and an increased distance (>3.55 nm) between selected AAR combinations of S-RBD and hACE2-R. Withalongolide A formed a hydrogen bond with TYR453 (97%, HBO) of S-RBD, which is required for interaction with hACE2-R's HIS34. Our studies demonstrated that SL molecules have the potential to disrupt the S-RBD and hACE2-R interaction, thereby preventing SARS-CoV-2 from recognizing host cells. The SL molecules can be considered for additional in-vitro and in-vivo studies with this research evidence.
Collapse
|
6
|
Moustafa EM, Abdel Salam HS, Mansour SZ. Withania somnifera Modulates Radiation-Induced Generation of Lung Cancer Stem Cells via Restraining the Hedgehog Signaling Factors. Dose Response 2022; 20:15593258221076711. [PMID: 35250409 PMCID: PMC8891860 DOI: 10.1177/15593258221076711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells (CSCs) are implicated in the genesis, development, and recurrence of lung cancer (LC) with great resistance to radiation and chemotherapy. The aim of this study is to assess the inhibitory potential of ethanol extract of Withania somnifera (WS); 500 mg/kg body-weight/day and 8 Gy of ionizing radiation (IR) could inhibit the stemness gene and confer the radiosensitizing effect of W. somnifera extract in the female rat LC model. Compared to IR or WS, the in vitro assay showed that WS + IR potentiates proliferation-inhibition and cell death of the A-549 cell line and suppresses sphere formation. The Hedgehog (Hh) signaling associated with the expression levels of lung CSC markers, octamer-binding transcription factor-4 (OCT4), SRY-box 2 (SOX2), CD133, ATP Binding Cassette Subfamily G Member 2 (ABCG2), and NANOG was upregulated with stimulated epithelial-to-mesenchymal transition (EMT) indicators α-smooth muscle actin (α-SMA), Drosophila embryonic protein (SNAIL-1), Vimentin, and E-cadherin in the LC rat model. The W. somnifera extract plus IR inhibits Hh activation factors, which has resulted in the suppression of CSC gene markers and EMT factors. W. somnifera extract may be a significant adjuvant in the course of radiotherapy, contributing to the termination of tumor progression, and thus providing cure insights into the molecular mechanisms of lung CSCs intervention.
Collapse
Affiliation(s)
- Enas Mahmoud Moustafa
- Department of Radiation Biology, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hemat Sameeh Abdel Salam
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Somaya Zakaria Mansour
- Department of Radiation Biology, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
7
|
Kasali FM, Tuyiringire N, Peter EL, . Ahovegbe LY, Ali MS, Tusiimire J, Ogwang PE, Kadima JN, Agaba AG. Chemical constituents and evidence-based pharmacological properties of Physalis peruviana L.: An overview. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Physalis peruviana L. is among plant species possessing evident nutritional, nutraceutical, and commercial interests. This review highlights the complexity of the chemical composition supporting the multiple pharmacotherapeutic indications and dietary values of this plant through evidence-based studies from Google Scholar, PubMed/Medline, SciFinder, Science Direct, Scopus, the Wiley online library, and Web of Science. The literature mentions at least 40 compounds isolated from different parts; others are still under investigation. High yields in carotenoids, amino acids, minerals, vitamin C, vitamin E, and essential fatty acids have healthy nutritional benefits. Various phytoconstituents, particularly withanolides, exhibit anti-carcinogenic, anti-inflammatory, and antidiabetic potentials, as well as cardiovascular and liver protective effects. Prospective studies reveal that the leaves would also provide various beneficial bioactive chemicals worth being isolated. However, clinical evidence-based studies are seldom. Therefore, adequate pharmaceutical formulations and more in-depth controlled clinical trials are needed to fill the gap.
