1
|
Wambreuse N, Caulier G, Eeckhaut I, Borrello L, Bureau F, Fievez L, Delroisse J. Morpho-functional characterisation of cœlomocytes in the aquacultivated sea cucumber Holothuria scabra: From cell diversity to transcriptomic immune response. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110144. [PMID: 39842678 DOI: 10.1016/j.fsi.2025.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Holothuria scabra is one of the most valuable species of sea cucumber owing to its exploitation as a seafood product. This study aims to describe the main molecular and cellular actors in the immunology of this species. First, a detailed description of the immune cells - the cœlomocytes - is provided, highlighting five main cell types including phagocytes, small round cells (SRCs), spherulocytes, fusiform cells, and crystal cells, with a further five subtypes identified using transmission electron microscopy. Cœlomocyte aggregates were also described morphologically, yielding two main types, one comprising three successive maturation stages. A comparison of the concentration and proportion of cell populations was carried out between the two main body fluids, namely the hydrovascular fluid of the Polian vesicle (HF) and the perivisceral fluid of the general cavity (PF), and no clear relation could be highlighted. Next, the cœlomocyte immune response was studied 24 h after lipopolysaccharide (LPS) injection in the two body fluids. Firstly, the fluctuation in cell populations was assessed, and despite a high inter-individual variability, it shows a decrease in the phagocyte proportion and an increase in the SRC proportion. Secondly, the differential gene expression of PF cœlomocytes was studied by de novo RNA-sequencing between LPS-injected and control-injected individuals: 945 genes were differentially expressed, including 673 up-regulated and 272 down-regulated in the LPS-injected individuals. Among these genes, 80 had a presumed function in immunity based on their annotation, covering a wide range of immune mechanisms. Overall, this study reveals a complex immune system at both molecular and cellular levels and constitutes a baseline reference on H. scabra immunity, which may be useful for the development of sustainable aquaculture and provides valuable data for comparative immunology.
Collapse
Affiliation(s)
- Noé Wambreuse
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium; Belaza Marine Station (IH.SM-UMONS-ULB-ULIEGE), Toliara, 601, Madagascar.
| | - Guillaume Caulier
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium; Belaza Marine Station (IH.SM-UMONS-ULB-ULIEGE), Toliara, 601, Madagascar
| | - Igor Eeckhaut
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium; Belaza Marine Station (IH.SM-UMONS-ULB-ULIEGE), Toliara, 601, Madagascar
| | - Laura Borrello
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000, Liège, Belgium
| | - Laurence Fievez
- Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000, Liège, Belgium
| | - Jérôme Delroisse
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000, Mons, Belgium; Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
2
|
Henson JH, Reyes G, Lo NT, Herrera K, McKim QW, Herzon HY, Galvez-Ceron M, Hershey AE, Kim RS, Shuster CB. Cytokinetic contractile ring structural progression in an early embryo: positioning of scaffolding proteins, recruitment of α-actinin, and effects of myosin II inhibition. Front Cell Dev Biol 2024; 12:1483345. [PMID: 39398481 PMCID: PMC11467475 DOI: 10.3389/fcell.2024.1483345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Our knowledge of the assembly and dynamics of the cytokinetic contractile ring (CR) in animal cells remains incomplete. We have previously used super-resolution light microscopy and platinum replica electron microscopy to elucidate the ultrastructural organization of the CR in first division sea urchin embryos. To date, our studies indicate that the CR initiates as an equatorial band of clusters containing myosin II, actin, septin and anillin, which then congress over time into patches which coalesce into a linear array characteristic of mature CRs. In the present study, we applied super-resolution interferometric photoactivated localization microscopy to confirm the existence of septin filament-like structures in the developing CR, demonstrate the close associations between septin2, anillin, and myosin II in the CR, as well as to show that septin2 appears consistently submembranous, whereas anillin is more widely distributed in the early CR. We also provide evidence that the major actin cross-linking protein α-actinin only associates with the linearized, late-stage CR and not with the early CR clusters, providing further support to the idea that α-actinin associates with actomyosin structures under tension and can serve as a counterbalance. In addition, we show that inhibition of actomyosin contraction does not stop the assembly of the early CR clusters but does arrest the progression of these structures to the aligned arrays required for functional cytokinesis. Taken together our results reinforce and extend our model for a cluster to patch to linear structural progression of the CR in sea urchin embryos and highlight the evolutionary relationships with cytokinesis in fission yeast.
