1
|
Kharel Y, Huang T, Dunnavant K, Foster D, Souza GMPR, Nimchuk KE, Merchak AR, Pavelec CM, Juskiewicz ZJ, Alexander SS, Gaultier A, Abbott SBG, Shin JB, Isakson BE, Xu W, Leitinger N, Santos WL, Lynch KR. Assessment of Spinster homologue 2 (Spns2)-dependent transport of sphingosine-1-phosphate as a therapeutic target. Br J Pharmacol 2025; 182:2014-2030. [PMID: 39894457 PMCID: PMC12034028 DOI: 10.1111/bph.17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine-1-phosphate (S1P) receptor modulator (SRM) drugs suppress immune system function by disrupting lymphocyte trafficking, but SRMs are broadly immunosuppressive with on-target liabilities. Another strategy to modulate the immune system is to block S1P transport. This study tests the hypothesis that blockers of S1P transport (STBs) mediated by Spinster homologue 2 (Spns2) approximate the efficacy of SRMs without their adverse events. EXPERIMENTAL APPROACH We have discovered and optimized STBs to enable investigations of S1P biology and to determine whether S1P transport is a valid drug target. The STB SLF80821178 was administered to rodents to assess its efficacy in a multiple sclerosis model and to test for toxicities associated with SRMs or Spns2-deficient mice. Further, potential biomarkers of STBs, absolute lymphocyte counts (ALCs) in blood and S1P concentrations in plasma and lymph, were measured. KEY RESULTS SLF80821178 resembles SRMs in that it is efficacious in a standard multiple sclerosis model but does not evoke bradycardia or lung leakage, common to the SRM drug class. Also, chronic SLF80821178 administration does not affect auditory responses in adult mice despite the neurosensorial hearing defect observed in Spns2-null mice. While both SRM and STB administration decrease ALCs, the maximal effect is less with an STB (45% vs. 90%). STBs have minimal effects on S1P concentration in plasma or thoracic duct lymph. CONCLUSION AND IMPLICATIONS We found nothing to invalidate Spns2-dependent S1P transport as a drug target. Indeed, STBs could be superior to SRMs as a therapy to modulate immune system function.
Collapse
Affiliation(s)
- Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Kyle Dunnavant
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - Daniel Foster
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Katherine E Nimchuk
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Andrea R Merchak
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Caitlin M Pavelec
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Zuzanna J Juskiewicz
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia, USA
| | - Simon S Alexander
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Alban Gaultier
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia, USA
| | - Wehao Xu
- Department of Microbiology, Immunology and Cancer Biology and Genetically Engineered Murine Model Core, University of Virginia, Charlottesville, Virginia, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Prell A, Wigger D, Huwiler A, Schumacher F, Kleuser B. The sphingosine kinase 2 inhibitors ABC294640 and K145 elevate (dihydro)sphingosine 1-phosphate levels in various cells. J Lipid Res 2024; 65:100631. [PMID: 39182604 PMCID: PMC11465068 DOI: 10.1016/j.jlr.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Sphingosine kinases (SphKs), enzymes that produce the bioactive lipids dihydrosphingosine 1-phosphate (dhS1P) and sphingosine 1-phosphate (S1P), are associated with various diseases, including cancer and infections. For this reason, a number of SphK inhibitors have been developed. Although off-target effects have been described for selected agents, SphK inhibitors are mostly used in research without monitoring the effects on the sphingolipidome. We have now investigated the effects of seven commonly used SphK inhibitors (5c, ABC294640 (opaganib), N,N-dimethylsphingosine, K145, PF-543, SLM6031434, and SKI-II) on profiles of selected sphingolipids in Chang, HepG2, and human umbilical vein endothelial cells. While we observed the expected (dh)S1P reduction for N,N-dimethylsphingosine, PF-543, SKI-II, and SLM6031434, 5c showed hardly any effect. Remarkably, for K145 and ABC294640, both reported to be specific for SphK2, we observed dose-dependent strong increases in dhS1P and S1P across cell lines. Compensatory effects of SphK1 could be excluded, as this observation was also made in SphK1-deficient HK-2 cells. Furthermore, we observed effects on dihydroceramide desaturase activity for all inhibitors tested, as has been previously noted for ABC294640 and SKI-II. In additional mechanistic studies, we investigated the massive increase of dhS1P and S1P after short-term cell treatment with ABC294640 and K145 in more detail. We found that both compounds affect sphingolipid de novo synthesis, with 3-ketodihydrosphingosine reductase and dihydroceramide desaturase as their targets. Our study indicates that none of the seven SphK inhibitors tested was free of unexpected on-target and/or off-target effects. Therefore, it is important to monitor cellular sphingolipid profiles when SphK inhibitors are used in mechanistic studies.
