1
|
Burkard H, Osredkar D, Maes E, Bernis ME, Bremer AS, Zweyer M, Dowling P, Ohlendieck K, Thoresen M, Sabir H. Proteomic analysis identifying proteins relevant for treatment success following experimental neonatal inflammation-sensitized hypoxia-ischemia. Pediatr Res 2025:10.1038/s41390-025-04097-8. [PMID: 40360774 DOI: 10.1038/s41390-025-04097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/19/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Understanding the mechanisms of injury following neonatal hypoxic-ischemic encephalopathy (HIE) is a major goal in neonatal research. HIE can have severe effects on cognitive and motor development in newborns, including an increased risk of death. As the incidence is 10-20 times higher in low- and middle-income countries compared to developed countries, the interest in a therapy exists worldwide. Therapeutic hypothermia (HT) is the only effective treatment after HIE. However, TH is not universally effective, particularly in cases of inflammation-sensitized hypoxia-ischemia (HI); it provides limited benefit. METHODS To identify proteins that may contribute to the reduced efficacy of HT in the case of pre-HI inflammation sensitization, the proteomic profiles of animals subjected to HI and HT combined with lipopolysaccharide (LPS) were analyzed via liquid chromatography mass spectrometry (LC-MS/MS). RESULTS We identified proteins that potentially support the efficacy of HT and those that prevent the success of the therapy in the neonatal rat model of inflammation-sensitized HI. CONCLUSION This study represents a step forward in identifying proteins related to the efficacy of HT following inflammation-sensitized HI. IMPACT Therapeutic hypothermia is the only available treatment for neonatal hypoxic-ischemic encephalopathy, but not effective in models of inflammation-sensitized hypoxic-ischemic brain injury. Using liquid chromatography mass spectrometry, we identified proteins possibly having an effect on the treatment success of therapeutic hypothermia following experimental inflammation-sensitized hypoxic-ischemic brain injury. This proteomic analysis reveals proteins as potential markers that could prevent or support the efficacy of therapeutic hypothermia in experimental neonatal inflammation-sensitized hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Hannah Burkard
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, 53127, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127, Bonn, Germany
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Elke Maes
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, 53127, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127, Bonn, Germany
| | - Maria E Bernis
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, 53127, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127, Bonn, Germany
| | - Anna-Sophie Bremer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, 53127, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127, Bonn, Germany
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, 53127, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127, Bonn, Germany
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co, Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co, Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co, Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co, Kildare, Ireland
| | - Marianne Thoresen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Translational Health Sciences, St. Michael's Hospital, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, 53127, Bonn, Germany.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127, Bonn, Germany.
| |
Collapse
|
2
|
Herre C, Nshdejan A, Klopfleisch R, Corte GM, Bahramsoltani M. Knockdown of TPI in human dermal microvascular endothelial cells and its impact on angiogenesis in vitro. PLoS One 2023; 18:e0294933. [PMID: 38117832 PMCID: PMC10732452 DOI: 10.1371/journal.pone.0294933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/10/2023] [Indexed: 12/22/2023] Open
Abstract
INTRODUCTION Angiogenic behaviour has been shown as highly versatile among Endothelial cells (ECs) causing problems of in vitro assays of angiogenesis considering their reproducibility. It is indispensable to investigate influencing factors of the angiogenic potency of ECs. OBJECTIVE The present study aimed to analyse the impact of knocking down triosephosphate isomerase (TPI) on in vitro angiogenesis and simultaneously on vimentin (VIM) and adenosylmethionine synthetase isoform type 2 (MAT2A) expression. Furthermore, native expression profiles of TPI, VIM and MAT2A in the course of angiogenesis in vitro were examined. METHODS Two batches of human dermal microvascular ECs were cultivated over 50 days and stimulated to undergo angiogenesis. A shRNA-mediated knockdown of TPI was performed. During cultivation, time-dependant morphological changes were detected and applied for EC-staging as prerequisite for quantifying in vitro angiogenesis. Additionally, mRNA and protein levels of all proteins were monitored. RESULTS Opposed to native cells, knockdown cells were not able to enter late stages of angiogenesis and primarily displayed a downregulation of VIM and an uprise in MAT2A expression. Native cells increased their TPI expression and decreased their VIM expression during the course of angiogenesis in vitro. For MAT2A, highest expression was observed to be in the beginning and at the end of angiogenesis. CONCLUSION Knocking down TPI provoked expressional changes in VIM and MAT2A and a deceleration of in vitro angiogenesis, indicating that TPI represents an angiogenic protein. Native expression profiles lead to the assumption of VIM being predominantly relevant in beginning stages, MAT2A in beginning and late stages and TPI during the whole course of angiogenesis in vitro.
