1
|
Kanthappa B, Manjunatha JG, Aldossari SA, Raril C. Electrochemical determination of uric acid in the presence of dopamine and riboflavin using a poly(resorcinol)-modified carbon nanotube sensor. Sci Rep 2025; 15:5822. [PMID: 39962184 PMCID: PMC11832758 DOI: 10.1038/s41598-025-90235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
In this study, an electrochemical sensor based on a poly(resorcinol) modified carbon nanotube paste electrode (P(RS)/MCNTPE) was successfully developed for the sensitive and selective detection of uric acid (UA) in the presence of dopamine (DA) and riboflavin (RFN). The sensor shows excellent performance in a 0.2 M phosphate buffer solution (PBS) at pH 7.0 with a scan rate 0.1 V/s. Various electrochemical methods were studied including cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Morphological analysis using scanning electron microscopy (SEM) conformed the enhanced surface properties of the bare carbon nanotubes paste electrode (BCNTPE) and the P(RS)/MCNTPE. The effect of pH, scan rate changes 0.025 to 0.25 V/s, revealed that the oxidation of UA follows an adsorption-controlled process. For UA concentration changes from 20 µM and 380 µM, sensor exhibited a limit of detection (LOD) of 0.18 µM and a limit of quantification (LOQ) of 0.61 µM. Optimal UA response was observed at pH 7.0. The sensor shows good stability, repeatability, and reproducibility. Its analytical applicability was successfully validated in real sample analysis.
Collapse
Affiliation(s)
- B Kanthappa
- Department of Chemistry FMKMC College, Constituent College of Mangalore University, Madikeri, 571201, Karnataka, India
| | - J G Manjunatha
- Department of Chemistry FMKMC College, Constituent College of Mangalore University, Madikeri, 571201, Karnataka, India.
| | - Samar A Aldossari
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - C Raril
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Nagaraj K, Thangamuniyandi P, Velmurugan G, Alotaibi KM, Raja K, Sharma BK. Green Synthesis of Eosin-Y Coated Silver Nanoparticles for Sensitive and Selective Fluorometric Detection of L-Dopa. J Fluoresc 2025:10.1007/s10895-024-04116-7. [PMID: 39812755 DOI: 10.1007/s10895-024-04116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs. The crystalline, spherical nanoparticles, prepared as described, exhibit a particle size of 20 nm. Different instruments were used to characterize them, including UV-Vis spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, selected area electron diffraction (SAED), transmission electron microscopy (TEM), and X-ray diffraction (XRD) analysis. The spherical structured morphology and size of the EY-AgNPs has been confirmed through SAED and TEM studies. This study pioneered the integration of characteristic hydroxyl-Ag chemistry and specialized steric interference of organic pigment in luminescent AgNPs to develop a simple method for detecting dopa. The sensor's dynamic range and limit of detection were assessed. Experimental results revealed that green-emitting AgNPs shielded by interference from biogenic AgNPs and the strong affinity of hydroxyl-silver provided a high-sensitivity detection limit of 1.84 nM. Furthermore, a new green approach for sensor development using human serum albumin (HSA) assay demonstrated that organic dye on the surface of nanomaterials further enhances sensing properties.
Collapse
Affiliation(s)
- Karuppiah Nagaraj
- Center for Global Health Research (CGHR), Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai, Tamilnadu, 602105, India.
| | - P Thangamuniyandi
- School of Chemistry, Bharathidasan University, Tiruchirapalli, Tamilnadu, India
| | - Gunasekaran Velmurugan
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 275, 69120, Heidelberg, Germany
| | - Khalid M Alotaibi
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11541, Saudi Arabia
| | - K Raja
- Department of Chemistry, St. Joseph University, Chumoukedima, Nagaland, 797115, India
| | - Bhuwanesh K Sharma
- Department of Plastics and Polymer Engineering, School of Engineering, Plastindia International University, Vapi-396193, Gujarat, India
| |
Collapse
|
3
|
Bai CC, Lang JY, Wang XY, Zhao JM, Dong LY, Liu JJ, Wang XH. Fabrication of natural enzyme-covered / amino-modified Pd-Pt bimetallic-doped zeolitic imidazolate framework for ultrasensitive detection of metabolites. ANAL SCI 2025; 41:23-34. [PMID: 39363137 DOI: 10.1007/s44211-024-00670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024]
Abstract
The present article introduced an natural enzyme-covered/amino-modified Pd-Pt bimetallic-doped zeolitic imidazolate framework (NAPPZ) for ultrasensitive and specific detection of glucose. The dodecahedral nanomaterial zeolitic imidazolate framework (ZIF-8)-loaded Pd-Pt bimetallic nanoparticles endowed the composite with peroxidase-like activity. The modification with glucose oxidase (GOx) facilitated the rapid access of H2O2 produced through glucose oxidation to the Pd-Pt nanoparticles vicinity reducing diffusion. GOx specifically catalyzes the transformation of glucose into H2O2, which then H2O2 rapidly migrates to the Pd-Pt nanoparticles, catalyzing the oxidation of colorless o-phenylenediamine into the orange-yellow product 2,3-diaminophenazine. Based on the aforementioned cascade reaction, the NAPPZ and NAPPZ based on ChOx were utilized for detecting glucose in human urine samples and cholesterol in milk, respectively. The NAPPZ strategy presented a broad detection range (20-1100 μmol L-1) and a low detection limit (15.9 μmol L-1) for glucose, and the NAPPZ based on ChOx strategy approach offered a broad detection range (10-500 μmol L-1) and low detection limit (6.4 μmol L-1) for cholesterol. Therefore, this novel method holds significant potential in the areas of clinical diagnostics and food safety.
