1
|
Saha S, Sano FK, Sharma S, Ganguly M, Mishra S, Dalal A, Akasaka H, Kobayashi TA, Zaidi N, Tiwari D, Roy N, Yadav MK, Banerjee N, Saha S, Mohapatra S, Itoh Y, Chevigné A, Banerjee R, Shihoya W, Nureki O, Shukla AK. Molecular basis of promiscuous chemokine binding and structural mimicry at the C-X-C chemokine receptor, CXCR2. Mol Cell 2025; 85:976-988.e9. [PMID: 39978339 DOI: 10.1016/j.molcel.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Selectivity of natural agonists for their cognate receptors is a hallmark of G-protein-coupled receptors (GPCRs); however, this selectivity often breaks down at the chemokine receptors. Chemokines often display promiscuous binding to chemokine receptors, but the underlying molecular determinants remain mostly elusive. Here, we perform a comprehensive transducer-coupling analysis, testing all known C-X-C chemokines on every C-X-C type chemokine receptor to generate a global fingerprint of the selectivity and promiscuity encoded within this system. Taking lead from this, we determine cryoelectron microscopy (cryo-EM) structures of the most promiscuous receptor, C-X-C chemokine receptor 2 (CXCR2), in complex with several chemokines. These structural snapshots elucidate the details of ligand-receptor interactions, including structural motifs, which are validated using mutagenesis and functional experiments. We also observe that most chemokines position themselves on CXCR2 as a dimer while CXCL6 exhibits a monomeric binding pose. Taken together, our findings provide the molecular basis of chemokine promiscuity at CXCR2 with potential implications for developing therapeutic molecules.
Collapse
Affiliation(s)
- Shirsha Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Saloni Sharma
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manisankar Ganguly
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sudha Mishra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Annu Dalal
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki A Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nashrah Zaidi
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Divyanshu Tiwari
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nabarun Roy
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manish K Yadav
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nilanjana Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sayantan Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Samanwita Mohapatra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ramanuj Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Arun K Shukla
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
2
|
He J, Chai X, Zhang Q, Wang Y, Wang Y, Yang X, Wu J, Feng B, Sun J, Rui W, Ze S, Fu Y, Zhao Y, Zhang Y, Zhang Y, Liu M, Liu C, She M, Hu X, Ma X, Yang H, Li D, Zhao S, Li G, Zhang Z, Tian Z, Ma Y, Cao L, Yi B, Li D, Nussinov R, Eng C, Chan TA, Ruppin E, Gutkind JS, Cheng F, Liu M, Lu W. The lactate receptor HCAR1 drives the recruitment of immunosuppressive PMN-MDSCs in colorectal cancer. Nat Immunol 2025; 26:391-403. [PMID: 39905201 DOI: 10.1038/s41590-024-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025]
Abstract
Most patients with colorectal cancer do not achieve durable clinical benefits from immunotherapy, underscoring the existence of alternative immunosuppressive mechanisms. Here we found that activation of the lactate receptor HCAR1 signaling pathway induced the expression of chemokines CCL2 and CCL7 in colorectal tumor cells, leading to the recruitment of immunosuppressive CCR2+ polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) to the tumor microenvironment. Ablation of Hcar1 in mice with colorectal tumors significantly decreased the abundance of tumor-infiltrating CCR2+ PMN-MDSCs, enhanced the activation of CD8+ T cells and, consequently, reduced tumor burden. We detected immunosuppressive CCR2+ PMN-MDSCs in tumor specimens from individuals with colorectal and other cancers. The US Food and Drug Administration-approved drug reserpine suppressed lactate-mediated HCAR1 activation, impaired the recruitment of CCR2+ PMN-MDSCs, boosted CD8+ T cell-dependent antitumor immunity and sensitized immunotherapy-resistant tumors to programmed cell death protein 1 antibody therapy in mice with colorectal tumors. Altogether, we described HCAR1-driven recruitment of CCR2+ PMN-MDSCs as a mechanism of immunosuppression.
Collapse
Affiliation(s)
- Jiacheng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaolei Chai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yang Wang
- Department of Urology and Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yijie Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jingbo Wu
- Department of Urology and Department of Pathology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Bo Feng
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiwei Rui
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuyin Ze
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuanyuan Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yumiao Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ying Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meizhen Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chuang Liu
- Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China
| | - Meifu She
- Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiangfei Hu
- Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dawei Li
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guichao Li
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Zhang
- Department of Colorectal Surgery, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhonghui Tian
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lingyan Cao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yi
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Timothy A Chan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California,San Diego, San Diego, CA, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China.
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- University Engineering Research Center of Oncolytic & Nanosystem Development, Guangxi, China.
| |
Collapse
|
3
|
Takayama I, Araki N, Tewari J, Yohda M, Matsunami H, Fukutani Y. Antagonists Enhance Cell-Surface Expression of Mammalian Odorant Receptors. Int J Mol Sci 2025; 26:1458. [PMID: 40003926 PMCID: PMC11855683 DOI: 10.3390/ijms26041458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Functional characterization of vertebrate odorant receptors (ORs), members of the G protein-coupled receptor (GPCR) family, is essential for understanding olfaction. However, the functional expression of ORs in heterologous cells is often challenging, at least partly caused by structural instability in non-olfactory cells. Antagonists have been shown to restore membrane expression of some non-olfactory GPCR mutants, likely by transient increase in structural stability upon antagonist binding. Based on this premise, we examined whether antagonists could enhance OR membrane expression in heterologous cells. Using phenyl salicylate (PES) on cells expressing the mouse OR Or11g7, we observed increased cell surface expression exceeding the effects of co-expression with the OR chaperone RTP1S. After removing the antagonist, Or11g7 retained normal agonist responsiveness. Similar enhancements in cell surface expression were observed for a human OR OR2T11 treated with its antagonists. These findings suggest that small-molecule antagonists act as pharmacological chaperones to stabilize OR conformation, enhancing surface expression in a manner similar to molecular chaperones. Our study reveals a novel role for odorant antagonists in OR biogenesis and may inform future research on olfactory training mechanisms.
Collapse
Affiliation(s)
- Ikumi Takayama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan; (I.T.); (N.A.); (M.Y.)
| | - Nako Araki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan; (I.T.); (N.A.); (M.Y.)
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan; (I.T.); (N.A.); (M.Y.)