Collapse
Affiliation(s)
- Christina Herre
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Arpenik Nshdejan
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Giuliano Mario Corte
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Universität Zürich, Zurich, Switzerland
| | - Mahtab Bahramsoltani
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Herre C, Nshdejan A, Klopfleisch R, Corte GM, Bahramsoltani M. Expression of vimentin, TPI and MAT2A in human dermal microvascular endothelial cells during angiogenesis in vitro. PLoS One 2022; 17:e0266774. [PMID: 35482724 PMCID: PMC9049311 DOI: 10.1371/journal.pone.0266774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/27/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction
In vitro assays of angiogenesis face immense problems considering their reproducibility based on the inhomogeneous characters of endothelial cells (ECs). It is necessary to detect influencing factors, which affect the angiogenic potency of ECs.
Objective
This study aimed to analyse expression profiles of vimentin (VIM), triosephosphate isomerase (TPI) and adenosylmethionine synthetase isoform type–2 (MAT2A) during the whole angiogenic cascade in vitro. Furthermore, the impact of knocking down vimentin (VIM) on angiogenesis in vitro was evaluated, while monitoring TPI and MAT2A expression.
Methods
A long–term cultivation and angiogenic stimulation of human dermal microvascular ECs was performed. Cells were characterized via VEGFR–1 and VEGFR–2 expression and a shRNA–mediated knockdown of VIM was performed. The process of angiogenesis in vitro was quantified via morphological staging and mRNA–and protein–levels of all proteins were analysed.
Results
While native cells ran through the angiogenic cascade chronologically, knockdown cells only entered beginning stages of angiogenesis and died eventually. Cell cultures showing a higher VEGFR–1 expression survived exclusively and displayed an upregulation of MAT2A and TPI expression. Native cells highly expressed VIM in early stages, MAT2A mainly in the beginning and TPI during the course of angiogenesis in vitro.
Conclusion
VIM knockdown led to a deceleration of angiogenesis in vitro and knockdown cells displayed expressional changes in TPI and MAT2A. Cell populations with a higher number of stalk cells emerged as being more stable against manipulations and native expression profiles provided an indication of VIM and MAT2A being relevant predominantly in beginning stages and TPI during the whole angiogenic cascade in vitro.
Collapse
Affiliation(s)
- Christina Herre
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Arpenik Nshdejan
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Giuliano Mario Corte
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Mahtab Bahramsoltani
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Rihan M, Vineela Nalla L, Dharavath A, Patel S, Shard A, Khairnar A. Boronic acid derivative activates pyruvate kinase M2 indispensable for redox metabolism in oral cancer cells. Bioorg Med Chem Lett 2022; 59:128539. [PMID: 35007726 DOI: 10.1016/j.bmcl.2022.128539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
PKM2is considered a desirable target as its enzymatic activation is expected to cause a diminution in tumorigenesis and prevent limitless replication in cancerous cells. However, considering the functional consequences of kinase inhibitors, the design of PKM2 activators has been an attractive strategy that has yielded potent anticancer molecules like DASA-58. Therefore, a new class of boronic acid derivate was developed to elucidate the possible mechanistic link between PKM2 activation and TPI1 activity, which has a significant role in the redox balance in cancer. The present in vitro study revealed that treatment with boronic acid-based compound 1 and DASA-58 was found to activate PKM2 with an AC50 of 25 nM and 52 nM, respectively. Furthermore, at the AC50 concentration of compound 1, we found a significant increase in TPI1 activity and a decrease in GSH and NADP+/NADPH ratio. We also found increased ROS levels and decreased lactate secretion with treatment. Together with these findings, we can presume that compound 1 affects the redox balance by activating PKM2 and TPI1 activity. Implementation of this treatment strategy may improve the effect of chemotherapy in the conditions of ROS induced cancer drug resistance. This study for the first time supports the link between PKM2 and the TPI1 redox balance pathway in oral cancer. Collectively, the study findings provide a novel molecule for PKM2 activation for the therapeutic intervention in oral cancer.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Anil Dharavath
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India.