Collapse
Affiliation(s)
- Chen-Chen Bai
- Pharmacy Department of Tianjin Baodi Hospital, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Jin-Ye Lang
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Xin-Yu Wang
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Jia-Meng Zhao
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Jun-Jie Liu
- Pharmacy Department of Tianjin Baodi Hospital, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Building B for School of Pharmacy, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
| |
Collapse
|
4
|
Samanta S, Paul P, Mahapatra C, Chatterjee A, Mondal B, Roy UK, Majumdar T, Mallick A. Supramolecular-platform-assisted selective recognition of uric acid with high sensitivity via microenvironment modulation of a self-assembled probe. J Mater Chem B 2024; 12:9545-9549. [PMID: 39315664 DOI: 10.1039/d4tb01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This report demonstrates a unique route for translating a non-responsive fluorophore into a responsive one to optically recognize uric acid (UA) in physiological-mimicking conditions. The explicit 'turn ON-turn OFF' fluorescence switching upon sequential disaggregation-reaggregation of the self-aggregated 3,3'-bisindolyl(phenyl)methane molecules materializes a straightforward, trouble-free supramolecular UA sensing platform.
Collapse
Affiliation(s)
- Saikat Samanta
- Department of Chemistry, University of Kalyani, Nadia, West Bengal-741235, India.
| | - Provakar Paul
- Department of Chemistry, University of Kalyani, Nadia, West Bengal-741235, India.
| | - Chinmoy Mahapatra
- Department of Chemistry, Kazi Nazrul University, West Bengal-713340, Asansol, India.
| | - Arunavo Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal-741246, India
| | - Bibhas Mondal
- Department of Chemistry, Kazi Nazrul University, West Bengal-713340, Asansol, India.
| | - Ujjal Kanti Roy
- Department of Chemistry, Kazi Nazrul University, West Bengal-713340, Asansol, India.
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal-741235, India.
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, West Bengal-713340, Asansol, India.
| |
Collapse
|
5
|
Wahyuni WT, Hasnawati Ta'alia SA, Akbar AY, Elvira BR, Irkham, Rahmawati I, Wahyuono RA, Putra BR. Electrochemical sensors based on the composite of reduced graphene oxide and a multiwalled carbon nanotube-modified glassy carbon electrode for simultaneous detection of hydroquinone, dopamine, and uric acid. RSC Adv 2024; 14:27999-28016. [PMID: 39228754 PMCID: PMC11369672 DOI: 10.1039/d4ra05537c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Using a simple drop-casting technique, we successfully fabricated a sensitive electrochemical sensor based on the composite of reduced graphene oxide (RGO) and multiwalled carbon nanotubes (MWCNT) deposited on the surface of a glassy carbon electrode (GCE) for individual and simultaneous measurements of hydroquinone (HQ), dopamine (DA), and uric acid (UA). The nanocomposite of RGO/MWCNT was further characterized in terms of its structural properties, surface morphology, and topography using Raman, FT-IR spectroscopy, SEM, HRTEM, and AFM. Then, the proposed sensor for simultaneous measurement of HQ, DA, and UA based on RGO/MWCNT-modified GCE was investigated for its electrochemical behavior and electroanalytical performances using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). In addition, the composition ratio between RGO and MWCT was 1 : 1 showing the highest electrochemical response for simultaneous detection of HQ, DA, and UA. Owing to the synergistic effect between RGO and MWCNT leading to excellent conductivity properties, the proposed sensor exhibited improved electrochemical response at pH 7 toward the oxidation processes of HQ, DA, and UA on the surface of modified electrode. The proposed sensor demonstrated three well-defined anodic peaks of these analytes with their linear concentrations ranges of 3.0-150.0 μM for HQ, 4.0-100.0 μM for DA, and 2.0-70.0 μM for UA. The limit of detection values for the simultaneous detection of HQ, DA, and UA were found as follows 0.400 ± 0.014, 0.500 ± 0.006, and 0.300 ± 0.016 μM, respectively. The additional features of this proposed sensor are high reproducibility and stability for the simultaneous detection of HQ, DA, and UA with negligible interference effect from interferents such as Mg2+, K+, Cl-, ascorbic acid, and glucose. An acceptable percentage of recovery was also shown by this sensor for simultaneous measurements of HQ, DA, and UA using 6 samples of human urine. In summary, the RGO/MWCNT nanocomposite has been shown to be a promising platform for rapid, simple, and reliable determination of simultaneous measurements of HQ, DA, and UA in practical applications.
Collapse
Affiliation(s)
- Wulan Tri Wahyuni
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences Kampus IPB Dramaga Bogor 16680 Indonesia
- Tropical Biopharmaca Research Center, IPB University Bogor 16680 Indonesia
| | - Shafa Aini Hasnawati Ta'alia
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences Kampus IPB Dramaga Bogor 16680 Indonesia
| | - Ari Yustisia Akbar
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN) PUSPIPTEK Gd. 470 South Tangerang Banten 15315 Indonesia
| | - Bunga Rani Elvira
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN) PUSPIPTEK Gd. 470 South Tangerang Banten 15315 Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Padjajaran Bandung 45363 Indonesia
| | - Isnaini Rahmawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia Depok 16424 Indonesia
| | - Ruri Agung Wahyuono
- Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember Jl. Arif Rahman Hakim, Kampus ITS Keputih-Sukolilo Surabaya 60111 Indonesia
| | - Budi Riza Putra
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN) PUSPIPTEK Gd. 470 South Tangerang Banten 15315 Indonesia
| |
Collapse
|
6
|
Bai Y, Fan X, Chen G, Zhao Z. Efficient and fast detection of uric acid based on a colorimetric sensing method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5896-5901. [PMID: 39157953 DOI: 10.1039/d4ay01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The uric acid (UA) level is an important physiological indicator of the human body, and its abnormality can lead to a series of diseases. Therefore, the immediate detection of uric acid concentration has broad application prospects. Commonly used methods for the analysis of uric acid include chromatography, high-performance capillary electrophoresis and electrochemical methods. However, these methods have the disadvantages of cumbersome sample pre-treatment, high cost, time-consuming, and the need for experimental instruments and professional operators, which are extremely unfavorable for the detection of uric acid and the diagnosis of related diseases in resource-limited areas. In this study, a portable visualization method was developed for the detection of uric acid using hydrogen peroxide (H2O2) test strips. Uric acid enzyme specifically catalyzes the oxidation of uric acid to produce H2O2, which causes a significant change in the color of the H2O2 test strip. The response has good linearity in the range of 1 ∼ 50 μg mL-1. Thus, it provides a simple, rapid, and cost-effective visualized bioassay for uric acid.
