1
|
Hussain W, Jiang ZL, Liu Y, Wang JY, Yasoob TB, Hussain SA, Laila UE, Wu DD, Ji XY, Dang YL. PEST Proteolysis Signals Containing Nuclear Protein Related Proteins in Eye and Eye Diseases:A Review. Exp Eye Res 2025:110451. [PMID: 40414338 DOI: 10.1016/j.exer.2025.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
The human visual system is a critical component for understanding the world around us, but it is affected by various eye conditions that lead to visual impairments. More than 2.2 billion people worldwide suffer from vision problems such as macular degeneration, refractive errors, cataracts, and glaucoma. In the field of iridology, essential proteins for maintaining healthy eye activity are often mutated or dysregulated. Clear vision is essential for people, and mutations related to these proteins can significantly impact the prevalence and development of eye disorders. Proteins that are linked to ocular disorders, including the nuclear protein Ras, S-glutathionylation, the human ER1 protein, and the Pest Proteolysis Signal-containing Nuclear Protein (PCNP), were examined in this study. Identifying and studying potential treatment targets and strategies to regulate the function of these proteins is crucial for minimizing the prevalence of eye disorders. PCNP is specifically linked to the development of several eye disorders. The development of clinical strategies to effectively treat ocular disorders will benefit from an understanding of these molecular processes. The main focus of this study was on PCNP because of due to its significant role in the pathophysiology of eye disorders. Understanding the function of this protein is vital, as its dysregulation has been linked with several ocular diseases. It is important to fully understand the roles of these essential proteins to develop effective treatments and preventive measures for ocular problems. This review therefore aims to contribute to advancements in the research, treatment, and management of preventable blindness and vision impairment globally by influencing thoughts on how to target and regulate these prospective remedies.
Collapse
Affiliation(s)
- Wahab Hussain
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Oncology, Huaxian County Hospital, Huaxian Henan Province 456400, China
| | - Zhi-Liang Jiang
- School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Jia-Yi Wang
- San-Quan College, XinXiang Medical University, No. 688 Xiangyang Road, Hongmen Town, Hongqi District, Xinxiang City, Henan 453003, China
| | - Talat Bilal Yasoob
- Department of Animal Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Syed Ashiq Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Umm E Laila
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Xin-Ying Ji
- Department of Oncology, Huaxian County Hospital, Huaxian Henan Province 456400, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, Henan 450064, China.
| | - Ya-Long Dang
- Department of Ophthalmology, Sanmenxia Central Hospital, Henan University of Science and Technology, Sanmenxia, Henan, China; Department of Ophthalmology, Sanmenxia Eye Hospital, Sanmenxia, Henan, China; Department of Ophthalmology, Henan University of Science and Technology School of Medicine, Luoyang, Henan, China.
| |
Collapse
|
2
|
He F, Nichols RM, Agosto MA, Wensel TG. Roles of class III phosphatidylinositol 3-kinase, Vps34, in phagocytosis, autophagy, and endocytosis in retinal pigmented epithelium. iScience 2025; 28:112371. [PMID: 40330883 PMCID: PMC12052997 DOI: 10.1016/j.isci.2025.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Phosphatidylinositol-3-phosphate (PI(3)P) is important for multiple functions of retinal pigmented epithelial (RPE) cells, but its functions in RPE have not been studied. In RPE from mouse eyes and in cultured human RPE cells, PI(3)P-enriched membranes include endosomes, the trans-Golgi network, phagosomes, and autophagophores. Mouse RPE cells lacking activity of the PI-3 kinase, Vps34, lack detectable PI(3)P and die prematurely. Phagosomes containing rod discs accumulate, as do membrane aggregates positive for autophagosome markers. These autophagy-related membranes recruit LC3/Atg8 without Vps34, but phagosomes do not. Vps34 loss leads to accumulation of lysosomes which do not fuse with phagosomes or membranes with autophagy markers. Thus, Vps34-derived PI(3)P is not needed for initiation of phagocytosis or endocytosis, nor for formation of membranes containing autophagy markers. In contrast, Vps34 and PI(3)P are essential for intermediate and later stages, including membrane fusion with lysosomes.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ralph M. Nichols
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | - Theodore G. Wensel
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Jia X, Wang Y, Jiang M, Chen DD, Shang G, Liu B, Xue M, Lang Y, Zhou G, Dong Y, Zhang F, Peng X, Hu Y. HSP90 stabilizes visual cycle retinol dehydrogenase 5 in the endoplasmic reticulum by inhibiting its degradation during autophagy. J Biol Chem 2025; 301:108126. [PMID: 39725039 PMCID: PMC11787647 DOI: 10.1016/j.jbc.2024.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Genetic mutations in retinol dehydrogenase 5 (RDH5), a rate-limiting enzyme of the visual cycle, is associated with nyctalopia, age-related macular disease, and stationary congenital fundus albipunctatus (FA). A majority of these mutations impair RDH5 protein expression and intracellular localization. However, the regulatory mechanisms underlying RDH5 metabolism remain unclear. Here, we find that RDH5 undergoes degradation via the autophagy-lysosomal pathway, and its stability is regulated by interacting with HSP90. Deletion of HSP90α or HSP90β by CRISPR-Cas9 or inhibition of HSP90 activity by IPI-504 downregulates RDH5 protein level, but not its mRNA expression, and this downregulation is restored by autophagic inhibitors (3-MA, CQ, and Baf-A1) and siRNA of ATG5 or ATG7, but not by the proteasome inhibitor MG132. RDH5 can physically interact with SQSTM1/P62, and this interaction is enhanced in HSP90-deficient cells as well as in CQ-treated cells. Knocking down SQSTM1/P62 by siRNA induces RDH5 protein accumulation. Moreover, HSP90, RDH5, and Calnexin form a complex through intermolecular interactions. Deficiency of HSP90α or HSP90β dissociates RDH5 from Calnexin and increases RDH5 translocation from the endoplasmic reticulum to the cytosol. Taken together, we propose that dysfunction of HSP90 leads to RDH5 release from Calnexin in the endoplasmic reticulum into the cytosol, where it binds to the adaptor SQSTM1/P62 for degradation in the autolysosome. RDH5 is a novel client candidate of HSP90. The downregulation of RDH5 may be responsible for the nyctalopia side effect noted in cancer patients receiving HSP90 inhibitor treatment currently in the clinical trial.
