1
|
Manzer KM, Fromme JC. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix. Mol Biol Cell 2023; 34:ar119. [PMID: 37672345 PMCID: PMC10846627 DOI: 10.1091/mbc.e23-07-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Arf GTPases are central regulators of the Golgi complex, which serves as the nexus of membrane-trafficking pathways in eukaryotic cells. Arf proteins recruit dozens of effectors to modify membranes, sort cargos, and create and tether transport vesicles, and are therefore essential for orchestrating Golgi trafficking. The regulation of Arf activity is controlled by the action of Arf-GEFs which activate via nucleotide exchange, and Arf-GAPs which inactivate via nucleotide hydrolysis. The localization dynamics of Arf GTPases and their Arf-GAPs during Golgi maturation have not been reported. Here we use the budding yeast model to examine the temporal localization of the Golgi Arf-GAPs. We also determine the mechanisms used by the Arf-GAP Age2 to localize to the Golgi. We find that the catalytic activity of Age2 and a conserved sequence in the unstructured C-terminal domain of Age2 are both required for Golgi localization. This sequence is predicted to form an amphipathic helix and mediates direct binding of Age2 to membranes in vitro. We also report the development of a probe for sensing active Arf1 in living cells and use this probe to characterize the temporal dynamics of Arf1 during Golgi maturation.
Collapse
Affiliation(s)
- Kaitlyn M. Manzer
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850
| | - J. Christopher Fromme
- Department of Molecular Biology & Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850
| |
Collapse
|
2
|
Manzer KM, Fromme JC. The Arf-GAP Age2 localizes to the late-Golgi via a conserved amphipathic helix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550229. [PMID: 37546741 PMCID: PMC10402032 DOI: 10.1101/2023.07.23.550229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Arf GTPases are central regulators of the Golgi complex, which serves as the nexus of membrane trafficking pathways in eukaryotic cells. Arf proteins recruit dozens of effectors to modify membranes, sort cargos, and create and tether transport vesicles, and are therefore essential for orchestrating Golgi trafficking. The regulation of Arf activity is controlled by the action of Arf-GEFs, which activate via nucleotide exchange, and Arf-GAPs, which inactivate via nucleotide hydrolysis. The localization dynamics of Arf GTPases and their Arf-GAPs during Golgi maturation have not been reported. Here we use the budding yeast model to examine the temporal localization of the Golgi Arf-GAPs. We also determine the mechanisms used by the Arf-GAP Age2 to localize to the Golgi. We find that the catalytic activity of Age2 and a conserved sequence in the unstructured C-terminal domain of Age2 are both required for Golgi localization. This sequence is predicted to form an amphipathic helix and mediates direct binding of Age2 to membranes in vitro . We also report the development of a probe for sensing active Arf1 in living cells and use this probe to characterize the temporal dynamics of Arf1 during Golgi maturation.
Collapse
Affiliation(s)
- Kaitlyn M Manzer
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| | - J Christopher Fromme
- Department of Molecular Biology & Genetics and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850 USA
| |
Collapse
|
3
|
Margarido AS, Bornes L, Vennin C, van Rheenen J. Cellular Plasticity during Metastasis: New Insights Provided by Intravital Microscopy. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037267. [PMID: 31615867 DOI: 10.1101/cshperspect.a037267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metastasis is a highly dynamic process during which cancer and microenvironmental cells undergo a cascade of events required for efficient dissemination throughout the body. During the metastatic cascade, tumor cells can change their state and behavior, a phenomenon commonly defined as cellular plasticity. To monitor cellular plasticity during metastasis, high-resolution intravital microscopy (IVM) techniques have been developed and allow us to visualize individual cells by repeated imaging in animal models. In this review, we summarize the latest technological advancements in the field of IVM and how they have been applied to monitor metastatic events. In particular, we highlight how longitudinal imaging in native tissues can provide new insights into the plastic physiological and developmental processes that are hijacked by cancer cells during metastasis.