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei 184-8588, Tokyo, Japan; (I.T.); (N.A.); (M.Y.)
| |
Collapse
|
4
|
Olivo PD, Kim H, Miao L, Houtz JA, Kahaly GJ. Analytical validation of a novel bioassay for thyroid-stimulating immunoglobulin. Front Endocrinol (Lausanne) 2025; 15:1468768. [PMID: 39839475 PMCID: PMC11746106 DOI: 10.3389/fendo.2024.1468768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025] Open
Abstract
Background A novel and rapid cell-based bioassay, Turbo TSI, for measurement of thyroid-stimulating immunoglobulins (TSI) was recently reported. An assessment of the analytical performance of this TSI bioassay is described herein. Methods Thawed cells from Turbo TSI kits were treated with different concentrations of a World Health Organization (WHO) international standard (IS) TSI-positive serum. TSI was measured as a function of luciferase activity measured as relative light units (RLU) and converted into international units per liter (IU/L). Analytical performance studies were performed on numerous samples, over multiple days, by two users at two sites. Results The limit of blank, limit of detection and limit of quantitation were determined to be 0.007 IU/L, 0.014 IU/L, and 0.021 IU/L, respectively. Receiver operator characteristics (ROC) analysis determined the cut-off to be 0.0241 IU/L with an area under the curve of 0.984. The linear range was shown to be from 0.015 to 11.958 IU/L. The intra-laboratory precision was ≤15%CV. The overall reproducibility of the assay was ≤20%CV for five concentrations (0.06 to 5.16 IU/L). Interference and cross reactivity studies with a variety of substances showed that the assay was robust. The Turbo TSI bioassay demonstrated 95.2% (95% CI 83.3-98.1) positive percent agreement and 94.8% (95% CI 90.9-97.1) negative percent agreement with an FDA-cleared bioassay (Thyretain ® TSI) using serum from 295 patients with autoimmune thyroid disease. Conclusions The Turbo TSI bioassay exhibits excellent analytical performance and a high level of reproducibility. The performance compared well with Thyretain ® TSI, an FDA-cleared TSI bioassay.
Collapse
Affiliation(s)
- Paul D. Olivo
- Department of Microbiology and Microbial Pathogenesis, Washington University Medical School, St. Louis, MO, United States
| | - Hannah Kim
- QuidelOrtho Corporation, San Diego, CA, United States
| | - Lynn Miao
- QuidelOrtho Corporation, San Diego, CA, United States
| | | | - George J. Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| |
Collapse
|
5
|
Kumar S, Rastogi SK, Roy S, Sharma K, Kumar S, Maity D, Chand D, Vishwakarma S, Gayen JR, Srivastava KR, Kumar R, Yadav PN. Discovery and structure - activity relationships of 2,4,5-trimethoxyphenyl pyrimidine derivatives as selective D5 receptor partial agonists. Bioorg Chem 2024; 153:107809. [PMID: 39270528 DOI: 10.1016/j.bioorg.2024.107809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Dopamine receptors are therapeutic targets for the treatment of various neurological and psychiatric disorders, including Parkinson's and Alzheimer's. Previously, PF-06649751 (tavapadon), PF-2562 and PW0464 have been discovered as potent and selective G protein-biased D1/D5 receptor agonists with optimal pharmacokinetic properties. However, no selective D5R agonist has been reported yet. In this context, we designed and synthesized forty non-catecholamines-based pyrimidine derivatives and identified four pyrimidine derivatives as selective D5R partial agonists. Using cAMP-based GloSensor assay in transiently transfected HEK293T cells with human D1 or D5 receptors, we discovered that compound 5c (4-(4-bromophenyl)-6-(2,4,5-trimethoxyphenyl)pyrimidin-2-amine) exhibited modest D5R agonist activity. This leads us to explore various modifications of this scaffold to improve the D5 agonist potency and efficacy. Using molecular docking, and rational design followed by their evaluation at D1 and D5 receptors for agonist activity, we identified three new derivatives, 5j, 5h, and 5e. The most potent compound of this series 5j (4-(4-iodophenyl)-6-(2,4,5-trimethoxyphenyl)pyrimidin-2-amine), exhibited EC50 of 269.7 ± 6.6 nM. Mice microsomal stability studies revealed that 5j is quite stable (>70 % at 1 hr). Furthermore, pharmacokinetic analysis of 5j (20 mg/kg, p.o) in C57BL/6j mice showed that 5j is readily absorbed via oral route of dosing and also enters into the brain (plasma Tmax: 1 h, Cmax: 51.10 ± 13.51 ng/ml; Brain Tmax: 0.5 h, Cmax: 22.54 ± 4.08 ng/ml). We further determined the in-vivo effect of 5j on cognition in scopolamine-induced amnesia in C57BL/6j mice. We observed that 5j (10 mg/kg, p.o) alleviated scopolamine-induced impairment in short-term memory and social recognition, which were blocked by D1/D5 antagonist SCH23390 (0.1 mg/kg, i.p.). Furthermore, 5j did not exhibit any cytotoxicity (up to 10 µM) or in vivo acute toxicity up to 200 mg/kg (p.o). These results strongly suggest that 5j could be further developed for treating neurological disorders wherein the D5 receptors play pivotal roles.
Collapse
Affiliation(s)
- Sakesh Kumar
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Sumit K Rastogi
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Subrata Roy
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India
| | - Kajal Sharma
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Santosh Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Debalina Maity
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, U.P., (226031), India
| | - Diwan Chand
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Sachin Vishwakarma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, U.P., (226031), India
| | - Jiaur R Gayen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India; Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, U.P., (226031), India
| | - Kinshuk R Srivastava
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India.
| | - Prem N Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow, U.P., (226031), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., (201002), India.