Collapse
Affiliation(s)
- John H. Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Gabriela Reyes
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Nina T. Lo
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Karina Herrera
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Quenelle W. McKim
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Hannah Y. Herzon
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Maritriny Galvez-Ceron
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Alexandra E. Hershey
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Rachael S. Kim
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Charles B. Shuster
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
3
|
Arenas-Mena C, Akin S. Widespread priming of transcriptional regulatory elements by incipient accessibility or RNA polymerase II pause in early embryos of the sea urchin Strongylocentrotus purpuratus. Genetics 2023; 225:iyad145. [PMID: 37551428 PMCID: PMC10789315 DOI: 10.1093/genetics/iyad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Transcriptional regulatory elements (TREs) are the primary nodes that control developmental gene regulatory networks. In embryo stages, larvae, and adult differentiated red spherule cells of the sea urchin Strongylocentrotus purpuratus, transcriptionally engaged TREs are detected by Precision Run-On Sequencing (PRO-seq), which maps genome-wide at base pair resolution the location of paused or elongating RNA polymerase II (Pol II). In parallel, TRE accessibility is estimated by the Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-seq). Our analysis identifies surprisingly early and widespread TRE accessibility in 4-cell cleavage embryos that is not necessarily followed by concurrent or subsequent transcription. TRE transcriptional differences identified by PRO-seq provide more contrast among embryonic stages than ATAC-seq accessibility differences, in agreement with the apparent excess of accessible but inactive TREs during embryogenesis. Global TRE accessibility reaches a maximum around the 20-hour late blastula stage, which coincides with the consolidation of major embryo regionalizations and peak histone variant H2A.Z expression. A transcriptional potency model based on labile nucleosome TRE occupancy driven by DNA sequences and the prevalence of histone variants is proposed in order to explain the basal accessibility of transcriptionally inactive TREs during embryogenesis. However, our results would not reconcile well with labile nucleosome models based on simple A/T sequence enrichment. In addition, a large number of distal TREs become transcriptionally disengaged during developmental progression, in support of an early Pol II paused model for developmental gene regulation that eventually resolves in transcriptional activation or silencing. Thus, developmental potency in early embryos may be facilitated by incipient accessibility and transcriptional pause at TREs.
Collapse
Affiliation(s)
- Cesar Arenas-Mena
- Department of Biology, College of Staten Island, City University of New York (CUNY), 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- PhD Programs in Biology and Biochemistry at the City University of New York (CUNY), Graduate Center, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Serhat Akin
- Department of Biology, College of Staten Island, City University of New York (CUNY), 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- PhD Program in Biology at the City University of New York (CUNY), Graduate Center, 365 Fifth Avenue, New York, NY, 10016, USA
| |
Collapse
|
4
|
Murano C, Nonnis S, Scalvini FG, Maffioli E, Corsi I, Tedeschi G, Palumbo A. Response to microplastic exposure: An exploration into the sea urchin immune cell proteome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121062. [PMID: 36641070 DOI: 10.1016/j.envpol.2023.121062] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
It is now known that the Mediterranean Sea currently is one of the major hotspot for microplastics (MPs; < 5 mm) pollution and that the risks will be even more pronounced in the coming years. Thus, the in-depth study of the mechanisms underlying the MPs toxicity in key Mediterranean organisms, subjected to high anthropic pressures, has become a categorical imperative to pursue. Here, we explore for the first time the sea urchins immune cells profile combined to their proteome upon in vivo exposure (72 h) to different concentrations of polystyrene-microbeads (micro-PS) starting from relevant environmental concentrations (10, 50, 103, 104 MP/L). Every 24 h, immunological parameters were monitored. After 72 h, the abundance of MPs was examined in various organs and coelomocytes were collected for proteomic analysis based on a shotgun label free proteomic approach. While sea urchins treated with the lowest concentration tested (10 and 50 micro-PS/L) did not show the presence of micro-PS in any tissue, in the specimens exposed to the highest concentration (103 and 104 micro-PS) there was an internalisation of 9.75 ± 2.75 and 113.75 ± 34.5 MP/g, respectively. Proteomic analyses revealed that MPs exposure altered coelomocytes protein profile not only compared to the control group but also among the different micro-PS concentrations and these variations are micro-PS concentration dependent. The proteins exclusively expressed in the coelomocytes of specimens exposed to MPs are mainly metabolite interconversion enzymes, involved in cellular processes, indicating a severe alteration of the cellular metabolic pathways. Overall, these findings provide new insights on the mode of action of MPs in the sea urchin immune cells both at the molecular and cellular level.