Collapse
Affiliation(s)
- Xiaolin Jia
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuxuan Wang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Mingjun Jiang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dan-Dan Chen
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Henan, China
| | - Baixue Liu
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mengjiao Xue
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Youfei Lang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guiling Zhou
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yichen Dong
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fengyan Zhang
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuyan Peng
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Yanzhong Hu
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; The Joint National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China; Kaifeng Key Lab for Cataracts and Myopia, Kaifeng Central Hospital, Kaifeng, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
4
|
Hyttinen JMT, Koskela A, Blasiak J, Kaarniranta K. Autophagy in drusen biogenesis secondary to age-related macular degeneration. Acta Ophthalmol 2024; 102:759-772. [PMID: 39087629 DOI: 10.1111/aos.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Age-related macular degeneration (AMD) is an emerging cause of blindness in aged people worldwide. One of the key signs of AMD is the degeneration of the retinal pigment epithelium (RPE), which is indispensable for the maintenance of the adjacent photoreceptors. Because of impaired energy metabolism resulting from constant light exposure, hypoxia, and oxidative stress, accumulation of drusen in AMD-affected eyes is observed. Drusen contain damaged cellular proteins, lipoprotein particles, lipids and carbohydrates and they are related to impaired protein clearance, inflammation, and extracellular matrix modification. When autophagy, a major cellular proteostasis pathway, is impaired, the accumulations of intracellular lipofuscin and extracellular drusen are detected. As these aggregates grow over time, they finally cause the disorganisation and destruction of the RPE and photoreceptors leading to visual loss. In this review, the role of autophagy in drusen biogenesis is discussed since impairment in removing cellular waste in RPE cells plays a key role in AMD progression. In the future, means which improve intracellular clearance might be of use in AMD therapy to slow the progression of drusen formation.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
5
|
Arshavsky VY. Vision: A specialized pathway for pigment regeneration in cones. Curr Biol 2024; 34:R726-R728. [PMID: 39106828 DOI: 10.1016/j.cub.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Vision relies on two types of photoreceptor cells, rods and cones. Rods outnumber cones in the retinas of humans and most other vertebrate species, yet the contribution of cones to our vision is far more impactful than rods. A new study reveals an elegant enzymatic mechanism that favors light perception by cones under daylight conditions when rods are saturated by light and contribute little to useful vision.
Collapse
Affiliation(s)
- Vadim Y Arshavsky
- Departments of Ophthalmology and Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Bassetto M, Kolesnikov AV, Lewandowski D, Kiser JZ, Halabi M, Einstein DE, Choi EH, Palczewski K, Kefalov VJ, Kiser PD. Dominant role for pigment epithelial CRALBP in supplying visual chromophore to photoreceptors. Cell Rep 2024; 43:114143. [PMID: 38676924 PMCID: PMC11211020 DOI: 10.1016/j.celrep.2024.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Cellular retinaldehyde-binding protein (CRALBP) supports production of 11-cis-retinaldehyde and its delivery to photoreceptors. It is found in the retinal pigment epithelium (RPE) and Müller glia (MG), but the relative functional importance of these two cellular pools is debated. Here, we report RPE- and MG-specific CRALBP knockout (KO) mice and examine their photoreceptor and visual cycle function. Bulk visual chromophore regeneration in RPE-KO mice is 15-fold slower than in controls, accounting for their delayed rod dark adaptation and protection against retinal phototoxicity, whereas MG-KO mice have normal bulk visual chromophore regeneration and retinal light damage susceptibility. Cone pigment regeneration is significantly impaired in RPE-KO mice but mildly affected in MG-KO mice, disclosing an unexpectedly strong reliance of cone photoreceptors on the RPE-based visual cycle. These data reveal a dominant role for RPE-CRALBP in supporting rod and cone function and highlight the importance of RPE cell targeting for CRALBP gene therapies.
Collapse
Affiliation(s)
- Marco Bassetto
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA 90822, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Alexander V Kolesnikov
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Dominik Lewandowski
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Jianying Z Kiser
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Maximilian Halabi
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA
| | - David E Einstein
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA 90822, USA
| | - Elliot H Choi
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Vladimir J Kefalov
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, USA; Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA 90822, USA; Center for Translational Vision Research, Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA; Department of Clinical Pharmacy Practice, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
7
|
Chen DD, Liu B, Wang Y, Jiang M, Shang G, Xue M, Jia X, Lang Y, Zhou G, Zhang F, Peng X, Hu Y. The downregulation of HSP90-controlled CRALBP expression is associated with age-related vision attenuation. FASEB J 2023; 37:e22832. [PMID: 36826429 DOI: 10.1096/fj.202201608rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
The dysfunction of CRALBP, a key regulator of the visual cycle, is associated with retinitis punctata albescens characterized by night vision loss and retinal degeneration. In this paper, we find that the expression of CRALBP is regulated by heat shock protein 90 (HSP90). Inhibition of HSP90α or HSP90β expression by using the CRISPR-Cas9 technology downregulates CRALBP's mRNA and protein expression in ARPE-19 cells by triggering the degradation of transcription factor SP1 in the ubiquitin-proteasome pathway. SP1 can bind to CRALBP's promoter, and inhibition of SP1 by its inhibitor plicamycin or siRNA downregulates CRALBP's mRNA expression. In the zebrafish, inhibition of HSP90 by the intraperitoneal injection of IPI504 reduces the thickness of the retinal outer nuclear layer and Rlbp1b mRNA expression. Interestingly, the expression of HSP90, SP1, and CRALBP is correlatedly downregulated in the senescent ARPE-19 and Pig primary RPE cells in vitro and in the aged zebrafish and mouse retinal tissues in vivo. The aged mice exhibit the low night adaption activity. Taken together, these data indicate that the HSP90-SP1 is a novel regulatory axis of CRALBP transcriptional expression in RPE cells. The age-mediated downregulation of the HSP90-SP1-CRALBP axis is a potential etiology for the night vision reduction in senior people.
Collapse
Affiliation(s)
- Dan-Dan Chen
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Baixue Liu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuxuan Wang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mingjun Jiang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengjiao Xue
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaolin Jia
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YouFei Lang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guiling Zhou
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fengyan Zhang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuyan Peng
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanzhong Hu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Jointed National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
9
|
Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, GonzÁlez-Calixto C, Flores-Alfaro E, Espinoza-Rojo M. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review). Mol Med Rep 2022; 26:244. [PMID: 35656886 PMCID: PMC9185696 DOI: 10.3892/mmr.2022.12760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is a multifactorial disease, defined as excessive fat deposition in adipose tissue. Adipose tissue is responsible for the production and secretion of numerous adipokines that induce metabolic disorders. Retinol‑binding protein 4 (RBP4) is an adipokine that transports vitamin A or retinol in the blood. High levels of RBP4 are associated with development of metabolic disease, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes (T2D). The present review summarizes the role of RBP4 in obesity and associated chronic alterations. Excessive synthesis of RBP4 contributes to inflammatory characteristic of obesity by activation of immune cells and release of proinflammatory cytokines, such as TNFα and ILs, via the Toll‑like receptor/JNK pathway. The retinol‑RBP4 complex inhibits insulin signaling directly in adipocytes by activating Janus kinase 2 (JAK2)/STAT5/suppressor of cytokine signaling 3 signaling. This mechanism is retinol‑dependent and requires vitamin A receptor stimulation by retinoic acid 6 (STRA6). In muscle, RBP4 is associated with increased serine 307 phosphorylation of insulin receptor substrate‑1, which decreases its affinity to PI3K and promotes IR. In the liver, RBP4 increases hepatic expression of phosphoenolpyruvate carboxykinase, which increases production of glucose. Elevated serum RBP4 levels are associated with β‑cell dysfunction in T2D via the STRA6/JAK2/STAT1/insulin gene enhancer protein 1 pathway. By contrast, RBP4 induces endothelial inflammation via the NF‑κB/nicotinamide adenine dinucleotide phosphate oxidase pathway independently of retinol and STRA6, which stimulates expression of proinflammatory molecules, such as vascular cell adhesion molecule 1, E‑selectin, intercellular adhesion molecule 1, monocyte chemoattractant protein 1 and TNFα. RBP4 promotes oxidative stress by decreasing endothelial mitochondrial function; overall, it may serve as a useful biomarker in the diagnosis of obesity and prognosis of associated disease, as well as a potential therapeutic target for treatment of these diseases.