Collapse
Affiliation(s)
- Andreia S Margarido
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Laura Bornes
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Claire Vennin
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
4
|
Integrin-Dependent Regulation of Small GTPases: Role in Cell Migration. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Marquer C, Tian H, Yi J, Bastien J, Dall'Armi C, Yang-Klingler Y, Zhou B, Chan RB, Di Paolo G. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun 2016; 7:11919. [PMID: 27336679 PMCID: PMC4931008 DOI: 10.1038/ncomms11919] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/12/2016] [Indexed: 12/29/2022] Open
Abstract
Small GTPases play a critical role in membrane traffic. Among them, Arf6 mediates transport to and from the plasma membrane, as well as phosphoinositide signalling and cholesterol homeostasis. Here we delineate the molecular basis for the link between Arf6 and cholesterol homeostasis using an inducible knockout (KO) model of mouse embryonic fibroblasts (MEFs). We find that accumulation of free cholesterol in the late endosomes/lysosomes of Arf6 KO MEFs results from mistrafficking of Niemann-Pick type C protein NPC2, a cargo of the cation-independent mannose-6-phosphate receptor (CI-M6PR). This is caused by a selective increase in an endosomal pool of phosphatidylinositol-4-phosphate (PI4P) and a perturbation of retromer, which controls the retrograde transport of CI-M6PR via sorting nexins, including the PI4P effector SNX6. Finally, reducing PI4P levels in KO MEFs through independent mechanisms rescues aberrant retromer tubulation and cholesterol mistrafficking. Our study highlights a phosphoinositide-based mechanism for control of cholesterol distribution via retromer.
Collapse
Affiliation(s)
- Catherine Marquer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Huasong Tian
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Jayson Bastien
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Claudia Dall'Armi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - YoungJoo Yang-Klingler
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Bowen Zhou
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| |
Collapse
|
6
|
RLIP76 regulates Arf6-dependent cell spreading and migration by linking ARNO with activated R-Ras at recycling endosomes. Biochem Biophys Res Commun 2015; 467:785-91. [PMID: 26498519 DOI: 10.1016/j.bbrc.2015.10.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022]
Abstract
R-Ras small GTPase enhances cell spreading and motility via RalBP1/RLIP76, an R-Ras effector that links GTP-R-Ras to activation of Arf6 and Rac1 GTPases. Here, we report that RLIP76 performs these functions by binding cytohesin-2/ARNO, an Arf GTPase guanine exchange factor, and connecting it to R-Ras at recycling endosomes. RLIP76 formed a complex with R-Ras and ARNO by binding ARNO via its N-terminus (residues 1-180) and R-Ras via residues 180-192. This complex was present in Rab11-positive recycling endosomes and the presence of ARNO in recycling endosomes required RLIP76, and was not supported by RLIP76(Δ1-180) or RLIP76(Δ180-192). Spreading and migration required RLIP76(1-180), and RLIP76(Δ1-180) blocked ARNO recruitment to recycling endosomes, and spreading. Arf6 activation with an ArfGAP inhibitor overcame the spreading defects in RLIP76-depleted cells or cells expressing RLIP76(Δ1-180). Similarly, RLIP76(Δ1-180) or RLIP76(Δ180-192) suppressed Arf6 activation. Together these results demonstrate that RLIP76 acts as a scaffold at recycling endosomes by binding activated R-Ras, recruiting ARNO to activate Arf6, thereby contributing to cell spreading and migration.
Collapse
|
7
|
Oliveira AF, Yasuda R. Imaging the activity of Ras superfamily GTPase proteins in small subcellular compartments in neurons. Methods Mol Biol 2014; 1071:109-28. [PMID: 24052384 DOI: 10.1007/978-1-62703-622-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resolving the spatiotemporal dynamics of intracellular signaling is important for understanding the molecular mechanisms of various cellular processes induced by extracellular signals. Two-photon fluorescence lifetime imaging microscopy (2pFLIM) in combination with a fluorescence resonance energy transfer (FRET)-based signaling sensors allows one to image signaling within small subcellular compartments, such as dendritic spines of neurons, with high sensitivity and spatiotemporal resolution. In this protocol, we describe the procedures and equipment required for imaging intracellular signaling activity, with a particular focus on signaling mediated by the Ras superfamily of small GTPase proteins.