| |
Collapse
|
6
|
Abaffy T, Fu O, Harume-Nagai M, Goldenberg JM, Kenyon V, Kenakin T. Intracellular Allosteric Antagonist of the Olfactory Receptor OR51E2. Mol Pharmacol 2024; 106:21-32. [PMID: 38719475 PMCID: PMC11187688 DOI: 10.1124/molpharm.123.000843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024] Open
Abstract
Olfactory receptors are members of class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs). Their expression and function have been increasingly studied in nonolfactory tissues, and many have been identified as potential therapeutic targets. In this manuscript, we focus on the discovery of novel ligands for the olfactory receptor family 51 subfamily E2 (OR51E2). We performed an artificial intelligence-based virtual drug screen of a ∼2.2 million small molecule library. Cell-based functional assay identified compound 80 (C80) as an antagonist and inverse agonist, and detailed pharmacological analysis revealed C80 acts as a negative allosteric modulator by significantly decreasing the agonist efficacy, while having a minimal effect on receptor affinity for agonist. C80 binds to an allosteric binding site formed by a network of nine residues localized in the intracellular parts of transmembrane domains 3, 5, 6, 7, and H8, which also partially overlaps with a G protein binding site. Mutational experiments of residues involved in C80 binding uncovered the significance of the C2406.37 position in blocking the activation-related conformational change and keeping the receptor in the inactive form. Our study provides a mechanistic understanding of the negative allosteric action of C80 on agonist-ctivated OR51E2. We believe the identification of the antagonist of OR51E2 will enable a multitude of studies aiming to determine the functional role of this receptor in specific biologic processes. SIGNIFICANCE STATEMENT: OR51E2 has been implicated in various biological processes, and its antagonists that can effectively modulate its activity have therapeutic potential. Here we report the discovery of a negative allosteric modulator of OR51E2 and provide a mechanistic understanding of its action. We demonstrate that this modulator has an inhibitory effect on the efficacy of the agonist for the receptor and reveal a network of nine residues that constitute its binding pocket, which also partially overlaps with the G protein binding site.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Olivia Fu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Maira Harume-Nagai
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Josh M Goldenberg
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Victor Kenyon
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina (T.A., O.F.); Columbia Center for Human Development/Columbia Center for Stem Cell Therapies Department, Columbia University, New York (M.H.-N.); Chemistry Department, School of Math and Science at the United States Naval Academy, Annapolis, Maryland (J.M.G.); Atomwise Inc., San Francisco, California (J.M.G., V.K.); and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
7
|
Luginina AP, Khnykin AN, Khorn PA, Moiseeva OV, Safronova NA, Pospelov VA, Dashevskii DE, Belousov AS, Borschevskiy VI, Mishin AV. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: Ligand Search and Screening. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:958-972. [PMID: 38880655 DOI: 10.1134/s0006297924050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that participate in many physiological processes and represent major pharmacological targets. Recent advances in structural biology of GPCRs have enabled the development of drugs based on the receptor structure (structure-based drug design, SBDD). SBDD utilizes information about the receptor-ligand complex to search for suitable compounds, thus expanding the chemical space of possible receptor ligands without the need for experimental screening. The review describes the use of structure-based virtual screening (SBVS) for GPCR ligands and approaches for the functional testing of potential drug compounds, as well as discusses recent advances and successful examples in the application of SBDD for the identification of GPCR ligands.
Collapse
Affiliation(s)
- Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentin I Borschevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
8
|
Hoshina M, Ojima S, Kawasaki A, Doi K, Ohta S, Inoue A, Murayama H. Development and basic performance verification of a rapid homogeneous bioassay for agonistic antibodies against the thyroid-stimulating hormone receptor. J Immunol Methods 2024; 528:113655. [PMID: 38447802 DOI: 10.1016/j.jim.2024.113655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Graves' disease is a type of autoimmune hyperthyroidism caused by thyroid-stimulating antibodies (TSAb).1 The combination of a porcine thyroid cell bioassay and cyclic adenosine monophosphate (cAMP) immunoassay (TSAb-enzyme immunoassay; EIA) is a clinically approved TSAb measurement method. Due to the requirement of multiple procedures and a long assay time of 6 h in the TSAb-EIA, a simplified and rapid assay is desired. Herein, we developed a rapid homogeneous TSAb bioassay (rapid-TSAb assay) using the human embryonic kidney cell line (HEK293), engineered to express the human thyroid-stimulating hormone receptor (TSHR), along with a cAMP-dependent luminescence biosensor. The measurement consists of three steps: thawing frozen cells, blood sample addition, and luminescence detection. The procedures can be conducted within 1 h. The World Health Organization International Standard TSAb (NIBSC 08/204) stimulated the cells co-expressing TSHR and cAMP biosensor. The intra- and inter-assay coefficients of variance were < 10%. Stimulation activity using wild-type TSHR and chimeric TSHR (Mc4) almost completely correlated with the tested Graves' disease and normal samples. In the rapid-TSAb assay, the evaluation of 39 samples, including TSHR antibody-positive sera, yielded a sensitivity of 100.0% and a specificity of 90.9%, compared to the TSAb-EIA control. The rapid-TSAb assay enables simple and rapid measurement of TSAb and is promising for improving the diagnosis of autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Motoki Hoshina
- Research and Development Section, Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056, Japan.
| | - Shiomi Ojima
- Research and Development Section, Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056, Japan
| | - Atsushi Kawasaki
- Research and Development Section, Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056, Japan
| | - Kosuke Doi
- Research and Development Section, Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056, Japan
| | - Satoshi Ohta
- Research and Development Section, Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hiroshi Murayama
- Research and Development Section, Diagnostics Division, YAMASA Corporation, 2-10-1 Araoicho, Choshi, Chiba 288-0056, Japan
| |
Collapse
|
9
|
Weng Y, Yang X, Zhang Q, Chen Y, Xu Y, Zhu C, Xie Q, Wang Y, Yang H, Liu M, Lu W, Song G. Structural insight into the dual-antagonistic mechanism of AB928 on adenosine A 2 receptors. SCIENCE CHINA. LIFE SCIENCES 2024; 67:986-995. [PMID: 38319473 DOI: 10.1007/s11427-023-2459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 02/07/2024]
Abstract
The adenosine subfamily G protein-coupled receptors A2AR and A2BR have been identified as promising cancer immunotherapy candidates. One of the A2AR/A2BR dual antagonists, AB928, has progressed to a phase II clinical trial to treat rectal cancer. However, the precise mechanism underlying its dual-antagonistic properties remains elusive. Herein, we report crystal structures of the A2AR complexed with AB928 and a selective A2AR antagonist 2-118. The structures revealed a common binding mode on A2AR, wherein the ligands established extensive interactions with residues from the orthosteric and secondary pockets. In contrast, the cAMP assay and A2AR and A2BR molecular dynamics simulations indicated that the ligands adopted distinct binding modes on A2BR. Detailed analysis of their chemical structures suggested that AB928 readily adapted to the A2BR pocket, while 2-118 did not due to intrinsic differences. This disparity potentially accounted for the difference in inhibitory efficacy between A2BR and A2AR. This study serves as a valuable structural template for the future development of selective or dual inhibitors targeting A2AR/A2BR for cancer therapy.