Collapse
Affiliation(s)
- Yunfeng Bai
- Traditional Chinese Medicine Hospital of Yinchuan, China
| | - Xiaoxuan Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhilong Zhao
- Traditional Chinese Medicine Hospital of Yinchuan, China
| |
Collapse
|
7
|
Stoikov D, Ivanov A, Shafigullina I, Gavrikova M, Padnya P, Shiabiev I, Stoikov I, Evtugyn G. Flow-Through Amperometric Biosensor System Based on Functionalized Aryl Derivative of Phenothiazine and PAMAM-Calix-Dendrimers for the Determination of Uric Acid. BIOSENSORS 2024; 14:120. [PMID: 38534227 DOI: 10.3390/bios14030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
A flow-through biosensor system for the determination of uric acid was developed on the platform of flow-through electrochemical cell manufactured by 3D printing from poly(lactic acid) and equipped with a modified screen-printed graphite electrode (SPE). Uricase was immobilized to the inner surface of a replaceable reactor chamber. Its working volume was reduced to 10 μL against a previously reported similar cell. SPE was modified independently of the enzyme reactor with carbon black, pillar[5]arene, poly(amidoamine) dendrimers based on the p-tert-butylthiacalix[4]arene (PAMAM-calix-dendrimers) platform and electropolymerized 3,7-bis(4-aminophenylamino) phenothiazin-5-ium chloride. Introduction of the PAMAM-calix-dendrimers into the electrode coating led to a fivefold increase in the redox currents of the electroactive polymer. It was found that higher generations of the PAMAM-calix-dendrimers led to a greater increase in the currents measured. Coatings consisted of products of the electropolymerization of the phenothiazine with implemented pillar[5]arene and PAMAM-calix-dendrimers showing high efficiency in the electrochemical reduction of hydrogen peroxide that was formed in the enzymatic oxidation of uric acid. The presence of PAMAM-calix-dendrimer G2 in the coating increased the redox signal related to the uric acid assay by more than 1.5 times. The biosensor system was successfully applied for the enzymatic determination of uric acid in chronoamperometric mode. The following optimal parameters for the chronoamperometric determination of uric acid in flow-through conditions were established: pH 8.0, flow rate 0.2 mL·min-1, 5 U of uricase per reactor. Under these conditions, the biosensor system made it possible to determine from 10 nM to 20 μM of uric acid with the limit of detection (LOD) of 4 nM. Glucose (up to 1 mM), dopamine (up to 0.5 mM), and ascorbic acid (up to 50 μM) did not affect the signal of the biosensor toward uric acid. The biosensor was tested on spiked artificial urine samples, and showed 101% recovery for tenfold diluted samples. The ease of assembly of the flow cell and the low cost of the replacement parts make for a promising future application of the biosensor system in routine clinical analyses.
Collapse
Affiliation(s)
- Dmitry Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Alexey Ivanov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Insiya Shafigullina
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Milena Gavrikova
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Pavel Padnya
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Igor Shiabiev
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Ivan Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Gennady Evtugyn
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
8
|
Wang TP, Cheng TK, Chen PY, Lee CL. Sonoelectrochemical exfoliation of defective black phosphorus nanosheet with black phosphorus quantum dots as a uric acid sensor. ULTRASONICS SONOCHEMISTRY 2024; 104:106814. [PMID: 38382394 PMCID: PMC10900925 DOI: 10.1016/j.ultsonch.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
To maintain human health, the development of rapid uric acid (UA) sensing is crucial. In this study, defective black phosphorus nanosheets with black phosphorus quantum dots (dBPN/BPQDs) were successfully and rapidly prepared by sonoelectrochemical exfoliation. In this process, the intercalation of phosphate ions into the black phosphorus working electrode was improved by coupling ultrasonic radiation with a high intercalating potential (8 V vs. Ag/AgCl/3M). The dBPN/BPQDs with various vacancies (5-9 defects, 5-7-7-5 defects, and 5-8-5 defect vacancies) exhibited a remarkable mass activity (jm, 1.22 × 10-3 mA μg-1) for uric acid oxidation, which was 5.92 times greater than that of reduced graphene oxide (rGO) (2.06 × 10-4 mA μg-1). In addition, the sensitivity of the dBPN/BPQD UA sensor was 474.2 μA mM-1 cm-2 in the linear analysis range of 0.1-1.3 mM. The sensitivity of the sensor was apparently higher than 67.7 μA mM-1cm-2 for rGO. The data from real sample experiments using serum showed that the dBPN/BPQD catalyst had high recoveries (97.3 %-100.2 %) and low related standard deviation (0.44 %-1.52 %). The dBPN/BPQDs exhibited the potential as an amperometric sensor to detect UA without needing enzymes.