Collapse
Affiliation(s)
- Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy; CRC "Innovation for Well-being and Environment" (I-WE), Università Degli Studi di Milano, Milano, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy; CRC "Innovation for Well-being and Environment" (I-WE), Università Degli Studi di Milano, Milano, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
5
|
Liu F, Last KS, Henry TB, Reinardy HC. Interspecific differences in oxidative DNA damage after hydrogen peroxide exposure of sea urchin coelomocytes. Mutagenesis 2022; 38:13-20. [PMID: 36130095 PMCID: PMC9897020 DOI: 10.1093/mutage/geac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interspecific comparison of DNA damage can provide information on the relative vulnerability of marine organisms to toxicants that induce oxidative genotoxicity. Hydrogen peroxide (H2O2) is an oxidative toxicant that causes DNA strand breaks and nucleotide oxidation and is used in multiple industries including Atlantic salmon aquaculture to treat infestations of ectoparasitic sea lice. H2O2 (up to 100 mM) can be released into the water after sea lice treatment, with potential consequences of exposure in nontarget marine organisms. The objective of the current study was to measure and compare differences in levels of H2O2-induced oxidative DNA damage in coelomocytes from Scottish sea urchins Echinus esculentus, Paracentrotus lividus, and Psammechinus miliaris. Coelomocytes were exposed to H2O2 (0-50 mM) for 10 min, cell concentration and viability were quantified, and DNA damage was measured by the fast micromethod, an alkaline unwinding DNA method, and the modified fast micromethod with nucleotide-specific enzymes. Cell viability was >92% in all exposures and did not differ from controls. Psammechinus miliaris coelomocytes had the highest oxidative DNA damage with 0.07 ± 0.01, 0.08 ± 0.01, and 0.07 ± 0.01 strand scission factors (mean ± SD) after incubation with phosphate-buffered saline, formamidopyrimidine-DNA glycosylase, and endonuclease-III, respectively, at 50 mM H2O2. Exposures to 0.5 mM H2O2 (100-fold dilution from recommended lice treatment concentration) induced oxidative DNA damage in all three species of sea urchins, suggesting interspecific differences in vulnerabilities to DNA damage and/or DNA repair mechanisms. Understanding impacts of environmental genotoxicants requires understanding species-specific susceptibilities to DNA damage, which can impact long-term stability in sea urchin populations in proximity to aquaculture farms.
Collapse
Affiliation(s)
- Fengjia Liu
- The Scottish Association for Marine Science, Oban, United Kingdom
| | - Kim S Last
- The Scottish Association for Marine Science, Oban, United Kingdom
| | - Theodore B Henry
- Institute of Earth and Life Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom,Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Helena C Reinardy
- Corresponding author. Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK. E-mail: ;
| |
Collapse
|
6
|
Barela Hudgell MA, Grayfer L, Smith LC. Coelomocyte populations in the sea urchin, Strongylocentrotus purpuratus, undergo dynamic changes in response to immune challenge. Front Immunol 2022; 13:940852. [PMID: 36119116 PMCID: PMC9471872 DOI: 10.3389/fimmu.2022.940852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The sea urchin, Strongylocentrotus purpuratus has seven described populations of distinct coelomocytes in the coelomic fluid that are defined by morphology, size, and for some types, by known functions. Of these subtypes, the large phagocytes are thought to be key to the sea urchin cellular innate immune response. The concentration of total coelomocytes in the coelomic fluid increases in response to pathogen challenge. However, there is no quantitative analysis of how the respective coelomocyte populations change over time in response to immune challenge. Accordingly, coelomocytes collected from immunoquiescent, healthy sea urchins were evaluated by flow cytometry for responses to injury and to challenge with either heat-killed Vibrio diazotrophicus, zymosan A, or artificial coelomic fluid, which served as the vehicle control. Responses to the initial injury of coelomic fluid collection or to injection of V. diazotrophicus show significant increases in the concentration of large phagocytes, small phagocytes, and red spherule cells after one day. Responses to zymosan A show decreases in the concentration of large phagocytes and increases in the concentration of small phagocytes. In contrast, responses to injections of vehicle result in decreased concentration of large phagocytes. When these changes in coelomocytes are evaluated based on proportions rather than concentration, the respective coelomocyte proportions are generally maintained in response to injection with V. diazotrophicus and vehicle. However, this is not observed in response to zymosan A and this lack of correspondence between proportions and concentrations may be an outcome of clearing these large particles by the large phagocytes. Variations in coelomocyte populations are also noted for individual sea urchins evaluated at different times for their responses to immune challenge compared to the vehicle. Together, these results demonstrate that the cell populations in sea urchin immune cell populations undergo dynamic changes in vivo in response to distinct immune stimuli and to injury and that these changes are driven by the responses of the large phagocyte populations.
