1
|
Zhang J, Zhu Y, Zhang M, Yan J, Zheng Y, Yao L, Li Z, Shao Z, Chen Y. Potassium channels in depression: emerging roles and potential targets. Cell Biosci 2024; 14:136. [PMID: 39529121 PMCID: PMC11555980 DOI: 10.1186/s13578-024-01319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Potassium ion channels play a fundamental role in regulating cell membrane repolarization, modulating the frequency and shape of action potentials, and maintaining the resting membrane potential. A growing number of studies have indicated that dysfunction in potassium channels associates with the pathogenesis and treatment of depression. However, the involvement of potassium channels in the onset and treatment of depression has not been thoroughly summarized. In this review, we performed a comprehensive analysis of the association between multiple potassium channels and their roles in depression, and compiles the SNP loci of potassium channels associated with depression, as well as antidepressant drugs that target these channels. We discussed the pivotal role of potassium channels in the treatment of depression, provide valuable insights into new therapeutic targets for antidepressant treatment and critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jiahao Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yao Zhu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanjia Zheng
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ziwei Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zihan Shao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Andersen HK, Vardakas DG, Lamothe JA, Perault TEA, Walsh KB, Laprairie RB. Comparing CB1 receptor GIRK channel responses to receptor internalization using a kinetic imaging assay. Sci Rep 2024; 14:18314. [PMID: 39112591 PMCID: PMC11306342 DOI: 10.1038/s41598-024-68451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The type 1 cannabinoid receptor (CB1R) mediates neurotransmitter release and synaptic plasticity in the central nervous system. Endogenous, plant-derived, synthetic cannabinoids bind to CB1R, initiating the inhibitory G-protein (Gi) and the β-arrestin signaling pathways. Within the Gi signaling pathway, CB1R activates G protein-gated, inwardly-rectifying potassium (GIRK) channels. The β-arrestin pathway reduces CB1R expression on the cell surface through receptor internalization. Because of their association with analgesia and drug tolerance, GIRK channels and receptor internalization are of interest to the development of pharmaceuticals. This research used immortalized mouse pituitary gland cells transduced with a pH-sensitive, fluorescently-tagged human CB1R (AtT20-SEPCB1) to measure GIRK channel activity and CB1R internalization. Cannabinoid-induced GIRK channel activity is measured by using a fluorescent membrane-potential sensitive dye. We developed a kinetic imaging assay that visualizes and measures CB1R internalization. All cannabinoids stimulated a GIRK channel response with a rank order potency of WIN55,212-2 > (±)CP55,940 > Δ9-THC > AEA. Efficacy was expressed relative to (±)CP55,940 with a rank order efficacy of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. All cannabinoids stimulated CB1R internalization with a rank order potency of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. Internalization efficacy was normalized to (±)CP55,940 with a rank order efficacy of WIN55,212-2 > AEA > (±)CP55,940 > Δ9-THC. (±)CP55,940 was significantly more potent and efficacious than AEA and Δ9-THC at stimulating a GIRK channel response; no significant differences between potency and efficacy were observed with CB1R internalization. No significant differences were found when comparing a cannabinoid's GIRK channel and CB1R internalization response. In conclusion, AtT20-SEPCB1 cells can be used to assess cannabinoid-induced CB1R internalization. While cannabinoids display differential Gi signaling when compared to each other, this did not extend to CB1R internalization.
Collapse
Affiliation(s)
- Haley K Andersen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Duncan G Vardakas
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Julie A Lamothe
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tannis E A Perault
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kenneth B Walsh
- Pharmacology, Physiology, and Neuroscience, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
3
|
Huang Z, Song E, Chen Z, Yu P, Chen W, Lin H. Integrated bioinformatics analysis for exploring potential biomarkers related to Parkinson's disease progression. BMC Med Genomics 2024; 17:133. [PMID: 38760670 PMCID: PMC11100188 DOI: 10.1186/s12920-024-01885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disease with increasing prevalence. Effective diagnostic markers and therapeutic methods are still lacking. Exploring key molecular markers and mechanisms for PD can help with early diagnosis and treatment improvement. METHODS Three datasets GSE174052, GSE77668, and GSE168496 were obtained from the GEO database to search differentially expressed circRNA (DECs), miRNAs (DEMis), and mRNAs (DEMs). GO and KEGG enrichment analyses, and protein-protein interaction (PPI) network construction were implemented to explore possible actions of DEMs. Hub genes were selected to establish circRNA-related competing endogenous RNA (ceRNA) networks. RESULTS There were 1005 downregulated DECs, 21 upregulated and 21 downregulated DEMis, and 266 upregulated and 234 downregulated DEMs identified. The DEMs were significantly enriched in various PD-associated functions and pathways such as extracellular matrix organization, dopamine synthesis, PI3K-Akt, and calcium signaling pathways. Twenty-one hub genes were screened out, and a PD-related ceRNA regulatory network was constructed containing 31 circRNAs, one miRNA (miR-371a-3p), and one hub gene (KCNJ6). CONCLUSION We identified PD-related molecular markers and ceRNA regulatory networks, providing new directions for PD diagnosis and treatment.
Collapse
Affiliation(s)
- Zhenchao Huang
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China.
| | - En'peng Song
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Zhijie Chen
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Peng Yu
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Weiwen Chen
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Huiqin Lin
- Guangzhou BiDa Biological Technology CO., LTD, Guangzhou, 510530, Guangdong, China
| |
Collapse
|
4
|
Prytkova I, Liu Y, Fernando M, Gameiro-Ros I, Popova D, Kamarajan C, Xuei X, Chorlian DB, Edenberg HJ, Tischfield JA, Porjesz B, Pang ZP, Hart RP, Goate A, Slesinger PA. Upregulated GIRK2 Counteracts Ethanol-Induced Changes in Excitability and Respiration in Human Neurons. J Neurosci 2024; 44:e0918232024. [PMID: 38350999 PMCID: PMC11026340 DOI: 10.1523/jneurosci.0918-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Genome-wide association studies (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified noncoding polymorphisms within the KCNJ6 gene. KCNJ6 encodes GIRK2, a subunit of a G-protein-coupled inwardly rectifying potassium channel that regulates neuronal excitability. We studied the effect of upregulating KCNJ6 using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors). Using multielectrode arrays, population calcium imaging, single-cell patch-clamp electrophysiology, and mitochondrial stress tests, we find that elevated GIRK2 acts in concert with 7-21 d of ethanol exposure to inhibit neuronal activity, to counteract ethanol-induced increases in glutamate response, and to promote an increase intrinsic excitability. Furthermore, elevated GIRK2 prevented ethanol-induced changes in basal and activity-dependent mitochondrial respiration. These data support a role for GIRK2 in mitigating the effects of ethanol and a previously unknown connection to mitochondrial function in human glutamatergic neurons.
Collapse
Affiliation(s)
- Iya Prytkova
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yiyuan Liu
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael Fernando
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Isabel Gameiro-Ros
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Chella Kamarajan
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
| | - Xiaoling Xuei
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - David B Chorlian
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
| | - Howard J Edenberg
- Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jay A Tischfield
- Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Bernice Porjesz
- Department of Psychiatry & Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
| | - Zhiping P Pang
- Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Neuroscience and Cell Biology and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Alison Goate
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
5
|
Prytkova I, Liu Y, Fernando M, Gameiro-Ros I, Popova D, Kamarajan C, Xuei X, Chorlian DB, Edenberg HJ, Tischfield JA, Porjesz B, Pang ZP, Hart RP, Goate A, Slesinger PA. Upregulated GIRK2 counteracts ethanol-induced changes in excitability & respiration in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.22.533236. [PMID: 36993693 PMCID: PMC10055374 DOI: 10.1101/2023.03.22.533236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome-wide association analysis (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified non-coding polymorphisms within the KCNJ6 gene. KCNJ6 encodes GIRK2, a subunit of a G protein-coupled inwardly-rectifying potassium channel that regulates neuronal excitability. How changes in GIRK2 affect human neuronal excitability and the response to repeated ethanol exposure is poorly understood. Here, we studied the effect of upregulating KCNJ6 using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors). Using multi-electrode-arrays, population calcium imaging, single-cell patch-clamp electrophysiology, and mitochondrial stress tests, we find that elevated GIRK2 acts in concert with 7-21 days of ethanol exposure to inhibit neuronal activity, to counteract ethanol-induced increases in glutamate response, and to promote an increase intrinsic excitability. Furthermore, elevated GIRK2 prevented ethanol-dependent changes in basal and activity-dependent mitochondrial respiration. These data support a role for GIRK2 in mitigating the effects of ethanol and a previously unknown connection to mitochondrial function in human glutamatergic neurons. SIGNIFICANCE STATEMENT Alcohol use disorder (AUD) is a major health problem that has worsened since COVID, affecting over 100 million people worldwide. While it is known that heritability contributes to AUD, specific genes and their role in neuronal function remain poorly understood, especially in humans. In the current manuscript, we focused on the inwardly-rectifying potassium channel GIRK2, which has been identified in an AUD-endophenotype genome-wide association study. We used human excitatory neurons derived from healthy donors to study the impact of GIRK2 expression. Our results reveal that elevated GIRK2 counteracts ethanol-induced increases in glutamate response and intracellular calcium, as well as deficits in activity-dependent mitochondrial respiration. The role of GIRK2 in mitigating ethanol-induced hyper-glutamatergic and mitochondrial offers therapeutic promise for treating AUD.