Collapse
Affiliation(s)
- Agata Prell
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dominik Wigger
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, Bern, Switzerland
| | - Fabian Schumacher
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Kharel Y, Huang T, Dunnavant K, Foster D, Souza G, Nimchuk KE, Merchak AR, Pavelec CM, Juskiewicz ZJ, Gaultier A, Abbott S, Shin JB, Isakson BE, Xu W, Leitinger N, Santos WL, Lynch KR. Assessing Spns2-dependent S1P Transport as a Prospective Therapeutic Target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586765. [PMID: 38746194 PMCID: PMC11092524 DOI: 10.1101/2024.03.26.586765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
S1P (sphingosine 1-phosphate) receptor modulator (SRM) drugs interfere with lymphocyte trafficking by downregulating lymphocyte S1P receptors. While the immunosuppressive activity of SRM drugs has proved useful in treating autoimmune diseases such as multiple sclerosis, that drug class is beset by on-target liabilities such as initial dose bradycardia. The S1P that binds to cell surface lymphocyte S1P receptors is provided by S1P transporters. Mice born deficient in one of these, spinster homolog 2 (Spns2), are lymphocytopenic and have low lymph S1P concentrations. Such observations suggest that inhibition of Spns2-mediated S1P transport might provide another therapeutically beneficial method to modulate immune cell positioning. We report here results using a novel S1P transport blocker (STB), SLF80821178, to investigate the consequences of S1P transport inhibition in rodents. We found that SLF80821178 is efficacious in a multiple sclerosis model but - unlike the SRM fingolimod - neither decreases heart rate nor compromises lung endothelial barrier function. Notably, although Spns2 null mice have a sensorineural hearing defect, mice treated chronically with SLF80821178 have normal hearing acuity. STBs such as SLF80821178 evoke a dose-dependent decrease in peripheral blood lymphocyte counts, which affords a reliable pharmacodynamic marker of target engagement. However, the maximal reduction in circulating lymphocyte counts in response to SLF80821178 is substantially less than the response to SRMs such as fingolimod (50% vs. 90%) due to a lesser effect on T lymphocyte sub-populations by SLF80821178. Finally, in contrast to results obtained with Spns2 deficient mice, lymph S1P concentrations were not significantly changed in response to administration of STBs at doses that evoke maximal lymphopenia, which indicates that current understanding of the mechanism of action of S1P transport inhibitors is incomplete.
Collapse
|
4
|
Congdon M, Fritzemeier RG, Kharel Y, Brown AM, Serbulea V, Bevan DR, Lynch KR, Santos WL. Probing the substitution pattern of indole-based scaffold reveals potent and selective sphingosine kinase 2 inhibitors. Eur J Med Chem 2020; 212:113121. [PMID: 33445156 DOI: 10.1016/j.ejmech.2020.113121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023]
Abstract
Elevated levels of sphingosine 1-phosphate (S1P) and increased expression of sphingosine kinase isoforms (SphK1 and SphK2) have been implicated in a variety of disease states including cancer, inflammation, and autoimmunity. Consequently, the S1P signaling axis has become an attractive target for drug discovery. Selective inhibition of either SphK1 or SphK2 has been demonstrated to be effective in modulating S1P levels in animal models. While SphK1 inhibitors have received much attention, the development of potent and selective SphK2 inhibitors are emerging. Previously, our group reported a SphK2 naphthalene-based selective inhibitor, SLC5081308, which displays approximately 7-fold selectivity for hSphK2 over hSphK1 and has a SphK2 Ki value of 1.0 μM. To improve SphK2 potency and selectivity, we designed, synthesized, and evaluated a series of indole-based compounds derived from SLC5081308. After investigating substitution patterns around the indole ring, we discovered that 1,5-disubstitution promoted optimal binding in the SphK2 substrate binding site and subsequent inhibition of enzymatic activity. Our studies led to the identification of SLC5101465 (6r, SphK2 Ki = 90 nM, >110 fold selective for SphK2 over SphK1). Molecular modeling studies revealed key nonpolar interactions with Val308, Phe548, His556, and Cys533 and hydrogen bonds with both Asp211 and Asp308 as responsible for the high SphK2 inhibition and selectivity.