Collapse
Affiliation(s)
- Yaccil Adilene Flores-Cortez
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Martha I. Barragán-Bonilla
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Juan M. Mendoza-Bello
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | | | - Eugenia Flores-Alfaro
- Laboratory of Clinical and Molecular Epidemiology, Faculty of Biological and Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| | - Mónica Espinoza-Rojo
- Laboratory of Molecular Biology and Genomic, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero 39087, Mexico
| |
Collapse
|
10
|
Genetic Variation and Mendelian Randomization Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:327-342. [DOI: 10.1007/978-3-031-11836-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Dieguez HH, Calanni JS, Romeo HE, Alaimo A, González Fleitas MF, Iaquinandi A, Chianelli MS, Keller Sarmiento MI, Sande PH, Rosenstein RE, Dorfman D. Enriched environment and visual stimuli protect the retinal pigment epithelium and photoreceptors in a mouse model of non-exudative age-related macular degeneration. Cell Death Dis 2021; 12:1128. [PMID: 34864827 PMCID: PMC9632251 DOI: 10.1038/s41419-021-04412-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Non-exudative age-related macular degeneration (NE-AMD), the main cause of blindness in people above 50 years old, lacks effective treatments at the moment. We have developed a new NE-AMD model through unilateral superior cervical ganglionectomy (SCGx), which elicits the disease main features in C57Bl/6J mice. The involvement of oxidative stress in the damage induced by NE-AMD to the retinal pigment epithelium (RPE) and outer retina has been strongly supported by evidence. We analysed the effect of enriched environment (EE) and visual stimulation (VS) in the RPE/outer retina damage within experimental NE-AMD. Exposure to EE starting 48 h post-SCGx, which had no effect on the choriocapillaris ubiquitous thickness increase, protected visual functions, prevented the thickness increase of the Bruch’s membrane, and the loss of the melanin of the RPE, number of melanosomes, and retinoid isomerohydrolase (RPE65) immunoreactivity, as well as the ultrastructural damage of the RPE and photoreceptors, exclusively circumscribed to the central temporal (but not nasal) region, induced by experimental NE-AMD. EE also prevented the increase in outer retina/RPE oxidative stress markers and decrease in mitochondrial mass at 6 weeks post-SCGx. Moreover, EE increased RPE and retinal brain-derived neurotrophic factor (BDNF) levels, particularly in Müller cells. When EE exposure was delayed (dEE), starting at 4 weeks post-SCGx, it restored visual functions, reversed the RPE melanin content and RPE65-immunoreactivity decrease. Exposing animals to VS protected visual functions and prevented the decrease in RPE melanin content and RPE65 immunoreactivity. These findings suggest that EE housing and VS could become an NE-AMD promising therapeutic strategy.
Collapse
Affiliation(s)
- Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Horacio E Romeo
- School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, BIOMED/UCA/CONICET, Buenos Aires, Argentina
| | - Agustina Alaimo
- Interdisciplinary Laboratory of Cellular Dynamics and Nanotools, Department of Biological Chemistry, School of Exact and Natural Sciences/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Agustina Iaquinandi
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mónica S Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Kiser PD. Retinal pigment epithelium 65 kDa protein (RPE65): An update. Prog Retin Eye Res 2021; 88:101013. [PMID: 34607013 PMCID: PMC8975950 DOI: 10.1016/j.preteyeres.2021.101013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Vertebrate vision critically depends on an 11-cis-retinoid renewal system known as the visual cycle. At the heart of this metabolic pathway is an enzyme known as retinal pigment epithelium 65 kDa protein (RPE65), which catalyzes an unusual, possibly biochemically unique, reaction consisting of a coupled all-trans-retinyl ester hydrolysis and alkene geometric isomerization to produce 11-cis-retinol. Early work on this isomerohydrolase demonstrated its membership to the carotenoid cleavage dioxygenase superfamily and its essentiality for 11-cis-retinal production in the vertebrate retina. Three independent studies published in 2005 established RPE65 as the actual isomerohydrolase instead of a retinoid-binding protein as previously believed. Since the last devoted review of RPE65 enzymology appeared in this journal, major advances have been made in a number of areas including our understanding of the mechanistic details of RPE65 isomerohydrolase activity, its phylogenetic origins, the relationship of its membrane binding affinity to its catalytic activity, its role in visual chromophore production for rods and cones, its modulation by macromolecules and small molecules, and the involvement of RPE65 mutations in the development of retinal diseases. In this article, I will review these areas of progress with the goal of integrating results from the varied experimental approaches to provide a comprehensive picture of RPE65 biochemistry. Key outstanding questions that may prove to be fruitful future research pursuits will also be highlighted.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA; Department of Ophthalmology and Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
Yan G, Lian CA, Lan Y, Qian PY, He L. Insights into the vision of the hadal snailfish Pseudoliparis swirei through proteomic analysis of the eye. Proteomics 2021; 21:e2100118. [PMID: 34329538 DOI: 10.1002/pmic.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/27/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022]
Abstract
No sunlight can reach the hadal trench, but some fishes dwelling there still have apparent eye morphology. However, whether they are capable of sensing light remains unknown. In this study, the eyes of the dominant hadal endemic snailfish Pseudoliparis swirei from the Mariana Trench were analyzed using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). A total of 2088 proteins were identified in the eye proteome, most of which had at least one hit against public databases and could be mapped to 316 metabolic pathways. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways directly contributing to visual phototransduction were significantly enriched from the top 10% dominant proteins, implying abundant metabolic activities in the eye and it is still a functional visual organ. One rhodopsin was identified in the eye proteome, sequence analysis indicated that it might have an absorption maximum at ∼480 nm and be sensitive to dim blue light. In addition, proteins that might contribute to extreme environment adaptation, such as heat shock proteins and chaperonin-containing T-complex protein 1, were also highly expressed in the eye. Overall, these results provide insights into the molecular mechanism underlying the vision of hadal snailfish and provide a useful database for further research.
Collapse
Affiliation(s)
- Guoyong Yan
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chun-Ang Lian
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yi Lan
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
14
|
Fathi M, Ross CT, Hosseinzadeh Z. Functional 3-Dimensional Retinal Organoids: Technological Progress and Existing Challenges. Front Neurosci 2021; 15:668857. [PMID: 33958988 PMCID: PMC8095320 DOI: 10.3389/fnins.2021.668857] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cell scientists have developed methods for the self-formation of artificial organs, often referred to as organoids. Organoids can be used as model systems for research in multiple biological disciplines. Yoshiki Sasai’s innovation for deriving mammalian retinal tissue from in vitro stem cells has had a large impact on the study of the biology of vision. New developments in retinal organoid technology provide avenues for in vitro models of human retinal diseases, studies of pathological mechanisms, and development of therapies for retinal degeneration, including electronic retinal implants and gene therapy. Moreover, these innovations have played key roles in establishing models for large-scale drug screening, studying the stages of retinal development, and providing a human model for personalized therapeutic approaches, like cell transplants to replace degenerated retinal cells. Here, we first discuss the importance of human retinal organoids to the biomedical sciences. Then, we review various functional features of retinal organoids that have been developed. Finally, we highlight the current limitations of retinal organoid technologies.