Collapse
|
6
|
Martinez JD, Brancaleone WP, Peterson KG, Wilson LG, Aton SJ. Atypical hypnotic compound ML297 restores sleep architecture immediately following emotionally valenced learning, to promote memory consolidation and hippocampal network activation during recall. Sleep 2023; 46:zsac301. [PMID: 36510822 PMCID: PMC9995787 DOI: 10.1093/sleep/zsac301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Sleep plays a critical role in consolidating many forms of hippocampus-dependent memory. While various classes of hypnotic drugs have been developed in recent years, it remains unknown whether, or how, some of them affect sleep-dependent memory consolidation mechanisms. We find that ML297, a recently developed candidate hypnotic agent targeting a new mechanism (activating GIRK1/2-subunit containing G-protein coupled inwardly rectifying potassium [GIRK] channels), alters sleep architecture in mice over the first 6 hr following a single-trial learning event. Following contextual fear conditioning (CFC), ML297 reversed post-CFC reductions in NREM sleep spindle power and REM sleep amounts and architecture, renormalizing sleep features to what was observed at baseline, prior to CFC. Renormalization of post-CFC REM sleep latency, REM sleep amounts, and NREM spindle power were all associated with improved contextual fear memory (CFM) consolidation. We find that improvements in CFM consolidation due to ML297 are sleep-dependent, and are associated with increased numbers of highly activated dentate gyrus (DG), CA1, and CA3 neurons during CFM recall. Together our findings suggest that GIRK1/2 channel activation restores normal sleep architecture- including REM sleep, which is normally suppressed following CFC-and increases the number of hippocampal neurons incorporated into the CFM engram during memory consolidation.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William P Brancaleone
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn G Peterson
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Zhou Y, Li Z, Chi C, Li C, Yang M, Liu B. Identification of Hub Genes and Potential Molecular Pathogenesis in Substantia Nigra in Parkinson's Disease via Bioinformatics Analysis. PARKINSON'S DISEASE 2023; 2023:6755569. [PMID: 37089789 PMCID: PMC10121343 DOI: 10.1155/2023/6755569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/23/2023] [Accepted: 03/25/2023] [Indexed: 04/25/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with significant socioeconomic burdens. One of the crucial pathological features of PD is the loss of dopaminergic neurons in the substantia nigra (SN). However, the exact pathogenesis remains unknown. Moreover, therapies to prevent neurodegenerative progress are still being explored. We performed bioinformatics analysis to identify candidate genes and molecular pathogenesis in the SN of patients with PD. We analyzed the expression profiles, GSE49036 and GSE7621, which included 31 SN tissues in PD samples and 17 SN tissues in healthy control samples, and identified 86 common differentially expressed genes (DEGs). Then, GO and KEGG pathway analyses of the identified DEGs were performed to understand the biological processes and significant pathways of PD. Subsequently, a protein-protein interaction network was established, with 15 hub genes and four key modules which were screened in this network. The expression profiles, GSE8397 and GSE42966, were used to verify these hub genes. We demonstrated a decrease in the expression levels of 14 hub genes in the SN tissues of PD samples. Our results indicated that, among the 14 hub genes, DRD2, SLC18A2, and SLC6A3 may participate in the pathogenesis of PD by influencing the function of the dopaminergic synapse. CACNA1E, KCNJ6, and KCNB1 may affect the function of the dopaminergic synapse by regulating ion transmembrane transport. Moreover, we identified eight microRNAs (miRNAs) that can regulate the hub genes and 339 transcription factors (TFs) targeting these hub genes and miRNAs. Subsequently, we established an mTF-miRNA-gene-gTF regulatory network. Together, the identification of DEGs, hub genes, miRNAs, and TFs could provide better insights into the pathogenesis of PD and contribute to the diagnosis and therapies.
Collapse
Affiliation(s)
- Yunan Zhou
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Chunling Chi
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Chunmei Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Meimei Yang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Bin Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
8
|
Ho AMC, Peyton MP, Scaletty SJ, Trapp S, Schreiber A, Madden BJ, Choi DS, Matthews DB. Chronic Intermittent Ethanol Exposure Alters Behavioral Flexibility in Aged Rats Compared to Adult Rats and Modifies Protein and Protein Pathways Related to Alzheimer's Disease. ACS OMEGA 2022; 7:46260-46276. [PMID: 36570296 PMCID: PMC9774340 DOI: 10.1021/acsomega.2c04528] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Repeated excessive alcohol consumption increases the risk of developing cognitive decline and dementia. Hazardous drinking among older adults further increases such vulnerabilities. To investigate whether alcohol induces cognitive deficits in older adults, we performed a chronic intermittent ethanol exposure paradigm (ethanol or water gavage every other day 10 times) in 8-week-old young adult and 70-week-old aged rats. While spatial memory retrieval ascertained by probe trials in the Morris water maze was not significantly different between ethanol-treated and water-treated rats in both age groups after the fifth and tenth gavages, behavioral flexibility was impaired in ethanol-treated rats compared to water-treated rats in the aged group but not in the young adult group. We then examined ethanol-treatment-associated hippocampal proteomic and phosphoproteomic differences distinct in the aged rats. We identified several ethanol-treatment-related proteins, including the upregulations of the Prkcd protein level, several of its phosphosites, and its kinase activity and downregulation in the Camk2a protein level. Our bioinformatic analysis revealed notable changes in pathways involved in neurotransmission regulation, synaptic plasticity, neuronal apoptosis, and insulin receptor signaling. In conclusion, our behavioral and proteomic results identified several candidate proteins and pathways potentially associated with alcohol-induced cognitive decline in aged adults.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Mina P. Peyton
- Bioinformatics
and Computational Biology Program, University
of Minnesota, Minneapolis, Minnesota55455, United States
| | - Samantha J. Scaletty
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Sarah Trapp
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Areonna Schreiber
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Benjamin J. Madden
- Mayo
Clinic Proteomics Core, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Doo-Sup Choi
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Douglas B. Matthews
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| |
Collapse
|
9
|
Martín-Belmonte A, Aguado C, Alfaro-Ruiz R, Moreno-Martínez AE, de la Ossa L, Aso E, Gómez-Acero L, Shigemoto R, Fukazawa Y, Ciruela F, Luján R. Nanoscale alterations in GABAB receptors and GIRK channel organization on the hippocampus of APP/PS1 mice. Alzheimers Res Ther 2022; 14:136. [PMID: 36131327 PMCID: PMC9490896 DOI: 10.1186/s13195-022-01078-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022]
Abstract
Alzheimer’s disease (AD) is characterized by a reorganization of brain activity determining network hyperexcitability and loss of synaptic plasticity. Precisely, a dysfunction in metabotropic GABAB receptor signalling through G protein-gated inwardly rectifying K+ (GIRK or Kir3) channels on the hippocampus has been postulated. Thus, we determined the impact of amyloid-β (Aβ) pathology in GIRK channel density, subcellular distribution, and its association with GABAB receptors in hippocampal CA1 pyramidal neurons from the APP/PS1 mouse model using quantitative SDS-digested freeze-fracture replica labelling (SDS-FRL) and proximity ligation in situ assay (P-LISA). In wild type mice, single SDS-FRL detection revealed a similar dendritic gradient for GIRK1 and GIRK2 in CA1 pyramidal cells, with higher densities in spines, and GIRK3 showed a lower and uniform distribution. Double SDS-FRL showed a co-clustering of GIRK2 and GIRK1 in post- and presynaptic compartments, but not for GIRK2 and GIRK3. Likewise, double GABAB1 and GIRK2 SDS-FRL detection displayed a high degree of co-clustering in nanodomains (40–50 nm) mostly in spines and axon terminals. In APP/PS1 mice, the density of GIRK2 and GIRK1, but not for GIRK3, was significantly reduced along the neuronal surface of CA1 pyramidal cells and in axon terminals contacting them. Importantly, GABAB1 and GIRK2 co-clustering was not present in APP/PS1 mice. Similarly, P-LISA experiments revealed a significant reduction in GABAB1 and GIRK2 interaction on the hippocampus of this animal model. Overall, our results provide compelling evidence showing a significant reduction on the cell surface density of pre- and postsynaptic GIRK1 and GIRK2, but not GIRK3, and a decline in GABAB receptors and GIRK2 channels co-clustering in hippocampal pyramidal neurons from APP/PS1 mice, thus suggesting that a disruption in the GABAB receptor–GIRK channel membrane assembly causes dysregulation in the GABAB signalling via GIRK channels in this AD animal model.
Collapse
|
10
|
Kleschevnikov AM. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 2022; 13:1006068. [PMID: 36171878 PMCID: PMC9510977 DOI: 10.3389/fgene.2022.1006068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems. Consequently, relatively mild initial cognitive deficits become pronounced with age. This pattern of changes suggests that one approach to improving cognitive function in DS is to target the earliest critical changes, the prevention of which can change the ‘trajectory’ of the brain development and reduce the destructive effects of the secondary alterations. Here, we review the experimental data on the role of KCNJ6 in DS-specific brain abnormalities, focusing on a putative role of this gene in the development of abnormal neural circuits in the hippocampus of genetic mouse models of DS. It is suggested that the prevention of these early abnormalities with pharmacological or genetic means can ameliorate cognitive impairment in DS.
Collapse
|
11
|
Choudhury SP, Bano S, Sen S, Suchal K, Kumar S, Nikolajeff F, Dey SK, Sharma V. Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:66. [PMID: 35650269 PMCID: PMC9160246 DOI: 10.1038/s41531-022-00324-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurological disorder that affects the movement of the human body. It is primarily characterized by reduced dopamine levels in the brain. The causative agent of PD is still unclear but it is generally accepted that α-synuclein has a central role to play. It is also known that gap-junctions and associated connexins are complicated structures that play critical roles in nervous system signaling and associated misfunctioning. Thus, our current article emphasizes how, alongside α-synuclein, ion-channels, gap-junctions, and related connexins, all play vital roles in influencing multiple metabolic activities of the brain during PD. It also highlights that ion-channel and gap-junction disruptions, which are primarily mediated by their structural-functional changes and alterations, have a role in PD. Furthermore, we discussed available drugs and advanced therapeutic interventions that target Parkinson's pathogenesis. In conclusion, it warrants creating better treatments for PD patients. Although, dopaminergic replenishment therapy is useful in treating neurological problems, such therapies are, however, unable to control the degeneration that underpins the disease, thereby declining their overall efficacy. This creates an additional challenge and an untapped scope for neurologists to adopt treatments for PD by targeting the ion-channels and gap-junctions, which is well-reviewed in the present article.