Collapse
Affiliation(s)
- Molly Congdon
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Russell G Fritzemeier
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - Anne M Brown
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Research and Informatics, University Libraries, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - David R Bevan
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
5
|
Li H, Sibley CD, Kharel Y, Huang T, Brown AM, Wonilowicz LG, Bevan DR, Lynch KR, Santos WL. Lipophilic tail modifications of 2-(hydroxymethyl)pyrrolidine scaffold reveal dual sphingosine kinase 1 and 2 inhibitors. Bioorg Med Chem 2020; 30:115941. [PMID: 33385956 DOI: 10.1016/j.bmc.2020.115941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023]
Abstract
The sphingosine 1-phosphate (S1P) signaling pathway is an attractive target for pharmacological manipulation due to its involvement in cancer progression and immune cell chemotaxis. The synthesis of S1P is catalyzed by the action of sphingosine kinase 1 or 2 (SphK1 or SphK2) on sphingosine and ATP. While potent and selective inhibitors of SphK1 or SphK2 have been reported, development of potent dual SphK1/SphK2 inhibitors are still needed. Towards this end, we report the structure-activity relationship profiling of 2-(hydroxymethyl)pyrrolidine-based inhibitors with 22d being the most potent dual SphK1/SphK2 inhibitor (SphK1 Ki = 0.679 μM, SphK2 Ki = 0.951 μM) reported in this series. 22d inhibited the growth of engineered Saccharomyces cerevisiae and decreased S1P levels in histiocytic lymphoma myeloid cell line (U937 cells), demonstrating inhibition of SphK1 and 2 in vitro. Molecular modeling studies of 22d docked inside the Sph binding pocket of both SphK1 and SphK2 indicate essential hydrogen bond between the 2-(hydroxymethyl)pyrrolidine head to interact with aspartic acid and serine residues near the ATP binding pocket, which provide the basis for dual inhibition. In addition, the dodecyl tail adopts a "J-shape" conformation found in crystal structure of sphingosine bound to SphK1. Collectively, these studies provide insight into the intermolecular interactions in the SphK1 and 2 active sites to achieve maximal dual inhibitory activity.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | | | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Tao Huang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Laura G Wonilowicz
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - David R Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States; Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
6
|
Couttas TA, Rustam YH, Song H, Qi Y, Teo JD, Chen J, Reid GE, Don AS. A Novel Function of Sphingosine Kinase 2 in the Metabolism of Sphinga-4,14-Diene Lipids. Metabolites 2020; 10:metabo10060236. [PMID: 32521763 PMCID: PMC7344861 DOI: 10.3390/metabo10060236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
The number, position, and configuration of double bonds in lipids affect membrane fluidity and the recruitment of signaling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Using high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), we observed a marked accumulation of lipids containing a di-unsaturated sphingadiene base in the hippocampus of mice lacking the metabolic enzyme sphingosine kinase 2 (SphK2). The double bonds were localized to positions C4–C5 and C14–C15 of sphingadiene using ultraviolet photodissociation-tandem mass spectrometry (UVPD-MS/MS). Phosphorylation of sphingoid bases by sphingosine kinase 1 (SphK1) or SphK2 forms the penultimate step in the lysosomal catabolism of all sphingolipids. Both SphK1 and SphK2 phosphorylated sphinga-4,14-diene as efficiently as sphingosine, however deuterated tracer experiments in an oligodendrocyte cell line demonstrated that ceramides with a sphingosine base are more rapidly metabolized than those with a sphingadiene base. Since SphK2 is the dominant sphingosine kinase in brain, we propose that the accumulation of sphingadiene-based lipids in SphK2-deficient brains results from the slower catabolism of these lipids, combined with a bottleneck in the catabolic pathway created by the absence of SphK2. We have therefore uncovered a previously unappreciated role for SphK2 in lipid quality control.
Collapse
Affiliation(s)
- Timothy Andrew Couttas
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yepy Hardi Rustam
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
| | - Huitong Song
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jonathan David Teo
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jinbiao Chen
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Gavin Edmund Reid
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony Simon Don
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: ; Tel.: +61-28627-5578
| |
Collapse
|
7
|
Sibley CD, Morris EA, Kharel Y, Brown AM, Huang T, Bevan DR, Lynch KR, Santos WL. Discovery of a Small Side Cavity in Sphingosine Kinase 2 that Enhances Inhibitor Potency and Selectivity. J Med Chem 2020; 63:1178-1198. [PMID: 31895563 DOI: 10.1021/acs.jmedchem.9b01508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sphingosine-1-phosphate (S1P) signaling pathway is an attractive drug target due to its involvement in immune cell chemotaxis and vascular integrity. The formation of S1P is catalyzed by sphingosine kinase 1 or 2 (SphK1 or SphK2) from sphingosine (Sph) and ATP. Inhibition of SphK1 and SphK2 to attenuate levels of S1P has been reported to be efficacious in animal models of diseases such as cancer, sickle cell disease, and renal fibrosis. While inhibitors of both SphKs have been reported, improvements in potency and selectivity are still needed. Toward that end, we performed structure-activity relationship profiling of 8 (SLM6031434) and discovered a heretofore unrecognized side cavity that increased inhibitor potency toward SphK2. Interrogating this region revealed that relatively small hydrophobic moieties are preferred, with 10 being the most potent SphK2-selective inhibitor (Ki = 89 nM, 73-fold SphK2-selective) with validated in vivo activity.