Collapse
Affiliation(s)
| | | | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
7
|
Barela Hudgell MA, Grayfer L, Smith LC. A flow cytometry based approach to identify distinct coelomocyte subsets of the purple sea urchin, Strongylocentrotus purpuratus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104352. [PMID: 35065955 DOI: 10.1016/j.dci.2022.104352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The sea urchin, Strongylocentrotus purpuratus, possesses at least seven distinguishable cell populations in the coelomic fluid, which vary in morphology, size, and function. Of these, the large phagocytes, small phagocytes, and red spherule cells are thought to be key to the echinoid immune response. Because there are currently no effective and rapid means of evaluating sea urchin coelomocytes, we developed a flow cytometry based approach to identify these subsets from unseparated, unstained, live cells. In particular our gating strategy distinguishes between the large phagocytes, small phagocytes, red spherule cells, and a mixed population of vibratile cells and colorless spherule cells. This flow cytometry based analysis increases the speed and improves the reliability of coelomocyte analysis compared to differential cell counts by microscopy.
Collapse
Affiliation(s)
- Megan A Barela Hudgell
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA
| | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
8
|
Jobson S, Hamel JF, Mercier A. Rainbow bodies: Revisiting the diversity of coelomocyte aggregates and their synthesis in echinoderms. FISH & SHELLFISH IMMUNOLOGY 2022; 122:352-365. [PMID: 35167932 DOI: 10.1016/j.fsi.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The innate immunity of echinoderms has been a research focus since the early twentieth century, consistently providing ever deeper knowledge of its complexity and evolutionary aspects. At its core are coelomocytes, which are diverse cells collectively known to respond in a variety of ways, including via movement, phagocytosis, and aggregation. However, features of cellular immunity have never been compared in echinoderms from phylogenetic and distributional perspectives, to provide insight into ecological and evolutionary patterns. The present study catalyzed and characterized the formation of coelomocyte aggregates in members of all five extant classes of echinoderms. The morphological characteristics of these aggregates (including their colour, shape, texture, size) were assessed, as well as the major cells composing them. Coelomocyte diversity (both as free and aggregated forms) was determined to be maximum in class Holothuroidea, followed by Echinoidea, with the other classes showing similar levels of diversity. The colours of coelomocyte aggregates appeared to be more closely linked to phylogeny (classes, orders) rather than geographic range, or external colour of the species themselves. Asteroids and ophiuroids displayed primarily light-coloured aggregates, from transparent to green; while holothuroids, echinoids and crinoids demonstrated more vivid variants, from red to deep purple. The kinetics of aggregate formation and expulsion were monitored in selected species, showing immediate cellular response to foreign particulate matter in the form of encapsulation and various methods of expulsion, including through the dermal papillae of asteroids and the anus (cloaca) of holothuroids. The findings support that coelomocyte aggregate formation is a conserved immune response across all five extant classes of echinoderms with variations in their cell catalysts, complexity, shape, colour, and size.
Collapse
Affiliation(s)
- Sara Jobson
- Department of Ocean Sciences, Memorial University, St. John's, Newfoundland, Canada.
