1
|
Eubanks E, VanderSleen K, Mody J, Patel N, Sacks B, Farahani MD, Wang J, Elliott J, Jaber N, Akçimen F, Bandres-Ciga S, Helweh F, Liu J, Archakam S, Kimelman R, Sharma B, Socha P, Guntur A, Huang Y, Ramalingam N, Guadagno E, Bartels T, Dettmer U, Mouradian MM, Bahrami AH, Dai W, Baum J, Shi Z, Hardy J, Kara E. Increased burden of rare risk variants across gene expression networks predisposes to sporadic Parkinson's disease. Cell Rep 2025; 44:115636. [PMID: 40317721 DOI: 10.1016/j.celrep.2025.115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/04/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease (PD). Through a high-throughput screen, we recently identified 38 genes whose knockdown modulates αSyn propagation. Here, we show that, among those, TAX1BP1 regulates how αSyn interacts with lipids, and ADAMTS19 modulates how αSyn phase separates into inclusions, adding to the growing body of evidence implicating those processes in PD. Through RNA sequencing, we identify several genes that are differentially expressed after knockdown of TAX1BP1 or ADAMTS19 and carry an increased frequency of rare risk variants in patients with PD versus healthy controls. Those differentially expressed genes cluster within modules in regions of the brain that develop high degrees of αSyn pathology. We propose a model for the genetic architecture of sporadic PD: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis and leads to pathology and neurodegeneration.
Collapse
Affiliation(s)
- Elena Eubanks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Katelyn VanderSleen
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Jiya Mody
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Neha Patel
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Benjamin Sacks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | | | - Jinying Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fadel Helweh
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Jun Liu
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Sanjana Archakam
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Robert Kimelman
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Socha
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Ananya Guntur
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Yiming Huang
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Elyse Guadagno
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London W1T 7NF, UK
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - M Maral Mouradian
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Amir Houshang Bahrami
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - John Hardy
- UK Dementia Research Institute, University College London, London W1T 7NF, UK; Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, SAR, Hong Kong, China
| | - Eleanna Kara
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Erdemir-Cilasun G, Özerkan D, Kariper İA, Sert E, Korkut IN, Danışman-Kalındemirtaş F. Improved apoptosis and mitochondrial dysfunction: the potential of carmofur-platinum nanoparticles. Biomed Mater 2025; 20:035024. [PMID: 40216001 DOI: 10.1088/1748-605x/adcbfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
Despite their impact on cancer therapy, limitations such as systemic toxicity and drug resistance are encountered with platinum-based drugs. This study explores the potential of combining PtIV-based NP with carmofur (Car) to address these issues. In this study, platinum nanoparticles (PtNPs) and Car-loaded PtNP (Car@PtNP) were synthesized and their cytotoxic and apoptotic effects on colorectal and breast cancer cells were evaluated. Following characterization of the synthesized NPs by dynamic light scattering, UV-VIS spectroscopy, FTIR, and STEM, it was found that the average size of PtNPs was 55.42 nm and the size increased to approximately 186.06 nm upon synthesis of Car@PtNP. MTT assays demonstrated that Car@PtNP exhibited higher levels of cellular toxicity than carmofur alone. While it significantly decreased cell viability in both colon and breast cancer cells, its toxicity to HUVEC cells was minimal. Treatment of MCF-7 and HCT116 cells with 50 µg ml-1of free Car resulted in cell viabilities of 65.2% and 76.93%, respectively, whereas the viability of cells treated with Car@PtNP decreased to 49.60% and 55.47%. Flow cytometric analysis confirmed that apoptosis was increased in healthy HCT116 cells treated with Car@PtNP, with a marked increase in both early and late apoptotic cell populations. Furthermore, these results were confirmed by Hoescht and Rhodamin123 immunofluorescence staining, and significant mitochondrial dysfunction and apoptotic morphological changes were observed in treated cells. The findings underscore the promise of Car@PtNP as a novel chemotherapeutic approach, integrating the benefits of PtIVcomplexes and Car to enhance antitumor efficacy while mitigating the drawbacks of conventional platinum-based therapies.
Collapse
Affiliation(s)
- Gökçe Erdemir-Cilasun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Dilşad Özerkan
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, 37150 Kastamonu, Turkey
| | - İshak Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, 38039 Kayseri, Turkey
| | - Esra Sert
- Department of Hematology, Istanbul Faculty of Medicine, Istanbul University, 34390 Istanbul, Turkey
| | - Işık Neslişah Korkut
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey
| | | |
Collapse
|
3
|
Bergmans JMM, van de Westerlo EMA, Grefte S, Adjobo-Hermans MJW, Koopman WJH. Mitochondrial Morphofunctional Profiling in Primary Human Skin Fibroblasts Using TMRM and Mitotracker Green Co-staining. Methods Mol Biol 2025; 2878:223-232. [PMID: 39546265 DOI: 10.1007/978-1-0716-4264-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mitochondrial morphology and membrane potential (Δψ) are important readouts of mitochondrial function. Integrated analysis of these parameters in living cells can be performed using fluorescent lipophilic cations, which enter cells and accumulate in the mitochondrial matrix in a Δψ-dependent manner. Here, we describe the use of tetramethylrhodamine methyl ester (TMRM) and Mitotracker Green FM (MG) for mitochondrial morphology and semiquantitative Δψ analysis in living primary human skin fibroblasts (PHSFs). Practically, we present an integrated protocol to quantify mitochondrial morphology parameters and signal intensity using epifluorescence microscopy of PHSFs co-stained with TMRM and MG. This approach performs best using large flat cells like PHSFs, which display a high mitochondria-specific fluorescence signal and are imaged at a relatively high (x40) magnification.