Collapse
Affiliation(s)
- Christopher D Sibley
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Emily A Morris
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Yugesh Kharel
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - Anne M Brown
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Tao Huang
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - David R Bevan
- Department of Biochemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Kevin R Lynch
- Department of Pharmacology , University of Virginia , Charlottesville , Virginia 22908 , United States
| | - Webster L Santos
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
8
|
Mehaffey JH, Charles EJ, Narahari AK, Schubert S, Laubach VE, Teman NR, Lynch KR, Kron IL, Sharma AK. Increasing circulating sphingosine-1-phosphate attenuates lung injury during ex vivo lung perfusion. J Thorac Cardiovasc Surg 2018; 156:910-917. [PMID: 29609890 PMCID: PMC6056006 DOI: 10.1016/j.jtcvs.2018.02.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Sphingosine-1-phosphate regulates endothelial barrier integrity and promotes cell survival and proliferation. We hypothesized that upregulation of sphingosine-1-phosphate during ex vivo lung perfusion would attenuate acute lung injury and improve graft function. METHODS C57BL/6 mice (n = 4-8/group) were euthanized, followed by 1 hour of warm ischemia and 1 hour of cold preservation in a model of donation after cardiac death. Subsequently, mice underwent 1 hour of ex vivo lung perfusion with 1 of 4 different perfusion solutions: Steen solution (Steen, control arm), Steen with added sphingosine-1-phosphate (Steen + sphingosine-1-phosphate), Steen plus a selective sphingosine kinase 2 inhibitor (Steen + sphingosine kinase inhibitor), or Steen plus both additives (Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor). During ex vivo lung perfusion, lung compliance and pulmonary artery pressure were continuously measured. Pulmonary vascular permeability was assessed with injection of Evans Blue dye. RESULTS The combination of 1 hour of warm ischemia, followed by 1 hour of cold ischemia created significant lung injury compared with lungs that were immediately harvested after circulatory death and put on ex vivo lung perfusion. Addition of sphingosine-1-phosphate or sphingosine kinase inhibitor alone did not significantly improve lung function during ex vivo lung perfusion compared with Steen without additives. However, group Steen + sphingosine-1-phosphate + sphingosine kinase inhibitor resulted in significantly increased compliance (110% ± 13.9% vs 57.7% ± 6.6%, P < .0001) and decreased pulmonary vascular permeability (33.1 ± 11.9 μg/g vs 75.8 ± 11.4 μg/g tissue, P = .04) compared with Steen alone. CONCLUSIONS Targeted drug therapy with a combination of sphingosine-1-phosphate + sphingosine kinase inhibitor during ex vivo lung perfusion improves lung function in a murine donation after cardiac death model. Elevation of circulating sphingosine-1-phosphate via specific pharmacologic modalities during ex vivo lung perfusion may provide endothelial protection in marginal donor lungs leading to successful lung rehabilitation for transplantation.
Collapse
Affiliation(s)
- J Hunter Mehaffey
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Adishesh K Narahari
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Sarah Schubert
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Nicholas R Teman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Kevin R Lynch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va
| | - Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Va.
| |
Collapse
|
9
|
Kharel Y, Agah S, Huang T, Mendelson AJ, Eletu OT, Barkey-Bircann P, Gesualdi J, Smith JS, Santos WL, Lynch KR. Saccharomyces cerevisiae as a platform for assessing sphingolipid lipid kinase inhibitors. PLoS One 2018; 13:e0192179. [PMID: 29672528 PMCID: PMC5908134 DOI: 10.1371/journal.pone.0192179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/17/2018] [Indexed: 12/05/2022] Open
Abstract
Successful medicinal chemistry campaigns to discover and optimize sphingosine kinase inhibitors require a robust assay for screening chemical libraries and for determining rank order potencies. Existing assays for these enzymes are laborious, expensive and/or low throughput. The toxicity of excessive levels of phosphorylated sphingoid bases for the budding yeast, Saccharomyces cerevisiae, affords an assay wherein inhibitors added to the culture media rescue growth in a dose-dependent fashion. Herein, we describe our adaptation of a simple, inexpensive, and high throughput assay for assessing inhibitors of sphingosine kinase types 1 and 2 as well as ceramide kinase and for testing enzymatic activity of sphingosine kinase type 2 mutants. The assay was validated using recombinant enzymes and generally agrees with the rank order of potencies of existing inhibitors.