Collapse
Affiliation(s)
- Yuan Weng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ying Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yueming Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chenyu Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Zilberg G, Parpounas AK, Warren AL, Fiorillo B, Provasi D, Filizola M, Wacker D. Structural insights into the unexpected agonism of tetracyclic antidepressants at serotonin receptors 5-HT 1eR and 5-HT 1FR. SCIENCE ADVANCES 2024; 10:eadk4855. [PMID: 38630816 PMCID: PMC11023502 DOI: 10.1126/sciadv.adk4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] acts via 13 different receptors in humans. Of these receptor subtypes, all but 5-HT1eR have confirmed roles in native tissue and are validated drug targets. Despite 5-HT1eR's therapeutic potential and plausible druggability, the mechanisms of its activation remain elusive. To illuminate 5-HT1eR's pharmacology in relation to the highly homologous 5-HT1FR, we screened a library of aminergic receptor ligands at both receptors and observe 5-HT1eR/5-HT1FR agonism by multicyclic drugs described as pan-antagonists at 5-HT receptors. Potent agonism by tetracyclic antidepressants mianserin, setiptiline, and mirtazapine suggests a mechanism for their clinically observed antimigraine properties. Using cryo-EM and mutagenesis studies, we uncover and characterize unique agonist-like binding poses of mianserin and setiptiline at 5-HT1eR distinct from similar drug scaffolds in inactive-state 5-HTR structures. Together with computational studies, our data suggest that these binding poses alongside receptor-specific allosteric coupling in 5-HT1eR and 5-HT1FR contribute to the agonist activity of these antidepressants.
Collapse
Affiliation(s)
- Gregory Zilberg
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra K. Parpounas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Audrey L. Warren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Wacker
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
11
|
Yadav MK, Maharana J, Yadav R, Saha S, Sarma P, Soni C, Singh V, Saha S, Ganguly M, Li XX, Mohapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R, Shukla AK, Gati C. Molecular basis of anaphylatoxin binding, activation, and signaling bias at complement receptors. Cell 2023; 186:4956-4973.e21. [PMID: 37852260 PMCID: PMC7615941 DOI: 10.1016/j.cell.2023.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The complement system is a critical part of our innate immune response, and the terminal products of this cascade, anaphylatoxins C3a and C5a, exert their physiological and pathophysiological responses primarily via two GPCRs, C3aR and C5aR1. However, the molecular mechanism of ligand recognition, activation, and signaling bias of these receptors remains mostly elusive. Here, we present nine cryo-EM structures of C3aR and C5aR1 activated by their natural and synthetic agonists, which reveal distinct binding pocket topologies of complement anaphylatoxins and provide key insights into receptor activation and transducer coupling. We also uncover the structural basis of a naturally occurring mechanism to dampen the inflammatory response of C5a via proteolytic cleavage of the terminal arginine and the G-protein signaling bias elicited by a peptide agonist of C3aR identified here. In summary, our study elucidates the innerworkings of the complement anaphylatoxin receptors and should facilitate structure-guided drug discovery to target these receptors in a spectrum of disorders.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Yadav
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Shirsha Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Chahat Soni
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samanwita Mohapatra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Htet A Khant
- USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | - Cornelius Gati
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA; Department of Chemistry, Department of Quantitative and Computational Biology, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Zilberg G, Parpounas AK, Warren AL, Fiorillo B, Provasi D, Filizola M, Wacker D. Structural Insights into the Unexpected Agonism of Tetracyclic Antidepressants at Serotonin Receptors 5-HT1eR and 5-HT1FR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561100. [PMID: 37986777 PMCID: PMC10659432 DOI: 10.1101/2023.10.05.561100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) acts via 13 different receptors in humans. Of these receptor subtypes, all but 5-HT1eR have confirmed roles in native tissue and are validated drug targets. Despite 5-HT1eR's therapeutic potential and plausible druggability, the mechanisms of its activation remain elusive. To illuminate 5-HT1eR's pharmacology in relation to the highly homologous 5-HT1FR, we screened a library of aminergic receptor ligands at both receptors and observe 5-HT1e/1FR agonism by multicyclic drugs described as pan-antagonists at 5-HT receptors. Potent agonism by tetracyclic antidepressants mianserin, setiptiline, and mirtazapine suggests a mechanism for their clinically observed anti-migraine properties. Using cryoEM and mutagenesis studies, we uncover and characterize unique agonist-like binding poses of mianserin and setiptiline at 5-HT1eR distinct from similar drug scaffolds in inactive-state 5-HTR structures. Together with computational studies, our data suggest that these binding poses alongside receptor-specific allosteric coupling in 5-HT1eR and 5-HT1FR contribute to the agonist activity of these antidepressants.
Collapse
Affiliation(s)
- Gregory Zilberg
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai; New York, New York 10029
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Alexandra K. Parpounas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Audrey L. Warren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Daniel Wacker
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai; New York, New York 10029
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| |
Collapse
|
13
|
Sarma P, Carino CMC, Seetharama D, Pandey S, Dwivedi-Agnihotri H, Rui X, Cao Y, Kawakami K, Kumari P, Chen YC, Luker KE, Yadav PN, Luker GD, Laporte SA, Chen X, Inoue A, Shukla AK. Molecular insights into intrinsic transducer-coupling bias in the CXCR4-CXCR7 system. Nat Commun 2023; 14:4808. [PMID: 37558722 PMCID: PMC10412580 DOI: 10.1038/s41467-023-40482-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Chemokine receptors constitute an important subfamily of G protein-coupled receptors (GPCRs), and they are critically involved in a broad range of immune response mechanisms. Ligand promiscuity among these receptors makes them an interesting target to explore multiple aspects of biased agonism. Here, we comprehensively characterize two chemokine receptors namely, CXCR4 and CXCR7, in terms of their transducer-coupling and downstream signaling upon their stimulation by a common chemokine agonist, CXCL12, and a small molecule agonist, VUF11207. We observe that CXCR7 lacks G-protein-coupling while maintaining robust βarr recruitment with a major contribution of GRK5/6. On the other hand, CXCR4 displays robust G-protein activation as expected but exhibits significantly reduced βarr-coupling compared to CXCR7. These two receptors induce distinct βarr conformations even when activated by the same agonist, and CXCR7, unlike CXCR4, fails to activate ERK1/2 MAP kinase. We also identify a key contribution of a single phosphorylation site in CXCR7 for βarr recruitment and endosomal localization. Our study provides molecular insights into intrinsic-bias encoded in the CXCR4-CXCR7 system with broad implications for drug discovery.