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment, St. Philips, Newfoundland, Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St. John's, Newfoundland, Canada
| |
Collapse
|
9
|
Auguste M, Melillo D, Corteggio A, Marino R, Canesi L, Pinsino A, Italiani P, Boraschi D. Methodological Approaches To Assess Innate Immunity and Innate Memory in Marine Invertebrates and Humans. FRONTIERS IN TOXICOLOGY 2022; 4:842469. [PMID: 35295223 PMCID: PMC8915809 DOI: 10.3389/ftox.2022.842469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Assessing the impact of drugs and contaminants on immune responses requires methodological approaches able to represent real-life conditions and predict long-term effects. Innate immunity/inflammation is the evolutionarily most widespread and conserved defensive mechanism in living organisms, and therefore we will focus here on immunotoxicological methods that specifically target such processes. By exploiting the conserved mechanisms of innate immunity, we have examined the most representative immunotoxicity methodological approaches across living species, to identify common features and human proxy models/assays. Three marine invertebrate organisms are examined in comparison with humans, i.e., bivalve molluscs, tunicates and sea urchins. In vivo and in vitro approaches are compared, highlighting common mechanisms and species-specific endpoints, to be applied in predictive human and environmental immunotoxicity assessment. Emphasis is given to the 3R principle of Replacement, Refinement and Reduction of Animals in Research and to the application of the ARRIVE guidelines on reporting animal research, in order to strengthen the quality and usability of immunotoxicology research data.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Rita Marino
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), CNR, Palermo, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| |
Collapse
|
10
|
Garno C, Irons ZH, Gamache CM, McKim Q, Reyes G, Wu X, Shuster CB, Henson JH. Building the cytokinetic contractile ring in an early embryo: Initiation as clusters of myosin II, anillin and septin, and visualization of a septin filament network. PLoS One 2021; 16:e0252845. [PMID: 34962917 PMCID: PMC8714119 DOI: 10.1371/journal.pone.0252845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
The cytokinetic contractile ring (CR) was first described some 50 years ago, however our understanding of the assembly and structure of the animal cell CR remains incomplete. We recently reported that mature CRs in sea urchin embryos contain myosin II mini-filaments organized into aligned concatenated arrays, and that in early CRs myosin II formed discrete clusters that transformed into the linearized structure over time. The present study extends our previous work by addressing the hypothesis that these myosin II clusters also contain the crucial scaffolding proteins anillin and septin, known to help link actin, myosin II, RhoA, and the membrane during cytokinesis. Super-resolution imaging of cortices from dividing embryos indicates that within each cluster, anillin and septin2 occupy a centralized position relative to the myosin II mini-filaments. As CR formation progresses, the myosin II, septin and anillin containing clusters enlarge and coalesce into patchy and faintly linear patterns. Our super-resolution images provide the initial visualization of anillin and septin nanostructure within an animal cell CR, including evidence of a septin filament-like network. Furthermore, Latrunculin-treated embryos indicated that the localization of septin or anillin to the myosin II clusters in the early CR was not dependent on actin filaments. These results highlight the structural progression of the CR in sea urchin embryos from an array of clusters to a linearized purse string, the association of anillin and septin with this process, and provide the visualization of an apparent septin filament network with the CR structure of an animal cell.
Collapse
Affiliation(s)
- Chelsea Garno
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Zoe H. Irons
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Courtney M. Gamache
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Quenelle McKim
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - Xufeng Wu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles B. Shuster
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
| | - John H. Henson
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, United States of America
- Department of Biology, Dickinson College, Carlisle, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
11
|
Quesada-Díaz E, Figueroa-Delgado P, García-Rosario R, Sirfa A, García-Arrarás JE. Dedifferentiation of radial glia-like cells is observed in in vitro explants of holothurian radial nerve cord. J Neurosci Methods 2021; 364:109358. [PMID: 34537226 DOI: 10.1016/j.jneumeth.2021.109358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Among animal phyla, some of the least studied nervous systems are those of the phylum Echinodermata. Part of the problem lies in that most of their nervous components are embedded in the body wall that has calcareous skeletal components. NEW METHOD We have developed a novel technique for the successful isolation of the radial nerve cords (RNCs) and an in vitro system where the isolated RNCs can be cultured and are amenable to experimental manipulation. Here we use this system to isolate the RNC of the sea cucumber Holothuria glaberrima as a way to extend our studies on its regeneration capabilities. RESULTS The RNCs can be isolated from the surrounding tissues by collagenase treatment. The explants obtained following enzymatic dissociation can be kept in culture for up to 2 weeks. Histological and immunohistochemical studies show that the explants maintain a stable number of cells with little proliferation or apoptosis throughout the culture incubation period. The main change observed in RNCs in vitro is a progressive dedifferentiation of radial glia-like cells. This dedifferentiation corresponds to the first step in the regeneration response to injury that has been described in vivo. COMPARISON WITH EXISTING METHODS There are no existing methods to isolate and culture echinoderm radial nerve cord. CONCLUSIONS The described protocol provides a unique tool to obtain easily accessible RNC from holothurians to perform cellular, biochemical, and genomic experiments in the echinoderm nervous system without interference of adjacent tissues. The technique provides a unique opportunity to study the dedifferentiation response associated with the regeneration of the nervous system in echinoderms.