Collapse
Affiliation(s)
- Tzu-Pei Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Tain-Kei Cheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Po-Yu Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Liang Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan.
| |
Collapse
|
9
|
Turan K, Üğe A, Zeybek B, Aydoğdu Tiğ G. Development of a facile electrochemical sensor based on GCE modified with one-step prepared PNMA-CeO 2-fMWCNTs composite for simultaneous detection of UA and 5-FU. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:40-50. [PMID: 38054482 DOI: 10.1039/d3ay02099a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this study, a poly(N-methyl aniline)-cerium oxide-functionalized MWCNTs (PNMA-CeO2-fMWCNTs) composite was synthesized in a one-step preparation technique. As a highly efficient modifier, the composite was used to modify the glassy carbon electrode surface for simultaneous detection of uric acid (UA) and 5-fluorouracil (5-FU). Morphological characterization of the GCE/PNMA-CeO2-fMWCNTs was studied using scanning electron microscopy. Structural characterization of the composite was performed using X-ray diffraction and Fourier-transformed infrared spectroscopy. Electron transfer properties of the prepared electrodes were carried out with electrochemical impedance spectroscopy and cyclic voltammetry. The linear working range for UA and 5-FU was found to be 0.25-50 μM and 0.5-750 μM, respectively. The limit of detection values for UA and 5-FU were 0.04 μM and 0.19 μM, respectively. The effects of various interfering substances on the electrochemical response of UA and 5-FU were investigated. The GCE/PNMA-CeO2-fMWCNTs sensor has excellent stability, reproducibility, anti-interference ability, and reproducibility. To demonstrate the practical application of the sensing platform, fetal bovine serum was selected and tested in the spiked samples, and satisfactory results were obtained. The prepared composite proved to be a promising platform for simple, rapid, and simultaneous analysis of UA and 5-FU.
Collapse
Affiliation(s)
- Kübra Turan
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| | - Ahmet Üğe
- Kütahya Dumlupınar University, Faculty of Science and Arts, Department of Chemistry, Kütahya, 43100, Turkey
| | - Bülent Zeybek
- Kütahya Dumlupınar University, Faculty of Science and Arts, Department of Chemistry, Kütahya, 43100, Turkey
| | - Gözde Aydoğdu Tiğ
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| |
Collapse
|
10
|
Ma C, Jiang N, Sun X, Kong L, Liang T, Wei X, Wang P. Progress in optical sensors-based uric acid detection. Biosens Bioelectron 2023; 237:115495. [PMID: 37442030 DOI: 10.1016/j.bios.2023.115495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
The escalating number of patients affected by various diseases, such as gout, attributed to abnormal uric acid (UA) concentrations in body fluids, has underscored the need for rapid, efficient, highly sensitive, and stable UA detection methods and sensors. Optical sensors have garnered significant attention due to their simplicity, cost-effectiveness, and resistance to electromagnetic interference. Notably, research efforts have been directed towards UA on-site detection, enabling daily monitoring at home and facilitating rapid disease screening in the community. This review aims to systematically categorize and provide detailed descriptions of the notable achievements and emerging technologies in UA optical sensors over the past five years. The review highlights the advantages of each sensor while also identifying their limitations in on-site applications. Furthermore, recent progress in instrumentation and the application of UA on-site detection in body fluids is discussed, along with the existing challenges and prospects for future development. The review serves as an informative resource, offering technical insights and promising directions for future research in the design and application of on-site optical sensors for UA detection.
Collapse
Affiliation(s)
- Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Nan Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Liang
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou, 310000, China.
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
11
|
Ma C, Kong L, Sun X, Zhang Y, Wang X, Wei X, Wan H, Wang P. Enzyme-free and wide-range portable colorimetric sensing system for uric acid and hydrogen peroxide based on copper nanoparticles. Talanta 2023; 255:124196. [PMID: 36565527 DOI: 10.1016/j.talanta.2022.124196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Uric acid (UA) is the final product of purine metabolism. A high concentration of UA in body fluid may lead to kidney stones, gout, and some cardiovascular diseases. Therefore, the non-invasive daily monitoring of UA is of great significance for both hyperuricemia patients and fit people. However, most of the current detection methods for UA are enzyme-dependent which limits the application scenarios and lacks portable instruments for on-site detection, including optics and electrochemistry. In this work, an enzyme-free and wide-range colorimetric sensor for UA and H2O2 detection was developed based on a mercaptosuccinic acid (MSA)-modified Cu nanoparticles (CuNPs). Under the action of UA or H2O2, with the cleavage of MSAs on the CuNPs surface, small Cu particles are further aggregated into larger particles with a lightning violet color. With the employment of the multi-channel handheld automatic photometer (MHAP), the concentration of UA and H2O2 can be determined on-site according to the absorbance measurement by the photodiodes. The linear range of UA was 5 μM-4.5 mM with the limit of detection (LOD) of 3.7 μM, while the linear range of H2O2 was 5 mM-500 mM and 5 μM-5 mM with the LOD of 4.3 μM. This approach has been applied to the detection of UA in human urine, providing more possibilities for non-invasive home health monitoring, community medical diagnosis, and broader prospects of on-site disease detection.
Collapse
Affiliation(s)
- Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanchi Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
12
|
Wan M, Li YS, Luo YX, Li H, Gao XF. A new spectrophotometric method for uric acid detection based on copper doped mimic peroxidase. Anal Biochem 2023; 664:115045. [PMID: 36657510 DOI: 10.1016/j.ab.2023.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Cascade reactions catalyzed by natural uricase and mimic peroxidase (MPOD) have been applied for uric acid (UA) detection. However, the optimal catalytic activity of MPOD is mostly in acidic conditions (pH 2-5), mismatching the optimal catalytic alkaline environment of uricase. In this paper, using CuSO4 and urea as raw materials, a MPOD with high catalytic activity in alkaline environment was synthesized by hydrothermal method. Then, based on coupling reaction of uricase/UA/MPOD/guaiacol (GA) system, a novel spectrophotometric method was established to detect 5-60 μmol/L UA (limit of detection = 3.14 μmol/L (S/N = 3)) and accurately quantified serum UA (275.6 ± 39.9 μmol/L, n = 5) with 95-105% of standard addition recovery. The results were consistent with commercial UA kit (p > 0.05). The MPOD could replace natural POD to reduce the cost of UA detection due to simple preparation and cheap raw materials, and is expected to achieve the specific detection of some substances, like glucose and cholesterol, combined with glucose oxidase and cholesterol oxidase.