Collapse
Affiliation(s)
- Yugesh Kharel
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sayeh Agah
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tao Huang
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anna J. Mendelson
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Oluwafunmilayo T. Eletu
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Peter Barkey-Bircann
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - James Gesualdi
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey S. Smith
- Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Webster L. Santos
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kevin R. Lynch
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Childress ES, Kharel Y, Brown AM, Bevan DR, Lynch KR, Santos WL. Transforming Sphingosine Kinase 1 Inhibitors into Dual and Sphingosine Kinase 2 Selective Inhibitors: Design, Synthesis, and in Vivo Activity. J Med Chem 2017; 60:3933-3957. [PMID: 28406646 PMCID: PMC6047346 DOI: 10.1021/acs.jmedchem.7b00233] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that interacts with its five G-protein coupled receptors (S1P1-5) to regulate cell growth and survival and has been implicated in a variety of diseases including cancer and sickle cell disease. As the key mediators in the synthesis of S1P, sphingosine kinase (SphK) isoforms 1 and 2 have attracted attention as viable targets for pharmaceutical inhibition. In this article, we describe the design, synthesis, and biological evaluation of aminothiazole-based guanidine inhibitors of SphK. Surprisingly, combining features of reported SphK1 inhibitors generated SphK1/2 dual inhibitor 20l (SLC4011540) (hSphK1 Ki = 120 nM, hSphK2 Ki = 90 nM) and SphK2 inhibitor 20dd (SLC4101431) (Ki = 90 nM, 100-fold SphK2 selectivity). These compounds effectively decrease S1P levels in vitro. In vivo administration of 20dd validated that inhibition of SphK2 increases blood S1P levels.
Collapse
Affiliation(s)
- Elizabeth S. Childress
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M. Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
A bifunctional Fe (III)-coordinated nanoprobe for electrochemical detection of sphingosine kinase 1 activity. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Scintillation Proximity Assay to Detect the Changes in Cellular Dihydrosphingosine 1-Phosphate Levels. Lipids 2016; 51:1207-1216. [PMID: 27585475 DOI: 10.1007/s11745-016-4187-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Compounds that modulate the activity of sphingosine 1-phosphate (S1P)-metabolizing enzymes are expected to be potential therapeutic agents for various diseases. Investigation of their potencies requires not only cell-free but also cell-based assays in which intracellular accumulation/depletion of S1P could be monitored. However, conventional methods have limitations to their simplicity, mainly due to the necessity of a separation process that separates S1P from its related substances. Here, we describe a method utilizing a scintillation proximity assay (SPA) for semi-quantifying intracellular [(3)H]-labeled dihydroS1P ([(3)H]dhS1P), which is also a substrate for S1P-metabolizing enzymes. We found that uncoated yttrium silicate SPA beads could selectively bind to and detect [(3)H]dhS1P rather than [(3)H]dihydrosphingosine (the non-phosphorylated form of [(3)H]dhS1P). Based on this, we developed a novel cell-based assay system which does not require any organic solvent extraction or chromatographic separation, and confirmed its practicality by using siRNA targeting S1P lyase (S1PL) and known S1PL inhibitors as models. Our results demonstrated that this assay is useful for rapid and easy evaluation of S1PL inhibitors, and could be potentially applicable for all compounds that modulate the activity of S1P-metabolizing enzymes.
Collapse
|
13
|
Pitman MR, Costabile M, Pitson SM. Recent advances in the development of sphingosine kinase inhibitors. Cell Signal 2016; 28:1349-1363. [DOI: 10.1016/j.cellsig.2016.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
|
14
|
Houck JD, Dawson TK, Kennedy AJ, Kharel Y, Naimon ND, Field SD, Lynch KR, Macdonald TL. Structural Requirements and Docking Analysis of Amidine-Based Sphingosine Kinase 1 Inhibitors Containing Oxadiazoles. ACS Med Chem Lett 2016; 7:487-92. [PMID: 27190598 DOI: 10.1021/acsmedchemlett.6b00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent growth-signaling lipid that has been implicated in cancer progression, inflammation, sickle cell disease, and fibrosis. Two sphingosine kinases (SphK1 and 2) are the source of S1P; thus, inhibitors of the SphKs have potential as targeted cancer therapies and will help to clarify the roles of S1P and the SphKs in other hyperproliferative diseases. Recently, we reported a series of amidine-based inhibitors with high selectivity for SphK1 and potency in the nanomolar range. However, these inhibitors display a short half-life. With the goal of increasing metabolic stability and maintaining efficacy, we designed an analogous series of molecules containing oxadiazole moieties. Generation of a library of molecules resulted in the identification of the most selective inhibitor of SphK1 reported to date (705-fold selectivity over SphK2), and we found that potency and selectivity vary significantly depending on the particular oxadiazole isomer employed. The best inhibitors were subjected to in silico molecular dynamics docking analysis, which revealed key insights into the binding of amidine-based inhibitors by SphK1. Herein, the design, synthesis, biological evaluation, and docking analysis of these molecules are described.