Collapse
Affiliation(s)
- Ana F Oliveira
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
8
|
Hiester KG, Santy LC. The cytohesin coiled-coil domain interacts with threonine 276 to control membrane association. PLoS One 2013; 8:e82084. [PMID: 24303080 PMCID: PMC3841123 DOI: 10.1371/journal.pone.0082084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/30/2013] [Indexed: 01/08/2023] Open
Abstract
Cell migration is regulated by a number of small GTPases, including members of the Arf family. Cytohesins, a family of Arf-activating proteins, have been extensively implicated in the regulation of Arfs during migration and cell shape change. Membrane association of both the Arf and its activating protein is a prerequisite for Arf activation. Therefore regulating the extent of cytohesin membrane association is a mechanism for controlling the initiation of cell movement. We have discovered a novel intramolecular interaction that controls the association of cytohesins with membranes. The presence of the coiled-coil domain reduces the association of cytohesin 2 with membranes. We demonstrate that this domain interacts with more C-terminal regions of the protein. This interaction is independent of another previously identified autoinhibitory conformation. A threonine residue (T276) in the cytohesin 2 PH domain is a target for phosphorylation by Akt. Mutation of this threonine to aspartic acid, to mimic phosphorylation, disrupts the binding of the coiled-coil domain to c-terminal regions and promotes membrane association of cytohesin 2. The presence of a second autoinhibitory interaction in the cytohesins suggests that these proteins can act a signal integrators that stimulate migration only after receive multiple pro-migratory signals.
Collapse
Affiliation(s)
- Kevin G. Hiester
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons. J Neurosci 2012; 32:10352-64. [PMID: 22836268 DOI: 10.1523/jneurosci.1409-12.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Integrins are involved in axon growth and regeneration. Manipulation of integrins is a route to promoting axon regeneration and understanding regeneration failure in the CNS. Expression of α9 integrin promotes axon regeneration, so we have investigated α9β1 trafficking and transport in axons and at the growth cone. We have previously found that α9 and β1 integrins traffic via Rab11-positive recycling endosomes in peripheral axons and growth cones. However, transport via Rab11 is slow, while rapid transport occurs in vesicles lacking Rab11. We have further studied α9 and β1 integrin transport and traffic in adult rat dorsal root ganglion axons and PC12 cells. Integrins are in ARF6 vesicles during rapid axonal transport and during trafficking in the growth cone. We report that rapid axonal transport of these integrins and their trafficking at the cell surface is regulated by ARF6. ARF6 inactivation by expression of ACAP1 leads to increased recycling of β1 integrins to the neuronal surface and to increased anterograde axonal transport. ARF6 activation by expression of the neuronal guanine nucleotide exchange factors, ARNO or EFA6, increases retrograde integrin transport in axons and increases integrin internalization. ARF6 inactivation increases integrin-mediated outgrowth, while activation decreases it. The coordinated changes in integrin transport and recycling resulting from ARF6 activation or inactivation are the probable mechanism behind this regulation of axon growth. Our data suggest a novel mechanism of integrin traffic and transport in peripheral axons, regulated by the activation state of ARF6, and suggest that ARF6 might be targeted to enhance integrin-dependent axon regeneration after injury.