Collapse
Affiliation(s)
- Mingxia Wan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yong-Sheng Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Ya-Xiong Luo
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hailing Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiu-Feng Gao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Aafria S, Kumari P, Sharma S, Yadav S, Batra B, Rana J, Sharma M. Electrochemical biosensing of uric acid: A review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Moallem QA, Beitollahi H. Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Pang X, Yan R, Li L, Wang P, Zhang Y, Liu Y, Liu P, Dong W, Miao P, Mei Q. Non-doped and non-modified carbon dots with high quantum yield for the chemosensing of uric acid and living cell imaging. Anal Chim Acta 2022; 1199:339571. [DOI: 10.1016/j.aca.2022.339571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 01/13/2023]
|
16
|
Effect of graphite oxide and exfoliated graphite oxide as a modifier for the voltametric determination of dopamine in presence of uric acid and folic acid. Sci Rep 2021; 11:24040. [PMID: 34911963 PMCID: PMC8674362 DOI: 10.1038/s41598-021-01328-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022] Open
Abstract
In the present work, exfoliated graphite oxide (E-GO) was prepared by sonicating graphite oxide (GO) (prepared by modified Hummer's and Offemam methods). Prepared GO and E-GO were characterized using infrared absorption spectroscopy, X-ray diffraction, and scanning electron microscopy. The electrocatalytic properties of GO and E-GO towards detection of dopamine (DA), uric acid (UA), and folic acid (FA) were investigated using cyclic voltammetry and differential pulse voltammetry. Our results revealed that E-GO has a slighter advantage over the GO as an electrode modifier for detection DA, UA, and FA, which might be ascribed to the good conductivity of E-GO when compared to the GO.
Collapse
|
17
|
Borras E, Schrumpf L, Stephens N, Weimer BC, Davis CE, Schelegle ES. Novel LC-MS-TOF method to detect and quantify ascorbic and uric acid simultaneously in different biological matrices. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1168:122588. [PMID: 33690092 DOI: 10.1016/j.jchromb.2021.122588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/29/2022]
Abstract
Ascorbic acid (AA) and uric acid (UA) are known as two of the major antioxidants in biological fluids. We report a novel liquid chromatography-mass spectrometry with time-of-flight (LC-MS-TOF) method for the simultaneous quantification of ascorbic and uric acids using MPA, antioxidant solution and acetonitrile as a protein precipitating agent. Both compounds were separated from interferences using a reverse phase C18 column with water and acetonitrile gradient elution (both with formic acid) and identified and quantified by MS in the negative ESI mode. Isotope labeled internal standards were also added to ensure the accuracy of the measures. The method was validated for exhaled breath condensate (EBC), nasal lavage (NL) and plasma samples by assessing selectivity, linearity, accuracy and precision, recovery and matrix effect and stability. Sample volumes below 250 µL were used and linear ranges were determined between 1 - 25 and 1 - 40 µg/mL for ascorbic and uric acid, respectively, for plasma samples, and between 0.05 - 5 (AA) and 0.05 - 7.5 (UA) µg/mL for EBC and NL samples. The new method was successfully applied to real samples from subjects that provided each of the studied matrices. Results showed higher amounts determined in plasma samples, with similar profiles for AA and UA in EBC and NL but at much lower concentrations.
Collapse
Affiliation(s)
- Eva Borras
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, USA
| | - Leah Schrumpf
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Noelle Stephens
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, Veterinary Medicine School, University of California, Davis, Davis, CA, USA
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, USA; VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Edward S Schelegle
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
18
|
Mostafa IM, Halawa MI, Chen Y, Abdussalam A, Guan Y, Xu G. Silicotungstic acid as a highly efficient coreactant for luminol chemiluminescence for sensitive detection of uric acid. Analyst 2020; 145:2709-2715. [PMID: 32077455 DOI: 10.1039/c9an02600b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, we report luminol-silicotungstic acid (STA) chemiluminescence (CL) for the first time. The luminol-STA system resulted in remarkable CL enhancement (65 times) compared with the known classical luminol-H2O2 system because of the generation of the strong oxidizing agent tungsten trioxide from STA. Based on the quenching effect of uric acid, the new CL system is applied for the sensitive and selective assay of uric acid in its pure state (LOD 0.75 nM) and in real human urine with excellent recoveries in the range of 99.6-102.3%. Furthermore, this system permits the efficient detection of STA (LOD, 0.24 μM).
Collapse
Affiliation(s)
- Islam M Mostafa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | | | | | | | | | | |
Collapse
|
19
|
Alula MT, Lemmens P, Bo L, Wulferding D, Yang J, Spende H. Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Anal Chim Acta 2019; 1073:62-71. [DOI: 10.1016/j.aca.2019.04.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 12/14/2022]
|
20
|
Affiliation(s)
- Qiangwei Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xu Wen
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
21
|
Electrochemical Characterization of Iron (III) Doped Zeolite-Graphite Composite Modified Glassy Carbon Electrode and Its Application for AdsASSWV Determination of Uric Acid in Human Urine. Int J Anal Chem 2019; 2019:6428072. [PMID: 31186646 PMCID: PMC6521578 DOI: 10.1155/2019/6428072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
Iron (III) doped zeolite/graphite composite modified glassy carbon electrode was prepared for determination of uric acid in human urine samples. Electrochemical impedance spectroscopic and cyclic voltammetric results confirmed surface modification of the surface of glassy carbon electrodes. Appearance of oxidative peak current with an over threefold enhancement at significantly reduced overpotential for uric acid at the composite modified electrode relative to the unmodified and even graphite modified electrode confirmed the electrocatalytic property of the composite towards electrochemical oxidation of uric acid. Under optimized method and solution parameters, linear dependence of peak current on uric acid concentration in a wide range of 1-120 μM, low detection limit value (0.06 μM), replicate results with low RSD, and excellent recovery results (96.61-103.45%) validated the developed adsorptive anodic stripping square wave voltammetric (AdsASSWV) method for determination of uric acid even in aqueous human urine samples. Finally, the developed composite modified electrode was used for determination of uric acid content in human urine samples collected from three young male volunteers. While the uric acid level in the urine samples from two of the studied volunteers was within the normal range, of the third was under the normal range.