Collapse
Affiliation(s)
- Saptamita Paul Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Sarika Bano
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Srijon Sen
- Indian Institute of Technology-Kharagpur, Kharagpur, 721302, India
| | - Kapil Suchal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Saroj Kumar
- Deparment of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
12
|
Stafford AM, Yamamoto BK, Phillips TJ. Combined and sequential effects of alcohol and methamphetamine in animal models. Neurosci Biobehav Rev 2021; 131:248-269. [PMID: 34543650 PMCID: PMC8642292 DOI: 10.1016/j.neubiorev.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
Comorbid drug use, often alcohol with other drugs, poses significant health and societal concerns. Methamphetamine is among the illicit drugs most often co-used with alcohol. The current review examines the animal literature for impacts of comorbid alcohol and methamphetamine exposure. We found evidence for additive or synergistic effects of combined or sequential exposure on behavior and physiology. Dopaminergic, serotonergic, and glutamatergic systems are all impacted by combined exposure to alcohol and methamphetamine and cyclooxygenase-2 activity plays an important role in their combined neurotoxic effects. Adverse consequences of comorbid exposure include altered brain development with prenatal exposure, impaired learning and memory, motor deficits, gastrotoxicity, hepatotoxicity, and augmented intake under some conditions. Given high susceptibility to drug experimentation in adolescence, studies of co-exposure during the adolescent period and of how adolescent exposure to one drug impacts later use or sensitivity to the other drug should be a priority. Further, to gain traction on prevention and treatment, additional research to identify motivational and neurobiological drivers and consequences of comorbid use is needed.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Bryan K Yamamoto
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
13
|
Identification of Molecular Markers of Clozapine Action in Ketamine-Induced Cognitive Impairment: A GPCR Signaling PathwayFinder Study. Int J Mol Sci 2021; 22:ijms222212203. [PMID: 34830086 PMCID: PMC8621432 DOI: 10.3390/ijms222212203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Cognitive disorders associated with schizophrenia are closely linked to prefrontal cortex (PFC) dysfunction. Administration of the non-competitive NMDA receptor antagonist ketamine (KET) induces cognitive impairment in animals, producing effects similar to those observed in schizophrenic patients. In a previous study, we showed that KET (20 mg/kg) induces cognitive deficits in mice and that administration of clozapine (CLZ) reverses this effect. To identify biochemical mechanisms related to CLZ actions in the context of KET-induced impairment, we performed a biochemical analysis using the same experimental paradigm—acute and sub-chronic administration of these drugs (0.3 and 1 mg/kg). Methods: Since the effect of CLZ mainly depends on G-protein-related receptors, we used the Signaling PathwayFinder Kit to identify 84 genes involved in GPCR-related signal transduction and then verified the genes that were statistically significantly different on a larger group of mice using RT-PCR and Western blot analyses after the administration of acute and sub-chronic drugs. Results: Of the 84 genes involved in GPCR-related signal transduction, the expression of six, βarrestin1, βarrestin2, galanin receptor 2 (GalR2), dopamine receptor 2 (DRD2), metabotropic glutamate receptor 1 (mGluR1), and metabotropic glutamate receptor 5 (mGluR5), was significantly altered. Since these genes affect the levels of other signaling proteins, e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), G protein-coupled receptor kinase 2 (Grk2), and G protein-gated inwardly rectifying potassium 3 (Girk3), we determined their levels in PFC using Western blot. Most of the observed changes occurred after acute treatment with 0.3 mg/kg CLZ. We showed that acute treatment with CLZ at a lower dose significantly increased βarrestin1 and ERK1/2. KET treatment induced the upregulation of βarrestin1. Joint administration of these drugs had no effect on the βarrestin1 level. Conclusion: The screening kit we used to study the expression of GPCR-related signal transduction allowed us to select several important genes affected by CLZ. However, the obtained data do not explain the mechanism of action of CLZ that is responsible for reversing KET-induced cognitive impairment.
Collapse
|
14
|
Daniel NH, Aravind A, Thakur P. Are ion channels potential therapeutic targets for Parkinson's disease? Neurotoxicology 2021; 87:243-257. [PMID: 34699791 DOI: 10.1016/j.neuro.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is primarily associated with the progressive neurodegeneration of the dopaminergic neurons in the substantia nigra region of the brain. The resulting motor symptoms are managed with the help of dopamine replacement therapies. However, these therapeutics do not prevent the neurodegeneration underlying the disease and therefore lose their effectiveness in managing disease symptoms over time. Thus, there is an urgent need to develop newer therapeutics for the benefit of patients. The release of dopamine and the firing activity of substantia nigra neurons is regulated by several ion channels that act in concert. Dysregulations of these channels cause the aberrant movement of various ions in the intracellular milieu. This eventually leads to disruption of intracellular signalling cascades, alterations in cellular homeostasis, and bioenergetic deficits. Therefore, ion channels play a central role in driving the high vulnerability of dopaminergic neurons to degenerate during PD. Targeting ion channels offers an attractive mechanistic strategy to combat the process of neurodegeneration. In this review, we highlight the evidence pointing to the role of various ion channels in driving the PD processes. In addition, we also discuss the various drugs or compounds that target the ion channels and have shown neuroprotective potential in the in-vitro and in-vivo models of PD. We also discuss the current clinical status of various drugs targeting the ion channels in the context of PD.
Collapse
Affiliation(s)
- Neha Hanna Daniel
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Ananya Aravind
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India
| | - Poonam Thakur
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
15
|
Alfaro-Ruiz R, Martín-Belmonte A, Aguado C, Hernández F, Moreno-Martínez AE, Ávila J, Luján R. The Expression and Localisation of G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels Is Differentially Altered in the Hippocampus of Two Mouse Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222011106. [PMID: 34681766 PMCID: PMC8541655 DOI: 10.3390/ijms222011106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels are the main targets controlling excitability and synaptic plasticity on hippocampal neurons. Consequently, dysfunction of GIRK-mediated signalling has been implicated in the pathophysiology of Alzheimer´s disease (AD). Here, we provide a quantitative description on the expression and localisation patterns of GIRK2 in two transgenic mice models of AD (P301S and APP/PS1 mice), combining histoblots and immunoelectron microscopic approaches. The histoblot technique revealed differences in the expression of GIRK2 in the two transgenic mice models. The expression of GIRK2 was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered in APP/PS1 mice at 12 months compared to age-matched wild type mice. Ultrastructural approaches using the pre-embedding immunogold technique, demonstrated that the subcellular localisation of GIRK2 was significantly reduced along the neuronal surface of CA1 pyramidal cells, but increased in its frequency at cytoplasmic sites, in both P301S and APP/PS1 mice. We also found a decrease in plasma membrane GIRK2 channels in axon terminals contacting dendritic spines of CA1 pyramidal cells in P301S and APP/PS1 mice. These data demonstrate for the first time a redistribution of GIRK channels from the plasma membrane to intracellular sites in different compartments of CA1 pyramidal cells. Altogether, the pre- and post-synaptic reduction of GIRK2 channels suggest that GIRK-mediated alteration of the excitability in pyramidal cells could contribute to the cognitive dysfunctions as described in the two AD animal models.
Collapse
Affiliation(s)
- Rocío Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Félix Hernández
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain; (F.H.); (J.Á.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain; (F.H.); (J.Á.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
- Correspondence: ; Tel.: +34-967-599200 (ext. 2196)
| |
Collapse
|
16
|
Bony AR, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic α-conotoxins modulate native and recombinant GIRK1/2 channels via activation of GABA B receptors and reduce neuroexcitability. Br J Pharmacol 2021; 179:179-198. [PMID: 34599513 DOI: 10.1111/bph.15690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of GIRK channels via G protein-coupled GABAB receptors has been shown to attenuate nociceptive transmission. The analgesic α-conotoxin Vc1.1 activates GABAB receptors resulting in inhibition of Cav 2.2 and Cav 2.3 channels in mammalian primary afferent neurons. Here, we investigated the effects of analgesic α-conotoxins on recombinant and native GIRK-mediated K+ currents and on neuronal excitability. EXPERIMENTAL APPROACH The effects of analgesic α-conotoxins, Vc1.1, RgIA, and PeIA, were investigated on inwardly-rectifying K+ currents in HEK293T cells recombinantly co-expressing either heteromeric human GIRK1/2 or homomeric GIRK2 subunits, with GABAB receptors. The effects of α-conotoxin Vc1.1 and baclofen were studied on GIRK-mediated K+ currents and the passive and active electrical properties of adult mouse dorsal root ganglion neurons. KEY RESULTS Analgesic α-conotoxins Vc1.1, RgIA, and PeIA potentiate inwardly-rectifying K+ currents in HEK293T cells recombinantly expressing human GIRK1/2 channels and GABAB receptors. GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen occurs via a pertussis toxin-sensitive G protein and is inhibited by the selective GABAB receptor antagonist CGP 55845. In adult mouse dorsal root ganglion neurons, GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen hyperpolarizes the cell membrane potential and reduces excitability. CONCLUSIONS AND IMPLICATIONS This is the first report of GIRK channel potentiation via allosteric α-conotoxin Vc1.1-GABAB receptor agonism, leading to decreased neuronal excitability. Such action potentially contributes to the analgesic effects of Vc1.1 and baclofen observed in vivo.