Collapse
|
10
|
Luo Y, Zhan Y, Keen JH. Arf6 regulation of Gyrating-clathrin. Traffic 2012; 14:97-106. [PMID: 22998223 DOI: 10.1111/tra.12014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 11/29/2022]
Abstract
'Gyrating-' or 'G'-clathrin are coated endocytic structures located near peripheral sorting endosomes (SEs), which exhibit highly dynamic but localized movements when visualized by live-cell microscopy. They have been implicated in recycling of transferrin from the sorting endosome directly to the cell surface, but there is no information about their formation or regulation. We show here that G-clathrin comprise a minority of clathrin-coated structures in the cell periphery and are brefeldin A (BFA)-resistant. Arf6-GTP substantially increases G-clathrin levels, probably by lengthening coated bud lifetimes as suggested by photobleaching and photoactivation results, and an Arf6(Q67L)-GTP mutant bearing an internal GFP tag can be directly visualized in G-clathrin structures in live cells. Upon siRNA-mediated depletion of Arf6 or expression of Arf6(T27N), G-clathrin levels rise and are primarily Arf1-dependent, yet still BFA-resistant. However, BFA-sensitive increased G-clathrin levels are observed upon acute incubation with cytohesin inhibitor SecinH3, indicating a shift in GEF usage. Depletion of both Arf6 and Arf1 abolishes G-clathrin, and results in partial inhibition of fast transferrin recycling consistent with the latter's participation in this pathway. Collectively, these results demonstrate that the dynamics of G-clathrin primarily requires completion of the Arf6 guanine nucleotide cycle, but can be regulated by multiple Arf and GEF proteins, reflecting both overlapping mechanisms operative in their regulation and the complexity of processes involved in endosomal sorting.
Collapse
Affiliation(s)
- Yi Luo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
11
|
Torii T, Miyamoto Y, Nakamura K, Maeda M, Yamauchi J, Tanoue A. Arf6 guanine-nucleotide exchange factor, cytohesin-2, interacts with actinin-1 to regulate neurite extension. Cell Signal 2012; 24:1872-82. [DOI: 10.1016/j.cellsig.2012.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|
12
|
Li CC, Wu TS, Huang CF, Jang LT, Liu YT, You ST, Liou GG, Lee FJS. GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential. PLoS One 2012; 7:e43552. [PMID: 22927989 PMCID: PMC3424131 DOI: 10.1371/journal.pone.0043552] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/23/2012] [Indexed: 12/01/2022] Open
Abstract
ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs) at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N) reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N) was required for its localization to mitochondria. The localization of ARL4D(T35N) to the mitochondria reduced the mitochondrial membrane potential (ΔΨm) and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N) was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.
Collapse
Affiliation(s)
- Chun-Chun Li
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Sheng Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Fang Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Jang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Tsan Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Ting You
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gunn-Guang Liou
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Kim W, Kim SY, Kim T, Kim M, Bae DJ, Choi HI, Kim IS, Jho E. ADP-ribosylation factors 1 and 6 regulate Wnt/β-catenin signaling via control of LRP6 phosphorylation. Oncogene 2012; 32:3390-6. [PMID: 22907437 DOI: 10.1038/onc.2012.373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/26/2012] [Accepted: 07/13/2012] [Indexed: 12/25/2022]
Abstract
It has been shown that inhibition of GTPase-activating protein of ADP-ribosylation factor (Arf), ArfGAP, with a small molecule (QS11) results in synergistic activation of Wnt/β-catenin signaling. However, the role of Arf in Wnt/β-catenin signaling has not yet been elucidated. Here, we show that activation of Arf is essential for Wnt/β-catenin signaling. The level of the active form of Arf (Arf-GTP) transiently increased in the presence of Wnt, and this induction event was abrogated by blocking the interaction between Wnt and Frizzled (Fzd). In addition, knockdown of Fzds, Dvls or LRP6 blocked the Wnt-mediated activation of Arf. Consistently, depletion of Arf led to inhibition of Wnt-mediated membrane PtdIns (4,5)P2 (phosphatidylinositol 4, 5-bisphosphate) synthesis and LRP6 phosphorylation. Overall, our data suggest that transient activation of Arf modulates LRP6 phosphorylation for the transduction of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- W Kim
- Department of Life Science, The University of Seoul, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Casanova JE. Advantages and limitations of cell-based assays for GTPase activation and regulation. CELLULAR LOGISTICS 2012. [PMID: 23181197 PMCID: PMC3498073 DOI: 10.4161/cl.22045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Small GTPases of the Ras superfamily are important regulators of many cellular functions, including signal transduction, cytoskeleton assembly, metabolic regulation, organelle biogenesis and intracellular transport. Most GTPases act as binary switches, being "on" in the active, GTP-bound state and "off" in the inactive, GDP-bound state, and cycle between the two states with the aid of accessory proteins, referred to as guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). This review will focus on the ADP-ribosylation factors (Arfs), a family of G-proteins that are essential regulators of carrier vesicle formation during vesicular transport. As for most other GTPases, the Arfs themselves are vastly outnumbered by the proteins that regulate them, and a major focus in the field has been to define the functional relationships between individual GEFs and GAPs and their substrates at the cellular level. Over the years, a variety of methods have been developed to measure GTPase activation in vitro and in vivo. In vitro analysis will be discussed in the accompanying article by Randazzo and colleagues. Here we will focus on cell- and tissue-based assays and their advantages/disadvantages relative to cell-free systems.