Collapse
|
22
|
Kaya SI, Kurbanoglu S, Ozkan SA. Nanomaterials-Based Nanosensors for the Simultaneous Electrochemical Determination of Biologically Important Compounds: Ascorbic Acid, Uric Acid, and Dopamine. Crit Rev Anal Chem 2018; 49:101-125. [DOI: 10.1080/10408347.2018.1489217] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
23
|
Lu Gan, Tao H, Kan X, Chen Q, Sheng K, Wu J. Phosphorus-Doped Carbon Nanocages for Simultaneous Detection of Dopamine and Uric Acid. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Sonication-assisted preparation of a nanocomposite consisting of reduced graphene oxide and CdSe quantum dots, and its application to simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Mikrochim Acta 2018; 185:456. [PMID: 30215154 DOI: 10.1007/s00604-018-2988-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
Cadmium selenide quantum dots were capped with reduced graphene oxide that was modified with thioglycolic acid. The nanocomposite was prepared by 5-min sonication of a solution of graphene oxide, thioglycolic acid, and cadmium(II) nitrate and selenium powder in the presence of NaBH4. X-ray diffraction and transmission electron microscopy were used to characterize the nanocomposite. A glassy carbon electrode (GCE) was modified with this nanocomposite and used for simultaneous determination of dopamine (DA), ascorbic acid (A) and uric acid (UA). The modified GCE was characterized by using cyclic voltammetry and differential pulse voltammetry. Simultaneous determination of AA, DA and UA was accomplished at working voltages of -50, +148 and + 280 mV (all vs. Ag/AgCl), respectively. The voltammetric response to DA is linear in the 4.9 to 74.0 μM concentration range, and the detection limit (defined as 3σ of the blank) is 0.11 μM. The respective data are 0.39-1.0 mM and 66 μM for AA, and 9.0 to 120.0 μM and 0.12 μM for UA. The electrode was successfully applied to the determination of the 3 species in spiked urine samples. Graphical abstract Graphical abstract contains poor quality of text in image. Otherwise, please provide replacement figure file.Thank you for your comment. New garaphical abstract was attached. A sonochemical method was applied for synthesizing reduced graphene oxide decorated thioglycolic acid capped cadmium selenide quantum dots. A modified glassy carbon electrode was prepared for simultaneous determination of ascorbic acid, dopamine and uric acid.
Collapse
|
25
|
Mallikarjuna K, Veera Manohara Reddy Y, Sravani B, Madhavi G, Kim H, Agarwal S, Gupta VK. Simple synthesis of biogenic Pd Ag bimetallic nanostructures for an ultra-sensitive electrochemical sensor for sensitive determination of uric acid. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co2+. Biosens Bioelectron 2018; 99:519-524. [DOI: 10.1016/j.bios.2017.08.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
|
27
|
Zhuang QQ, Lin ZH, Jiang YC, Deng HH, He SB, Su LT, Shi XQ, Chen W. Peroxidase-like activity of nanocrystalline cobalt selenide and its application for uric acid detection. Int J Nanomedicine 2017; 12:3295-3302. [PMID: 28458547 PMCID: PMC5404494 DOI: 10.2147/ijn.s128556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dendrite-like cobalt selenide nanostructures were synthesized from cobalt and selenium powder precursors by a solvothermal method in anhydrous ethylenediamine. The as-prepared nanocrystalline cobalt selenide was found to possess peroxidase-like activity that could catalyze the reaction of peroxidase substrates in the presence of H2O2. A spectrophotometric method for uric acid (UA) determination was developed based on the nanocrystalline cobalt selenide-catalyzed coupling reaction between N-ethyl-N-(3-sulfopropyl)-3-methylaniline sodium salt and 4-aminoantipyrine (4-AAP) in the presence of H2O2. Under optimum conditions, the absorbance was proportional to the concentration of UA over the range of 2.0-40 μM with a detection limit of 0.5 μM. The applicability of the proposed method has been validated by determination of UA in human serum samples with satisfactory results.