Collapse
Affiliation(s)
- Jesper M M Bergmans
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Els M A van de Westerlo
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- Human and Animal Physiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Gao L, Dalapati R, Gao B, Huang X, Zhao D, Wang F, Zang L. Mitochondrial STED Imaging and Membrane Potential Monitoring with a Cationic Molecular Probe. SMALL METHODS 2024; 8:e2400525. [PMID: 39268793 DOI: 10.1002/smtd.202400525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria are essential organelles that not only undergo dynamic morphological changes but also exhibit functional activities such as mitochondrial membrane potential (MMP). While super-resolution techniques such as stimulated emission depletion (STED) nanoscopy can visualize the ultrastructure of mitochondria and the MMP probe can monitor mitochondria function, few dyes meet both demands. Here, a small molecule (MitoPDI-90) based on perylene diimide with cationic groups is reported and used for mitochondrial STED imaging and MMP indication. Characterized by excellent photostability, biocompatibility, and high quantum yield, MitoPDI-90 exhibits STED imaging compatibility, facilitating visualization of mitochondrial cristae and time-lapse imaging of highly dynamic mitochondria in living cells. Besides, MitoPDI-90 targets the mitochondria through electrical potential, also enabling live-cell MMP monitoring. MitoPDI-90 allows for super-resolution visualization and time-lapse imaging of mitochondria, and more importantly, indication of changes in MMP, providing insight into the functional activity of live-cell mitochondria.
Collapse
Affiliation(s)
- Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rana Dalapati
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Beibei Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Zang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
5
|
Kang S, Park J, Cheng Z, Ye S, Jun SH, Kang NG. Novel Approach to Skin Anti-Aging: Boosting Pharmacological Effects of Exogenous Nicotinamide Adenine Dinucleotide (NAD +) by Synergistic Inhibition of CD38 Expression. Cells 2024; 13:1799. [PMID: 39513906 PMCID: PMC11544843 DOI: 10.3390/cells13211799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for the regulation of biological metabolism. Previous studies have revealed its role in aging and degenerative diseases, while crucially showing that supplementation with NAD+ or its precursors could ameliorate or reverse the progression of aging. Despite extensive evidence for the role and action of NAD+ in aging, its pharmacological activity on the skin, or even its mechanism, has not been elucidated. In this study, we established a novel approach to effectively utilize NAD+ for skin anti-aging by enhancing the pharmacological efficacy of exogenous NAD+ using a phytochemical complex consisting of quercetin, and enoxolone through inhibition of CD38. Through the comprehensive in vitro experiments based on human fibroblasts, we observed that exogenous NAD+ could exert protective effects against both extrinsic aging induced by ultraviolet light exposure and intrinsic aging. Additionally, we found that its effects were significantly boosted by quercetin and enoxolone. In this in-depth study, we demonstrated that these beneficial effects are mediated by improved sirtuin activation, autophagy, and mitochondrial functionality. Our approach is expected to verify the applicability of the topical application of NAD+ and offer more effective solutions for the unmet needs of patients and consumers who demand more effective anti-aging effects.
Collapse
Affiliation(s)
- Seongsu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Jiwon Park
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Zhihong Cheng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Sanghyun Ye
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| | - Nae-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.K.); (J.P.); (S.Y.)
| |
Collapse
|
6
|
Eubanks E, VanderSleen K, Mody J, Patel N, Sacks B, Farahani MD, Wang J, Elliott J, Jaber N, Akçimen F, Bandres-Ciga S, Helweh F, Liu J, Archakam S, Kimelman R, Sharma B, Socha P, Guntur A, Bartels T, Dettmer U, Mouradian MM, Bahrami AH, Dai W, Baum J, Shi Z, Hardy J, Kara E. Increased burden of rare risk variants across gene expression networks predisposes to sporadic Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610195. [PMID: 39257816 PMCID: PMC11384021 DOI: 10.1101/2024.08.30.610195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease and forms intraneuronal inclusions called Lewy Bodies. While the mechanism underlying the dysregulation of αSyn in Parkinson's disease is unclear, it is thought that prionoid cell-to-cell propagation of αSyn has an important role. Through a high throughput screen, we recently identified 38 genes whose knock down modulates αSyn propagation. Follow up experiments were undertaken for two of those genes, TAX1BP1 and ADAMTS19, to study the mechanism with which they regulate αSyn homeostasis. We used a recently developed M17D neuroblastoma cell line expressing triple mutant (E35K+E46K+E61K) "3K" αSyn under doxycycline induction. 3K αSyn spontaneously forms inclusions that show ultrastructural similarities to Lewy Bodies. Experiments using that cell line showed that TAX1BP1 and ADAMTS19 regulate how αSyn interacts with lipids and phase separates into inclusions, respectively, adding to the growing body of evidence implicating those processes in Parkinson's disease. Through RNA sequencing, we identified several genes that are differentially expressed after knock-down of TAX1BP1 or ADAMTS19. Burden analysis revealed that those differentially expressed genes (DEGs) carry an increased frequency of rare risk variants in Parkinson's disease patients versus healthy controls, an effect that was independently replicated across two separate cohorts (GP2 and AMP-PD). Weighted gene co-expression network analysis (WGCNA) showed that the DEGs cluster within modules in regions of the brain that develop high degrees of αSyn pathology (basal ganglia, cortex). We propose a novel model for the genetic architecture of sporadic Parkinson's disease: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis, thereby leading to pathology and neurodegeneration.