Collapse
Affiliation(s)
- James E Casanova
- Department of Cell Biology; University of Virginia Health System; Charlottesville, VA USA
| |
Collapse
|
15
|
Joseph N, Hutterer A, Poser I, Mishima M. ARF6 GTPase protects the post-mitotic midbody from 14-3-3-mediated disintegration. EMBO J 2012; 31:2604-14. [PMID: 22580824 PMCID: PMC3365424 DOI: 10.1038/emboj.2012.139] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/18/2012] [Indexed: 11/09/2022] Open
Abstract
In cytokinesis, there is a lengthy interval between cleavage furrow ingression and abscission, during which the midbody microtubule bundle provides both structural support for a narrow intercellular bridge and a platform that orchestrates the biochemical preparations for abscission. It is currently unclear how the midbody structure is stably maintained during this period. Here, we report a novel role for the ADP-ribosylation factor 6 (ARF6) GTPase in the post-mitotic stabilisation of midbody. Centralspindlin kinesin-6/RhoGAP complex, a midbody component critical for both the formation and function of the midbody, assembles in a sharp band at the centre of the structure in a manner antagonised by 14-3-3 protein. We show that ARF6 competes with 14-3-3 for binding to centralspindlin such that midbodies formed by centralspindlin mutants that can bind 14-3-3 but not ARF6 frequently collapse before abscission. These data indicate a novel mechanism for the regulation of midbody dynamics in which ARF6 protects the compacted centralspindlin assembly from dissipation by 14-3-3.
Collapse
Affiliation(s)
- Nimesh Joseph
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
16
|
CNK3 and IPCEF1 produce a single protein that is required for HGF dependent Arf6 activation and migration. Exp Cell Res 2012; 318:228-37. [DOI: 10.1016/j.yexcr.2011.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/13/2011] [Accepted: 10/31/2011] [Indexed: 11/20/2022]
|
17
|
Montagnac G, de Forges H, Smythe E, Gueudry C, Romao M, Salamero J, Chavrier P. Decoupling of activation and effector binding underlies ARF6 priming of fast endocytic recycling. Curr Biol 2011; 21:574-9. [PMID: 21439824 DOI: 10.1016/j.cub.2011.02.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/07/2011] [Accepted: 02/23/2011] [Indexed: 11/18/2022]
Abstract
The small GTP-binding protein ADP-ribosylation factor 6 (ARF6) controls the endocytic recycling pathway of several plasma membrane receptors. We analyzed the localization and GDP/GTP cycle of GFP-tagged ARF6 by total internal reflection fluorescent microscopy. We found that ARF6-GFP associates with clathrin-coated pits (CCPs) at the plasma membrane in a GTP-dependent manner in a mechanism requiring the adaptor protein complex AP-2. In CCP, GTP-ARF6 mediates the recruitment of the ARF-binding domain of downstream effectors including JNK-interacting proteins 3 and 4 (JIP3 and JIP4) after the burst recruitment of the clathrin uncoating component auxilin. ARF6 does not contribute to receptor-mediated clathrin-dependent endocytosis. In contrast, we found that interaction of ARF6 and JIPs on endocytic vesicles is required for trafficking of the transferrin receptor in the fast, microtubule-dependent endocytic recycling pathway. Our findings unravel a novel mechanism of separation of ARF6 activation and effector function, ensuring that fast recycling may be determined at the level of receptor incorporation into CCPs.