Collapse
Affiliation(s)
- Anuja R Bony
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
17
|
van Aalst E, Wylie BJ. Cholesterol Is a Dose-Dependent Positive Allosteric Modulator of CCR3 Ligand Affinity and G Protein Coupling. Front Mol Biosci 2021; 8:724603. [PMID: 34490352 PMCID: PMC8417553 DOI: 10.3389/fmolb.2021.724603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/14/2021] [Indexed: 01/14/2023] Open
Abstract
Cholesterol as an allosteric modulator of G protein-coupled receptor (GPCR) function is well documented. This quintessential mammalian lipid facilitates receptor–ligand interactions and multimerization states. Functionally, this introduces a complicated mechanism for the homeostatic modulation of GPCR signaling. Chemokine receptors are Class A GPCRs responsible for immune cell trafficking through the binding of endogenous peptide ligands. CCR3 is a CC motif chemokine receptor expressed by eosinophils and basophils. It traffics these cells by transducing the signal stimulated by the CC motif chemokine primary messengers 11, 24, and 26. These behaviors are close to the human immunoresponse. Thus, CCR3 is implicated in cancer metastasis and inflammatory conditions. However, there is a paucity of experimental evidence linking the functional states of CCR3 to the molecular mechanisms of cholesterol–receptor cooperativity. In this vein, we present a means to combine codon harmonization and a maltose-binding protein fusion tag to produce CCR3 from E. coli. This technique yields ∼2.6 mg of functional GPCR per liter of minimal media. We leveraged this protein production capability to investigate the effects of cholesterol on CCR3 function in vitro. We found that affinity for the endogenous ligand CCL11 increases in a dose-dependent manner with cholesterol concentration in both styrene:maleic acid lipid particles (SMALPs) and proteoliposomes. This heightened receptor activation directly translates to increased signal transduction as measured by the GTPase activity of the bound G-protein α inhibitory subunit 3 (Gαi3). This work represents a critical step forward in understanding the role of cholesterol-GPCR allostery in regulation of signal transduction.
Collapse
Affiliation(s)
- Evan van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
18
|
Djebari S, Iborra-Lázaro G, Temprano-Carazo S, Sánchez-Rodríguez I, Nava-Mesa MO, Múnera A, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD. G-Protein-Gated Inwardly Rectifying Potassium (Kir3/GIRK) Channels Govern Synaptic Plasticity That Supports Hippocampal-Dependent Cognitive Functions in Male Mice. J Neurosci 2021; 41:7086-7102. [PMID: 34261700 PMCID: PMC8372024 DOI: 10.1523/jneurosci.2849-20.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 01/17/2023] Open
Abstract
The G-protein-gated inwardly rectifying potassium (Kir3/GIRK) channel is the effector of many G-protein-coupled receptors (GPCRs). Its dysfunction has been linked to the pathophysiology of Down syndrome, Alzheimer's and Parkinson's diseases, psychiatric disorders, epilepsy, drug addiction, or alcoholism. In the hippocampus, GIRK channels decrease excitability of the cells and contribute to resting membrane potential and inhibitory neurotransmission. Here, to elucidate the role of GIRK channels activity in the maintenance of hippocampal-dependent cognitive functions, their involvement in controlling neuronal excitability at different levels of complexity was examined in C57BL/6 male mice. For that purpose, GIRK activity in the dorsal hippocampus CA3-CA1 synapse was pharmacologically modulated by two drugs: ML297, a GIRK channel opener, and Tertiapin-Q (TQ), a GIRK channel blocker. Ex vivo, using dorsal hippocampal slices, we studied the effect of pharmacological GIRK modulation on synaptic plasticity processes induced in CA1 by Schaffer collateral stimulation. In vivo, we performed acute intracerebroventricular (i.c.v.) injections of the two GIRK modulators to study their contribution to electrophysiological properties and synaptic plasticity of dorsal hippocampal CA3-CA1 synapse, and to learning and memory capabilities during hippocampal-dependent tasks. We found that pharmacological disruption of GIRK channel activity by i.c.v. injections, causing either function gain or function loss, induced learning and memory deficits by a mechanism involving neural excitability impairments and alterations in the induction and maintenance of long-term synaptic plasticity processes. These results support the contention that an accurate control of GIRK activity must take place in the hippocampus to sustain cognitive functions.SIGNIFICANCE STATEMENT Cognitive processes of learning and memory that rely on hippocampal synaptic plasticity processes are critically ruled by a finely tuned neural excitability. G-protein-gated inwardly rectifying K+ (GIRK) channels play a key role in maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Here, we demonstrate that modulation of GIRK channels activity, causing either function gain or function loss, transforms high-frequency stimulation (HFS)-induced long-term potentiation (LTP) into long-term depression (LTD), inducing deficits in hippocampal-dependent learning and memory. Together, our data show a crucial GIRK-activity-mediated mechanism that governs synaptic plasticity direction and modulates subsequent hippocampal-dependent cognitive functions.
Collapse
Affiliation(s)
- Souhail Djebari
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Guillermo Iborra-Lázaro
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Sara Temprano-Carazo
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Irene Sánchez-Rodríguez
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Mauricio O Nava-Mesa
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
- Neuroscience Research Group (NEUROS), Universidad del Rosario, Bogotá, Colombia 111711
| | - Alejandro Múnera
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
- Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, Bogotá, Colombia 111321
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain 41013
| | | | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| |
Collapse
|
19
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
20
|
An D, Peigneur S, Tytgat J. WIN55,212-2, a Dual Modulator of Cannabinoid Receptors and G Protein-Coupled Inward Rectifier Potassium Channels. Biomedicines 2021; 9:484. [PMID: 33924979 PMCID: PMC8146939 DOI: 10.3390/biomedicines9050484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The coupling of cannabinoid receptors, CB1 and CB2, to G protein-coupled inward rectifier potassium channels, GIRK1 and GIRK2, modulates neuronal excitability in the human brain. The present study established and validated the functional expression in a Xenopus laevis oocyte expression system of CB1 and CB2 receptors, interacting with heteromeric GIRK1/2 channels and a regulator of G protein signaling, RGS4. This ex vivo system enables the discovery of a wide range of ligands interacting orthosterically or allosterically with CB1 and/or CB2 receptors. WIN55,212-2, a non-selective agonist of CB1 and CB2, was used to explore the CB1- or CB2-GIRK1/2-RGS4 signaling cascade. We show that WIN55,212-2 activates CB1 and CB2 at low concentrations whereas at higher concentrations it exerts a direct block of GIRK1/2. This illustrates a dual modulatory function, a feature not described before, which helps to explain the adverse effects induced by WIN55,212-2 in vivo. When comparing the effects with other typical cannabinoids such as Δ9-THC, CBD, CP55,940, and rimonabant, only WIN55,212-2 can significantly block GIRK1/2. Interestingly, the inward rectifier potassium channel, IRK1, a non-G protein-coupled potassium channel important for setting the resting membrane voltage and highly similar to GIRK1 and GIRK2, is not sensitive to WIN55,212-2, Δ9-THC, CBD, CP55,940, or rimonabant. From this, it is concluded that WIN55,212-2 selectively blocks GIRK1/2.
Collapse
Affiliation(s)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| |
Collapse
|
21
|
Lei S, Hu B, Rezagholizadeh N. Activation of V 1a vasopressin receptors excite subicular pyramidal neurons by activating TRPV1 and depressing GIRK channels. Neuropharmacology 2021; 190:108565. [PMID: 33891950 DOI: 10.1016/j.neuropharm.2021.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
Arginine vasopressin (AVP) is a nonapeptide that serves as a neuromodulator in the brain and a hormone in the periphery that regulates water homeostasis and vasoconstriction. The subiculum is the major output region of the hippocampus and an integral component in the networks that processes sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information. Whereas the subiculum expresses high densities of AVP-binding sites and AVP has been shown to increase the synaptic excitability of subicular pyramidal neurons, the underlying cellular and molecular mechanisms have not been determined. We found that activation of V1a receptors increased the excitability of subicular pyramidal neurons via activation of TRPV1 channels and depression of the GIRK channels. V1a receptor-induced excitation of subicular pyramidal neurons required the function of phospholipase Cβ, but was independent of intracellular Ca2+ release. Protein kinase C was responsible for AVP-mediated depression of GIRK channels, whereas degradation of phosphatidylinositol 4,5-bisphosphate was involved in V1a receptor-elicited activation of TRPV1 channels. Our results may provide one of the cellular and molecular mechanisms to explain the physiological functions of AVP in the brain.
Collapse
Affiliation(s)
- Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Neda Rezagholizadeh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| |
Collapse
|
22
|
Scaplen KM, Petruccelli E. Receptors and Channels Associated with Alcohol Use: Contributions from Drosophila. Neurosci Insights 2021; 16:26331055211007441. [PMID: 33870197 PMCID: PMC8020223 DOI: 10.1177/26331055211007441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Alcohol Use Disorder (AUD) is a debilitating disorder that manifests as problematic patterns of alcohol use. At the core of AUD's behavioral manifestations are the profound structural, physiological, cellular, and molecular effects of alcohol on the brain. While the field has made considerable progress in understanding the neuromolecular targets of alcohol we still lack a comprehensive understanding of alcohol's actions and effective treatment strategies. Drosophila melanogaster is a powerful model for investigating the neuromolecular targets of alcohol because flies model many of the core behavioral elements of AUD and offer a rich genetic toolkit to precisely reveal the in vivo molecular actions of alcohol. In this review, we focus on receptors and channels that are often targeted by alcohol within the brain. We discuss the general roles of these proteins, their role in alcohol-associated behaviors across species, and propose ways in which Drosophila models can help advance the field.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, USA
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
23
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
24
|
Takase C, Shirai K, Matsumura Y, Watanabe T, Watanabe A, Hirasawa-Inoue A, Mizuguchi T, Matsumoto N, Sugai K, Hayashi M. KCNT1-positive epilepsy of infancy with migrating focal seizures successfully treated with nonnarcotic antitussive drugs after treatment failure with quinidine: A case report. Brain Dev 2020; 42:607-611. [PMID: 32505479 DOI: 10.1016/j.braindev.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic encephalopathies resistant to antiepileptic drugs, therefore carrying an extremely poor neurodevelopmental outcome. KCNT1, encoding for a sodium-activated potassium channel (KCa4.1 channel), has recently been reported as the major gene responsible for EIMFS. Since gain of function is the only type of mutation identified in patients with EIMFS, quinidine, a partial antagonist of KCa4.1 channel, is considered as a potential candidate for targeted treatment of EIMFS. However, treatment results reported so far vary from seizure-free state to no response, and cardiac side effect remains a challenge for dose titration and long-term treatment. CASE REPORT Our case was an infant diagnosed with EIMFS with confirmed mutation in KCNT1 gene. Quinidine therapy was started as early as 9 months old. Within the first month of treatment, the number of seizures reduced to about one third. However, seizure-free state was not obtained and his neuropsychological development remained severely delayed. After 16 months of treatment, quinidine had to be discontinued because of cardiac side effects. At 27 months of age, however, his seizures suddenly stopped and he remained seizure-free for five days. This coincided with the prescription of tipepidine, a commonly used antitussive, administered for his persistent cough. Reduction in seizure frequency was also observed with dextromethorphan, another conventional antitussive drug. Although the relation between these treatments and his symptom improvement is a matter of elucidation, there is a possibility that these nonnarcotic antitussive drugs might play a role in the treatment of EIFMS.