Collapse
Affiliation(s)
- Elena Eubanks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Katelyn VanderSleen
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Jiya Mody
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Neha Patel
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Benjamin Sacks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | | | - Jinying Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Fadel Helweh
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | - Jun Liu
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Sanjana Archakam
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Robert Kimelman
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Socha
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Ananya Guntur
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - M. Maral Mouradian
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Amir Houshang Bahrami
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - John Hardy
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Eleanna Kara
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Zhao R, Chen Y, Liang Y. Bioorthogonal Delivery of Carbon Disulfide in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202400020. [PMID: 38752888 DOI: 10.1002/anie.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Indexed: 06/27/2024]
Abstract
Carbon disulfide (CS2) is an environmental contaminant, which is deadly hazardous to the workers under chronic or acute exposure. However, the toxicity mechanisms of CS2 are still unclear due to the scarcity of biocompatible donors, which can release CS2 in cells. Here we developed the first bioorthogonal CS2 delivery system based on the "click-and-release" reactions between mesoionic 1,3-thiazolium-5-thiolates (TATs) and strained cyclooctyne exo-BCN-OH. We successfully realized intracellular CS2 release and investigated the causes of CS2-induced hepatotoxicity, including oxidative stress, proteotoxic stress and copper-dependent cell death. It is found that CS2 can be copper vehicles bypassing copper transporters after reacting with nucleophiles in cytoplasm, and extra copper supplementation will exacerbate the loss of homeostasis of cells and ultimately cell death. These findings inspired us to explore the anticancer activity of CS2 in combination with copper by introducing a copper chelating group in our CS2 delivery system.
Collapse
Affiliation(s)
- Ruohan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Sukhorukov VN, Khotina VA, Kalmykov VA, Zhuravlev AD, Sinyov VV, Popov DY, Vinokurov AY, Sobenin IA, Orekhov AN. Mitochondrial Genome Editing: Exploring the Possible Relationship of the Atherosclerosis-Associated Mutation m.15059G>A With Defective Mitophagy. J Lipid Atheroscler 2024; 13:166-183. [PMID: 38826184 PMCID: PMC11140244 DOI: 10.12997/jla.2024.13.2.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Objective The aim of this study was to evaluate the effect of the m.15059G>A mitochondrial nonsense mutation on cellular functions related to atherosclerosis, such as lipidosis, pro-inflammatory response, and mitophagy. Heteroplasmic mutations have been proposed as a potential cause of mitochondrial dysfunction, potentially disrupting the innate immune response and contributing to the chronic inflammation associated with atherosclerosis. Methods The human monocytic cell line THP-1 and cytoplasmic hybrid cell line TC-HSMAM1 were used. An original approach based on the CRISPR/Cas9 system was developed and used to eliminate mitochondrial DNA (mtDNA) copies carrying the m.15059G>A mutation in the MT-CYB gene. The expression levels of genes encoding enzymes related to cholesterol metabolism were analyzed using quantitative polymerase chain reaction. Pro-inflammatory cytokine secretion was assessed using enzyme-linked immunosorbent assays. Mitophagy in cells was detected using confocal microscopy. Results In contrast to intact TC-HSMAM1 cybrids, Cas9-TC-HSMAM1 cells exhibited a decrease in fatty acid synthase (FASN) gene expression following incubation with atherogenic low-density lipoprotein. TC-HSMAM1 cybrids were found to have defective mitophagy and an inability to downregulate the production of pro-inflammatory cytokines (to establish immune tolerance) upon repeated lipopolysaccharide stimulation. Removal of mtDNA harboring the m.15059G>A mutation resulted in the re-establishment of immune tolerance and the activation of mitophagy in the cells under investigation. Conclusion The m.15059G>A mutation was found to be associated with defective mitophagy, immune tolerance, and impaired metabolism of intracellular lipids due to upregulation of FASN in monocytes and macrophages.