Collapse
Affiliation(s)
- Guillaume Montagnac
- Centre de Recherche, Institut Curie, CNRS, UMR 144, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Bill A, Blockus H, Stumpfe D, Bajorath J, Schmitz A, Famulok M. A homogeneous fluorescence resonance energy transfer system for monitoring the activation of a protein switch in real time. J Am Chem Soc 2011; 133:8372-9. [PMID: 21517092 DOI: 10.1021/ja202513s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A homogeneous fluorescence resonance energy transfer (FRET) system for the real-time monitoring of exchange factor-catalyzed activation of a ras-like small GTPase is described. The underlying design is based on supramolecular template effects exerted by protein-protein interactions between the GTPase adenosine diphosphate ribosylation factor (ARF) and its effector protein GGA3. The GTPase is activated when bound to guanosine triphosphate (GTP) and switched off in its guanosine diphosphate (GDP)-bound state. Both states are accompanied by severe conformational changes that are recognized by GGA3, which only binds the GTPase "on" state. GDP-to-GTP exchange, i.e., GTPase activation, is catalyzed by the guanine nucleotide exchange factor cytohesin-2. When GGA3 and the GTPase ARF1 are labeled with thoroughly selected FRET probes, with simultaneous recording of the fluorescence of an internal tryptophan residue in ARF1, the conformational changes during the activation of the GTPase can be monitored in real time. We applied the FRET system to a multiplex format that allows the simultaneous identification and distinction of small-molecule inhibitors that interfere with the cytohesin-catalyzed ARF1 activation and/or with the interaction between activated ARF1-GTP and GGA3. By screening a library of potential cytohesin inhibitors, predicted by in silico modeling, we identified new inhibitors for the cytohesin-catalyzed GDP/GTP exchange on ARF1 and verified their increased potency in a cell proliferation assay.
Collapse
Affiliation(s)
- Anke Bill
- LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Cho HJ, Oh YJ, Kwon J, Kwon JY, Kim KS, Kim H. c-Myc stimulates cell invasion by inhibiting FBX8 function. Mol Cells 2010; 30:355-62. [PMID: 20848231 DOI: 10.1007/s10059-010-0134-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/02/2010] [Accepted: 08/12/2010] [Indexed: 12/16/2022] Open
Abstract
c-Myc is a cellular onco-protein and a transcriptional activator important for cell growth, cell division, and tumorigenesis. Despite all that is known of its function, the mechanism of how c-Myc contributes to tumorigenesis is unclear. To gain insight into the mechanism through which c-Myc protein exerts its oncogenic activity, we performed large-scale, tandem repeat affinity purification and identified the F box only protein 8 (FBX8), an F-box- and Sec7 domain-containing protein, as a novel Myc-binding protein. The c-Myc/FBX8 interaction was mediated by the c-Myc box II (MBII) region. We also confirmed that Myc protein overexpression in 293T cells affected FBX8 cellular translocation and led to recovery from FBX8-mediated inhibition of ADP-ribosylation factor 6 (ARF6) function during cell invasion. Together, these results suggest that FBX8 is a novel c-Myc binding protein and that c-Myc induces cell invasive activity through the inhibition of FBX8 effects on ARF6 function during cell invasion.
Collapse
Affiliation(s)
- Hyun Jung Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Yu JA, Deakin NO, Turner CE. Emerging role of paxillin-PKL in regulation of cell adhesion, polarity and migration. Cell Adh Migr 2010; 4:342-7. [PMID: 20372092 DOI: 10.4161/cam.4.3.11406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion and motility is of fundamental importance during development, normal physiology and pathologic conditions such as tumor metastasis. Focal adhesion proteins and their dynamic interactions play a critical role in the regulation of directed cell migration upon exposure to extracellular guidance cues. Using a combination of pharmacological inhibitors, knockout and knockdown cells and mutant protein expression, we recently reported that following adhesion and growth factor stimulation the dynamic interaction between paxillin and PKL(GIT2) is regulated by Src/FAK-dependent phosphorylation of PKL and that this interaction is necessary for the coordination of Rho family GTPase signaling controlling front-rear cell polarity and thus directional migration. Herein, we discuss the implications of these observations.