Collapse
Affiliation(s)
- Chihiro Takase
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Kentaro Shirai
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Ibaraki, Japan.
| | - Yu Matsumura
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Tomohiro Watanabe
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Akimitsu Watanabe
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Ayaka Hirasawa-Inoue
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takeshi Mizuguchi
- Department of Neurosurgery, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kenji Sugai
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masaharu Hayashi
- College of Nursing and Nutrition, Shukutoku University, Tokyo, Japan
| |
Collapse
|
25
|
Berlin S, Artzy E, Handklo-Jamal R, Kahanovitch U, Parnas H, Dascal N, Yakubovich D. A Collision Coupling Model Governs the Activation of Neuronal GIRK1/2 Channels by Muscarinic-2 Receptors. Front Pharmacol 2020; 11:1216. [PMID: 32903404 PMCID: PMC7435011 DOI: 10.3389/fphar.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein-activated Inwardly Rectifying K+-channel (GIRK) modulates heart rate and neuronal excitability. Following G-Protein Coupled Receptor (GPCR)-mediated activation of heterotrimeric G proteins (Gαβγ), opening of the channel is obtained by direct binding of Gβγ subunits. Interestingly, GIRKs are solely activated by Gβγ subunits released from Gαi/o-coupled GPCRs, despite the fact that all receptor types, for instance Gαq-coupled, are also able to provide Gβγ subunits. It is proposed that this specificity and fast kinetics of activation stem from pre-coupling (or pre-assembly) of proteins within this signaling cascade. However, many studies, including our own, point towards a diffusion-limited mechanism, namely collision coupling. Here, we set out to address this long-standing question by combining electrophysiology, imaging, and mathematical modeling. Muscarinic-2 receptors (M2R) and neuronal GIRK1/2 channels were coexpressed in Xenopus laevis oocytes, where we monitored protein surface expression, current amplitude, and activation kinetics. Densities of expressed M2R were assessed using a fluorescently labeled GIRK channel as a molecular ruler. We then incorporated our results, along with available kinetic data reported for the G-protein cycle and for GIRK1/2 activation, to generate a comprehensive mathematical model for the M2R-G-protein-GIRK1/2 signaling cascade. We find that, without assuming any irreversible interactions, our collision coupling kinetic model faithfully reproduces the rate of channel activation, the changes in agonist-evoked currents and the acceleration of channel activation by increased receptor densities.
Collapse
Affiliation(s)
- Shai Berlin
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Etay Artzy
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Reem Handklo-Jamal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Uri Kahanovitch
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Hanna Parnas
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Department of Neonatology, Schneider Children's Hospital, Petah Tikva, Israel
| |
Collapse
|
26
|
Lai X, Xu J, Ma H, Liu Z, Zheng W, Liu J, Zhu H, Zhou Y, Zhou X. Identification and Expression of Inward-Rectifying Potassium Channel Subunits in Plutella xylostella. INSECTS 2020; 11:insects11080461. [PMID: 32707967 PMCID: PMC7469208 DOI: 10.3390/insects11080461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
In insects, inward-rectifying potassium (Kir) channels regulate vital physiological functions, such as feeding behavior, silk secretion, renal excretion, and immune function. Therefore, they offer promising potential as targets for insecticides. Three types of Kir subunits have been identified in Diptera and Hemiptera, but the Kir subunits of Lepidoptera still remain unclear. This study identified five Kir subunit genes (pxkir1, pxkir2, pxkir3A, pxkir3B, and pxkir4) in the transcriptome of Plutella xylostella. Phylogenetic analysis identified pxkir1, pxkir2, pxkir3A, and pxkir3B as orthologous genes of kir1–3 in other insects. Interestingly, pxkir4 may be encoding a new class of Kir subunit in Lepidoptera that has not been reported to date. To identify further Kir channel subunits of P. xylostella, the gene expression profiles of five pxkir genes were studied by quantitative real-time PCR. These pxkir genes are expressed throughout the development of P. xylostella. pxkir1 and pxkir2 were highly expressed in thoraxes and legs, while pxkir3 (3A and 3B) and pxkir4 had high expression levels in the midgut and Malpighian tubules. This study identified the composition and distribution of Kir subunits in P. xylostella for the first time, and provides useful information for the further study of Kir channel subunits in Lepidoptera.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
| | - Jie Xu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Haihao Ma
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
- Correspondence: (H.M.); (X.Z.)
| | - Zheming Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Wei Zheng
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
| | - Jia Liu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Hang Zhu
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Yong Zhou
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
| | - Xiaomao Zhou
- Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China; (X.L.); (W.Z.)
- Institute of Agricultural Biotechnology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.); (Z.L.); (J.L.); (H.Z.); (Y.Z.)
- Correspondence: (H.M.); (X.Z.)
| |
Collapse
|
27
|
Ziegler GC, Röser C, Renner T, Hahn T, Ehlis AC, Weber H, Dempfle A, Walitza S, Jacob C, Romanos M, Fallgatter AJ, Reif A, Lesch KP. KCNJ6 variants modulate reward-related brain processes and impact executive functions in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:247-257. [PMID: 31099984 DOI: 10.1002/ajmg.b.32734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/04/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
KCNJ6, encoding a potassium channel subunit, regulates the excitability of dopaminergic neurons and is expressed in attention-deficit/hyperactivity disorder (ADHD)-relevant brain regions. As a potential ADHD risk gene, KCNJ6, therefore, may contribute to the endophenotypic variation of the disorder. The impact of two SNPs, rs7275707 and rs6517442, both located in the transcriptional control region of KCNJ6, on reporter gene expression was explored in cultured cells. The KCNJ6 variants were then tested for association with ADHD and personality traits in a family-based sample (165 affected children) and an adult case-control sample (450 patients, 426 controls). Furthermore, the genotypic influence on performance in an n-back task and a cued continuous performance test (cCPT) was investigated by electroencephalography recordings. Finally, rs6517442 function was assessed by a reward anticipation paradigm using functional magnetic resonance imaging. Different haplotypes of rs7275707 and rs6517442 significantly influenced KCNJ6 gene expression proving their functional relevance on the molecular level. In the family-based children sample rs7275707 was associated with ADHD (p = .038). Moreover, rs7275707 showed association with the personality trait of Reward Dependence (p = .031). In the ADHD group, both rs7275707 and rs6517442 influenced the Go-centroid location in the cCPT and the N200 amplitude in the n-back task. Furthermore, ventral striatal activation was impacted by rs6517442 during reward anticipation. Our data indicate that functional variants of KCNJ6 influence brain activity during reward-related and executive processes supporting the view of a differential, age-dependent modulatory impact of dopamine-related brain processes in ADHD risk.
Collapse
Affiliation(s)
- Georg C Ziegler
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Christoph Röser
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tobias Renner
- Department of Child and Adolescent Psychiatry, University of Tübingen, Tübingen, Germany
| | - Tim Hahn
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Heike Weber
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Astrid Dempfle
- Institute of Medical Biometry and Statistics, Christian Albrecht-University Kiel, Kiel, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Christian Jacob
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Psychiatry and Psychotherapy, Medius Hospital of Kirchheim, Kirchheim unter Teck, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Andreas Reif
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Psychiatry and Psychotherapy, University of Frankfurt, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, ADHD Clinical Research Unit, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
28
|
Zhang L, Zheng Y, Xie J, Shi L. Potassium channels and their emerging role in parkinson's disease. Brain Res Bull 2020; 160:1-7. [PMID: 32305406 DOI: 10.1016/j.brainresbull.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is associated with a selective loss of dopaminergic neurons in the substantia nigra (SN) and a reduction of dopamine in the striatum. Recently, ion channel dysfunction has been considered a reason for the pathogenesis of PD. Potassium (K+) channels are widespread in the central nervous system, and play key roles in modulating cellular excitability, synaptic transmission, and neurotransmitter release. Based on recent studies and data, we propose that K+ channels may be new therapeutic targets for PD that slow the progressive loss of dopaminergic neurons and attenuate motor and non-motor symptoms. In this review, we mainly focus on: delayed rectifier, inwardly rectifying, and double-pore K+ channels. We summarize the expression and function of these channels in PD-related brain regions. We also discuss the effects of pharmacological blockade or activation of K+ channels in the progression and treatment of PD.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Yanan Zheng
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
29
|
Xu Y, Cantwell L, Molosh AI, Plant LD, Gazgalis D, Fitz SD, Dustrude ET, Yang Y, Kawano T, Garai S, Noujaim SF, Shekhar A, Logothetis DE, Thakur GA. The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents. J Biol Chem 2020; 295:3614-3634. [PMID: 31953327 DOI: 10.1074/jbc.ra119.011527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Indexed: 01/31/2023] Open
Abstract
G-protein-gated inwardly-rectifying K+ (GIRK) channels are targets of Gi/o-protein-signaling systems that inhibit cell excitability. GIRK channels exist as homotetramers (GIRK2 and GIRK4) or heterotetramers with nonfunctional homomeric subunits (GIRK1 and GIRK3). Although they have been implicated in multiple conditions, the lack of selective GIRK drugs that discriminate among the different GIRK channel subtypes has hampered investigations into their precise physiological relevance and therapeutic potential. Here, we report on a highly-specific, potent, and efficacious activator of brain GIRK1/2 channels. Using a chemical screen and electrophysiological assays, we found that this activator, the bromothiophene-substituted small molecule GAT1508, is specific for brain-expressed GIRK1/2 channels rather than for cardiac GIRK1/4 channels. Computational models predicted a GAT1508-binding site validated by experimental mutagenesis experiments, providing insights into how urea-based compounds engage distant GIRK1 residues required for channel activation. Furthermore, we provide computational and experimental evidence that GAT1508 is an allosteric modulator of channel-phosphatidylinositol 4,5-bisphosphate interactions. Through brain-slice electrophysiology, we show that subthreshold GAT1508 concentrations directly stimulate GIRK currents in the basolateral amygdala (BLA) and potentiate baclofen-induced currents. Of note, GAT1508 effectively extinguished conditioned fear in rodents and lacked cardiac and behavioral side effects, suggesting its potential for use in pharmacotherapy for post-traumatic stress disorder. In summary, our findings indicate that the small molecule GAT1508 has high specificity for brain GIRK1/2 channel subunits, directly or allosterically activates GIRK1/2 channels in the BLA, and facilitates fear extinction in a rodent model.