Collapse
Affiliation(s)
- Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Victoria A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Vladislav A. Kalmykov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Alexander D. Zhuravlev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Vasily V. Sinyov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
| | - Daniil Y. Popov
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
| |
Collapse
|
9
|
Desai S, Grefte S, van de Westerlo E, Lauwen S, Paters A, Prehn JHM, Gan Z, Keijer J, Adjobo-Hermans MJW, Koopman WJH. Performance of TMRM and Mitotrackers in mitochondrial morphofunctional analysis of primary human skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149027. [PMID: 38109971 DOI: 10.1016/j.bbabio.2023.149027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Mitochondrial membrane potential (Δψ) and morphology are considered key readouts of mitochondrial functional state. This morphofunction can be studied using fluorescent dyes ("probes") like tetramethylrhodamine methyl ester (TMRM) and Mitotrackers (MTs). Although these dyes are broadly used, information comparing their performance in mitochondrial morphology quantification and Δψ-sensitivity in the same cell model is still scarce. Here we applied epifluorescence microscopy of primary human skin fibroblasts to evaluate TMRM, Mitotracker Red CMXros (CMXros), Mitotracker Red CMH2Xros (CMH2Xros), Mitotracker Green FM (MG) and Mitotracker Deep Red FM (MDR). All probes were suited for automated quantification of mitochondrial morphology parameters when Δψ was normal, although they did not deliver quantitatively identical results. The mitochondrial localization of TMRM and MTs was differentially sensitive to carbonyl cyanide-4-phenylhydrazone (FCCP)-induced Δψ depolarization, decreasing in the order: TMRM ≫ CHM2Xros = CMXros = MDR > MG. To study the effect of reversible Δψ changes, the impact of photo-induced Δψ "flickering" was studied in cells co-stained with TMRM and MG. During a flickering event, individual mitochondria displayed subsequent TMRM release and uptake, whereas this phenomenon was not observed for MG. Spatiotemporal and computational analysis of the flickering event provided evidence that TMRM redistributes between adjacent mitochondria by a mechanism dependent on Δψ and TMRM concentration. In summary, this study demonstrates that: (1) TMRM and MTs are suited for automated mitochondrial morphology quantification, (2) numerical data obtained with different probes is not identical, and (3) all probes are sensitive to FCCP-induced Δψ depolarization, with TMRM and MG displaying the highest and lowest sensitivity, respectively. We conclude that TMRM is better suited for integrated analysis of Δψ and mitochondrial morphology than the tested MTs under conditions that Δψ is not substantially depolarized.
Collapse
Affiliation(s)
- Shruti Desai
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Grefte
- Department of Physiology and Medical Physics and SFI FutureNeuro Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Els van de Westerlo
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susette Lauwen
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Angela Paters
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics and SFI FutureNeuro Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Zhuohui Gan
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands; Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Bulthuis EP, Adjobo-Hermans MJW, de Potter B, Hoogstraten S, Wezendonk LHT, Tutakhel OAZ, Wintjes LT, van den Heuvel B, Willems PHGM, Kamsteeg EJ, Gozalbo MER, Sallevelt SCEH, Koudijs SM, Nicolai J, de Bie CI, Hoogendijk JE, Koopman WJH, Rodenburg RJ. SMDT1 variants impair EMRE-mediated mitochondrial calcium uptake in patients with muscle involvement. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166808. [PMID: 37454773 DOI: 10.1016/j.bbadis.2023.166808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Ionic calcium (Ca2+) is a key messenger in signal transduction and its mitochondrial uptake plays an important role in cell physiology. This uptake is mediated by the mitochondrial Ca2+ uniporter (MCU), which is regulated by EMRE (essential MCU regulator) encoded by the SMDT1 (single-pass membrane protein with aspartate rich tail 1) gene. This work presents the genetic, clinical and cellular characterization of two patients harbouring SMDT1 variants and presenting with muscle problems. Analysis of patient fibroblasts and complementation experiments demonstrated that these variants lead to absence of EMRE protein, induce MCU subcomplex formation and impair mitochondrial Ca2+ uptake. However, the activity of oxidative phosphorylation enzymes, mitochondrial morphology and membrane potential, as well as routine/ATP-linked respiration were not affected. We hypothesize that the muscle-related symptoms in the SMDT1 patients result from aberrant mitochondrial Ca2+ uptake.
Collapse
Affiliation(s)
- Elianne P Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Bastiaan de Potter
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Saskia Hoogstraten
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands; Human and Animal Physiology, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Lisanne H T Wezendonk
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Omar A Z Tutakhel
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Liesbeth T Wintjes
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Bert van den Heuvel
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Peter H G M Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - M Estela Rubio Gozalbo
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands
| | - Suzanne M Koudijs
- Department of Neurology, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands
| | - Charlotte I de Bie
- Department of Genetics, University Medical Centre Utrecht, 3508 AB Utrecht, the Netherlands
| | - Jessica E Hoogendijk
- Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, 3584 CG Utrecht, the Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University & Research, 6700 AH Wageningen, the Netherlands; Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| | - Richard J Rodenburg
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Filho CSMB, de Menezes RRPPB, Magalhães EP, Castillo YP, Martins AMC, de Sousa DP. Piplartine-Inspired 3,4,5-Trimethoxycinnamates: Trypanocidal, Mechanism of Action, and In Silico Evaluation. Molecules 2023; 28:molecules28114512. [PMID: 37298988 DOI: 10.3390/molecules28114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Chagas disease (CD) is one of the main neglected tropical diseases that promote relevant socioeconomic impacts in several countries. The therapeutic options for the treatment of CD are limited, and parasite resistance has been reported. Piplartine is a phenylpropanoid imide that has diverse biological activities, including trypanocidal action. Thus, the objective of the present work was to prepare a collection of thirteen esters analogous to piplartine (1-13) and evaluate their trypanocidal activity against Trypanosoma cruzi. Of the tested analogues, compound 11 ((E)-furan-2-ylmethyl 3-(3,4,5-trimethoxyphenyl)acrylate) showed good activity with IC50 values = 28.21 ± 5.34 μM and 47.02 ± 8.70 μM, against the epimastigote and trypomastigote forms, respectively. In addition, it showed a high rate of selectivity to the parasite. The trypanocidal mechanism of action occurs through the induction of oxidative stress and mitochondrial damage. In addition, scanning electron microscopy showed the formation of pores and leakage of cytoplasmic content. Molecular docking indicated that 11 probably produces a trypanocidal effect through a multi-target mechanism, including affinity with proteins CRK1, MPK13, GSK3B, AKR, UCE-1, and UCE-2, which are important for the survival of the parasite. Therefore, the results suggest chemical characteristics that can serve for the development of new trypanocidal prototypes for researching drugs against Chagas disease.