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India.
| |
Collapse
|
5
|
Segal J, Mülleder M, Krüger A, Adler T, Scholze‐Wittler M, Becker L, Calzada‐Wack J, Garrett L, Hölter SM, Rathkolb B, Rozman J, Racz I, Fischer R, Busch DH, Neff F, Klingenspor M, Klopstock T, Grüning N, Michel S, Lukaszewska‐McGreal B, Voigt I, Hartmann L, Timmermann B, Lehrach H, Wolf E, Wurst W, Gailus‐Durner V, Fuchs H, H. de Angelis M, Schrewe H, Yuneva M, Ralser M. Low catalytic activity is insufficient to induce disease pathology in triosephosphate isomerase deficiency. J Inherit Metab Dis 2019; 42:839-849. [PMID: 31111503 PMCID: PMC7887927 DOI: 10.1002/jimd.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 01/26/2023]
Abstract
Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by hemolytic anemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPIIle170Val/Ile170Val mice exhibit an approximately 85% reduction in TPI activity consistently across all examined tissues, which is a stronger average, but more consistent, activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPIIle170Val/Ile170Val mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that affects TPI activity in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency.
Collapse
Affiliation(s)
- Joanna Segal
- The Molecular Biology of Metabolism Laboratory, Francis Crick InstituteLondonUK
| | - Michael Mülleder
- The Molecular Biology of Metabolism Laboratory, Francis Crick InstituteLondonUK
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Antje Krüger
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute for Medical Microbiology, Immunology, and HygieneMunichGermany
| | | | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Friedrich‐Baur‐Institute, Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Julia Calzada‐Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute of Pathology, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute of Developmental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Sabine M. Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute of Developmental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Chair for Molecular Animal Breeding and Biotechnology, Gene CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
- Member of German Center for Diabetes Research (DZD)Neuherberg/MunichGermany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Member of German Center for Diabetes Research (DZD)Neuherberg/MunichGermany
- Molecular Nutritional MedicineElse Kröner‐Fresenius Center, TUMFreising‐WeihenstephanGermany
| | - Ildiko Racz
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Ralf Fischer
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology, and HygieneMunichGermany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Institute of Pathology, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Martin Klingenspor
- Molecular Nutritional MedicineElse Kröner‐Fresenius Center, TUMFreising‐WeihenstephanGermany
- ZIEL – Institute for Food and HealthTechnical University MunichFreising‐WeihenstephanGermany
| | - Thomas Klopstock
- Friedrich‐Baur‐Institute, Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Adolf‐Butenandt‐Institut, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) Site MunichMunichGermany
| | | | - Steve Michel
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | | | - Ingo Voigt
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | | | | | - Hans Lehrach
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)Adolf‐Butenandt‐Institut, Ludwig‐Maximilians‐Universität MünchenMunichGermany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) Site MunichMunichGermany
- Chair of Developmental GeneticsTUMFreising‐WeihenstephanGermany
| | - Valérie Gailus‐Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
| | - Martin H. de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum MünchenGerman Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany
- Member of German Center for Diabetes Research (DZD)Neuherberg/MunichGermany
- Chair of Experimental GeneticsCenter of Life and Food Sciences Weihenstephan, TUMFreising‐WeihenstephanGermany
| | | | - Mariia Yuneva
- Oncogenes and Tumour Metabolism LaboratoryThe Francis Crick InstituteLondonUK
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, Francis Crick InstituteLondonUK
- Max Planck Institute for Molecular GeneticsBerlinGermany
- Cambridge Systems Biology Centre and Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of BiochemistryCharitè Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
6
|