Collapse
Affiliation(s)
- Joseph D. Houck
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Thomas K. Dawson
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Andrew J. Kennedy
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22904, United States
| | - Niels D. Naimon
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Saundra D. Field
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22904, United States
| | - Timothy L. Macdonald
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22904, United States
| |
Collapse
|
15
|
Congdon MD, Kharel Y, Brown AM, Lewis SN, Bevan DR, Lynch KR, Santos WL. Structure-Activity Relationship Studies and Molecular Modeling of Naphthalene-Based Sphingosine Kinase 2 Inhibitors. ACS Med Chem Lett 2016; 7:229-34. [PMID: 26985306 DOI: 10.1021/acsmedchemlett.5b00304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
The two isoforms of sphingosine kinase (SphK1 and SphK2) are the only enzymes that phosphorylate sphingosine to sphingosine-1-phosphate (S1P), which is a pleiotropic lipid mediator involved in a broad range of cellular processes including migration, proliferation, and inflammation. SphKs are targets for various diseases such as cancer, fibrosis, and Alzheimer's and sickle cell disease. Herein, we disclose the structure-activity profile of naphthalene-containing SphK inhibitors and molecular modeling studies that reveal a key molecular switch that controls SphK selectivity.
Collapse
Affiliation(s)
- Molly D. Congdon
- Department
of Chemistry, ‡Department of Biochemistry, and §Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yugesh Kharel
- Department
of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | | | | | | | - Kevin R. Lynch
- Department
of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department
of Chemistry, ‡Department of Biochemistry, and §Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
16
|
Kashem MA, Kennedy CA, Fogarty KE, Dimock JR, Zhang Y, Sanville-Ross ML, Skow DJ, Brunette SR, Swantek JL, Hummel HS, Swindle J, Nelson RM. A High-Throughput Genetic Complementation Assay in Yeast Cells Identified Selective Inhibitors of Sphingosine Kinase 1 Not Found Using a Cell-Free Enzyme Assay. Assay Drug Dev Technol 2016; 14:39-49. [DOI: 10.1089/adt.2015.671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mohammed A. Kashem
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Charles A. Kennedy
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Kylie E. Fogarty
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Janice R. Dimock
- Immunology and Respiratory Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Yunlong Zhang
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Mary L. Sanville-Ross
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Donna J. Skow
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Steven R. Brunette
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Jennifer L. Swantek
- Immunology and Respiratory Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | | | | | - Richard M. Nelson
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| |
Collapse
|
17
|
Lima S, Milstien S, Spiegel S. A real-time high-throughput fluorescence assay for sphingosine kinases. J Lipid Res 2014; 55:1525-30. [PMID: 24792926 DOI: 10.1194/jlr.d048132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Indexed: 11/20/2022] Open
Abstract
Sphingosine kinases (SphKs), of which there are two isoforms, SphK1 and SphK2, have been implicated in regulation of many important cellular processes. We have developed an assay for monitoring SphK1 and SphK2 activity in real time without the need for organic partitioning of products, radioactive materials, or specialized equipment. The assay conveniently follows SphK-dependent changes in 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled sphingosine (Sph) fluorescence and can be easily performed in 384-well plate format with small reaction volumes. We present data showing dose-proportional responses to enzyme, substrate, and inhibitor concentrations. The SphK1 and SphK2 binding affinities for NBD-Sph and the IC50 values of inhibitors determined were consistent with those reported with other methods. Because of the versatility and simplicity of the assay, it should facilitate the routine characterization of inhibitors and SphK mutants and can be readily used for compound library screening in high-throughput format.
Collapse
Affiliation(s)
- Santiago Lima
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
18
|
Huang LS, Berdyshev E, Mathew B, Fu P, Gorshkova IA, He D, Ma W, Noth I, Ma SF, Pendyala S, Reddy SP, Zhou T, Zhang W, Garzon SA, Garcia JGN, Natarajan V. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis. FASEB J 2013; 27:1749-60. [PMID: 23315259 DOI: 10.1096/fj.12-219634] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis. The expression of SphK1/2 negatively correlated with lung function and survival in patients with IPF. Also, the expression of SphK1 was increased in lung tissues from patients with IPF and bleomycin-challenged mice. Knockdown of SphK1, but not SphK2, increased survival and resistance to pulmonary fibrosis in bleomycin-challenged mice. Administration of SphK inhibitor reduced bleomycin-induced mortality and pulmonary fibrosis in mice. Knockdown of SphK1 or treatment with SphK inhibitor attenuated S1P generation and TGF-β secretion in a bleomycin-induced lung fibrosis mouse model that was accompanied by reduced phosphorylation of Smad2 and MAPKs in lung tissue. In vitro, bleomycin-induced expression of SphK1 in lung fibroblast was found to be TGF-β dependent. Taken together, these data indicate that SphK1 plays a critical role in the pathology of lung fibrosis and is a novel therapeutic target.