Collapse
Affiliation(s)
- Carlos S M B Filho
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Ramon R P P B de Menezes
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Emanuel P Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Yunierkis P Castillo
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170125, Ecuador
| | - Alice M C Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
12
|
HPRT1 Deficiency Induces Alteration of Mitochondrial Energy Metabolism in the Brain. Mol Neurobiol 2023; 60:3147-3157. [PMID: 36802322 PMCID: PMC10122629 DOI: 10.1007/s12035-023-03266-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
Alterations in function of hypoxanthine guanine phosphoribosyl transferase (HPRT), one of the major enzymes involved in purine nucleotide exchange, lead to overproduction of uric acid and produce various symptoms of Lesch-Nyhan syndrome (LNS). One of the hallmarks of LNS is maximal expression of HPRT in the central nervous system with the highest activity of this enzyme in the midbrain and basal ganglia. However, the nature of neurological symptoms has yet to be clarified in details. Here, we studied whether HPRT1 deficiency changes mitochondrial energy metabolism and redox balance in murine neurons from the cortex and midbrain. We found that HPRT1 deficiency inhibits complex I-dependent mitochondrial respiration resulting in increased levels of mitochondrial NADH, reduction of the mitochondrial membrane potential, and increased rate of reactive oxygen species (ROS) production in mitochondria and cytosol. However, increased ROS production did not induce oxidative stress and did not decrease the level of endogenous antioxidant glutathione (GSH). Thus, disruption of mitochondrial energy metabolism but not oxidative stress could play a role of potential trigger of brain pathology in LNS.
Collapse
|
13
|
C/EBPβ Regulates TFAM Expression, Mitochondrial Function and Autophagy in Cellular Models of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24021459. [PMID: 36674978 PMCID: PMC9865173 DOI: 10.3390/ijms24021459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results from the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Since there are only symptomatic treatments available, new cellular and molecular targets involved in the onset and progression of this disease are needed to develop effective treatments. CCAAT/Enhancer Binding Protein β (C/EBPβ) transcription factor levels are altered in patients with a variety of neurodegenerative diseases, suggesting that it may be a good therapeutic target for the treatment of PD. A list of genes involved in PD that can be regulated by C/EBPβ was generated by the combination of genetic and in silico data, the mitochondrial transcription factor A (TFAM) being among them. In this paper, we observed that C/EBPβ overexpression increased TFAM promoter activity. However, downregulation of C/EBPβ in different PD/neuroinflammation cellular models produced an increase in TFAM levels, together with other mitochondrial markers. This led us to propose an accumulation of non-functional mitochondria possibly due to the alteration of their autophagic degradation in the absence of C/EBPβ. Then, we concluded that C/EBPβ is not only involved in harmful processes occurring in PD, such as inflammation, but is also implicated in mitochondrial function and autophagy in PD-like conditions.
Collapse
|
14
|
Sachkova A, Jensen O, Dücker C, Ansari S, Brockmöller J. The mystery of the human proton-organic cation antiporter: One transport protein or many? Pharmacol Ther 2022; 239:108283. [DOI: 10.1016/j.pharmthera.2022.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
|
15
|
Pan C, Chen J, Chen Y, Lu Y, Liang X, Xiong B, Lu Y. Mogroside V ameliorates the oxidative stress-induced meiotic defects in porcine oocytes in vitro. Reprod Toxicol 2022; 111:148-157. [PMID: 35597324 DOI: 10.1016/j.reprotox.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 01/18/2023]
Abstract
It has been reported that environmental factors, such as industrial pollution, environmental toxins, environmental hormones, and global warming contribute to the oxidative stress-induced deterioration of oocyte quality and female fertility. However, the prevention or improvement approaches have not been fully elucidated. Here, we explored the mechanism regarding how Mogroside V (MV), a main extract of Siraitia grosvenorii, improves the oxidative stress-induced meiotic defects in porcine oocytes. Our results showed that MV supplementation restores the defective oocyte maturation and cumulus cell expansion caused by H2O2 treatment. We further found that MV supplementation promoted the oocyte cytoplasmic maturation through preventing cortical granules from the aberrant distribution, and drove the nuclear maturation by maintaining the cytoskeleton structure. Notably, our single-cell RNA sequencing data indicated that H2O2-treated oocytes led to the oxidative stress primarily through two pathways 'meiosis' and 'oxidative phosphorylation'. Lastly, we evaluated the effects of MV supplementation on the mitochondrial distribution pattern and membrane potential in H2O2-treated oocytes, revealing that MV supplementation eliminated the excessive ROS induced by the mitochondrial abnormalities and consequently suppressed the apoptosis. In conclusion, our study demonstrates that MV supplementation is an effective approach to ameliorate the oxidative stress-induced meiotic defects via recovering the mitochondrial integrity in porcine oocytes.