Collapse
Affiliation(s)
| | | | - Raúl García-Rosario
- Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, USA
| | - Angel Sirfa
- Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, USA
| | | |
Collapse
|
12
|
De novo Assembly and Analysis of Tissue-Specific Transcriptomes of the Edible Red Sea Urchin Loxechinus albus Using RNA-Seq. BIOLOGY 2021; 10:biology10100995. [PMID: 34681094 PMCID: PMC8533317 DOI: 10.3390/biology10100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Edible red sea urchin (Loxechinus albus) is an endemic species of echinoderm distributed along the Chilean coasts. This resource has been overexploited in recent years, depleting their natural populations. At present, there are few reported gene sequences available in public databases, restricting the molecular studies associated with aquaculture for this species. The aim of this study was to present the first annotated reference transcriptome of L. albus using NGS technologies and the differential expression transcripts analysis of the evaluated tissues. The transcriptome data obtained in this study will serve as a reference for future molecular research in the edible red sea urchin and other sea urchin species. Abstract Edible red sea urchin (Loxechinus albus) is an endemic echinoderm species of the Chilean coasts. The worldwide demand for high-quality gonads of this species has addressed the depletion of its natural populations. Studies on this sea urchin are limited, and genomic information is almost nonexistent. Hence, generate a transcriptome is crucial information that will considerably enrich molecular data and promote future findings for the L. albus aquaculture. Here, we obtained transcriptomic data of the edible red sea urchin by Illumina platform. Total RNA was extracted from gonads, intestines, and coelomocytes of juvenile urchins, and samples were sequenced using MiSeq Illumina technology. A total of 91,119,300 paired-end reads were de novo assembled, 185,239 transcripts produced, and a reference transcriptome created with 38.8% GC content and an N50 of 1769 bp. Gene ontology analysis revealed notable differences in the expression profiles between gonads, intestines, and coelomocytes, allowing the detection of transcripts associated with specific biological processes and KEGG pathways. These data were validated using 12 candidate transcripts by real-time qPCR. This dataset will provide a valuable molecular resource for L. albus and other species of sea urchins.
Collapse
|
13
|
Soleimani S, Mashjoor S, Mitra S, Yousefzadi M, Rezadoost H. Coelomic fluid of Echinometra mathaei: The new prospects for medicinal antioxidants. FISH & SHELLFISH IMMUNOLOGY 2021; 117:311-319. [PMID: 34418558 DOI: 10.1016/j.fsi.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Echinoid pigments have various biological properties such as antioxidant, cytotoxic, and antibacterial activities. We aimed to evaluate the extraction of cell-free coelomic fluid (CFCF) and coelomocyte lysate (CL) as well as qualitatively and quantitatively identify the coelomic fluid of Echinometra mathaei as a new source of polyhydroxylatednaphthoquinone (PHNQ) antioxidant pigments. Based on the High Performance liquid chromatography-electrospray mass spectrometry (HPLC-MS) analysis in negative mode, the main quinonoid (PHNQ) pigments were identified and quantified. This study also illustrated the total ion current chromatograms and related mass spectra of Spinochrome A, Spinochrome B, Spinochrome C, and Echinochrome A in CL and SpinochromeC in CFCF samples. The ions at 221, 279, 265 and 263 m/z correspond to the pseudo-molecular [M - H] ions of Spinochrome B, Spinochrome C, Echinochrome A, and Spinochrome A, respectively. These components have previously been noted from the shells and spines of sea urchins but identification of PHNQs pigments in CL and CFCF of E. mathaei using LC-MS was introduced for the first time. The results also showed that, the highest DPPH radical scavenging activity of CFCF (88.12 DPPH% scavenging at 70 μg/mL, IC50 = <10 μg/mL). The findings clearly suggest that the coelomic fluid of E. mathaei could be served as the promising as well as potential natural antioxidants in the medical and pharmaceutical industries and could replace the increasing prices of the commercial antioxidants products.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Sakineh Mashjoor
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Soumita Mitra
- Department of Marine Science, University of Calcutta, Calcutta, India
| | - Morteza Yousefzadi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran; Department of Biology, Faculty of Science, University of Qom, Qom, Iran.