Collapse
Affiliation(s)
- Félicien Mushagalusa Kasali
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, PO. Box 570 Bukavu, Democratic Republic of the Congo
| | - Naasson Tuyiringire
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- School of Nursing and Midwifery, College of Medicine and Health Sciences, University of Rwanda, University Avenue, PO. Box 56, Butare, Rwanda
| | - Emanuel L Peter
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- National Institute for Medical Research, Department of Innovation, Technology Transfer & Commercialization, PO. Box 9653, Dar es Salaam, Tanzania
| | - Lucrèce Y . Ahovegbe
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- Laboratory of Immunology, Infectious and Allergic Diseases, ISBA and FAST, University of Abomey-Calavi, P.O. BOX: 04 BP 1221 Cotonou, Benin
| | - Muhammad Shaiq Ali
- H.E.J. Research Institute of Chemistry, International Centre for Chemical & Biological Sciences, University of Karachi, PO. Box 75270 Karachi, Pakistan
| | - Jonans Tusiimire
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Biotechnology and Traditional Medicine Center of Excellence, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, PO. Box 1410, Mbarara, Uganda
| | - Justin Ntokamunda Kadima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, PO. Box 570 Bukavu, Democratic Republic of the Congo
- Department of Pharmacology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, PO. Box 117 Huye, Rwanda
| | - Amon Ganafa Agaba
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, PO. Box 1410 Mbarara, Uganda
| |
Collapse
|
8
|
Withaferin A-A Promising Phytochemical Compound with Multiple Results in Dermatological Diseases. Molecules 2021; 26:molecules26092407. [PMID: 33919088 PMCID: PMC8122412 DOI: 10.3390/molecules26092407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Withaferin A (WFA) was identified as the most active phytocompound of the plant Withania somnifera (WS) and as having multiple therapeutic/ameliorating properties (anticancer, antiangiogenic, anti-invasive, anti-inflammatory, proapoptotic, etc.) in case of various diseases. In drug chemistry, WFA in silico approaches have identified favorite biological targets, stimulating and accelerating research to evaluate its pharmacological activity—numerous anticancer effects manifested in various organs (breast, pancreas, skin, colon, etc.), antivirals, anti-infective, etc., which are not yet sufficiently explored. This paper is a synthesis of the most relevant specialized papers in the field that are focused on the use of WFA in dermatological diseases, describing its mechanism of action while providing, at the same time, details about the results of its testing in in vitro/in vivo studies.
Collapse
|
9
|
Physalis peruviana-Derived Physapruin A (PHA) Inhibits Breast Cancer Cell Proliferation and Induces Oxidative-Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel) 2021; 10:antiox10030393. [PMID: 33807834 PMCID: PMC7998541 DOI: 10.3390/antiox10030393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer expresses clinically heterogeneous characteristics and requires multipurpose drug development for curing the different tumor subtypes. Many withanolides have been isolated from Physalis species showing anticancer effects, but the anticancer function of physapruin A (PHA) has rarely been investigated. In this study, the anticancer properties of PHA in breast cancer cells were examined by concentration and time-course experiments. In terms of cellular ATP content, PHA inhibited the proliferation of three kinds of breast cancer cells: MCF7 (estrogen receptor (ER)+, progesterone receptor (PR)+/−, human epidermal growth factor receptor 2 (HER2)−), SKBR3 (ER−/PR−/HER2+), and MDA-MB-231 (triple-negative). Moreover, PHA induced G2/M arrest in MCF7 and MDA-MB-231 cells. In terms of flow cytometry, PHA induced the generation of reactive oxygen species (ROS), the generation of mitochondrial superoxide, mitochondrial membrane potential depletion, and γH2AX-detected DNA damage in breast cancer MCF7 and MDA-MB-231 cells, which were suppressed by the ROS inhibitor N-acetylcysteine (NAC). In terms of flow cytometry and Western blotting, PHA induced apoptotic expression (annexin V, and intrinsic and extrinsic apoptotic signaling), which was suppressed by NAC and an apoptosis inhibitor (Z-VAD-FMK), in breast cancer cells. Therefore, PHA is a potential anti-breast-cancer natural product that modulates the oxidative-stress response, cell-cycle disturbance, apoptosis, and γH2AX-detected DNA damage.
Collapse
|
10
|
Withametelin: a biologically active withanolide in cancer, inflammation, pain and depression. Saudi Pharm J 2020; 28:1526-1537. [PMID: 33424246 PMCID: PMC7783102 DOI: 10.1016/j.jsps.2020.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
Withanolides are natural medicinal agents whose safety and therapeutic profiles make them valuable to mankind. Among multiple withanolides, withametelin is underexplored. The present study was aimed to create a general biological profile of isolated withametelin from Datura innoxia Mill. targeting different biological models. In-silico studies include drug-likeliness, pharmacokinetics, toxicity, molecular targets and cytotoxicity to cancer cell lines predictions. In silico directed preliminary in-vitro evaluation comprised of cancer/normal cell cytotoxicity, DPPH and protein kinase inhibition assays while in-vivo bioactivities include antiinflammatory, analgesic, antidepressant and anticoagulant assays. Pharmacological findings were strengthened by molecular docking studies to check interactions with various proteins and to propose the future path of studies. Results indicated compliance with Lipinski drug-likeliness rule (score −0.55). ADMET prediction showed strong plasma protein binding, GI absorption (Caco-2 cells permeability = 46.74 nm/s), blood brain barrier penetration (Cbrain/Cblood = 0.31), efflux by P-glycoprotein, metabolism by CYP1A2, CYP2C19 and CYP3A4, medium hERG inhibition and non-carcinogenicity in rodents. Predicted molecular targets included mainly receptors (glucocorticoid, kappa opioid, delta opioid, adrenergic and dopamine), oxidoreductase (arachidonate 5-lipoxygenase and cyclooxygenase-2), enzymes (HMG-CoA reductase) and kinase (NFκb). Withametelin was more cytotoxic to cancer cells (DU145 IC50 7.67 ± 0.54 µM) than normal lymphocytes (IC50 33.55 ± 1.31 µM). It also showed good antioxidant and protein kinase inhibition potentials. Furthermore, withametelin (20 mg/kg) significantly reduced inflammatory paw edema (68.94 ± 5.55%), heat-induced pain (78.94 ± 6.87%) and immobility time (50%) in animals. Molecular docking showed hydrogen bonding interactions (binding energies: −11.3 to −7.8 kcal/mol) with arachidonate 5 lipoxygenase, NFκb and glucocorticoid receptor. Withametelin has potential for advance investigations for its cytotoxic, anti-inflammatory, analgesic and antidepressant activities.