Collapse
Affiliation(s)
- Chen Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jingyue Chen
- State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ying Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
16
|
Li R, Liu B, Xu W, Yu L, Zhang C, Cheng J, Tao L, Li Z, Zhang Y. DNA damage and cell apoptosis induced by fungicide difenoconazole in mouse mononuclear macrophage RAW264.7. ENVIRONMENTAL TOXICOLOGY 2022; 37:650-659. [PMID: 34877763 DOI: 10.1002/tox.23432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole (DFC) is a typical triazole fungicide. Because of its effective bactericidal activity, it has been widely used in agricultural products such as fruits and vegetables. This study revealed the cytotoxic effect of fungicide DFC on mouse monocyte macrophage RAW264.7. The results showed that the IC50 value of DFC on RAW264.7 cells was 37.08 μM (24 h). DFC can significantly inhibit the viability of RAW264.7 cells, induce DNA damage and enhance apoptosis. The established cytotoxicity test showed that DFC-induced DNA double strand breaks in RAW264.7 cells. DFC-treated cells showed typical morphological changes of apoptosis, including chromatin condensation and nuclear lysis. In addition, DFC can induce the release of Cyt c, promote the collapse of mitochondrial membrane potential and increase the Bax/Bcl-2 ratio in RAW264.7 cells. Through this research, people further understand the toxicity of DFC and provide a more scientific basis for its safety application and risk management.
Collapse
Affiliation(s)
- Ruirui Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Shanghai Qingpu District Agricultural Technology Extension Service Center, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lvnan Yu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, Texas, USA
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Xu J, Shamul JG, Kwizera EA, He X. Recent Advancements in Mitochondria-Targeted Nanoparticle Drug Delivery for Cancer Therapy. NANOMATERIALS 2022; 12:nano12050743. [PMID: 35269231 PMCID: PMC8911864 DOI: 10.3390/nano12050743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
Mitochondria are critical subcellular organelles that produce most of the adenosine triphosphate (ATP) as the energy source for most eukaryotic cells. Moreover, recent findings show that mitochondria are not only the "powerhouse" inside cells, but also excellent targets for inducing cell death via apoptosis that is mitochondria-centered. For several decades, cancer nanotherapeutics have been designed to specifically target mitochondria with several targeting moieties, and cause mitochondrial dysfunction via photodynamic, photothermal, or/and chemo therapies. These strategies have been shown to augment the killing of cancer cells in a tumor while reducing damage to its surrounding healthy tissues. Furthermore, mitochondria-targeting nanotechnologies have been demonstrated to be highly efficacious compared to non-mitochondria-targeting platforms both in vitro and in vivo for cancer therapies. Moreover, mitochondria-targeting nanotechnologies have been intelligently designed and tailored to the hypoxic and slightly acidic tumor microenvironment for improved cancer therapies. Collectively, mitochondria-targeting may be a promising strategy for the engineering of nanoparticles for drug delivery to combat cancer.
Collapse
Affiliation(s)
- Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
18
|
Esteras N, Kopach O, Maiolino M, Lariccia V, Amoroso S, Qamar S, Wray S, Rusakov DA, Jaganjac M, Abramov AY. Mitochondrial ROS control neuronal excitability and cell fate in frontotemporal dementia. Alzheimers Dement 2022; 18:318-338. [PMID: 34057756 PMCID: PMC12086756 DOI: 10.1002/alz.12394] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The second most common form of early-onset dementia-frontotemporal dementia (FTD)-is often characterized by the aggregation of the microtubule-associated protein tau. Here we studied the mechanism of tau-induced neuronal dysfunction in neurons with the FTD-related 10+16 MAPT mutation. METHODS Live imaging, electrophysiology, and redox proteomics were used in 10+16 induced pluripotent stem cell-derived neurons and a model of tau spreading in primary cultures. RESULTS Overproduction of mitochondrial reactive oxygen species (ROS) in 10+16 neurons alters the trafficking of specific glutamate receptor subunits via redox regulation. Increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors containing GluA1 and NR2B subunits leads to impaired glutamatergic signaling, calcium overload, and excitotoxicity. Mitochondrial antioxidants restore the altered response and prevent neuronal death. Importantly, extracellular 4R tau induces the same pathological response in healthy neurons, thus proposing a mechanism for disease propagation. DISCUSSION These results demonstrate mitochondrial ROS modulate glutamatergic signaling in FTD, and suggest a new therapeutic strategy.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Olga Kopach
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Marta Maiolino
- Department of Biomedical Sciences and Public HealthSchool of MedicineUniversity “Politecnica delle Marche,”AnconaItaly
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public HealthSchool of MedicineUniversity “Politecnica delle Marche,”AnconaItaly
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public HealthSchool of MedicineUniversity “Politecnica delle Marche,”AnconaItaly
| | - Seema Qamar
- Department of Clinical NeurosciencesCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Selina Wray
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Morana Jaganjac
- Qatar Analytics & BioResearch LabAnti‐Doping Lab QatarDohaQatar
- Division of Molecular MedicineRudjer Boskovic InstituteZagrebCroatia
| | - Andrey Y. Abramov
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
19
|