Collapse
Affiliation(s)
- Yu Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Andrei I Molosh
- Department of Psychiatry, Paul and Carole Stark Neurosciences Research Institute, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Stephanie D Fitz
- Department of Psychiatry, Paul and Carole Stark Neurosciences Research Institute, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Erik T Dustrude
- Department of Psychiatry, Paul and Carole Stark Neurosciences Research Institute, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yuchen Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Takeharu Kawano
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Sami F Noujaim
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| | - Anantha Shekhar
- Department of Psychiatry, Paul and Carole Stark Neurosciences Research Institute, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115.
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115.
| |
Collapse
|
30
|
Dehbozorghi S, Bagheri S, Moradi K, Shokraee K, Mohammadi MR, Akhondzadeh S. Efficacy and safety of tipepidine as adjunctive therapy in children with attention-deficit/hyperactivity disorder: Randomized, double-blind, placebo-controlled clinical trial. Psychiatry Clin Neurosci 2019; 73:690-696. [PMID: 31294924 DOI: 10.1111/pcn.12913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/12/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022]
Abstract
AIM This study evaluated the efficacy and safety of tipepidine as an add-on to methylphenidate in the drug treatment of attention-deficit/hyperactivity disorder (ADHD). METHODS This study was an 8-week, randomized, parallel group, double-blind, placebo-controlled trial recruiting 53 ADHD-diagnosed children. Patients were randomly divided to receive methylphenidate + tipepidine or methylphenidate + placebo for 8 weeks. Participants were assessed using the parent version of ADHD Rating Scale-IV and the Clinical Global Impression scale at baseline, at week 4, and at the end of the trial. Moreover, the safety and tolerability of the treatment strategies were compared. RESULTS On general linear model repeated measures analysis a significant effect was seen for time × treatment interaction on the total and hyperactivity-impulsivity subscales of the Parent ADHD Rating Scale-IV during the trial period (Greenhouse-Geisser corrected: F = 3.45, d.f. = 1.52, P = 0.049, and F = 5.17, d.f. = 1.52, P = 0.014, respectively). The effect for time × treatment interaction, however, was not significant on Clinical Global Impression-Severity scale (Greenhouse-Geisser corrected: F = 1.79, d.f. = 1.43, P = 0.182). The frequencies of adverse events were similar between the two groups. CONCLUSION Eight weeks of treatment with tipepidine, as a supplementary medication, resulted in satisfactory efficacy and safety of the adjuvant therapy in management of patients with ADHD. Rigorous investigations, however, involving larger sample sizes, more extended treatment periods, and dose responses should be considered.
Collapse
Affiliation(s)
- Sara Dehbozorghi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Shokraee
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Mohammadi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Krebs K, Pfeil EM, Simon K, Grundmann M, Häberlein F, Bautista-Aguilera OM, Gütschow M, Weaver CD, Fleischmann BK, Kostenis E. Label-Free Whole Cell Biosensing for High-Throughput Discovery of Activators and Inhibitors Targeting G Protein-Activated Inwardly Rectifying Potassium Channels. ACS OMEGA 2018; 3:14814-14823. [PMID: 30555990 PMCID: PMC6289404 DOI: 10.1021/acsomega.8b02254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Dynamic mass redistribution (DMR) and cellular dielectric spectroscopy (CDS) are label-free biosensor technologies that capture real-time integrated cellular responses upon exposure to extra- and intracellular stimuli. They register signaling routes that are accompanied by cell shape changes and/or molecular movement of cells proximal to the biosensor to which they are attached. Here, we report the unexpected observation that robust DMR and CDS signatures are also elicited upon direct stimulation of G protein-activated inwardly rectifying potassium (GIRK) channels, which are involved in the regulation of excitability in the heart and brain. Using ML297, a small-molecule GIRK activator, along with channel blockers and cytoskeletal network inhibitors, we found that GIRK activation exerts its effects on cell shape by a mechanism which depends on actin but not the microtubule network. Because label-free real-time biosensing (i) quantitatively determines concentration dependency of GIRK activators, (ii) accurately assesses the impact of GIRK channel blockers, (iii) is high throughput-compatible, and (iv) visualizes previously unknown cellular consequences downstream of direct GIRK activation, we do not only provide a novel experimental strategy for identification of GIRK ligands but also an entirely new angle to probe GIRK (ligand) biology. We envision that DMR and CDS may add to the repertoire of technologies for systematic exploitation of ion channel function and, in turn, to the identification of novel GIRK ligands in order to treat cardiovascular and neurological disorders.
Collapse
Affiliation(s)
- Katrin
M. Krebs
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
- Research
Training Group 1873, University of Bonn, Bonn, Germany
| | - Eva M. Pfeil
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
- Research
Training Group 1873, University of Bonn, Bonn, Germany
| | - Katharina Simon
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Manuel Grundmann
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Felix Häberlein
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Oscar M. Bautista-Aguilera
- Pharmaceutical
Chemistry I, Institute of Pharmacy, University
of Bonn, An der Immenburg
4, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Chemistry I, Institute of Pharmacy, University
of Bonn, An der Immenburg
4, 53121 Bonn, Germany
| | - C. David Weaver
- Vanderbilt
Institute of Chemical Biology, Department of Pharmacology and Department
of Chemistry, Vanderbilt University, Nashville, 37232 Tennessee, United States
| | - Bernd K. Fleischmann
- Institute
of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Evi Kostenis
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
32
|
Li X, Carreria MB, Witonsky KR, Zeric T, Lofaro OM, Bossert JM, Zhang J, Surjono F, Richie CT, Harvey BK, Son H, Cowan CW, Nestler EJ, Shaham Y. Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving. Biol Psychiatry 2018; 84:213-222. [PMID: 29397902 PMCID: PMC6026084 DOI: 10.1016/j.biopsych.2017.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Methamphetamine (meth) seeking progressively increases after withdrawal (incubation of meth craving). We previously demonstrated an association between histone deacetylase 5 (HDAC5) gene expression in the rat dorsal striatum and incubation of meth craving. Here we used viral constructs to study the causal role of dorsal striatum HDAC5 in this incubation. METHODS In experiment 1 (overexpression), we injected an adeno-associated virus bilaterally into dorsal striatum to express either green fluorescent protein (control) or a mutant form of HDAC5, which strongly localized to the nucleus. After training rats to self-administer meth (10 days, 9 hours/day), we tested the rats for relapse to meth seeking on withdrawal days 2 and 30. In experiment 2 (knockdown), we injected an adeno-associated virus bilaterally into the dorsal striatum to express a short hairpin RNA either against luciferase (control) or against HDAC5. After training rats to self-administer meth, we tested the rats for relapse on withdrawal days 2 and 30. We also measured gene expression of other HDACs and potential HDAC5 downstream targets. RESULTS We found that HDAC5 overexpression in dorsal striatum increased meth seeking on withdrawal day 30 but not day 2. In contrast, HDAC5 knockdown in the dorsal striatum decreased meth seeking on withdrawal day 30 but not on day 2; this manipulation also altered other HDACs (Hdac1 and Hdac4) and potential HDAC5 targets (Gnb4 and Suv39h1). CONCLUSIONS Results demonstrate a novel role of dorsal striatum HDAC5 in incubation of meth craving. These findings also set up future work to identify HDAC5 targets that mediate this incubation.