Collapse
Affiliation(s)
- Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Carlo Marion C Carino
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Deeksha Seetharama
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Hemlata Dwivedi-Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Xue Rui
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Poonam Kumari
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Yu-Chih Chen
- Department of Computational and Systems Biology, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Prem N Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
- Department of Medicine, McGill University Health Center, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
14
|
Lei Y, Yong Z, Junzhi W. Development and application of potency assays based on genetically modified cells for biological products. J Pharm Biomed Anal 2023; 230:115397. [PMID: 37079933 DOI: 10.1016/j.jpba.2023.115397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Potency assays are key to the development, registration, and quality control of biological products. Although previously preferred for clinical relevance, in vivo bioassays have greatly diminished with the advent of dependent cell lines as well as due to ethical concerns. However, for some products, the development of in vitro cell-based assay is challenging, or existing method has limitations such as tedious procedure or low sensitivity. The generation of genetically modified (GM) cell line with improved response to the analyte provides a scientific and promising solution. Potency assays based on GM cell lines are currently used for the quality control of biological products including cytokines, hormones, therapeutic antibodies, vaccines and gene therapy products. In this review, we have discussed the general principles of designing and developing GM cells-based potency assays, including identification of cellular signaling pathways and detectable biological effects, generation of responsive cell lines and constitution of test systems, based on the current research progress. In addition, the applications of some novel technologies and the common concerns regarding GM cells have also been discussed. The research presented in this review provides insights for the development and application of novel GM cells-based potency assays for biological products.
Collapse
Affiliation(s)
- Yu Lei
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Zhou Yong
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Wang Junzhi
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
15
|
Abstract
Bioassays using animal models were essential tools in the discovery of thyrotropin and in enhancing our understanding of the physiology of the pituitary-thyroid axis. These same bioassays were also instrumental in the discovery of autoantibodies to the thyrotropin receptor (TSH-R-Ab) and in identifying their role in the pathophysiology of Graves' disease. The development of cell-based bioassays led to further advances in our knowledge of the functional activity of TSH-R-Ab and to the discovery that TSH-R-Ab can be either thyroid-stimulating or thyroid blocking, and that they occur in other types of autoimmune thyroid diseases (AITD) besides Graves' disease. More recently, TSH-R-Ab bioassays have been advanced from research tools to clinical laboratory tests. Whereas TSH-R-Ab can be measured with competitive-binding immunoassays, these assays do not provide information on the functional activity of TSH-R-Ab. Bioassays, in contrast, can differentiate between the stimulatory or blocking activity of TSH-R-Ab which provides clinically useful information that can inform the management of patients with AITD. The clinical use of TSH-R-Ab bioassays, however, has been limited to-date by their inherent complexity and long turn-around-time. Recent advances in biosensors have been applied to the development of TSH-R-Ab bioassays that are rapid and simple to perform. We now are entering an era in which bioassays for TSH-R-Ab can be measured routinely by virtually any clinical laboratory.
Collapse
Affiliation(s)
- Paul D Olivo
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University Medical School, St. Louis, MO, USA.
| |
Collapse
|
16
|
Wang W, He J, Yang J, Zhang C, Cheng Z, Zhang Y, Zhang Q, Wang P, Tang S, Wang X, Liu M, Lu W, Zhang HK. Scaffold Hopping Strategy to Identify Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem 2022; 65:7896-7917. [PMID: 35640059 DOI: 10.1021/acs.jmedchem.2c00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells can effectively suppress the natural immune response in humans, and prostaglandin E2 (PGE2) is a key mediator in the development of tumor cell resistance to immunotherapy. As a major contributor to PGE2-elicited immunosuppressive activity, the EP4 receptor promotes tumor development and progression in the tumor microenvironment, and the development of selective and potent EP4 receptor antagonists should have promising potential for tumor immunotherapy. Aiming at improving the drug-like properties, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives were designed and synthesized through a scaffold hopping strategy. The most promising compound 47 exhibited good EP4 antagonistic activity and excellent subtype selectivity, as well as favorable drug-like properties. It effectively suppressed the expression of multiple immunosuppression-related genes in macrophages. Meanwhile, oral administration of compound 47, alone or in combination with anti-PD-1 antibody, significantly enhanced the antitumor immune response and inhibited tumor growth in the mouse CT26 colon carcinoma model.
Collapse
Affiliation(s)
- Wei Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiacheng He
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Junjie Yang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chan Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhiyuan Cheng
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yao Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiansen Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Peili Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shuowen Tang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xin Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Han-Kun Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
17
|
Yin J, Kang Y, McGrath AP, Chapman K, Sjodt M, Kimura E, Okabe A, Koike T, Miyanohana Y, Shimizu Y, Rallabandi R, Lian P, Bai X, Flinspach M, De Brabander JK, Rosenbaum DM. Molecular mechanism of the wake-promoting agent TAK-925. Nat Commun 2022; 13:2902. [PMID: 35614071 PMCID: PMC9133036 DOI: 10.1038/s41467-022-30601-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
The OX2 orexin receptor (OX2R) is a highly expressed G protein-coupled receptor (GPCR) in the brain that regulates wakefulness and circadian rhythms in humans. Antagonism of OX2R is a proven therapeutic strategy for insomnia drugs, and agonism of OX2R is a potentially powerful approach for narcolepsy type 1, which is characterized by the death of orexinergic neurons. Until recently, agonism of OX2R had been considered 'undruggable.' We harness cryo-electron microscopy of OX2R-G protein complexes to determine how the first clinically tested OX2R agonist TAK-925 can activate OX2R in a highly selective manner. Two structures of TAK-925-bound OX2R with either a Gq mimetic or Gi reveal that TAK-925 binds at the same site occupied by antagonists, yet interacts with the transmembrane helices to trigger activating microswitches. Our structural and mutagenesis data show that TAK-925's selectivity is mediated by subtle differences between OX1 and OX2 receptor subtypes at the orthosteric pocket. Finally, differences in the polarity of interactions at the G protein binding interfaces help to rationalize OX2R's coupling selectivity for Gq signaling. The mechanisms of TAK-925's binding, activation, and selectivity presented herein will aid in understanding the efficacy of small molecule OX2R agonists for narcolepsy and other circadian disorders.