Disrupted expression of mitochondrial NCLX sensitizes neuroglial networks to excitotoxic stimuli and renders synaptic activity toxic. J Biol Chem 2021; 298:101508. [PMID: 34942149 PMCID: PMC8808183 DOI: 10.1016/j.jbc.2021.101508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial sodium/calcium/lithium exchanger (NCLX) is an important mediator of calcium extrusion from mitochondria. In this study, we tested the hypothesis that physiological expression levels of NCLX are essential for maintaining neuronal resilience in the face of excitotoxic challenge. Using a short hairpin RNA (shRNA)-mediated approach, we showed that reduced NCLX expression exacerbates neuronal mitochondrial calcium dysregulation, mitochondrial membrane potential (ΔΨm) breakdown, and reactive oxygen species (ROS) generation during excitotoxic stimulation of primary hippocampal cultures. Moreover, NCLX knockdown-which affected both neurons and glia-resulted not only in enhanced neurodegeneration following an excitotoxic insult, but also in neuronal and astrocytic cell death under basal conditions. Our data also revealed that synaptic activity, which promotes neuroprotective signaling, can become lethal upon NCLX depletion; expression of NCLX-targeted shRNA impaired the clearance of mitochondrial calcium following action potential bursts and was associated both with ΔΨmbreakdown and substantial neurodegeneration in hippocampal cultures undergoing synaptic activity. Finally, we showed that NCLX knockdown within the hippocampal cornu ammonis 1 (CA1) region in vivo causes substantial neuro- and astrodegeneration. In summary, we demonstrated that dysregulated NCLX expression not only sensitizes neuroglial networks to excitotoxic stimuli but notably also renders otherwise neuroprotective synaptic activity toxic. These findings may explain the emergence of neuro- and astrodegeneration in patients with disorders characterized by disrupted NCLX expression or function, and suggest that treatments aimed at enhancing or restoring NCLX function may prevent central nervous system damage in these disease states.
Collapse
|
20
|
Meshrkey F, Cabrera Ayuso A, Rao RR, Iyer S. Quantitative analysis of mitochondrial morphologies in human induced pluripotent stem cells for Leigh syndrome. Stem Cell Res 2021; 57:102572. [PMID: 34662843 PMCID: PMC10332439 DOI: 10.1016/j.scr.2021.102572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are dynamic organelles with wide range of morphologies contributing to regulating different signaling pathways and several cellular functions. Leigh syndrome (LS) is a classic pediatric mitochondrial disorder characterized by complex and variable clinical pathologies, and primarily affects the nervous system during early development. It is important to understand the differences between mitochondrial morphologies in healthy and diseased states so that focused therapies can target the disease during its early stages. In this study, we performed a comprehensive analysis of mitochondrial dynamics in five patient-derived human induced pluripotent stem cells (hiPSCs) containing different mutations associated with LS. Our results suggest that subtle alterations in mitochondrial morphologies are specific to the mtDNA variant. Three out of the five LS-hiPSCs exhibited characteristics consistent with fused mitochondria. To our knowledge, this is the first comprehensive study that quantifies mitochondrial dynamics in hiPSCs specific to mitochondrial disorders. In addition, we observed an overall decrease in mitochondrial membrane potential in all five LS-hiPSCs. A more thorough analysis of the correlations between mitochondrial dynamics, membrane potential dysfunction caused by mutations in the mtDNA in hiPSCs and differentiated derivatives will aid in identifying unique morphological signatures of various mitochondrial disorders during early stages of embryonic development.
Collapse
Affiliation(s)
- Fibi Meshrkey
- Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA; Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Egypt
| | - Ana Cabrera Ayuso
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Raj R Rao
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA; Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shilpa Iyer
- Department of Biological Sciences, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
21
|
Blood biomarkers for assessment of mitochondrial dysfunction: An expert review. Mitochondrion 2021; 62:187-204. [PMID: 34740866 DOI: 10.1016/j.mito.2021.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022]
Abstract
Although mitochondrial dysfunction is the known cause of primary mitochondrial disease, mitochondrial dysfunction is often difficult to measure and prove, especially when biopsies of affected tissue are not available. In order to identify blood biomarkers of mitochondrial dysfunction, we reviewed studies that measured blood biomarkers in genetically, clinically or biochemically confirmed primary mitochondrial disease patients. In this way, we were certain that there was an underlying mitochondrial dysfunction which could validate the biomarker. We found biomarkers of three classes: 1) functional markers measured in blood cells, 2) biochemical markers of serum/plasma and 3) DNA markers. While none of the reviewed single biomarkers may perfectly reveal all underlying mitochondrial dysfunction, combining biomarkers that cover different aspects of mitochondrial impairment probably is a good strategy. This biomarker panel may assist in the diagnosis of primary mitochondrial disease patients. As mitochondrial dysfunction may also play a significant role in the pathophysiology of multifactorial disorders such as Alzheimer's disease and glaucoma, the panel may serve to assess mitochondrial dysfunction in complex multifactorial diseases as well and enable selection of patients who could benefit from therapies targeting mitochondria.