Collapse
Affiliation(s)
- Quan-Quan Zhuang
- Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou
| | - Zhi-Hang Lin
- Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou
| | - Yan-Cheng Jiang
- Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou
| | - Hao-Hua Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou
| | - Shao-Bin He
- Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou.,Department of Pharmacy, Quanzhou Infectious Disease Hospital
| | - Li-Ting Su
- Department of Pharmaceutical Analysis, Quanzhou Medical College, Quanzhou, People's Republic of China
| | - Xiao-Qiong Shi
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou
| | - Wei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou
| |
Collapse
|
28
|
Kul D, Öztürk G. Poly(Methyl Red) Modified Glassy Carbon Electrodes: Electrosynthesis, Characterization, and Sensor Behavior. ELECTROANAL 2017. [DOI: 10.1002/elan.201700043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Dilek Kul
- Karadeniz Technical University, Faculty of Pharmacy; Department of Analytical Chemistry; 61080 Trabzon Turkey
| | - Gökçe Öztürk
- Karadeniz Technical University, Faculty of Pharmacy; Department of Analytical Chemistry; 61080 Trabzon Turkey
| |
Collapse
|
29
|
Gong CB, Li ZY, Liu LT, Wei YB, Yang X, Chow CF, Tang Q. Photocontrolled extraction of uric acid from biological samples based on photoresponsive surface molecularly imprinted polymer microspheres. J Sep Sci 2017; 40:1396-1402. [DOI: 10.1002/jssc.201601243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality; College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Zai-yong Li
- The Key Laboratory of Applied Chemistry of Chongqing Municipality; College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Lan-tao Liu
- The Key Laboratory of Applied Chemistry of Chongqing Municipality; College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Yu-bu Wei
- The Key Laboratory of Applied Chemistry of Chongqing Municipality; College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Xia Yang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality; College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| | - Cheuk-fai Chow
- Department of Science and Environmental Studies; The Education University of Hong Kong; Tai Po Hong Kong SAR China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality; College of Chemistry and Chemical Engineering; Southwest University; Chongqing China
| |
Collapse
|
30
|
Li X, Bai Y, Feng F, Zhang Z. A rapid and high-throughput method for the determination of serum uric acid based on microarray technology and nanomaterial. LUMINESCENCE 2016; 32:730-734. [DOI: 10.1002/bio.3243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaohua Li
- School of Chemistry and Environmental Engineering; Shanxi Datong University; Datong Shanxi China
| | - Yunfeng Bai
- School of Chemistry and Environmental Engineering; Shanxi Datong University; Datong Shanxi China
| | - Feng Feng
- School of Chemistry and Environmental Engineering; Shanxi Datong University; Datong Shanxi China
| | - Zhujun Zhang
- School of Chemistry and Chemical Engineering; Shaanxi Normal University; China
| |
Collapse
|
31
|
A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid. JOURNAL OF SAUDI CHEMICAL SOCIETY 2016. [DOI: 10.1016/j.jscs.2013.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Tang Q, Li ZY, Wei YB, Yang X, Liu LT, Gong CB, Ma XB, Lam MHW, Chow CF. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:33-39. [PMID: 27207036 DOI: 10.1016/j.msec.2016.03.082] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/24/2016] [Accepted: 03/21/2016] [Indexed: 01/12/2023]
Abstract
A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22×10(-5)M in aqueous NaH2PO4 buffer at pH=7.0 and a maximal adsorption capacity of 1.45μmolg(-1). Upon alternate irradiation at 365 and 440nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid.
Collapse
Affiliation(s)
- Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong
| | - Zai-Yong Li
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu-Bo Wei
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xia Yang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lan-Tao Liu
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cheng-Bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Xue-Bing Ma
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Michael Hon-Wah Lam
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Cheuk-Fai Chow
- Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong.
| |
Collapse
|
33
|
Jin D, Seo MH, Huy BT, Pham QT, Conte ML, Thangadurai D, Lee YI. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens Bioelectron 2016; 77:359-65. [DOI: 10.1016/j.bios.2015.09.057] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/30/2022]
|
34
|
Hussain MM, Rahman MM, Asiri AM, Awual MR. Non-enzymatic simultaneous detection of l-glutamic acid and uric acid using mesoporous Co3O4 nanosheets. RSC Adv 2016. [DOI: 10.1039/c6ra12256f] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Co3O4 nanosheets were synthesized by wet chemical technique at low-temperature in alkaline phase.
Collapse
Affiliation(s)
| | - Mohammed M. Rahman
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Md. Rabiul Awual
- Actinide Chemistry Group
- Material Sciences and Research Centre
- Japan Atomic Energy Agency (SPring-8)
- Hyogo 679-5148
- Japan
| |
Collapse
|
35
|
Zhang X, Ma LX, Zhang YC. Electrodeposition of platinum nanosheets on C 60 decorated glassy carbon electrode as a stable electrochemical biosensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.202] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Ouyang X, Luo L, Ding Y, Liu B, Xu D, Huang A. Simultaneous determination of uric acid, dopamine and ascorbic acid based on poly(bromocresol green) modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Fanjul-Bolado P, Santos DH, Montoya VM, Costa-García A. Uric Acid Determination by Adsorptive Stripping Voltammetry on Multiwall Carbon Nanotubes Based Screen-Printed Electrodes. ELECTROANAL 2015. [DOI: 10.1002/elan.201400690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Lu J, Xiong Y, Liao C, Ye F. Colorimetric detection of uric acid in human urine and serum based on peroxidase mimetic activity of MIL-53(Fe). ANALYTICAL METHODS 2015; 7:9894-9899. [DOI: 10.1039/c5ay02240a] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The porous metal–organic framework MIL-53(Fe) was prepared using a simple solvothermal method, and was developed as a colorimetric sensor for the detection of uric acid in human urine and serum.
Collapse
Affiliation(s)
- Junyu Lu
- College of Chemistry and Biology Engineering
- Hechi University
- Yizhou 546300
- China
| | - Yuhao Xiong
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- China
| | - Chunjin Liao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- China
| | - Fanggui Ye
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China)
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- China
| |
Collapse
|
39
|
Arvand M, Anvari M. Graphene nanosheets as a sensing platform for amplified electrochemical measurement of quercetin and uric acid in biological fluids. CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple and selective electrochemical method was investigated for the simultaneous determination of quercetin (Qu) and uric acid (UA) in aqueous media (citrate buffer solution, pH 4.0) on a glassy carbon electrode modified with graphene nanosheets as a sensing platform (GNSs/GCE). Cyclic voltammetry, transmission electron microscopy, and Fourier transform infrared spectroscopy were employed to characterize the nanostructure of the sensor. Separation of the oxidation peak potentials for Qu and UA was about 160 mV, and the anodic currents for the oxidation of both Qu and UA are greatly increased at GNSs/GCE, which makes it suitable for simultaneous determination of these compounds. The detection limits were 0.0011 and 0.0137 μmol/L for Qu and UA, respectively. The method was applied to the determination of Qu and UA in human blood serum and urine samples.