Collapse
Affiliation(s)
- Jianxin A Yu
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | | | | |
Collapse
|
21
|
Jian X, Cavenagh M, Gruschus JM, Randazzo PA, Kahn RA. Modifications to the C-terminus of Arf1 alter cell functions and protein interactions. Traffic 2010; 11:732-42. [PMID: 20214751 DOI: 10.1111/j.1600-0854.2010.01054.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arf family proteins are approximately 21-kDa GTP-binding proteins that are critical regulators of membrane traffic and the actin cytoskeleton. Studies examining the complex signaling pathways underlying Arf action have relied on recombinant proteins comprised of Arf fused to epitope tags or proteins, such as glutathione S-transferase or green fluorescent protein, for both cell-based mammalian cell studies and bacterially expressed recombinant proteins for biochemical assays. However, the effects of such protein fusions on the biochemical properties relevant to the cellular function have been only incompletely studied at best. Here, we have characterized the effect of C-terminal tagging of Arf1 on (i) function in Saccharomyces cerevisiae, (ii) in vitro nucleotide exchange and (iii) interaction with guanine nucleotide exchange factors and GTPase-activating proteins. We found that the tagged Arfs were substantially impaired or altered in each assay, compared with the wild-type protein, and these changes are certain to alter actions in cells. We discuss the results related to the interpretation of experiments using these reagents and we propose that authors and editors consistently adopt a few simple rules for describing and discussing results obtained with Arf family members that can be readily applied to other proteins.
Collapse
Affiliation(s)
- Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bldg 37 Room 2042, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
22
|
White DT, McShea KM, Attar MA, Santy LC. GRASP and IPCEF promote ARF-to-Rac signaling and cell migration by coordinating the association of ARNO/cytohesin 2 with Dock180. Mol Biol Cell 2009; 21:562-71. [PMID: 20016009 PMCID: PMC2820421 DOI: 10.1091/mbc.e09-03-0217] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ARF-GEF ARNO promotes motility by activating ARF6 and a subsequent downstream activation of Rac. ARNO is shown to associate with the Rac GEF Dock180 via its coiled-coil domain. Knockdown of scaffold proteins that bind ARNO disrupts the formation of this complex and disrupts ARF-to-Rac signaling. ARFs are small GTPases that regulate vesicular trafficking, cell shape, and movement. ARFs are subject to extensive regulation by a large number of accessory proteins. The many different accessory proteins are likely specialized to regulate ARF signaling during particular processes. ARNO/cytohesin 2 is an ARF-activating protein that promotes cell migration and cell shape changes. We report here that protein–protein interactions mediated by the coiled-coil domain of ARNO are required for ARNO induced motility. ARNO lacking the coiled-coil domain does not promote migration and does not induce ARF-dependent Rac activation. We find that the coiled-coil domain promotes the assembly of a multiprotein complex containing both ARNO and the Rac-activating protein Dock180. Knockdown of either GRASP/Tamalin or IPCEF, two proteins known to bind to the coiled-coil of ARNO, prevents the association of ARNO and Dock180 and prevents ARNO-induced Rac activation. These data suggest that scaffold proteins can regulate ARF dependent processes by biasing ARF signaling toward particular outputs.
Collapse
Affiliation(s)
- David T White
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
23
|
Sabouri-Ghomi M, Wu Y, Hahn K, Danuser G. Visualizing and quantifying adhesive signals. Curr Opin Cell Biol 2008; 20:541-50. [PMID: 18586481 PMCID: PMC2661108 DOI: 10.1016/j.ceb.2008.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 12/17/2022]
Abstract
Understanding the structural adaptation and signaling of adhesion sites in response to mechanical stimuli requires in situ characterization of the dynamic activation of a large number of adhesion components. Here, we review high-resolution live cell imaging approaches to measure forces, assembly, and interaction of adhesion components, and the activation of adhesion-mediated signals. We conclude by outlining computational multiplexing as a framework for the integration of these data into comprehensive models of adhesion signaling pathways.
Collapse
Affiliation(s)
- Mohsen Sabouri-Ghomi
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Yi Wu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Klaus Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Gaudenz Danuser
- Department of Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|