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, ShahidBeheshti University, GC, Tehran, Iran
| |
Collapse
|
14
|
The Diverse Transformer (Trf) Protein Family in the Sea Urchin Paracentrotus lividus Acts through a Collaboration between Cellular and Humoral Immune Effector Arms. Int J Mol Sci 2021; 22:ijms22136639. [PMID: 34206148 PMCID: PMC8268236 DOI: 10.3390/ijms22136639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023] Open
Abstract
Sea urchins are long-living marine invertebrates with a complex innate immune system, which includes expanded families of immune receptors. A central immune gene family in sea urchins encodes the Transformer (Trf) proteins. The Trf family has been studied mainly in the purple sea urchin Strongylocentrotus purpuratus. Here, we explore this protein family in the Mediterranean Sea urchin Paracentrotus lividus. The PlTrf genes and predicted proteins are highly diverse and show a typical Trf size range and structure. Coelomocytes and cell-free coelomic fluid from P. lividus contain different PlTrf protein repertoires with a shared subset, that bind specifically to E. coli. Using FACS, we identified five different P. lividus coelomocyte sub-populations with cell surface PlTrf protein expression. The relative abundance of the PlTrf-positive cells increases sharply following immune challenge with E. coli, but not following challenge with LPS or the sea urchin pathogen, Vibrio penaeicida. Phagocytosis of E. coli by P. lividus phagocytes is mediated through the cell-free coelomic fluid and is inhibited by blocking PlTrf activity with anti-SpTrf antibodies. Together, our results suggest a collaboration between cellular and humoral PlTrf-mediated effector arms in the P. lividus specific immune response to pathogens.
Collapse
|
15
|
Andrade C, Oliveira B, Guatelli S, Martinez P, Simões B, Bispo C, Ferrario C, Bonasoro F, Rino J, Sugni M, Gardner R, Zilhão R, Coelho AV. Characterization of Coelomic Fluid Cell Types in the Starfish Marthasterias glacialis Using a Flow Cytometry/Imaging Combined Approach. Front Immunol 2021; 12:641664. [PMID: 33815394 PMCID: PMC8013778 DOI: 10.3389/fimmu.2021.641664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Coelomocytes is the generic name for a collection of cellular morphotypes, present in many coelomate animals, and highly variable among echinoderm classes. The roles attributed to the major types of these free circulating cells present in the coelomic fluid of echinoderms include immune response, phagocytic digestion and clotting. Our main aim in this study was to characterize coelomocytes found in the coelomic fluid of Marthasterias glacialis (class Asteroidea) by using a combination of flow cytometry (FC), imaging flow cytometry (IFC) and fluorescence plus transmission electron microscopy (TEM). Two coelomocyte populations (P1 and P2) identified through flow cytometry were subsequently studied in terms of abundance, morphology, ultrastructure, cell viability and cell cycle profiles. Ultrastructurally, P2 diploid cells were present as two main morphotypes, similar to phagocytes and vertebrate thrombocytes, whereas the smaller P1 cellular population was characterized by low mitotic activity, a relatively undifferentiated cytotype and a high nucleus/cytoplasm ratio. In the present study we could not rule out possible similarities between haploid P1 cells and stem-cell types in other animals. Additionally, we report the presence of two other morphotypes in P2 that could only be detected by fluorescence microscopy, as well as a morphotype revealed via combined microscopy/FC. This integrative experimental workflow combined cells physical separation with different microscopic image capture technologies, enabling us to better tackle the characterization of the heterogeneous composition of coelomocytes populations.
Collapse
Affiliation(s)
- Claúdia Andrade
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Medicas, Universidade NOVA de Lisboa, Lisboa, Portugal
- Flow Cytometry SRL, Instituto Gulbenkian Ciencia, Oeiras, Portugal
| | - Bárbara Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Silvia Guatelli
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Barcelona, Spain
| | - Beatriz Simões
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Claúdia Bispo
- Flow Cytometry SRL, Instituto Gulbenkian Ciencia, Oeiras, Portugal
| | - Cinzia Ferrario
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Francesco Bonasoro
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - José Rino
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Michela Sugni
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Rui Gardner
- Flow Cytometry SRL, Instituto Gulbenkian Ciencia, Oeiras, Portugal
| | - Rita Zilhão
- Departamento de Biologia Vegetal, Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
16
|
Caulier G, Hamel JF, Mercier A. From Coelomocytes to Colored Aggregates: Cellular Components and Processes Involved in the Immune Response of the Holothuroid Cucumaria frondosa. THE BIOLOGICAL BULLETIN 2020; 239:95-114. [PMID: 33151755 DOI: 10.1086/710355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AbstractWhile so-called brown bodies were first defined in the 1950s as colorful aggregates of cells in the general cavity of echinoderms and other marine benthic taxa, their distribution and role have not yet been fully clarified. This work characterized free coelomocytes and corresponding aggregates ("bodies") in the hydrovascular system and perivisceral coelom, as well as those attached on the membranes of the viscera, in the holothuroid Cucumaria frondosa. Responses to the presence of foreign particles were investigated, providing novel insights on the immune system. A total of eight coelomocyte cell types was detected, while aggregates were formed of three to six types of coelomocytes. Only red-colored aggregates were found in the hydrovascular system, whereas brown aggregates were confined to the perivisceral coelom. The encapsulation mechanism of foreign particles injected in the hydrovascular system was monitored. Particles were first gathered by phagocytes and vibratile, crystal, and morula cells into a whitish aggregate that was then covered by hemocytes, imparting a red color to the aggregates. After their transfer to the perivisceral coelom, aggregates became brown and were ultimately expelled through the anus. Finally, a range of stressors (i.e., harvesting method, presence of a predator, and physical injury) was found to increase the abundance of aggregates, thus highlighting the role of these bodies in the immune response of C. frondosa.