Lone SN, Maqbool R, Parray FQ, Ul Hussain M. Triose-phosphate isomerase is a novel target of miR-22 and miR-28, with implications in tumorigenesis. J Cell Physiol 2018; 233:8919-8929. [PMID: 29856481 DOI: 10.1002/jcp.26821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Aerobic glycolysis is the hallmark of many cancer cells that results in a high rate of adenosine triphosphate (ATP) production and, more importantly, biosynthetic intermediates, which are required by the fast-growing tumor cells. The molecular mechanism responsible for the increased glycolytic influx of tumor cells is still not fully understood. In the present study, we have attempted to address the above question by exploring the role of the glycolytic enzyme, triose-phosphate isomerase (TPI), in the cancer cells. The western blot analysis of the 30 human colorectal cancer samples depicted higher post-transcriptional expression of TPI in the tumor tissue relative to the normal tissue. In addition, we identified two novel microRNAs, miR-22 and miR-28, that target the TPI messenger RNA (mRNA) and regulate its expression. miR-22 and the miR-28 showed significant inverse expression status viz-a-viz the expression of the TPI. The specificity of the miR-22/28 regulation of the TPI mRNA was confirmed by various biochemical and mutagenic assays. Moreover, the hypoxia conditions resulted in an increased expression of the TPI protein, with a concomitant decrease in miR-22/28. The physiological significance of the TPI and miR-22/28 interaction for the glycolytic influx was confirmed by the l-lactate production in the HCT-116+/+ cells. Overall, our data demonstrate the novel microRNA mediated post-transcriptional regulation of the TPI glycolytic enzyme, which may be one of the possible reasons for the increased glycolytic capacity of the tumor cells.
Collapse
Affiliation(s)
- Saife Niaz Lone
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Raihana Maqbool
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.,Department of Biotechnology, Government Degree College, Sumbal, Jammu and Kashmir, India
| | - Fazl Q Parray
- Department of General Surgery, Sheri-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Mahboob Ul Hussain
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
7
|
Gandar A, Laffaille P, Marty-Gasset N, Viala D, Molette C, Jean S. Proteome response of fish under multiple stress exposure: Effects of pesticide mixtures and temperature increase. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:61-77. [PMID: 28109940 DOI: 10.1016/j.aquatox.2017.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL-1 and 42μgL-1) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important changes in pathways involved in metabolism, cell structure and cell cycle, with possible deleterious outcomes at higher biological scales and (2) that increasing temperature could affect the response of fish to pesticide exposure.
Collapse
Affiliation(s)
- Allison Gandar
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Pascal Laffaille
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Didier Viala
- Plate-Forme 'Exploration du Métabolisme', Centre de Clermont-Ferrand, Theix, 63122, Saint Genès Champanelle, France; UMR 1213 Herbivores, INRA, VetAgro Sup, NRA Theix, 63122, Saint Genès Champanelle, France
| | - Caroline Molette
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326 Castanet-Tolosan, France
| | - Séverine Jean
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
8
|
Gérard N, Chanson-Rollé A, Rock E, Brachet P. Proteomic analysis identifies cytoskeleton-interacting proteins as major downstream targets of altered folate status in the aorta of adult rat. Mol Nutr Food Res 2014; 58:2307-19. [PMID: 25266508 DOI: 10.1002/mnfr.201400317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/14/2014] [Accepted: 09/08/2014] [Indexed: 12/30/2022]
Abstract
SCOPE Mild folate deficiency and subsequently elevated plasma level of homocysteine are associated with an increased risk for vascular diseases in adults. Conversely, high intakes of folic acid (FA) may have beneficial effects on vascular function, presumably in part through homocysteine lowering. However, these effects have not yet been translated in terms of prevention or treatment of vascular pathologies. Besides, the complex biologic perturbation induced by variations of the folate supply is still not fully deciphered. We thus carried out a proteomic analysis of the aorta of adult rats after a dietary FA depletion or supplementation. METHODS AND RESULTS Nine month-old rats were fed a FA-depleted, FA-supplemented or control diet for 8 weeks. Total proteins from adventitia-free aortas were separated by 2DE and differentially expressed proteins were identified by MS. FA depletion or supplementation resulted in significantly changed abundance of 29 spots (p < 0.05), of which 20 proteins were identified. Bioinformatic analysis revealed that most of these proteins are involved in cytoskeleton-related processes important to cell function/maintenance, assembly/organization, and movement. CONCLUSION Our proteomic study supports that expression of proteins essential to vascular structure and, presumably, function is modulated by high intake as well as deprivation of FA.