Collapse
|
11
|
Yu TJ, Tang JY, Lin LC, Lien WJ, Cheng YB, Chang FR, Ou-Yang F, Chang HW. Withanolide C Inhibits Proliferation of Breast Cancer Cells via Oxidative Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel) 2020; 9:antiox9090873. [PMID: 32947878 PMCID: PMC7555407 DOI: 10.3390/antiox9090873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Some withanolides, particularly the family of steroidal lactones, show anticancer effects, but this is rarely reported for withanolide C (WHC)—especially anti-breast cancer effects. The subject of this study is to evaluate the ability of WHC to regulate the proliferation of breast cancer cells, using both time and concentration in treatment with WHC. In terms of ATP depletion, WHC induced more antiproliferation to three breast cancer cell lines, SKBR3, MCF7, and MDA-MB-231, than to normal breast M10 cell lines. SKBR3 and MCF7 cells showing higher sensitivity to WHC were used to explore the antiproliferation mechanism. Flow cytometric apoptosis analyses showed that subG1 phase and annexin V population were increased in breast cancer cells after WHC treatment. Western blotting showed that cleaved forms of the apoptotic proteins poly (ADP-ribose) polymerase (c-PARP) and cleaved caspase 3 (c-Cas 3) were increased in breast cancer cells. Flow cytometric oxidative stress analyses showed that WHC triggered reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX) production as well as glutathione depletion. In contrast, normal breast M10 cells showed lower levels of ROS and annexin V expression than breast cancer cells. Flow cytometric DNA damage analyses showed that WHC triggered γH2AX and 8-oxo-2′-deoxyguanosine (8-oxodG) expression in breast cancer cells. Moreover, N-acetylcysteine (NAC) pretreatment reverted oxidative stress-mediated ATP depletion, apoptosis, and DNA damage. Therefore, WHC kills breast cancer cells depending on oxidative stress-associated mechanisms.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Wan-Ju Lien
- Department of Biomedical Science and Environmental Biology, Ph.D Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
| | - Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-B.C.); (F.-R.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: or (F.O.-Y.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (F.O.-Y.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
12
|
Akhtar N, Baig MW, Haq IU, Rajeeve V, Cutillas PR. Withanolide Metabolites Inhibit PI3K/AKT and MAPK Pro-Survival Pathways and Induce Apoptosis in Acute Myeloid Leukemia Cells. Biomedicines 2020; 8:E333. [PMID: 32899914 PMCID: PMC7555989 DOI: 10.3390/biomedicines8090333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease and, despite advances, its treatment remains challenging. Therefore, it remains important to identify new agents for the management of this disease. Withanolides, a group of steroidal lactones found in Solanaceae plants are of potential interest due to their reported anticancer activities in different settings. In this study we investigated the anti-proliferative effects and mode of action of Solanaceae-derived withanolides in AML cell models; these metabolites include withametelin (WTH) and Coagulansin A (CoA) isolated from Datura innoxia and Withania coagluanse, respectively. Both withanolides inhibited the proliferation of AML cells and induced cell death, with WTH being more potent than CoA in the AML models tested. Quantitative label-free proteomics and phosphoproteomics were employed to define the mechanism of action of the studied withanolides. We identified and quantified 5269 proteins and 17,482 phosphosites in cells treated with WTH, CoA or vehicle control. Withanolides modulated the expression of proteins involved in regulating key cellular processes including cell cycle, metabolism, signaling, protein degradation and gene expression. Enrichment analysis of the phosphoproteomics data against kinase substrates, kinase-kinase relationships and canonical pathways showed that the withanolides decreased the activity of kinases such as phosphoinositide 3-kinase (PI3K), protein kinase B (PKB; also known as RAC-alpha serine/threonine-protein kinase or AKT), mammalian target of rapamycin (mTOR), extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and the serine/threonine-protein kinase A-Raf (ARAF), while increasing the activation of DNA repair kinases. These results indicate that withanolide metabolites have pleiotropic effects in the modulation of oncogenic pro-survival and pro-apoptotic signaling pathways that regulate the induction of apoptosis. Withanolide mediated apoptosis was confirmed by immunoblotting showing increased expression of cleaved PARP and Caspases 3, 8 and 9 as a result of treatment. Overall, our results suggest that WTH and CoA have therapeutic potential against AML with WTH exhibiting more potent effects and should be explored further.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Cell Signalling and Proteomics Group, Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Waleed Baig
- Department of Pharmacy, Quaid-e-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-u.H.)