Collapse
Affiliation(s)
- Meimanat Fathi
- Department of Cell Techniques and Applied Stem Cell Biology, Faculty of Medicine, Center for Biotechnology and Biomedicine (BBZ), University of Leipzig, Leipzig, Germany.,Physiology and Pathophysiology of the Retina Group, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Cody T Ross
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Zohreh Hosseinzadeh
- Physiology and Pathophysiology of the Retina Group, Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
The Same Magnocellular Neurons Send Axon Collaterals to the Posterior Pituitary and Retina or to the Posterior Pituitary and Autonomic Preganglionic Centers of the Eye in Rats. NEUROSCI 2021. [DOI: 10.3390/neurosci2010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In rats, some parvocellular paraventricular neurons project to spinal autonomic centers. Using the virus tracing technique, we have demonstrated that some magnocellular paraventricular neurons, but not supraoptic neurons, also project to autonomic preganglionic centers of the mammary gland, gingiva, or lip. A part of these neurons has shown oxytocin immunoreactivity. In the present experiment, we have examined whether the same magnocellular neuron that sends fibers to the retina or autonomic preganglionic centers of the eye also projects to the posterior pituitary. Double neurotropic viral labeling and oxytocin immunohistochemistry were used. After inoculation of the posterior pituitary and the eye with viruses, spreading in a retrograde direction and expressing different fluorescence proteins, we looked for double-labeled neurons in paraventricular and supraoptic nuclei. Double-labeled neurons were observed in non-sympathectomized and cervical-sympathectomized animals. Some double-labeled neurons contained oxytocin. After the optic nerve was cut, the labeling did not appear in the supraoptic nucleus; however, it could still be observed in the paraventricular nucleus. In the paraventricular nucleus, the double-labeled cells may be the origin of centrifugal visual fibers or autonomic premotor neurons. In the supraoptic nucleus, all double-labeled neurons are cells of origin of centrifugal visual fibers.
Collapse
|
16
|
Karlen SJ, Miller EB, Burns ME. Microglia Activation and Inflammation During the Death of Mammalian Photoreceptors. Annu Rev Vis Sci 2020; 6:149-169. [PMID: 32936734 PMCID: PMC10135402 DOI: 10.1146/annurev-vision-121219-081730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoreceptors are highly specialized sensory neurons with unique metabolic and physiological requirements. These requirements are partially met by Müller glia and cells of the retinal pigment epithelium (RPE), which provide essential metabolites, phagocytose waste, and control the composition of the surrounding microenvironment. A third vital supporting cell type, the retinal microglia, can provide photoreceptors with neurotrophic support or exacerbate neuroinflammation and hasten neuronal cell death. Understanding the physiological requirements for photoreceptor homeostasis and the factors that drive microglia to best promote photoreceptor survival has important implications for the treatment and prevention of blinding degenerative diseases like retinitis pigmentosa and age-related macular degeneration.
Collapse
Affiliation(s)
- Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
| | - Marie E. Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
17
|
Taveau N, Cubizolle A, Guillou L, Pinquier N, Moine E, Cia D, Kalatzis V, Vercauteren J, Durand T, Crauste C, Brabet P. Preclinical pharmacology of a lipophenol in a mouse model of light-induced retinopathy. Exp Mol Med 2020; 52:1090-1101. [PMID: 32641711 PMCID: PMC8080701 DOI: 10.1038/s12276-020-0460-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Environmental light has deleterious effects on the outer retina in human retinopathies, such as ABCA4-related Stargardt’s disease and dry age-related macular degeneration. These effects involve carbonyl and oxidative stress, which contribute to retinal cell death and vision loss. Here, we used an albino Abca4−/− mouse model, the outer retina of which shows susceptibility to acute photodamage, to test the protective efficacy of a new polyunsaturated fatty acid lipophenol derivative. Anatomical and functional analyses demonstrated that a single intravenous injection of isopropyl-phloroglucinol-DHA, termed IP-DHA, dose-dependently decreased light-induced photoreceptor degeneration and preserved visual sensitivity. This protective effect persisted for 3 months. IP-DHA did not affect the kinetics of the visual cycle in vivo or the activity of the RPE65 isomerase in vitro. Moreover, IP-DHA administered by oral gavage showed significant protection of photoreceptors against acute light damage. In conclusion, short-term tests in Abca4-deficient mice, following single-dose administration and light exposure, identify IP-DHA as a therapeutic agent for the prevention of retinal degeneration. Treating retinal damage in both aging and young patients might now be easier, thanks to treatment with a lipophenol, an omega-3 fatty acid linked to an antioxidant. The retina is the part of the eye that senses light, aided by light-sensitive pigments. However, these light-sensitive pigments can be converted by light to toxic byproducts, and in some individuals, these toxic byproducts can accumulate, damaging the retina and leading to vision loss. Philippe Brabet at the Montpellier Institute of Neuroscience in France and co-workers found that lipophenol treatment protected retinal cells from damage in a mouse model of retinal disease, and that a single dose has been effective in preserving vision. These results may help in finding new treatments for retinal diseases such as Stargardt disease and age-related macular degeneration.
Collapse
Affiliation(s)
- Nicolas Taveau
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France.,Université de Montpellier, F-34091, Montpellier, France
| | - Aurélie Cubizolle
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France.,Université de Montpellier, F-34091, Montpellier, France
| | - Laurent Guillou
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France.,Université de Montpellier, F-34091, Montpellier, France
| | - Nicolas Pinquier
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France
| | - Espérance Moine
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247 - Université de Montpellier, CNRS, ENSCM, F-34095, Montpellier, France
| | - David Cia
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107, Facultés de Médecine et de Pharmacie, F-63001, Clermont-Ferrand, France
| | - Vasiliki Kalatzis
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France.,Université de Montpellier, F-34091, Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247 - Université de Montpellier, CNRS, ENSCM, F-34095, Montpellier, France
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247 - Université de Montpellier, CNRS, ENSCM, F-34095, Montpellier, France
| | - Céline Crauste
- Institut des Biomolecules Max Mousseron (IBMM), UMR 5247 - Université de Montpellier, CNRS, ENSCM, F-34095, Montpellier, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, F-34091, Montpellier, France. .,Université de Montpellier, F-34091, Montpellier, France.
| |
Collapse
|
18
|
Abstract
Light drives vision by directly activating opsin-based visual pigments in rod and cone photoreceptors. In this issue of Neuron, Morshedian et al. (2019) show that light also drives regeneration of the cone visual pigments via an elegant biochemical mechanism in Müller glial cells of the neural retina that can contribute to sustained cone function under daytime conditions.