Collapse
Affiliation(s)
- Nicolas Gérard
- Human Nutrition Unit, UMR 1019, National Institute for Agronomic Research, University of Auvergne, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
9
|
Grüning NM, Du D, Keller MA, Luisi BF, Ralser M. Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol 2014; 4:130232. [PMID: 24598263 PMCID: PMC3971408 DOI: 10.1098/rsob.130232] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The inhibition of triosephosphate isomerase (TPI) in glycolysis by the pyruvate kinase (PK) substrate phosphoenolpyruvate (PEP) results in a newly discovered feedback loop that counters oxidative stress in cancer and actively respiring cells. The mechanism underlying this inhibition is illuminated by the co-crystal structure of TPI with bound PEP at 1.6 Å resolution, and by mutational studies guided by the crystallographic results. PEP is bound to the catalytic pocket of TPI and occludes substrate, which accounts for the observation that PEP competitively inhibits the interconversion of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Replacing an isoleucine residue located in the catalytic pocket of TPI with valine or threonine altered binding of substrates and PEP, reducing TPI activity in vitro and in vivo. Confirming a TPI-mediated activation of the pentose phosphate pathway (PPP), transgenic yeast cells expressing these TPI mutations accumulate greater levels of PPP intermediates and have altered stress resistance, mimicking the activation of the PK-TPI feedback loop. These results support a model in which glycolytic regulation requires direct catalytic inhibition of TPI by the pyruvate kinase substrate PEP, mediating a protective metabolic self-reconfiguration of central metabolism under conditions of oxidative stress.
Collapse
Affiliation(s)
- Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
10
|
Yang X, Yang S, Wang J, Zhang X, Wang C, Hong G. Expressive proteomics profile changes of injured human brain cortex due to acute brain trauma. Brain Inj 2010; 23:830-40. [PMID: 19697172 DOI: 10.1080/02699050903196670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To find the expressive proteomics changes in damaged human brain cortex after traumatic brain injury (TBI). METHOD By rapid high-throughput and precise proteomic techniques, the traumatic injured human frontal cortexes were compared with non-trauma controls. RESULTS On 2-DE PAGE, 138 protein spots were found significantly different on expressive level of quantitative mature. Most of these proteins expressed in a fluctuant fashion within 18 hours after trauma, with mean levels lower than control. Eighty-two protein spots were identified by MALDI-MS TOF, which were products of 71 proteins and could be grouped into 10 categories based on possible functions: cytoskeleton (n = 10), metabolism (n = 13), electron transport (n = 8), signalling transduction (n = 4), stress response (n = 6), protein synthesis and turnover (n = 8), transporter (n = 5), cell cycle (n = 1), other (n = 8) and unknown (n = 9). CONCLUSION After traumatic brain injury, there are significant proteins expressing changes in damaged brain tissue. These proteins may play a critical role in TBI. Although some of these proteins functions are not fully understood, they may become novel biomarkers and novel therapy targets in the future.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China
| | | | | | | | | | | |
Collapse
|
11
|
The difference between rare and exceptionally rare: molecular characterization of ribose 5-phosphate isomerase deficiency. J Mol Med (Berl) 2010; 88:931-9. [PMID: 20499043 DOI: 10.1007/s00109-010-0634-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/03/2010] [Accepted: 05/04/2010] [Indexed: 12/29/2022]
Abstract
Ribose 5-phosphate isomerase (RPI) deficiency is an enzymopathy of the pentose phosphate pathway. It manifests with progressive leukoencephalopathy and peripheral neuropathy and belongs, with one sole diagnosed case, to the rarest human disorders. The single patient was found compound heterozygous for a RPI frameshift and a missense (RPI(Ala61Val)) allele. Here, we report that two patient-derived cell lines differ in RPI enzyme activity, enzyme concentration, and mRNA expression. Furthermore, we present a transgenic yeast model, which exhibits metabolite- and enzyme-activity changes that correspond to the human syndrome and show that the decrease in RPI activity in patient cells is not fully attributable to the residue exchange. Taken together, our results demonstrate that RPI deficiency is caused by the combination of a RPI null allele with an allele that encodes for a partially active enzyme which has, in addition, cell-type-dependent expression deficits. We speculate that a low probability for comparable traits accounts for the rareness of RPI deficiency.