Collapse
Affiliation(s)
- Long Shuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois 60612-7343, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Knott K, Kharel Y, Raje MR, Lynch KR, Santos WL. Effect of alkyl chain length on sphingosine kinase 2 selectivity. Bioorg Med Chem Lett 2012; 22:6817-20. [PMID: 22321213 PMCID: PMC3394931 DOI: 10.1016/j.bmcl.2012.01.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 12/29/2022]
Abstract
The conversion of sphingosine to sphingosine-1-phosphate is catalyzed by sphingosine kinase (SphK), which has been implicated in disease states such as cancer and fibrosis. Because SphK exists as two different isoforms, SphK1 and SphK2, understanding the physiological function of each isoenzyme is important. Of the two isoenzymes, SphK2 is significantly less understood, which is evident by the lack of selective small molecule inhibitors. Building on our initial work that focused on the structure-activity relationship study on an FTY720-derived cylohexylamine scaffold, we report that varying the alkyl chain length on the hydrophobic tail can impart selectivity toward SphK2 over SphK1.
Collapse
Affiliation(s)
- Kenneth Knott
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Mithun R. Raje
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | | |
Collapse
|
20
|
Abstract
S1P (sphingosine 1-phosphate) is a pleiotropic lipid mediator involved in numerous cellular and physiological functions. Of note among these are cell survival and migration, as well as lymphocyte trafficking. S1P, which exerts its effects via five GPCRs (G-protein-coupled receptors) (S1P1-S1P5), is formed by the action of two SphKs (sphingosine kinases). Although SphK1 is the more intensively studied isotype, SphK2 is unique in it nuclear localization and has been reported to oppose some of the actions ascribed to SphK1. Although several scaffolds of SphK1 inhibitors have been described, there is a scarcity of selective SphK2 inhibitors that are necessary to evaluate the downstream effects of inhibition of this isotype. In the present paper we report a cationic amphiphilic small molecule that is a selective SphK2 inhibitor. In the course of characterizing this compound in wild-type and SphK-null mice, we discovered that administration of the inhibitor to wild-type mice resulted in a rapid increase in blood S1P, which is in contrast with our SphK1 inhibitor that drives circulating S1P levels down. Using a cohort of F2 hybrid mice, we confirmed, compared with wild-type mice, that circulating S1P levels were higher in SphK2-null mice and lower in SphK1-null mice. Thus both SphK1 and SphK2 inhibitors recapitulate the blood S1P levels observed in the corresponding null mice. Moreover, circulating S1P levels mirror SphK2 inhibitor levels, providing a convenient biomarker of target engagement.
Collapse
|
21
|
Baker DL, Pham TCT, Sparks MA. Structure and catalytic function of sphingosine kinases: analysis by site-directed mutagenesis and enzyme kinetics. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:139-46. [PMID: 23000541 DOI: 10.1016/j.bbalip.2012.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 12/17/2022]
Abstract
Sphingosine kinases 1 and 2 (SK1 and SK2) generate the bioactive lipid mediator sphingosine 1-phosphate and as such play a significant role in cell fate and in human health and disease. Despite significant interest in and examination of the role played by SK enzymes in disease, comparatively little is currently known about the three-dimensional structure and catalytic mechanisms of these enzymes. To date, limited numbers of studies have used site directed mutagenesis and activity determinations to examine the roles of individual SK residues in substrate, calmodulin, and membrane binding, as well as activation via phosphorylation. Assays are currently available that allow for both single and bisubstrate kinetic analysis of mutant proteins that show normal, lowered and enhanced activity as compared to wild type controls. Additional studies will be required to build on this foundation to completely understand SK mediated substrate binding and phosphoryl group transfer. A deeper understanding of the SK catalytic mechanism, as well as SK interactions with potential small molecule inhibitors will be invaluable to the future design and identification of SK activity modulators as research tools and potential therapeutics. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Daniel L Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| | | | | |
Collapse
|
22
|