Collapse
Affiliation(s)
- Jie Yin
- Department of Biophysics, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
- Chinese Institute for Brain Research, No. 26 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing, China
| | - Yanyong Kang
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Aaron P McGrath
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Karen Chapman
- Department of Biophysics, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Megan Sjodt
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Eiji Kimura
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Atsutoshi Okabe
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuhei Miyanohana
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuji Shimizu
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Rameshu Rallabandi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Peng Lian
- BioHPC at the Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaochen Bai
- Department of Biophysics, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Mack Flinspach
- Takeda Development Center Americas, Inc, 9625 Towne Centre Drive, San Diego, CA, 92121, USA.
| | - Jef K De Brabander
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
18
|
Yadav A, Yadav A, Tripathi S, Dewaker V, Kant R, Yadav PN, Srivastava AK. Copper-Catalyzed Oxidative [3 + 2]-Annulation of Quinoxalin-2(1 H)-one with Oxime Esters toward Functionalized Pyrazolo[1,5- a]quinoxalin-4(5 H)-ones as Opioid Receptor Modulators. J Org Chem 2022; 87:7350-7364. [PMID: 35587158 DOI: 10.1021/acs.joc.2c00563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrazolo[1,5-a]quinoxalin-4(5H)-one derivatives as novel opioid receptor modulators have been synthesized via copper-catalyzed oxidative [3 + 2]-annulation of quinoxalin-2(1H)-one and oxime-O-acetates. This hydrazine-free C-C and N-N bond formation strategy starts with the generation of C2N1 synthon using oxime acetate, which reacts in a [3 + 2] manner with quinoxalin-2(1H)-one, followed by oxidative aromatization. The synthesized compounds were tested against opioid receptors, of which eight compounds exhibited an antagonistic effect with EC50 < 5 μM at various opioid receptors. Molecular docking studies were performed to identify the binding of active pyrazolo[1,5-a]quinoxalin-4(5H)-one ligands with hKOR protein. Docking results indicated that compounds 3d and 3g participate in hydrogen bonding with the hydroxyl group of T111 of the active site pocket residue.
Collapse
Affiliation(s)
- Anamika Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anubhav Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashank Tripathi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varun Dewaker
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ruchir Kant
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prem Narayan Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Miao LY, Kim HJ, Whitlatch K, Jaiswal D, Navarro A, Egan R, Olivo PD. A rapid homogenous bioassay for detection of thyroid-stimulating antibodies based on a luminescent cyclic AMP biosensor. J Immunol Methods 2021; 501:113199. [PMID: 34871593 DOI: 10.1016/j.jim.2021.113199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/25/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Graves' disease (GD) is an autoimmune disease caused by antibodies to the thyroid stimulating hormone receptor (TSHR). The FDA-cleared Thyretain™ TSI bioassay is a highly specific method to detect thyroid stimulating antibodies (TSAb/TSI) in the blood of patients with autoimmune thyroid disease (AITD), particularly GD. To simplify the workflow of this bioassay and to support a semi-quantitative result, we have generated a stable CHO-K1 cell line expressing both a chimeric TSH receptor (TSHR-Mc4) and a luciferase-based homogeneous cAMP biosensor (GS luciferase). Here, we describe a rapid, real-time, homogenous bioassay (Turbo™ TSI Bioassay) to directly assess the functional activity of TSI and produce results in International Units of IU/L. The Turbo™ TSI bioassay works by measuring changes in the intracellular cAMP level induced by a G-protein coupled receptor (G-PCR) signaling cascade which is triggered by the binding of TSI to the TSHR. Upon binding to cAMP, the GS luciferase reporter is activated through conformational changes and generates light that can be measured in intact cells with a luminometer. The LoD and LoQ of the assay were determined to be 0.016 IU/L and 0.03 IU/L, respectively and the preliminary assay cutoff was determined to be 0.024 IU/L by ROC analysis using the Thyretain™ TSI bioassay results as reference. The analytical performance of the Turbo™ TSI bioassay is comparable to the Thyretain™ TSI bioassay as evidenced by similar EC50 values for a TSHR stimulating monoclonal antibody (M22). The specificity of the Turbo™ TSI bioassay was demonstrated by showing no response to a high concentration of a human monoclonal TSHR blocking antibody (K1-70). The precision of the assay was excellent with an overall within-laboratory precision <15% CV. When testing 198 clinical samples, the positive and negative percent agreement between the Turbo™ TSI and the Thyretain™ TSI bioassays were 98.7% and 93.5%, respectively. While both bioassays yield equivalent analytical and clinical performances, the Turbo™ TSI bioassay is much simpler to perform. It does not require cell culture, sample dilution, washing or cell lysis steps, resulting in a dramatically reduced turnaround time from about 21 h to 60 min. In addition, the same cell line showed its capability of detecting thyroid blocking antibodies (TBAb/TBI) in a competitive format. The Turbo™ TSI bioassay is user-friendly and is a very promising advancement to aid the diagnosis of autoimmune thyroid disease (AITD).
Collapse
Affiliation(s)
- Lynn Yihong Miao
- Quidel Corp., 2005 East State Street, Suite 100, Athens, OH 45701, USA.
| | - Hannah J Kim
- Quidel Corp., 2005 East State Street, Suite 100, Athens, OH 45701, USA
| | - Kindra Whitlatch
- Quidel Corp., 2005 East State Street, Suite 100, Athens, OH 45701, USA
| | - Depesh Jaiswal
- Quidel Corp., 10165 McKellar Court, San Diego, CA 92121, USA
| | - Adriana Navarro
- Quidel Corp., 2005 East State Street, Suite 100, Athens, OH 45701, USA
| | - Richard Egan
- Quidel Corp., 10165 McKellar Court, San Diego, CA 92121, USA
| | - Paul D Olivo
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, MO, USA
| |
Collapse
|
20
|
Wang FI, Ding G, Ng GS, Dixon SJ, Chidiac P. Luciferase-based GloSensor™ cAMP assay: Temperature optimization and application to cell-based kinetic studies. Methods 2021; 203:249-258. [PMID: 34737032 DOI: 10.1016/j.ymeth.2021.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are an important receptor superfamily and common therapeutic targets. The second messenger cyclic adenosine monophosphate (cAMP) is a key mediator in many GPCR signaling pathways. Monitoring intracellular cAMP levels can help identify orthosteric agonists and antagonists, as well as allosteric modulators. In this regard, luminescence-based biosensors have revolutionized our ability to monitor GPCR signaling kinetics. The GloSensor™ cAMP assay enables real-time monitoring of signaling downstream of many GPCRs. However, it is crucial to optimize assay conditions such as temperature. As well, it has not been reported whether the effects of temperature on biosensor activity are reversible. Here, we describe the temperature sensitivity and reversibility of the GloSensor™ cAMP assay, and which GloSensor™ version is optimal for measuring cytosolic cAMP. We also present a detailed protocol for monitoring cAMP levels in live cells expressing endogenous or exogenous GPCRs. Temperature optimization studies were carried out using HEK293H cells transiently transfected with the adenosine receptor A2a and the GloSensor™ plasmid (pGloSensor-20F or -22F). We found that preincubation and luminescence reading at room temperature were optimal as compared to higher temperatures. As well, the GloSensor-22F biosensor had a superior signal-to-background ratio and the effect of temperature on biosensor activity was reversible. However, thermal instability of the biosensor may pose a problem for in vivo studies. Nevertheless, the GloSensor™ cAMP assay can be applied to analyze signaling by a wide range of GPCRs for drug discovery purposes.