Collapse
Affiliation(s)
- Gabriel Peinado Allina
- Center for Neuroscience and Depts of Ophthalmology & Vision Science and Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95618, USA
| | - Marie E Burns
- Center for Neuroscience and Depts of Ophthalmology & Vision Science and Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95618, USA.
| |
Collapse
|
19
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|
20
|
Fields MA, Del Priore LV, Adelman RA, Rizzolo LJ. Interactions of the choroid, Bruch's membrane, retinal pigment epithelium, and neurosensory retina collaborate to form the outer blood-retinal-barrier. Prog Retin Eye Res 2019; 76:100803. [PMID: 31704339 DOI: 10.1016/j.preteyeres.2019.100803] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
The three interacting components of the outer blood-retinal barrier are the retinal pigment epithelium (RPE), choriocapillaris, and Bruch's membrane, the extracellular matrix that lies between them. Although previously reviewed independently, this review integrates these components into a more wholistic view of the barrier and discusses reconstitution models to explore the interactions among them. After updating our understanding of each component's contribution to barrier function, we discuss recent efforts to examine how the components interact. Recent studies demonstrate that claudin-19 regulates multiple aspects of RPE's barrier function and identifies a barrier function whereby mutations of claudin-19 affect retinal development. Co-culture approaches to reconstitute components of the outer blood-retinal barrier are beginning to reveal two-way interactions between the RPE and choriocapillaris. These interactions affect barrier function and the composition of the intervening Bruch's membrane. Normal or disease models of Bruch's membrane, reconstituted with healthy or diseased RPE, demonstrate adverse effects of diseased matrix on RPE metabolism. A stumbling block for reconstitution studies is the substrates typically used to culture cells are inadequate substitutes for Bruch's membrane. Together with human stem cells, the alternative substrates that have been designed offer an opportunity to engineer second-generation culture models of the outer blood-retinal barrier.
Collapse
Affiliation(s)
- Mark A Fields
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lucian V Del Priore
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA
| | - Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208061, New Haven, CT, 06520-8061, USA; Department of Surgery, Yale University School of Medicine, PO Box 208062, New Haven, CT, 06520-8062, USA.
| |
Collapse
|
21
|
Wilkerson JL, Stiles MA, Gurley JM, Grambergs RC, Gu X, Elliott MH, Proia RL, Mandal NA. Sphingosine Kinase-1 Is Essential for Maintaining External/Outer Limiting Membrane and Associated Adherens Junctions in the Aging Retina. Mol Neurobiol 2019; 56:7188-7207. [PMID: 30997640 DOI: 10.1007/s12035-019-1599-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) produced by sphingosine kinases (SPHK1 and SPHK2) is a signaling molecule involved in cell proliferation and formation of cellular junctions. In this study, we characterized the retinas of Sphk1 knockout (KO) mice by electron microscopy and immunocytochemistry. We also tested cultured Müller glia for their response to S1P. We found that S1P plays an important role in retinal and retinal pigment epithelial (RPE) structural integrity in aging mice. Ultrastructural analysis of Sphk1 KO mouse retinas aged to 15 months or raised with moderate light stress revealed a degenerated outer limiting membrane (OLM). This membrane is formed by adherens junctions between neighboring Müller glia and photoreceptor cells. We also show that Sphk1 KO mice have reduced retinal function in mice raised with moderate light stress. In vitro assays revealed that exogenous S1P modulated cytoskeletal rearrangement and increased N-cadherin production in human Müller glia cells. Aged mice also had morphological degeneration of the RPE, as well as increased lipid storage vacuoles and undigested phagosomes reminiscent of RPE in age-related macular degeneration. These findings show that SPHK1 and S1P play a vital role in the structural maintenance of the mammalian retina and retinal pigmented epithelium by supporting the formation of adherens junctions.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | - Megan A Stiles
- Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jami M Gurley
- Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Richard C Grambergs
- Department of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Xiaowu Gu
- Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Michael H Elliott
- Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nawajes A Mandal
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA. .,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA. .,Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, 930 Madison Avenue, Suite 718, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, 930 Madison Avenue, Suite 718, Memphis, TN, 38163, USA.
| |
Collapse
|
22
|
Wang SB, Xu T, Peng S, Singh D, Ghiassi-Nejad M, Adelman RA, Rizzolo LJ. Disease-associated mutations of claudin-19 disrupt retinal neurogenesis and visual function. Commun Biol 2019; 2:113. [PMID: 30937396 PMCID: PMC6433901 DOI: 10.1038/s42003-019-0355-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations of claudin-19 cause Familial Hypomagnesaemia and Hypercalciuria, Nephrocalcinosis with Ocular Involvement. To study the ocular disease without the complications of the kidney disease, naturally occurring point mutations of human CLDN19 were recreated in human induced pluripotent cells or overexpressed in the retinae of newborn mice. In human induced pluripotent cells, we show that the mutation affects retinal neurogenesis and maturation of retinal pigment epithelium (RPE). In mice, the mutations diminish the P1 wave of the electroretinogram, activate apoptosis in the outer nuclear layer, and alter the morphology of bipolar cells. If mice are given 9-cis-retinal to counter the loss of retinal isomerase, the P1 wave is partially restored. The ARPE19 cell line fails to express claudin-19. Exogenous expression of wild type, but not mutant claudin-19, increases the expression of RPE signature genes. Mutated claudin-19 affects multiple stages of RPE and retinal differentiation through its effects on multiple functions of the RPE.
Collapse
Affiliation(s)
- Shao-Bin Wang
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
- Present Address: Center for Advanced Vision Science, Department of Ophthalmology, School of Medicine, University of Virginia, Charlottesville, VA 22908 USA
| | - Tao Xu
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
- Aier School of Ophthalmology, Central South University, 198 Furong Middle Ave Section 2, Tianxin District, Changsha, China
| | - Shaomin Peng
- Aier School of Ophthalmology, Central South University, 198 Furong Middle Ave Section 2, Tianxin District, Changsha, China
| | - Deepti Singh
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
- Present Address: Department of Ophthalmology, The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford St., Boston, MA 02114 USA
| | - Maryam Ghiassi-Nejad
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
| | - Ron A. Adelman
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
| | - Lawrence J. Rizzolo
- Department of Surgery, Yale University, PO Box 208062, New Haven, CT USA
- Department of Ophthalmology, Yale University, 40 Temple Street, New Haven, CT USA
| |
Collapse
|
23
|
Crowe-Riddell JM, Simões BF, Partridge JC, Hunt DM, Delean S, Schwerdt JG, Breen J, Ludington A, Gower DJ, Sanders KL. Phototactic tails: Evolution and molecular basis of a novel sensory trait in sea snakes. Mol Ecol 2019; 28:2013-2028. [PMID: 30767303 DOI: 10.1111/mec.15022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Dermal phototaxis has been reported in a few aquatic vertebrate lineages spanning fish, amphibians and reptiles. These taxa respond to light on the skin of their elongate hind-bodies and tails by withdrawing under cover to avoid detection by predators. Here, we investigated tail phototaxis in sea snakes (Hydrophiinae), the only reptiles reported to exhibit this sensory behaviour. We conducted behavioural tests in 17 wild-caught sea snakes of eight species by illuminating the dorsal surface of the tail and midbody skin using cold white, violet, blue, green and red light. Our results confirmed phototactic tail withdrawal in the previously studied Aipysurus laevis, revealed this trait for the first time in A. duboisii and A. tenuis, and suggested that tail photoreceptors have peak spectral sensitivities between blue and green light (457-514 nm). Based on these results, and an absence of photoresponses in five Aipysurus and Hydrophis species, we tentatively infer that tail phototaxis evolved in the ancestor of a clade of six Aipysurus species (comprising 10% of all sea snakes). Quantifying tail damage, we found that the probability of sustaining tail injuries was not influenced by tail phototactic ability in snakes. Gene profiling showed that transcriptomes of both tail skin and body skin lacked visual opsins but contained melanopsin (opn4x) in addition to key genes of the retinal regeneration and phototransduction cascades. This work suggests that a nonvisual photoreceptor (e.g., Gq rhabdomeric) signalling pathway underlies tail phototaxis, and provides candidate gene targets for future studies of this unusual sensory innovation in reptiles.