Collapse
Affiliation(s)
- Majid Arvand
- Electroanalytical Chemistry Laboratory, Faculty of Science, University of Guilan, Namjoo Street, P.O. Box 1914, Rasht, Iran
| | - Mohsen Anvari
- Electroanalytical Chemistry Laboratory, Faculty of Science, University of Guilan, Namjoo Street, P.O. Box 1914, Rasht, Iran
| |
Collapse
|
40
|
Dielectrophoresis for bioparticle manipulation. Int J Mol Sci 2014; 15:18281-309. [PMID: 25310652 PMCID: PMC4227216 DOI: 10.3390/ijms151018281] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022] Open
Abstract
As an ideal method to manipulate biological particles, the dielectrophoresis (DEP) technique has been widely used in clinical diagnosis, disease treatment, drug development, immunoassays, cell sorting, etc. This review summarizes the research in the field of bioparticle manipulation based on DEP techniques. Firstly, the basic principle of DEP and its classical theories are introduced in brief; Secondly, a detailed introduction on the DEP technique used for bioparticle manipulation is presented, in which the applications are classified into five fields: capturing bioparticles to specific regions, focusing bioparticles in the sample, characterizing biomolecular interaction and detecting microorganism, pairing cells for electrofusion and separating different kinds of bioparticles; Thirdly, the effect of DEP on bioparticle viability is analyzed; Finally, the DEP techniques are summarized and future trends in bioparticle manipulation are suggested.
Collapse
|
41
|
Chauhan N, Kumar A, Pundir CS. Construction of an Uricase Nanoparticles Modified Au Electrode for Amperometric Determination of Uric Acid. Appl Biochem Biotechnol 2014; 174:1683-1694. [DOI: 10.1007/s12010-014-1097-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Shi M, Zhao S, Huang Y, Zhao L, Liu YM. Signal amplification in capillary electrophoresis based chemiluminescent immunoassays by using an antibody–gold nanoparticle–DNAzyme assembly. Talanta 2014; 124:14-20. [DOI: 10.1016/j.talanta.2014.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/09/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
|
43
|
Xiang LW, Li J, Lin JM, Li HF. Determination of gouty arthritis' biomarkers in human urine using reversed-phase high-performance liquid chromatography. J Pharm Anal 2013; 4:153-158. [PMID: 29403877 PMCID: PMC5761083 DOI: 10.1016/j.jpha.2013.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/30/2013] [Indexed: 11/18/2022] Open
Abstract
Creatinine, uric acid, hypoxanthine and xanthine are important diagnostic biomarkers in human urine for gouty arthritis or renal disease diacrisis. A simple method for simultaneous determination of these biomarkers in urine based on reversed-phase high-performance liquid chromatography (RP-HPLC) with ultraviolet (UV) detector was proposed. After pretreatment by dilution, centrifugation and filtration, the biomarkers in urine samples were separated by ODS-BP column by elution with methanol/50 mM NaH2PO4 buffer solution at pH 5.26 (5:95). Good linearity between peak areas and concentrations of standards was obtained for the biomarkers with correlation coefficients in the range of 0.9957–0.9993. The proposed analytical method has satisfactory repeatability (the recovery of data in a range of creatinine, uric acid, hypoxanthine and xanthine was 93.49–97.90%, 95.38–96.45%, 112.46–115.78% and 90.82–97.13% with standard deviation of <5%, respectively) and the limits of detection (LODs, S/N≥3) for creatinine, uric acid, hypoxanthine, and xanthine were 0.010, 0.025, 0.050 and 0.025 mg/L, respectively. The established method was proved to be simple, accurate, sensitive and reliable for the quantitation of gouty arthritis' biomarkers in human urine samples. The ratio of creatinine to uric acid was found to be a possible factor for assessment of gouty arthritis.
Collapse
Affiliation(s)
- Lei-Wen Xiang
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Institute of Food and Fermentation Industries, Fuqing Branch of Fujian Normal University, Fuqing 350300, China
| | - Jing Li
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai-Fang Li
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Corresponding author. Tel./fax: +86 10 62797463.
| |
Collapse
|
44
|
Zare HR, Ghanbari Z, Nasirizadeh N, Benvidi A. Simultaneous determination of adrenaline, uric acid, and cysteine using bifunctional electrocatalyst of ruthenium oxide nanoparticles. CR CHIM 2013. [DOI: 10.1016/j.crci.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Erden PE, Kılıç E. A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 2013; 107:312-23. [DOI: 10.1016/j.talanta.2013.01.043] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
|
46
|
Zare HR, Rahmani N, Nasirizadeh N, Benvidi A. A combination of nordihydroguaiaretic acid as an electron transfer mediator and multi-walled carbon nanotubes for simultaneous electrocatalytic determination of noradrenaline, uric acid, and tryptophan. Catal Sci Technol 2013. [DOI: 10.1039/c3cy20761g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Sidorova AA, Grigoriev AV. Determination of diagnostical markers of urolithiasis by capillary electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1134/s1061934812050115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Hou S, Yang C, Wang H, Tanaka K, Ding M. Determination of Uric Acid in Human Urine by Ion-exclusion Chromatography with UV Detection Using Pure Water as Mobile Phase. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201100724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Talik P, Krzek J, Ekiert RJ. Analytical Techniques Used for Determination of Methylxanthines and their Analogues—Recent Advances. SEPARATION AND PURIFICATION REVIEWS 2012. [DOI: 10.1080/15422119.2011.569047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.09.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|