Collapse
|
17
|
Hira J, Wolfson D, Andersen AJC, Haug T, Stensvåg K. Autofluorescence mediated red spherulocyte sorting provides insights into the source of spinochromes in sea urchins. Sci Rep 2020; 10:1149. [PMID: 31980652 PMCID: PMC6981155 DOI: 10.1038/s41598-019-57387-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Red spherule cells (RSCs) are considered one of the prime immune cells of sea urchins, but their detailed biological role during immune responses is not well elucidated. Lack of pure populations accounts for one of the major challenges of studying these cells. In this study, we have demonstrated that live RSCs exhibit strong, multi-colour autofluorescence distinct from other coelomocytes, and with the help of fluorescence-activated cell sorting (FACS), a pure population of live RSCs was successfully separated from other coelomocytes in the green sea urchin, Strongylocentrotus droebachiensis. This newly developed RSCs isolation method has allowed profiling of the naphthoquinone content in these cells. With the use of ultra high-performance liquid chromatography, UV absorption spectra, and high-resolution tandem mass spectrometry, it was possible to identify sulphated derivatives of spinochrome C, D, E and spinochrome dimers, which suggests that the RSCs may play an important biological role in the biogenesis of naphthoquinone compounds and regulating their bioactivity.
Collapse
Affiliation(s)
- Jonathan Hira
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Deanna Wolfson
- Department of Physics and Technology, The Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aaron John Christian Andersen
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tor Haug
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
18
|
Oren M, Rosental B, Hawley TS, Kim GY, Agronin J, Reynolds CR, Grayfer L, Smith LC. Individual Sea Urchin Coelomocytes Undergo Somatic Immune Gene Diversification. Front Immunol 2019; 10:1298. [PMID: 31244844 PMCID: PMC6563789 DOI: 10.3389/fimmu.2019.01298] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022] Open
Abstract
The adaptive immune response in jawed vertebrates is marked by the ability to diversify somatically specific immune receptor genes. Somatic recombination and hypermutation of gene segments are used to generate extensive repertoires of T and B cell receptors. In contrast, jawless vertebrates utilize a distinct diversification system based on copy choice to assemble their variable lymphocyte receptors. To date, very little evidence for somatic immune gene diversification has been reported in invertebrate species. Here we show that the SpTransformer (SpTrf ; formerly Sp185/333) immune effector gene family members from individual coelomocytes from purple sea urchins undergo somatic diversification by means of gene deletions, duplications, and acquisitions of single nucleotide polymorphisms. While sperm cells from an individual sea urchin have identical SpTrf gene repertoires, single cells from two distinct coelomocyte subpopulations from the same sea urchin exhibit significant variation in the SpTrf gene repertoires. Moreover, the highly diverse gene sequences derived from single coelomocytes are all in-frame, suggesting that an unknown mechanism(s) driving these somatic changes involve stringent selection or correction processes for expression of productive SpTrf transcripts. Together, our findings infer somatic immune gene diversification strategy in an invertebrate.
Collapse
Affiliation(s)
- Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel.,Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Benyamin Rosental
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States.,Department of Pathology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States
| | - Teresa S Hawley
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gi-Young Kim
- Department of Biological Sciences, The George Washington University, Washington, DC, United States.,Department of Marine Life Sciences, Jeju National University, Jeju City, South Korea
| | - Jacob Agronin
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Caroline R Reynolds
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - L Courtney Smith
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|