Collapse
Affiliation(s)
- Xuan Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland.
| | - Maria B Carreria
- Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kailyn R Witonsky
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Tamara Zeric
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Olivia M Lofaro
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Jennifer M Bossert
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Felicia Surjono
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Hyeon Son
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Eric J Nestler
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| |
Collapse
|
33
|
Feng H, Khalil S, Neubig RR, Sidiropoulos C. A mechanistic review on GNAO1-associated movement disorder. Neurobiol Dis 2018; 116:131-141. [PMID: 29758257 DOI: 10.1016/j.nbd.2018.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/28/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Mutations in the GNAO1 gene cause a complex constellation of neurological disorders including epilepsy, developmental delay, and movement disorders. GNAO1 encodes Gαo, the α subunit of Go, a member of the Gi/o family of heterotrimeric G protein signal transducers. Go is the most abundant membrane protein in the mammalian central nervous system and plays major roles in synaptic neurotransmission and neurodevelopment. GNAO1 mutations were first reported in early infantile epileptic encephalopathy 17 (EIEE17) but are also associated with a more common syndrome termed neurodevelopmental disorder with involuntary movements (NEDIM). Here we review a mechanistic model in which loss-of-function (LOF) GNAO1 alleles cause epilepsy and gain-of-function (GOF) alleles are primarily associated with movement disorders. We also develop a signaling framework related to cyclic AMP (cAMP), synaptic vesicle release, and neural development and discuss gene mutations perturbing those mechanisms in a range of genetic movement disorders. Finally, we analyze clinical reports of patients carrying GNAO1 mutations with respect to their symptom onset and discuss pharmacological/surgical treatments in the context of our mechanistic model.
Collapse
Affiliation(s)
- Huijie Feng
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Suad Khalil
- Department of Neurology & Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Christos Sidiropoulos
- Department of Neurology & Ophthalmology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
34
|
Huang Y, Zhang Y, Kong S, Zang K, Jiang S, Wan L, Chen L, Wang G, Jiang M, Wang X, Hu J, Wang Y. GIRK1-mediated inwardly rectifying potassium current suppresses the epileptiform burst activities and the potential antiepileptic effect of ML297. Biomed Pharmacother 2018; 101:362-370. [PMID: 29499411 DOI: 10.1016/j.biopha.2018.02.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022] Open
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are important inhibitory regulators of neuronal excitability in central nervous system, and the impairment of GIRK channel function has been reported to be associated with the susceptibility of epilepsy. However, the dynamics of GIRK channels in the pathogenesis of epilepsy are still unclear. In this study, our results showed that cyclothiazide, a potent convulsant, dose dependently increased the epileptiform bursting activities and suppressed the baclofen induced GIRK currents. In addition, TPQ, a selective GIRK antagonist, significantly decreased the total inwardly rectifying potassium (Kir) current, and increased the neuronal epileptiform activities. In contrast, ML297, a potent and selective GIRK channel agonist, reversed the cyclothiazide induced decrease of GIRK currents and the increase of neuronal excitability in cultured hippocampal neurons. Further investigation revealed that GIRK1, but not GIRK2, played a key role in suppressing epileptic activities. Finally, in pilocarpine mice seizure model, we demonstrated that ML297 significantly suppressed the seizure behavior. In summary, our current results indicate that GIRK channels, especially GIRK1-containing channels, are involved in epileptic activities and ML297 has a potential antiepileptic effect.
Collapse
Affiliation(s)
- Yian Huang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Yuwen Zhang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shuzhen Kong
- College of Environment and Resource, Chongqing Technology and Business University, Chongqing 400067, China
| | - Kai Zang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shize Jiang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Li Wan
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lulan Chen
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Guoxiang Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Min Jiang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Yun Wang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Department of Neurology at Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
35
|
Chao RY, Cheng CH, Wu SN, Chen PC. Defective trafficking of Kv2.1 channels in MPTP-induced nigrostriatal degeneration. J Neurochem 2018; 144:483-497. [PMID: 29265365 DOI: 10.1111/jnc.14282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/13/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Intracellular protein trafficking is tightly regulated, and improper trafficking might be the fundamental provocateur for human diseases including neurodegeneration. In neurons, protein trafficking to and from the plasma membrane affects synaptic plasticity. Voltage-gated potassium channel 2.1 (Kv2.1) is a predominant delayed rectifier potassium (K+ ) current, and electrical activity patterns of dopamine (DA) neurons within the substantia nigra are generated and modulated by the orchestrated function of different ion channels. The pathological hallmark of Parkinson's disease (PD) is the progressive loss of these DA neurons, resulting in the degeneration of striatal dopaminergic terminals. However, whether trafficking of Kv2.1 channels contributes to PD remains unclear. In this study, we demonstrated that MPTP/MPP+ increases the surface expression of the Kv2.1 channel and causes nigrostriatal degeneration by using a subchronic MPTP mouse model. The inhibition of the Kv2.1 channel by using a specific blocker, guangxitoxin-1E, protected nigrostriatal projections against MPTP/MPP+ insult and thus facilitated the recovery of motor coordination. These findings highlight the importance of trafficking of Kv2.1 channels in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ru-Yi Chao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hui Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
36
|
Chen X, Xue B, Wang J, Liu H, Shi L, Xie J. Potassium Channels: A Potential Therapeutic Target for Parkinson's Disease. Neurosci Bull 2017; 34:341-348. [PMID: 28884460 DOI: 10.1007/s12264-017-0177-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of the second major neurodegenerative disorder, Parkinson's disease (PD), is closely associated with the dysfunction of potassium (K+) channels. Therefore, PD is also considered to be an ion channel disease or neuronal channelopathy. Mounting evidence has shown that K+ channels play crucial roles in the regulations of neurotransmitter release, neuronal excitability, and cell volume. Inhibition of K+ channels enhances the spontaneous firing frequency of nigral dopamine (DA) neurons, induces a transition from tonic firing to burst discharge, and promotes the release of DA in the striatum. Recently, three K+ channels have been identified to protect DA neurons and to improve the motor and non-motor symptoms in PD animal models: small conductance (SK) channels, A-type K+ channels, and KV7/KCNQ channels. In this review, we summarize the physiological and pharmacological effects of the three K+ channels. We also describe in detail the laboratory investigations regarding K+ channels as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Bao Xue
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Jun Wang
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Haixia Liu
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Limin Shi
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
37
|
Lacin E, Aryal P, Glaaser IW, Bodhinathan K, Tsai E, Marsh N, Tucker SJ, Sansom MSP, Slesinger PA. Dynamic role of the tether helix in PIP 2-dependent gating of a G protein-gated potassium channel. J Gen Physiol 2017; 149:799-811. [PMID: 28720589 PMCID: PMC5560777 DOI: 10.1085/jgp.201711801] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 01/21/2023] Open
Abstract
G protein–gated inwardly rectifying potassium (GIRK) channels are activated by the phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2). Using functional and computational experiments, Lacin et al. reveal that PIP2 interacts with the tether helix of the neuronal GIRK channel in a dynamic way. G protein–gated inwardly rectifying potassium (GIRK) channels control neuronal excitability in the brain and are implicated in several different neurological diseases. The anionic phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) is an essential cofactor for GIRK channel gating, but the precise mechanism by which PIP2 opens GIRK channels remains poorly understood. Previous structural studies have revealed several highly conserved, positively charged residues in the “tether helix” (C-linker) that interact with the negatively charged PIP2. However, these crystal structures of neuronal GIRK channels in complex with PIP2 provide only snapshots of PIP2’s interaction with the channel and thus lack details about the gating transitions triggered by PIP2 binding. Here, our functional studies reveal that one of these conserved basic residues in GIRK2, Lys200 (6′K), supports a complex and dynamic interaction with PIP2. When Lys200 is mutated to an uncharged amino acid, it activates the channel by enhancing the interaction with PIP2. Atomistic molecular dynamic simulations of neuronal GIRK2 with the same 6′ substitution reveal an open GIRK2 channel with PIP2 molecules adopting novel positions. This dynamic interaction with PIP2 may explain the intrinsic low open probability of GIRK channels and the mechanism underlying activation by G protein Gβγ subunits and ethanol.
Collapse
Affiliation(s)
- Emre Lacin
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Prafulla Aryal
- Department of Biochemistry, University of Oxford, Oxford, England, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, England, UK
| | - Ian W Glaaser
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Eric Tsai
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nidaa Marsh
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stephen J Tucker
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, England, UK.,Department of Physics, University of Oxford, Oxford, England, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, England, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, England, UK
| | - Paul A Slesinger
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
38
|
Dual activation of neuronal G protein-gated inwardly rectifying potassium (GIRK) channels by cholesterol and alcohol. Sci Rep 2017; 7:4592. [PMID: 28676630 PMCID: PMC5496853 DOI: 10.1038/s41598-017-04681-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
Activation of G protein-gated inwardly rectifying potassium (GIRK) channels leads to a hyperpolarization of the neuron’s membrane potential, providing an important component of inhibition in the brain. In addition to the canonical G protein-activation pathway, GIRK channels are activated by small molecules but less is known about the underlying gating mechanisms. One drawback to previous studies has been the inability to control intrinsic and extrinsic factors. Here we used a reconstitution strategy with highly purified mammalian GIRK2 channels incorporated into liposomes and demonstrate that cholesterol or intoxicating concentrations of ethanol, i.e., >20 mM, each activate GIRK2 channels directly, in the absence of G proteins. Notably, both activators require the membrane phospholipid PIP2 but appear to interact independently with different regions of the channel. Elucidating the mechanisms underlying G protein-independent pathways of activating GIRK channels provides a unique strategy for developing new types of neuronal excitability modulators.