Collapse
Affiliation(s)
- Jenna M Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Biology, University of Florida, Gainesville, Florida
| | - Bruno F Simões
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,School of Earth Sciences, University of Bristol, Bristol, UK
| | - Julian C Partridge
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - David M Hunt
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Ophthalmology and Vision Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steven Delean
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Julian G Schwerdt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - James Breen
- Robinson Research Institute, University of Adelaide, North Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Validation and reproducibility of an LC-MS/MS method for emixustat and its three deaminated metabolites in human plasma. Bioanalysis 2018; 10:1803-1817. [PMID: 30325202 DOI: 10.4155/bio-2018-0159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: A sensitive method to quantify emixustat and its rapidly formed three major deaminated metabolites in human plasma was necessary to determine exposure in clinical trials. Methods: An LC-MS/MS method was validated for accuracy and precision, linearity, carry over, selectivity, recovery, matrix effects, hematocrit effects and stability. Results: A quantitative procedure for the determination of emixustat, ACU-5116, ACU-5124 and ACU-5149 in human plasma over the concentration range of 0.0500/1.00/1.00/1.00-10.0/1000/1000/1000 ng/ml, was successfully validated and has been used to successfully analyze samples in three clinical trials. Incurred sample reanalysis was performed for all four analytes in each study with >92% of the repeat results and original results within 20% of the mean of the two values.
Collapse
|
25
|
Structural biology of 11- cis-retinaldehyde production in the classical visual cycle. Biochem J 2018; 475:3171-3188. [PMID: 30352831 DOI: 10.1042/bcj20180193] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
The vitamin A derivative 11-cis-retinaldehyde plays a pivotal role in vertebrate vision by serving as the chromophore of rod and cone visual pigments. In the initial step of vision, a photon is absorbed by this chromophore resulting in its isomerization to an all-trans state and consequent activation of the visual pigment and phototransduction cascade. Spent chromophore is released from the pigments through hydrolysis. Subsequent photon detection requires the delivery of regenerated 11-cis-retinaldehyde to the visual pigment. This trans-cis conversion is achieved through a process known as the visual cycle. In this review, we will discuss the enzymes, binding proteins and transporters that enable the visual pigment renewal process with a focus on advances made during the past decade in our understanding of their structural biology.
Collapse
|
26
|
Kang MK, Lee EJ, Kim YH, Kim DY, Oh H, Kim SI, Kang YH. Chrysin Ameliorates Malfunction of Retinoid Visual Cycle through Blocking Activation of AGE-RAGE-ER Stress in Glucose-Stimulated Retinal Pigment Epithelial Cells and Diabetic Eyes. Nutrients 2018; 10:nu10081046. [PMID: 30096827 PMCID: PMC6116048 DOI: 10.3390/nu10081046] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetes-associated visual cycle impairment has been implicated in diabetic retinopathy, and chronic hyperglycemia causes detrimental effects on visual function. Chrysin, a naturally occurring flavonoid found in various herbs, has anti-inflammatory, antioxidant, and neuroprotective properties. The goal of the current study was to identify the retinoprotective role of chrysin in maintaining robust retinoid visual cycle-related components. The in vitro study employed human retinal pigment epithelial (RPE) cells exposed to 33 mM of glucose or advanced glycation end products (AGEs) in the presence of 1–20 μM chrysin for three days. In the in vivo study, 10 mg/kg of chrysin was orally administrated to db/db mice. Treating chrysin reversed the glucose-induced production of vascular endothelial growth factor, insulin-like growth factor-1, and pigment epithelium-derived factor (PEDF) in RPE cells. The outer nuclear layer thickness of chrysin-exposed retina was enhanced. The oral gavage of chrysin augmented the levels of the visual cycle enzymes of RPE65, lecithin retinol acyltransferase (LRAT), retinol dehydrogenase 5 (RDH5), and rhodopsin diminished in db/db mouse retina. The diabetic tissue levels of the retinoid binding proteins and the receptor of the cellular retinol-binding protein, cellular retinaldehyde-binding protein-1, interphotoreceptor retinoid-binding protein and stimulated by retinoic acid 6 were restored to those of normal mouse retina. The presence of chrysin demoted AGE secretion and AGE receptor (RAGE) induction in glucose-exposed RPE cells and diabetic eyes. Chrysin inhibited the reduction of PEDF, RPE 65, LRAT, and RDH5 in 100 μg/mL of AGE-bovine serum albumin-exposed RPE cells. The treatment of RPE cells with chrysin reduced the activation of endoplasmic reticulum (ER) stress. Chrysin inhibited the impairment of the retinoid visual cycle through blocking ER stress via the AGE-RAGE activation in glucose-stimulated RPE cells and diabetic eyes. This is the first study demonstrating the protective effects of chrysin on the diabetes-associated malfunctioned visual cycle.
Collapse
Affiliation(s)
- Min-Kyung Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Eun-Jung Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Yun-Ho Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Dong Yeon Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Soo-Il Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|
27
|
Moran NE, Mohn ES, Hason N, Erdman JW, Johnson EJ. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv Nutr 2018; 9:465-492. [PMID: 30032230 PMCID: PMC6054194 DOI: 10.1093/advances/nmy025] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Carotenoids are orange, yellow, and red lipophilic pigments present in many fruit and vegetables, as well as other food groups. Some carotenoids contribute to vitamin A requirements. The consumption and blood concentrations of specific carotenoids have been associated with reduced risks of a number of chronic conditions. However, the interpretation of large, population-based observational and prospective clinical trials is often complicated by the many extrinsic and intrinsic factors that affect the physiologic response to carotenoids. Extrinsic factors affecting carotenoid bioavailability include food-based factors, such as co-consumed lipid, food processing, and molecular structure, as well as environmental factors, such as interactions with prescription drugs, smoking, or alcohol consumption. Intrinsic, physiologic factors associated with blood and tissue carotenoid concentrations include age, body composition, hormonal fluctuations, and variation in genes associated with carotenoid absorption and metabolism. To most effectively investigate carotenoid bioactivity and to utilize blood or tissue carotenoid concentrations as biomarkers of intake, investigators should either experimentally or statistically control for confounding variables affecting the bioavailability, tissue distribution, and metabolism of carotene and xanthophyll species. Although much remains to be investigated, recent advances have highlighted that lipid co-consumption, baseline vitamin A status, smoking, body mass and body fat distribution, and genetics are relevant covariates for interpreting blood serum or plasma carotenoid responses. These and other intrinsic and extrinsic factors are discussed, highlighting remaining gaps in knowledge and opportunities for future research. To provide context, we review the state of knowledge with regard to the prominent health effects of carotenoids.