Collapse
Affiliation(s)
- Fang I Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Gucci Ding
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Garmen S Ng
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada.
| |
Collapse
|
21
|
Abid HA, Inoue A, Gorvin CM. Heterogeneity of G protein activation by the calcium-sensing receptor. J Mol Endocrinol 2021; 67:41-53. [PMID: 34077389 PMCID: PMC8240730 DOI: 10.1530/jme-21-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor that plays a fundamental role in extracellular calcium (Ca2+e) homeostasis by regulating parathyroid hormone release and urinary calcium excretion. The CaSR has been described to activate all four G protein subfamilies (Gαq/11, Gαi/o, Gα12/13, Gαs), and mutations in the receptor that cause hyper/hypocalcaemia, have been described to bias receptor signalling. However, many of these studies are based on measurements of second messengers or gene transcription that occurs many steps downstream of receptor activation and can represent convergence points of several signalling pathways. Therefore, to assess CaSR-mediated G protein activation directly, we took advantage of a recently described NanoBiT G protein dissociation assay system. Our studies, performed in HEK293 cells stably expressing CaSR, demonstrate that Ca2+e stimulation activates all Gαq/11 family and several Gαi/o family proteins, although Gαz was not activated. CaSR stimulated dissociation of Gα12/13 and Gαs from Gβ-subunits, but this occurred at a slower rate than that of other Gα-subunits. Investigation of cDNA expression of G proteins in three tissues abundantly expressing CaSR, the parathyroids, kidneys and pancreas, showed Gα11, Gαz, Gαi1 and Gα13 genes were highly expressed in parathyroid tissue, indicating CaSR most likely activates Gα11 and Gαi1 in parathyroids. In kidney and pancreas, the majority of G proteins were similarly expressed, suggesting CaSR may activate multiple G proteins in these cells. Thus, these studies validate a single assay system that can be used to robustly assess CaSR variants and biased signalling and could be utilised in the development of new pharmacological compounds targeting CaSR.
Collapse
Affiliation(s)
- Hasnat Ali Abid
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK
- Correspondence should be addressed to C M Gorvin:
| |
Collapse
|
22
|
Yadav VD, Kumar L, Kumari P, Kumar S, Singh M, Siddiqi MI, Yadav PN, Batra S. Synthesis and Assessment of Fused β-Carboline Derivatives as Kappa Opioid Receptor Agonists. ChemMedChem 2021; 16:1917-1926. [PMID: 33599108 DOI: 10.1002/cmdc.202100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Indexed: 12/17/2022]
Abstract
The synthesis of 5-formyl-6-aryl-6H-indolo[3,2,1-de][1,5] naphthyridine-2-carboxylates by reaction between 1-formyl-9H-β-carbolines and cinnamaldehydes in the presence of pyrrolidine in water with microwave irradiation is described. Pharmacophoric modification of the formyl group offered several new fused β-carboline derivatives, which were investigated for their κ-opioid receptor (KOR) agonistic activity. Two compounds 4 a and 4 c produced appreciable agonist activity on KOR with EC50 values of 46±19 and 134±9 nM, respectively. Moreover, compound-induced KOR signaling studies suggested both compounds to be extremely G-protein-biased agonists. The analgesic effect of 4 a was validated by the increase in tail flick latency in mice in a time-dependent manner, which was completely blocked by the KOR-selective antagonist norBNI. Moreover, unlike U50488, an unbiased full KOR agonist, 4 a did not induce sedation. The docking of 4 a with the human KOR was studied to rationalize the result.
Collapse
Affiliation(s)
- Veena D Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Lalan Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Poonam Kumari
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Sakesh Kumar
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Maninder Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Mohammad I Siddiqi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Prem N Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research, CSIR-Human Resource Development Centre, CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
23
|
Rodríguez-Rodríguez I, Kalafut J, Czerwonka A, Rivero-Müller A. A novel bioassay for quantification of surface Cannabinoid receptor 1 expression. Sci Rep 2020; 10:18191. [PMID: 33097803 PMCID: PMC7584592 DOI: 10.1038/s41598-020-75331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/14/2020] [Indexed: 12/04/2022] Open
Abstract
The cannabinoid receptor type 1 (CB1) plays critical roles in multiple physiological processes such as pain perception, brain development and body temperature regulation. Mutations on this gene (CNR1), results in altered functionality and/or biosynthesis such as reduced membrane expression, changes in mRNA stability or changes in downstream signaling that act as triggers for diseases such as obesity, Parkinson’s, Huntington’s, among others; thus, it is considered as a potential pharmacological target. To date, multiple quantification methods have been employed to determine how these mutations affect receptor expression and localization; however, they present serious disadvantages that may arise quantifying errors. Here, we describe a sensitive bioassay to quantify receptor surface expression; in this bioassay the Gaussia Luciferase (GLuc) was fused to the extracellular portion of the CB1. The GLuc activity was assessed by coelenterazine addition to the medium followed by immediate readout. Based on GLuc activity assay, we show that the GLuc signals corelate with CB1 localization, besides, we showed the assay’s functionality and reliability by comparing its results with those generated by previously reported mutations on the CNR1 gene and by using flow cytometry to determine the cell surface receptor expression. Detection of membrane-bound CB1, and potentially other GPCRs, is able to quickly screen for receptor levels and help to understand the effect of clinically relevant mutations or polymorphisms.