Collapse
|
22
|
Yang X, Li Z, Zhang Y, Bu K, Tian J, Cui J, Qin J, Zhao R, Liu S, Tan G, Liu X. Human urinary kininogenase reduces the endothelial injury by inhibiting Pyk2/MCU pathway. Biomed Pharmacother 2021; 143:112165. [PMID: 34543986 DOI: 10.1016/j.biopha.2021.112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022] Open
Abstract
The injury of endothelial cells is one of the initiating factors in restenosis after endovascular treatment. Human urinary kallidinogenase (HUK) is a tissue kallikrein which is used for ischemia-reperfusion injury treatment. Studies have shown that HUK may be a potential therapeutic agent to prevent stenosis after vascular injury, however, the precise mechanisms have not been fully established. This study is to investigate whether HUK can protect endothelial cells after balloon injury or H2O2-induced endothelial cell damage through the proline-rich tyrosine kinase 2 (Pyk2)/mitochondrial calcium uniporter (MCU) pathway. Intimal hyperplasia, a decrease of pinocytotic vesicles and cell apoptosis were found in the common carotid artery balloon injury and H2O2-induced endothelial cell damage, Pyk2/MCU was also up-regulated in such pathological process. HUK could prevent these injuries partially via the bradykinin B2 receptor by inhibiting Pyk2/MCU pathway, which prevented the mitochondrial damage, maintained calcium balance, and eventually inhibited cell apoptosis. Furthermore, MCU expression was not markedly increased if Pyk2 was suppressed by shRNA technique in the H2O2 treatment group, and cell viability was significantly better than H2O2-treated only. In short, our results indicate that the Pyk2/MCU pathway is involved in endothelial injury induced by balloon injury or H2O2-induced endothelial cell damage. HUK plays an protective role by inhibiting the Pyk2/MCU pathway in the endothelial injury.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China; Department of Neurology, Affiliated Hospital of Hebei University of Engineering, 81 Congtai Road, Handan, Hebei 056002, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Jing Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Junzhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China
| | - Ruijie Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China; Department of Neurology, Xingtai People's Hospital, 16 Hongxing Street, Xingtai, Hebei 054031, China
| | - Shuxia Liu
- Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050000, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China.
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei 050000, China; Neuroscience Research Center, Medicine and Health Institute, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
23
|
Quantifying Mitochondrial Dynamics in Patient Fibroblasts with Multiple Developmental Defects and Mitochondrial Disorders. Int J Mol Sci 2021; 22:ijms22126263. [PMID: 34200828 PMCID: PMC8230542 DOI: 10.3390/ijms22126263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo rounds of fission and fusion and exhibit a wide range of morphologies that contribute to the regulation of different signaling pathways and various cellular functions. It is important to understand the differences between mitochondrial structure in health and disease so that therapies can be developed to maintain the homeostatic balance of mitochondrial dynamics. Mitochondrial disorders are multisystemic and characterized by complex and variable clinical pathologies. The dynamics of mitochondria in mitochondrial disorders is thus worthy of investigation. Therefore, in this study, we performed a comprehensive analysis of mitochondrial dynamics in ten patient-derived fibroblasts containing different mutations and deletions associated with various mitochondrial disorders. Our results suggest that the most predominant morphological signature for mitochondria in the diseased state is fragmentation, with eight out of the ten cell lines exhibiting characteristics consistent with fragmented mitochondria. To our knowledge, this is the first comprehensive study that quantifies mitochondrial dynamics in cell lines with a wide array of developmental and mitochondrial disorders. A more thorough analysis of the correlations between mitochondrial dynamics, mitochondrial genome perturbations, and bioenergetic dysfunction will aid in identifying unique morphological signatures of various mitochondrial disorders in the future.
Collapse
|
24
|
Goel Y, Yadav S, Pandey SK, Temre MK, Singh VK, Kumar A, Singh SM. Methyl Jasmonate Cytotoxicity and Chemosensitization of T Cell Lymphoma In Vitro Is Facilitated by HK 2, HIF-1α, and Hsp70: Implication of Altered Regulation of Cell Survival, pH Homeostasis, Mitochondrial Functions. Front Pharmacol 2021; 12:628329. [PMID: 33716751 PMCID: PMC7954117 DOI: 10.3389/fphar.2021.628329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Methyl jasmonate (MJ) displays antineoplastic potential against numerous neoplastic cells. However, several mechanistic aspects of its antineoplastic action against malignancies of T cell origin remain elusive. The present investigation reports the novel targets of MJ and mechanistic pathways of MJ-mediated antineoplastic and chemosensitizing action against tumor cells derived from murine T-cell lymphoma, designated as Dalton's lymphoma (DL). The present study demonstrates that MJ directly docks to HIF-1α, hexokinase 2, and Hsp70 at prominent binding sites. MJ exhibits tumoricidal action against tumor cells via induction of apoptosis and necrosis through multiple pathways, including declined mitochondrial membrane potential, enhanced expression of ROS, altered pH homeostasis, an elevated level of cytosolic cytochrome c, and modulated expression of crucial cell survival and metabolism regulatory molecules. Additionally, this study also reports the chemosensitizing ability of MJ against T cell lymphoma accompanied by a declined expression of MDR1. This study sheds new light by demonstrating the implication of novel molecular mechanisms underlying the antitumor action of MJ against T-cell lymphoma and hence has immense translational significance.
Collapse
Affiliation(s)
- Yugal Goel
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saveg Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shrish Kumar Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|