Collapse
Affiliation(s)
- Nancy E Moran
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Emily S Mohn
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Noor Hason
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - John W Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| |
Collapse
|
28
|
Cook JD, Ng SY, Lloyd M, Eddington S, Sun H, Nathans J, Bok D, Radu RA, Travis GH. Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium. J Biol Chem 2017; 292:21407-21416. [PMID: 29109151 DOI: 10.1074/jbc.m117.812701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Indexed: 11/06/2022] Open
Abstract
Peropsin is a non-visual opsin in both vertebrate and invertebrate species. In mammals, peropsin is present in the apical microvilli of retinal pigment epithelial (RPE) cells. These structures interdigitate with the outer segments of rod and cone photoreceptor cells. RPE cells play critical roles in the maintenance of photoreceptors, including the recycling of visual chromophore for the opsin visual pigments. Here, we sought to identify the function of peropsin in the mouse eye. To this end, we generated mice with a null mutation in the peropsin gene (Rrh). These mice exhibited normal retinal histology, normal morphology of outer segments and RPE cells, and no evidence of photoreceptor degeneration. Biochemically, Rrh-/- mice had ∼2-fold higher vitamin A (all-trans-retinol (all-trans-ROL)) in the neural retina following a photobleach and 5-fold lower retinyl esters in the RPE. This phenotype was similar to those reported in mice that lack interphotoreceptor retinoid-binding protein (IRBP) or cellular retinol-binding protein, suggesting that peropsin plays a role in the movement of all-trans-ROL from photoreceptors to the RPE. We compared the phenotypes in mice lacking both peropsin and IRBP with those of mice lacking peropsin or IRBP alone and found that the retinoid phenotype was similarly severe in each of these knock-out mice. We conclude that peropsin controls all-trans-ROL movement from the retina to the RPE or may regulate all-trans-ROL storage within the RPE. We propose that peropsin affects light-dependent regulation of all-trans-ROL uptake from photoreceptors into RPE cells through an as yet undefined mechanism.
Collapse
Affiliation(s)
- Jeremy D Cook
- From the Department of Ophthalmology, Stein Eye Institute
| | - Sze Yin Ng
- From the Department of Ophthalmology, Stein Eye Institute
| | - Marcia Lloyd
- From the Department of Ophthalmology, Stein Eye Institute
| | | | - Hui Sun
- From the Department of Ophthalmology, Stein Eye Institute.,Department of Physiology, and
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Neuroscience, and Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and.,Howard Hughes Medical Institute, Baltimore, Maryland 21205
| | - Dean Bok
- From the Department of Ophthalmology, Stein Eye Institute
| | - Roxana A Radu
- From the Department of Ophthalmology, Stein Eye Institute
| | - Gabriel H Travis
- From the Department of Ophthalmology, Stein Eye Institute, .,Department of Biological Chemistry, School of Medicine, UCLA, Los Angeles, California 90095
| |
Collapse
|
29
|
Abstract
Vertebrate rod and cone photoreceptors require continuous supply of chromophore for regenerating their visual pigments after photoactivation. Cones, which mediate our daytime vision, demand a particularly rapid supply of 11-cis retinal chromophore in order to maintain their function in bright light. An important contribution to this process is thought to be the chromophore precursor 11-cis retinol, which is supplied to cones from Müller cells in the retina and subsequently oxidized to 11-cis retinal as part of the retina visual cycle. However, the molecular identity of the cis retinol oxidase in cones remains unclear. Here, as a first step in characterizing this enzymatic reaction, we sought to determine the subcellular localization of this activity in salamander red cones. We found that the onset of dark adaptation of isolated salamander red cones was substantially faster when exposing directly their outer vs. their inner segment to 9-cis retinol, an analogue of 11-cis retinol. In contrast, this difference was not observed when treating the outer vs. inner segment with 9-cis retinal, a chromophore analogue which can directly support pigment regeneration. These results suggest, surprisingly, that the cis-retinol oxidation occurs in the outer segments of cone photoreceptors. Confirming this notion, pigment regeneration with exogenously added 9-cis retinol was directly observed in the truncated outer segments of cones, but not in rods. We conclude that the enzymatic machinery required for the oxidation of recycled cis retinol as part of the retina visual cycle is present in the outer segments of cones.
Collapse
|
30
|
Cubizolle A, Guillou L, Mollereau B, Hamel CP, Brabet P. Fatty acid transport protein 1 regulates retinoid metabolism and photoreceptor development in mouse retina. PLoS One 2017; 12:e0180148. [PMID: 28672005 PMCID: PMC5495297 DOI: 10.1371/journal.pone.0180148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/09/2017] [Indexed: 01/22/2023] Open
Abstract
In retinal pigment epithelium (RPE), RPE65 catalyzes the isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol in the visual cycle and controls the rhodopsin regeneration rate. However, the mechanisms by which these processes are regulated are still unclear. Fatty Acid Transport Protein 1 (FATP1) is involved in fatty acid uptake and lipid metabolism in a variety of cell types. FATP1 co-localizes with RPE65 in RPE and inhibits its isomerase activity in vitro. Here, we further investigated the role of FATP1 in the visual cycle using transgenic mice that overexpress human FATP1 specifically in the RPE (hFATP1TG mice). The mice displayed no delay in the kinetics of regeneration of the visual chromophore 11-cis-retinal after photobleaching and had no defects in light sensitivity. However, the total retinoid content was higher in the hFATP1TG mice than in wild type mice, and the transgenic mice also displayed an age-related accumulation (up to 40%) of all-trans-retinal and retinyl esters that was not observed in control mice. Consistent with these results, hFATP1TG mice were more susceptible to light-induced photoreceptor degeneration. hFATP1 overexpression also induced an ~3.5-fold increase in retinosome autofluorescence, as measured by two-photon microscopy. Interestingly, hFATP1TG retina contained ~25% more photoreceptor cells and ~35% longer outer segments than wild type mice, revealing a non-cell-autonomous effect of hFATP1 expressed in the RPE. These data are the first to show that FATP1-mediated fatty acid uptake in the RPE controls both retinoid metabolism in the outer retina and photoreceptor development.
Collapse
Affiliation(s)
- Aurélie Cubizolle
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Laurent Guillou
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Bertrand Mollereau
- Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| | - Philippe Brabet
- Inserm U1051, Institute for Neurosciences of Montpellier, Montpellier, France
| |
Collapse
|
31
|
Abstract
Rhodopsin is the classical light sensor. Although rhodopsin has long been known to be important for image formation in the eye, the requirements for opsins in non-image formation and in extraocular light sensation were revealed much later. Most recent is the demonstration that an opsin in the fruit fly, Drosophila melanogaster, is expressed in pacemaker neurons in the brain and functions in light entrainment of circadian rhythms. However, the biggest surprise is that opsins have light-independent roles, countering more than a century of dogma that they function exclusively as light sensors. Through studies in Drosophila, light-independent roles of opsins have emerged in temperature sensation and hearing. Although these findings have been uncovered in the fruit fly, there are hints that opsins have light-independent roles in a wide array of animals, including mammals. Thus, despite the decades of focus on opsins as light detectors, they represent an important new class of polymodal sensory receptor.