Orr Gandy KA, Obeid LM. Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:157-66. [PMID: 22801037 DOI: 10.1016/j.bbalip.2012.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 12/01/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important bioactive sphingolipid metabolite that has been implicated in numerous physiological and cellular processes. Not only does S1P play a structural role in cells by defining the components of the plasma membrane, but in the last 20 years it has been implicated in various significant cell signaling pathways and physiological processes: for example, cell migration, survival and proliferation, cellular architecture, cell-cell contacts and adhesions, vascular development, atherosclerosis, acute pulmonary injury and respiratory distress, inflammation and immunity, and tumorogenesis and metastasis [1,2]. Given the wide variety of cellular and physiological processes in which S1P is involved, it is immediately obvious why the mechanisms governing S1P synthesis and degradation, and the manner in which these processes are regulated, are necessary to understand. In gaining more knowledge about regulation of the sphingosine kinase (SK)/S1P pathway, many potential therapeutic targets may be revealed. This review explores the roles of the SK/S1P pathway in disease, summarizes available SK enzyme inhibitors and examines their potential as therapeutic agents. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
23
|
Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochem J 2012; 440:345-53. [PMID: 21848514 DOI: 10.1042/bj20110817] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
S1P (sphingosine 1-phosphate) is a signalling molecule involved in a host of cellular and physiological functions, most notably cell survival and migration. S1P, which signals via a set of five G-protein-coupled receptors (S1P1-S1P5), is formed by the action of two SphKs (sphingosine kinases) from Sph (sphingosine). Interfering RNA strategies and SphK1 (sphingosine kinase type 1)-null (Sphk1-/-) mouse studies implicate SphK1 in multiple signalling cascades, yet there is a paucity of potent and selective SphK1 inhibitors necessary to evaluate the effects of rapid onset inhibition of this enzyme. We have identified a set of submicromolar amidine-based SphK1 inhibitors and report using a pair of these compounds to probe the cellular and physiological functions of SphK1. In so doing, we demonstrate that our inhibitors effectively lower S1P levels in cell-based assays, but we have been unable to correlate SphK1 inhibition with changes in cell survival. However, SphK1 inhibition did diminish EGF (epidermal growth factor)-driven increases in S1P levels and Akt (also known as protein kinase B)/ERK (extracellular-signal-regulated kinase) phosphorylation. Finally, administration of the SphK1 inhibitor to wild-type, but not Sphk1-/-, mice resulted in a rapid decrease in blood S1P levels indicating that circulating S1P is rapidly turned over.
Collapse
|
24
|
Raje MR, Knott K, Kharel Y, Bissel P, Lynch KR, Santos WL. Design, synthesis and biological activity of sphingosine kinase 2 selective inhibitors. Bioorg Med Chem 2012; 20:183-94. [PMID: 22137932 PMCID: PMC3748591 DOI: 10.1016/j.bmc.2011.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022]
Abstract
Sphingosine kinase (SphK) has emerged as an attractive target for cancer therapeutics due to its role in cell survival. SphK phosphorylates sphingosine to form sphingosine 1-phosphate (S1P), which has been implicated in cancer growth and survival. SphK exists as two different isotypes, namely SphK1 and SphK2, which play different roles inside the cell. In this report, we describe SphK inhibitors based on the immunomodulatory drug, FTY720, which is phosphorylated by SphK2 to generate a S1P mimic. Structural modification of FTY720 provided a template for synthesizing new inhibitors. A diversity-oriented synthesis generated a library of SphK inhibitors with a novel scaffold and headgroup. We have discovered subtype selective inhibitors with K(i)'s in the low micromolar range. This is the first report describing quaternary ammonium salts as SphK inhibitors.
Collapse
Affiliation(s)
- Mithun R. Raje
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kenneth Knott
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Philippe Bissel
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
25
|
Kennedy AJ, Mathews TP, Kharel Y, Field SD, Moyer ML, East JE, Houck JD, Lynch KR, Macdonald TL. Development of amidine-based sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-phosphate in human leukemia cells. J Med Chem 2011; 54:3524-48. [PMID: 21495716 DOI: 10.1021/jm2001053] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that has been identified as an accelerant of cancer progression. The sphingosine kinases (SphKs) are the sole producers of S1P, and thus, SphK inhibitors may prove effective in cancer mitigation and chemosensitization. Of the two SphKs, SphK1 overexpression has been observed in a myriad of cancer cell lines and tissues and has been recognized as the presumptive target over that of the poorly characterized SphK2. Herein, we present the design and synthesis of amidine-based nanomolar SphK1 subtype-selective inhibitors. A homology model of SphK1, trained with this library of amidine inhibitors, was then used to predict the activity of additional, more potent, inhibitors. Lastly, select amidine inhibitors were validated in human leukemia U937 cells, where they significantly reduced endogenous S1P levels at nanomolar concentrations.
Collapse
Affiliation(s)
- Andrew J Kennedy
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|