Collapse
Affiliation(s)
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
24
|
Purification of native CCL7 and its functional interaction with selected chemokine receptors. Protein Expr Purif 2020; 171:105617. [PMID: 32145391 DOI: 10.1016/j.pep.2020.105617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/01/2020] [Indexed: 11/21/2022]
Abstract
Chemokine receptors form a major sub-family of G protein-coupled receptors (GPCRs) and they are involved in a number of cellular and physiological processes related to our immune response and regulation. A better structural understanding of ligand-binding, activation, signaling and regulation of chemokine receptors is very important to design potentially therapeutic interventions for human disorders arising from aberrant chemokine signaling. One of the key limitations in probing the structural details of chemokine receptors is the availability of large amounts of purified, homogenous and fully functional chemokine ligands, and the commercially available products, are not affordable for in-depth structural studies. Moreover, production of uniformly isotope-labeled chemokines, for example, suitable for NMR-based structural investigation, also remains challenging. Here, we have designed a streamlined approach to express and purify the human chemokine CCL7 as well as its 15N-, 15N/13C-, 2H/15N/13C- isotope-labeled derivatives, at milligram levels using E. coli expression system. Purified CCL7 not only maintains a well-folded three-dimensional structure as analyzed using circular dichroism and 1H/15N NMR but it also induces coupling of heterotrimeric G-proteins and β-arrestins for selected chemokine receptors in cellular system. We compared cAMP response induced by histidine tagged CCL7 and native CCL7 and found that modification of the N-terminus of CCL7 compromises its functionality. Our strategy presented here may be applicable to other chemokines and therefore, provide a potentially generic and cost-effective approach to produce chemokines in large amounts for functional and structural studies.
Collapse
|
25
|
Diana T, Olivo PD, Chang YH, Wüster C, Kanitz M, Kahaly GJ. Comparison of a Novel Homogeneous Cyclic Amp Assay and a Luciferase Assay for Measuring Stimulating Thyrotropin-Receptor Autoantibodies. Eur Thyroid J 2020; 9:67-72. [PMID: 32257955 PMCID: PMC7109431 DOI: 10.1159/000504509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/02/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Stimulating thyrotropin-receptor antibodies (TSAb) cause Graves' disease (GD). We tested a novel homogeneous fluorescent 3',5' cyclic adenine monophosphate (cAMP) assay for the detection of TSAb in a bioassay. METHODS Chinese hamster ovary (CHO) cell lines expressing either a chimeric (MC4) or wild-type (WT) TSH-R were incubated with the adenyl cyclase activator forskolin, a human TSAb monoclonal antibody (M22), and with sera from GD patients. Intracellular cAMP levels were measured using a Bridge-It® cAMP assay, and the results were compared with a luciferase-based bioassay. RESULTS Both cell lines were stimulated with forskolin concentrations (0.006-200 µM) in a dose-dependent manner. The linear range in the MC4 and WT cells was 0.8-25 and 3.1-50 µM, respectively. Levels of cAMP and luciferase in forskolin-treated MC4 and WT cells were positively correlated (r = 0.91 and 0.84, both p < 0.001). The 50% maximum stimulatory concentration of forskolin was more than 16-fold higher for the CHO-WT cells than the CHO-MC4 cells in the cAMP assay and 4-fold higher in the luciferase assay. Incubation of both cell lines with M22 (0.006-50 ng/mL) resulted in a dose-dependent increase in cAMP levels with linear ranges for the MC4 and WT cells of 0.8-12.5 and 0.2-3.125 ng/mL, respectively. Comparison of cAMP and luciferase levels in M22-treated MC4 and WT cells also showed a positive correlation (r = 0.88, p < 0.001 and 0.75, p = 0.002). A positive correlation was also noted when using patient samples (r = 0.96, p < 0.001) that were all TSH-R-Ab binding assay positive. CONCLUSION The novel, rapid, simple-to-perform cAMP assay provides TSAb-mediated stimulatory results comparable to a luciferase-based bioassay.
Collapse
Affiliation(s)
- Tanja Diana
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Paul D. Olivo
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri, USA
| | | | | | - Michael Kanitz
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - George J. Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
- *Prof. George J. Kahaly, JGU Medical Center, Langenbeckstrasse 1, DE–55131 Mainz (Germany), E-Mail
| |
Collapse
|
26
|
Pandey S, Li XX, Srivastava A, Baidya M, Kumari P, Dwivedi H, Chaturvedi M, Ghosh E, Woodruff TM, Shukla AK. Partial ligand-receptor engagement yields functional bias at the human complement receptor, C5aR1. J Biol Chem 2019; 294:9416-9429. [PMID: 31036565 DOI: 10.1074/jbc.ra119.007485] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/17/2019] [Indexed: 12/25/2022] Open
Abstract
The human complement component, C5a, binds two different seven-transmembrane receptors termed C5aR1 and C5aR2. C5aR1 is a prototypical G-protein-coupled receptor that couples to the Gαi subfamily of heterotrimeric G-proteins and β-arrestins (βarrs) following C5a stimulation. Peptide fragments derived from the C terminus of C5a can still interact with the receptor, albeit with lower affinity, and can act as agonists or antagonists. However, whether such fragments might display ligand bias at C5aR1 remains unexplored. Here, we compare C5a and a modified C-terminal fragment of C5a, C5apep, in terms of G-protein coupling, βarr recruitment, endocytosis, and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activation at the human C5aR1. We discover that C5apep acts as a full agonist for Gαi coupling as measured by cAMP response and extracellular signal-regulated kinase 1/2 phosphorylation, but it displays partial agonism for βarr recruitment and receptor endocytosis. Interestingly, C5apep exhibits full-agonist efficacy with respect to inhibiting lipopolysaccharide-induced interleukin-6 secretion in human macrophages, but its ability to induce human neutrophil migration is substantially lower compared with C5a, although both these responses are sensitive to pertussis toxin treatment. Taken together, our data reveal that compared with C5a, C5apep exerts partial efficacy for βarr recruitment, receptor trafficking, and neutrophil migration. Our findings therefore uncover functional bias at C5aR1 and also provide a framework that can potentially be extended to chemokine receptors, which also typically interact with chemokines through a biphasic mechanism.
Collapse
Affiliation(s)
- Shubhi Pandey
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Xaria X Li
- the School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Ashish Srivastava
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Mithu Baidya
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Punita Kumari
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Hemlata Dwivedi
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Madhu Chaturvedi
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Eshan Ghosh
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| | - Trent M Woodruff
- the School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane 4072, Australia
| | - Arun K Shukla
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India and
| |
Collapse
|