| | - Ihsan-ul Haq
- Department of Pharmacy, Quaid-e-Azam University, Islamabad 45320, Pakistan; (M.W.B.); (I.-u.H.)
| | - Vinothini Rajeeve
- Cell Signalling and Proteomics Group, Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Pedro Rodriguez Cutillas
- Cell Signalling and Proteomics Group, Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| |
Collapse
|
13
|
Hassannia B, Logie E, Vandenabeele P, Vanden Berghe T, Vanden Berghe W. Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol 2020; 173:113602. [DOI: 10.1016/j.bcp.2019.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 12/26/2022]
|
14
|
Yan Z, Guo R, Gan L, Lau WB, Cao X, Zhao J, Ma X, Christopher TA, Lopez BL, Wang Y. Withaferin A inhibits apoptosis via activated Akt-mediated inhibition of oxidative stress. Life Sci 2018; 211:91-101. [PMID: 30213729 DOI: 10.1016/j.lfs.2018.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/16/2022]
Abstract
Withaferin A (WFA), a withanolide derived from medicinal plant Withania somnifera, possesses anti-tumorigenic and immunomodulatory activities against various cancer cells. However, the role of WFA in myocardial ischemia reperfusion (MI/R) injury remains unclear. In the present study, we determined whether WFA may regulate cardiac ischemia reperfusion injury and elucidate the underlying mechanisms. We demonstrated that WFA enhanced H9c2 cells survival ability against simulated ischemia/reperfusion (SI/R) or hydrogen peroxide (H2O2)-induced cell apoptosis. In addition, the enhanced oxidative stress induced by SI/R was inhibited by WFA. Among the multiple antioxidant molecules determined, antioxidants SOD2, SOD3, Prdx-1 was obviously upregulated by WFA. When Akt inhibitor IV was administrated, WFA's suppression effect on oxidative stress was obviously abolished. Additional experiments demonstrated that WFA successfully inhibited H2O2 induced upregulation of SOD2, SOD3, and Prdx-1, ameliorated cardiomyocyte caspase-3 activity via an Akt dependent manner. Collectively, these results support the therapeutic potential of WFA against cardiac ischemia reperfusion injury and highlight the application of WFA in cardiovascular diseases holding great promise for the future.
Collapse
Affiliation(s)
- Zheyi Yan
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America; Department of Ophthalmology, The First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui Guo
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Xiaoming Cao
- Department of Physiology, Shanxi Medical University, Shanxi, China
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Xinliang Ma
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Theodore A Christopher
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Bernard L Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Yajing Wang
- Department of Physiology, Shanxi Medical University, Shanxi, China; Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States of America.
| |
Collapse
|
15
|
Natural Withanolides in the Treatment of Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:329-373. [PMID: 27671823 PMCID: PMC7121644 DOI: 10.1007/978-3-319-41334-1_14] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Withanolides, and in particular extracts from Withania somnifera, have been used for over 3,000 years in traditional Ayurvedic and Unani Indian medical systems as well as within several other Asian countries. Traditionally, the extracts were ascribed a wide range of pharmacologic properties with corresponding medical uses, including adaptogenic, diuretic, anti-inflammatory, sedative/anxiolytic, cytotoxic, antitussive, and immunomodulatory. Since the discovery of the archetype withaferin A in 1965, approximately 900 of these naturally occurring, polyoxygenated steroidal lactones with 28-carbon ergostane skeletons have been discovered across 24 diverse structural types. Subsequently, extensive pharmacologic research has identified multiple mechanisms of action across key inflammatory pathways. In this chapter we identify and describe the major withanolides with anti-inflammatory properties, illustrate their role within essential and supportive inflammatory pathways (including NF-κB, JAK/STAT, AP-1, PPARγ, Hsp90 Nrf2, and HIF-1), and then discuss the clinical application of these withanolides in inflammation-mediated chronic diseases (including arthritis, autoimmune, cancer, neurodegenerative, and neurobehavioral). These naturally derived compounds exhibit remarkable biologic activity across these complex disease processes, while showing minimal adverse effects. As novel compounds and analogs continue to be discovered, characterized, and clinically evaluated, the interest in withanolides as a novel therapeutic only continues to grow.
Collapse
|