Collapse
|
39
|
Glendinning JI, Tang J, Morales Allende AP, Bryant BP, Youngentob L, Youngentob SL. Fetal alcohol exposure reduces responsiveness of taste nerves and trigeminal chemosensory neurons to ethanol and its flavor components. J Neurophysiol 2017; 118:1198-1209. [PMID: 28490641 PMCID: PMC5547265 DOI: 10.1152/jn.00108.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/23/2023] Open
Abstract
Fetal alcohol exposure (FAE) leads to increased intake of ethanol in adolescent rats and humans. We asked whether these behavioral changes may be mediated in part by changes in responsiveness of the peripheral taste and oral trigeminal systems. We exposed the experimental rats to ethanol in utero by administering ethanol to dams through a liquid diet; we exposed the control rats to an isocaloric and isonutritive liquid diet. To assess taste responsiveness, we recorded responses of the chorda tympani (CT) and glossopharyngeal (GL) nerves to lingual stimulation with ethanol, quinine, sucrose, and NaCl. To assess trigeminal responsiveness, we measured changes in calcium levels of isolated trigeminal ganglion (TG) neurons during stimulation with ethanol, capsaicin, mustard oil, and KCl. Compared with adolescent control rats, the adolescent experimental rats exhibited diminished CT nerve responses to ethanol, quinine, and sucrose and GL nerve responses to quinine and sucrose. The reductions in taste responsiveness persisted into adulthood for quinine but not for any of the other stimuli. Adolescent experimental rats also exhibited reduced TG neuron responses to ethanol, capsaicin, and mustard oil. The lack of change in responsiveness of the taste nerves to NaCl and the TG neurons to KCl indicates that FAE altered only a subset of the response pathways within each chemosensory system. We propose that FAE reprograms development of the peripheral taste and trigeminal systems in ways that reduce their responsiveness to ethanol and surrogates for its pleasant (i.e., sweet) and unpleasant (i.e., bitterness, oral burning) flavor attributes.NEW & NOTEWORTHY Pregnant mothers are advised to avoid alcohol. This is because even small amounts of alcohol can alter fetal brain development and increase the risk of adolescent alcohol abuse. We asked how fetal alcohol exposure (FAE) produces the latter effect in adolescent rats by measuring responsiveness of taste nerves and trigeminal chemosensory neurons. We found that FAE substantially reduced taste and trigeminal responsiveness to ethanol and its flavor components.
Collapse
Affiliation(s)
- John I Glendinning
- Barnard College, Columbia University, New York, New York; .,SUNY Developmental Exposure Alcohol Research Center, Binghamton, New York
| | - Joyce Tang
- Barnard College, Columbia University, New York, New York
| | | | - Bruce P Bryant
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - Lisa Youngentob
- University of Tennessee Health Science Center, Memphis, Tennessee; and.,SUNY Developmental Exposure Alcohol Research Center, Binghamton, New York
| | - Steven L Youngentob
- University of Tennessee Health Science Center, Memphis, Tennessee; and.,SUNY Developmental Exposure Alcohol Research Center, Binghamton, New York
| |
Collapse
|
40
|
Marron Fernandez de Velasco E, Zhang L, N Vo B, Tipps M, Farris S, Xia Z, Anderson A, Carlblom N, Weaver CD, Dudek SM, Wickman K. GIRK2 splice variants and neuronal G protein-gated K + channels: implications for channel function and behavior. Sci Rep 2017; 7:1639. [PMID: 28487514 PMCID: PMC5431628 DOI: 10.1038/s41598-017-01820-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/03/2017] [Indexed: 11/21/2022] Open
Abstract
Many neurotransmitters directly inhibit neurons by activating G protein-gated inwardly rectifying K+ (GIRK) channels, thereby moderating the influence of excitatory input on neuronal excitability. While most neuronal GIRK channels are formed by GIRK1 and GIRK2 subunits, distinct GIRK2 isoforms generated by alternative splicing have been identified. Here, we compared the trafficking and function of two isoforms (GIRK2a and GIRK2c) expressed individually in hippocampal pyramidal neurons lacking GIRK2. GIRK2a and GIRK2c supported comparable somato-dendritic GIRK currents in Girk2 -/- pyramidal neurons, although GIRK2c achieved a more uniform subcellular distribution in pyramidal neurons and supported inhibitory postsynaptic currents in distal dendrites better than GIRK2a. While over-expression of either isoform in dorsal CA1 pyramidal neurons restored contextual fear learning in a conditional Girk2 -/- mouse line, GIRK2a also enhanced cue fear learning. Collectively, these data indicate that GIRK2 isoform balance within a neuron can impact the processing of afferent inhibitory input and associated behavior.
Collapse
Affiliation(s)
| | - Lei Zhang
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Baovi N Vo
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Megan Tipps
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Shannon Farris
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Zhilian Xia
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Allison Anderson
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - Nicholas Carlblom
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA
| | - C David Weaver
- Vanderbilt University, Department of Pharmacology, Nashville, TN, 37235, USA
| | - Serena M Dudek
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kevin Wickman
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, 55455, USA.
| |
Collapse
|
41
|
Rinker JA, Mulholland PJ. Promising pharmacogenetic targets for treating alcohol use disorder: evidence from preclinical models. Pharmacogenomics 2017; 18:555-570. [PMID: 28346058 DOI: 10.2217/pgs-2016-0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inherited genetic variants contribute to risk factors for developing an alcohol use disorder, and polymorphisms may inform precision medicine strategies for treating alcohol addiction. Targeting genetic mutations linked to alcohol phenotypes has provided promising initial evidence for reducing relapse rates in alcoholics. Although successful in some studies, there are conflicting findings and the reports of adverse effects may ultimately limit their clinical utility, suggesting that novel pharmacogenetic targets are necessary to advance precision medicine approaches. Here, we describe promising novel genetic variants derived from preclinical models of alcohol consumption and dependence that may uncover disease mechanisms that drive uncontrolled drinking and identify novel pharmacogenetic targets that facilitate therapeutic intervention for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Psychiatry & Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
42
|
Rinker JA, Fulmer DB, Trantham-Davidson H, Smith ML, Williams RW, Lopez MF, Randall PK, Chandler LJ, Miles MF, Becker HC, Mulholland PJ. Differential potassium channel gene regulation in BXD mice reveals novel targets for pharmacogenetic therapies to reduce heavy alcohol drinking. Alcohol 2017; 58:33-45. [PMID: 27432260 DOI: 10.1016/j.alcohol.2016.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
Abstract
Alcohol (ethanol) dependence is a chronic relapsing brain disorder partially influenced by genetics and characterized by an inability to regulate harmful levels of drinking. Emerging evidence has linked genes that encode KV7, KIR, and KCa2 K+ channels with variation in alcohol-related behaviors in rodents and humans. This led us to experimentally test relations between K+ channel genes and escalation of drinking in a chronic-intermittent ethanol (CIE) exposure model of dependence in BXD recombinant inbred strains of mice. Transcript levels for K+ channel genes in the prefrontal cortex (PFC) and nucleus accumbens (NAc) covary with voluntary ethanol drinking in a non-dependent cohort. Transcripts that encode KV7 channels covary negatively with drinking in non-dependent BXD strains. Using a pharmacological approach to validate the genetic findings, C57BL/6J mice were allowed intermittent access to ethanol to establish baseline consumption before they were treated with retigabine, an FDA-approved KV7 channel positive modulator. Systemic administration significantly reduced drinking, and consistent with previous evidence, retigabine was more effective at reducing voluntary consumption in high-drinking than low-drinking subjects. We evaluated the specific K+ channel genes that were most sensitive to CIE exposure and identified a gene subset in the NAc and PFC that were dysregulated in the alcohol-dependent BXD cohort. CIE-induced modulation of nine genes in the NAc and six genes in the PFC covaried well with the changes in drinking induced by ethanol dependence. Here we identified novel candidate genes in the NAc and PFC that are regulated by ethanol dependence and correlate with voluntary drinking in non-dependent and dependent BXD mice. The findings that Kcnq expression correlates with drinking and that retigabine reduces consumption suggest that KV7 channels could be pharmacogenetic targets to treat individuals with alcohol addiction.
Collapse
|
43
|
Lu Y, Li CJ, Chen C, Luo P, Zhou M, Li C, Xu XL, Lu Q, He Z, Guo LJ. Activation of GABAB2 subunits alleviates chronic cerebral hypoperfusion-induced anxiety-like behaviours: A role for BDNF signalling and Kir3 channels. Neuropharmacology 2016; 110:308-321. [PMID: 27515806 DOI: 10.1016/j.neuropharm.2016.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 07/30/2016] [Accepted: 08/06/2016] [Indexed: 12/15/2022]
Abstract
Anxiety is an affective disorder that is commonly observed after irreversible brain damage induced by cerebral ischemia and can delay the physical and cognitive recovery, which affects the quality of life of both the patient and family members. However, anxiety after ischemia has received less attention, and mechanisms underlying anxiety-like behaviours induced by chronic cerebral ischemia are under-investigated. In the present study, the chronic cerebral hypoperfusion model was established by the permanent occlusion of the bilateral common carotid arteries (two-vessel occlusion, 2VO) in rats, and anxiety-related behaviours were evaluated. Results indicated that 2VO induced obvious anxiety-like behaviours; the surface expressions of GABAB2 subunits were down-regulated; Brain derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB) and neural cell adhesion molecule (NCAM) were reduced; Meanwhile, the surface expressions of G protein-activated inwardly rectifying potassium (GIRK, Kir3) channels were up-regulated in hippocampal CA1 in 2VO rats. Baclofen, a GABAB receptor agonist, significantly ameliorated the anxiety-like behaviours. It also improved the down-regulation of GABAB2 surface expressions, restored the levels of BDNF, TrkB and NCAM, and reversed the increased surface expressions of Kir3 in hippocampal CA1 in 2VO rats. However, the effects of baclofen were absent in shRNA-GABAB2 infected 2VO rats. These results suggested that activation of GABAB2 subunits could improve BDNF signalling and reverse Kir3 channel surface expressions in hippocampal CA1, which may alleviate the anxiety-like behaviours in rats with chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Yun Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang-Jun Li
- Neurology Department, Tongji Medical College, Huazhong University of Science and Technology, The Central Hospital of Wuhan, Wuhan 430030, China
| | - Cheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pan Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cai Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu-Lin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi He
- Department of Neuropsychopharmacology, Medical School of China Three Gorges University, Yichang 443002, China.
| | - Lian-Jun Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
44
|
Mayfield J, Arends MA, Harris RA, Blednov YA. Genes and Alcohol Consumption: Studies with Mutant Mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:293-355. [PMID: 27055617 PMCID: PMC5302130 DOI: 10.1016/bs.irn.2016.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test.
Collapse
Affiliation(s)
- J Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - M A Arends
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|