Collapse
Affiliation(s)
- Nicole Y Leung
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106;
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106;
| |
Collapse
|
32
|
Kaylor JJ, Xu T, Ingram NT, Tsan A, Hakobyan H, Fain GL, Travis GH. Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate. Nat Commun 2017; 8:16. [PMID: 28473692 PMCID: PMC5432035 DOI: 10.1038/s41467-017-00018-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/15/2017] [Indexed: 11/24/2022] Open
Abstract
The light absorbing chromophore in opsin visual pigments is the protonated Schiff base of 11-cis-retinaldehyde (11cRAL). Absorption of a photon isomerizes 11cRAL to all-trans-retinaldehyde (atRAL), briefly activating the pigment before it dissociates. Light sensitivity is restored when apo-opsin combines with another 11cRAL to form a new visual pigment. Conversion of atRAL to 11cRAL is carried out by enzyme pathways in neighboring cells. Here we show that blue (450-nm) light converts atRAL specifically to 11cRAL through a retinyl-phospholipid intermediate in photoreceptor membranes. The quantum efficiency of this photoconversion is similar to rhodopsin. Photoreceptor membranes synthesize 11cRAL chromophore faster under blue light than in darkness. Live mice regenerate rhodopsin more rapidly in blue light. Finally, whole retinas and isolated cone cells show increased photosensitivity following exposure to blue light. These results indicate that light contributes to visual-pigment renewal in mammalian rods and cones through a non-enzymatic process involving retinyl-phospholipids. It is currently thought that visual pigments in vertebrate photoreceptors are regenerated exclusively through enzymatic cycles. Here the authors show that mammalian photoreceptors also regenerate opsin pigments in light through photoisomerization of N-ret-PE (N-retinylidene-phosphatidylethanolamine.
Collapse
Affiliation(s)
- Joanna J Kaylor
- Jules Stein Eye Institute, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA
| | - Tongzhou Xu
- Jules Stein Eye Institute, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA.,Molecular, Cellular and Integrative Physiology Graduate Program, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA
| | - Norianne T Ingram
- Jules Stein Eye Institute, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA.,Molecular, Cellular and Integrative Physiology Graduate Program, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA
| | - Avian Tsan
- Jules Stein Eye Institute, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA
| | - Hayk Hakobyan
- Jules Stein Eye Institute, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA
| | - Gordon L Fain
- Jules Stein Eye Institute, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA.,Department of Integrative Biology and Physiology, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA
| | - Gabriel H Travis
- Jules Stein Eye Institute, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA. .,Department of Biological Chemistry, University of California Los Angeles School of Medicine, Los Angeles, California, 90095, USA.
| |
Collapse
|
33
|
Peirson SN, Brown LA, Pothecary CA, Benson LA, Fisk AS. Light and the laboratory mouse. J Neurosci Methods 2017; 300:26-36. [PMID: 28414048 PMCID: PMC5909038 DOI: 10.1016/j.jneumeth.2017.04.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
Abstract
Light exerts widespread effects on physiology and behaviour. As well as the widely-appreciated role of light in vision, light also plays a critical role in many non-visual responses, including regulating circadian rhythms, sleep, pupil constriction, heart rate, hormone release and learning and memory. In mammals, responses to light are all mediated via retinal photoreceptors, including the classical rods and cones involved in vision as well as the recently identified melanopsin-expressing photoreceptive retinal ganglion cells (pRGCs). Understanding the effects of light on the laboratory mouse therefore depends upon an appreciation of the physiology of these retinal photoreceptors, including their differing sens itivities to absolute light levels and wavelengths. The signals from these photoreceptors are often integrated, with different responses involving distinct retinal projections, making generalisations challenging. Furthermore, many commonly used laboratory mouse strains carry mutations that affect visual or non-visual physiology, ranging from inherited retinal degeneration to genetic differences in sleep and circadian rhythms. Here we provide an overview of the visual and non-visual systems before discussing practical considerations for the use of light for researchers and animal facility staff working with laboratory mice.
Collapse
Affiliation(s)
- Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom.
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom
| | - Carina A Pothecary
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom
| | - Lindsay A Benson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom
| | - Angus S Fisk
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
34
|
Borel P, Desmarchelier C. Genetic Variations Associated with Vitamin A Status and Vitamin A Bioavailability. Nutrients 2017; 9:E246. [PMID: 28282870 PMCID: PMC5372909 DOI: 10.3390/nu9030246] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/11/2023] Open
Abstract
Blood concentration of vitamin A (VA), which is present as different molecules, i.e., mainly retinol and provitamin A carotenoids, plus retinyl esters in the postprandial period after a VA-containing meal, is affected by numerous factors: dietary VA intake, VA absorption efficiency, efficiency of provitamin A carotenoid conversion to VA, VA tissue uptake, etc. Most of these factors are in turn modulated by genetic variations in genes encoding proteins involved in VA metabolism. Genome-wide association studies (GWAS) and candidate gene association studies have identified single nucleotide polymorphisms (SNPs) associated with blood concentrations of retinol and β-carotene, as well as with β-carotene bioavailability. These genetic variations likely explain, at least in part, interindividual variability in VA status and in VA bioavailability. However, much work remains to be done to identify all of the SNPs involved in VA status and bioavailability and to assess the possible involvement of other kinds of genetic variations, e.g., copy number variants and insertions/deletions, in these phenotypes. Yet, the potential usefulness of this area of research is exciting regarding the proposition of more personalized dietary recommendations in VA, particularly in populations at risk of VA deficiency.
Collapse
Affiliation(s)
- Patrick Borel
- NORT, Aix-Marseille Université, INRA, INSERM, 13005 Marseille, France.
| | | |
Collapse
|
35
|
Sahu B, Maeda A. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function. Nutrients 2016; 8:E746. [PMID: 27879662 PMCID: PMC5133129 DOI: 10.3390/nu8110746] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
The visual system produces visual chromophore, 11-cis-retinal from dietary vitamin A, all-trans-retinol making this vitamin essential for retinal health and function. These metabolic events are mediated by a sequential biochemical process called the visual cycle. Retinol dehydrogenases (RDHs) are responsible for two reactions in the visual cycle performed in retinal pigmented epithelial (RPE) cells, photoreceptor cells and Müller cells in the retina. RDHs in the RPE function as 11-cis-RDHs, which oxidize 11-cis-retinol to 11-cis-retinal in vivo. RDHs in rod photoreceptor cells in the retina work as all-trans-RDHs, which reduce all-trans-retinal to all-trans-retinol. Dysfunction of RDHs can cause inherited retinal diseases in humans. To facilitate further understanding of human diseases, mouse models of RDHs-related diseases have been carefully examined and have revealed the physiological contribution of specific RDHs to visual cycle function and overall retinal health. Herein we describe the function of RDHs in the RPE and the retina, particularly in rod photoreceptor cells, their regulatory properties for retinoid homeostasis and future therapeutic strategy for treatment of retinal diseases.
Collapse
Affiliation(s)
- Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| |
Collapse
|