Collapse
|
12
|
Siva AB, Kameshwari DB, Singh V, Pavani K, Sundaram CS, Rangaraj N, Deenadayal M, Shivaji S. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod 2010; 16:452-62. [PMID: 20304782 DOI: 10.1093/molehr/gaq009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
With a view to understand the molecular basis of sperm motility, we have tried to establish the human sperm proteome by two-dimensional PAGE MALDI MS/MS analysis. We report identification of 75 different proteins in the human spermatozoa. Comparative proteome analysis was carried out for asthenozoospermic and normozoospermic patients to understand the molecular basis of sperm motility. Analysis revealed eight proteins (including one unidentified) with altered intensity between the groups. Differential proteins distributed into three functional groups: 'energy and metabolism' (triose-phosphate isomerase, glycerol kinase 2, testis specific isoform and succinyl-CoA:3-ketoacid co-enzyme A transferase 1, mitochondrial precursor); 'movement and organization' (tubulin beta 2C and tektin 1) and 'protein turnover, folding and stress response' (proteasome alpha 3 subunit and heat shock-related 70 kDa protein 2). It was interesting to note that although the proteins falling in the functional group of 'energy and metabolism' are higher in the asthenozoospermic patients, the other two functional groups contain proteins, which are higher in the normozoospermic samples. Validation of results carried out for proteasome alpha 3 subunit by immunoblotting and confocal microscopy, confirmed significant changes in intensity of proteasome alpha 3 subunit in asthenozoospermic samples when compared with normozoospermic controls. Significant positive correlation too was found between proteasome alpha 3 subunit levels and rapid, linear progressive motility of the spermatozoa. In our understanding, this data would contribute appreciably to the presently limited information available about the proteins implicated in human sperm motility.
Collapse
|
13
|
Pasquariello N, Catanzaro G, Marzano V, Amadio D, Barcaroli D, Oddi S, Federici G, Urbani A, Finazzi Agrò A, Maccarrone M. Characterization of the endocannabinoid system in human neuronal cells and proteomic analysis of anandamide-induced apoptosis. J Biol Chem 2009; 284:29413-26. [PMID: 19690173 DOI: 10.1074/jbc.m109.044412] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Anandamide (AEA) is an endogenous agonist of type 1 cannabinoid receptors (CB1R) that, along with metabolic enzymes of AEA and congeners, compose the "endocannabinoid system." Here we report the biochemical, morphological, and functional characterization of the endocannabinoid system in human neuroblastoma SH-SY5Y cells that are an experimental model for neuronal cell damage and death, as well as for major human neurodegenerative disorders. We also show that AEA dose-dependently induced apoptosis of SH-SY5Y cells. Through proteomic analysis, we further demonstrate that AEA-induced apoptosis was paralleled by an approximately 3 to approximately 5-fold up-regulation or down-regulation of five genes; IgG heavy chain-binding protein, stress-induced phosphoprotein-1, and triose-phosphate isomerase-1, which were up-regulated, are known to act as anti-apoptotic agents; actin-related protein 2/3 complex subunit 5 and peptidylprolyl isomerase-like protein 3 isoform PPIL3b were down-regulated, and the first is required for actin network formation whereas the second is still function-orphan. Interestingly, only the effect of AEA on BiP was reversed by the CB1R antagonist SR141716, in SH-SY5Y cells as well as in human neuroblastoma LAN-5 cells (that express a functional CB1R) but not in SK-NBE cells (which do not express CB1R). Silencing or overexpression of BiP increased or reduced, respectively, AEA-induced apoptosis of SH-SY5Y cells. In addition, the expression of BiP and of the BiP-related apoptotic markers p53 and PUMA was increased by AEA through a CB1R-dependent pathway that engages p38 and p42/44 mitogen-activated protein kinases. Consistently, this effect of AEA was minimized by SR141716. In conclusion, we identified BiP as a key protein in neuronal apoptosis induced by AEA.
Collapse
Affiliation(s)
- Nicoletta Pasquariello
- Dipartimento di Scienze Biomediche, Università degli Studi di Teramo, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Smith RW, Cash P, Ellefsen S, Nilsson GE. Proteomic changes in the crucian carp brain during exposure to anoxia. Proteomics 2009; 9:2217-29. [PMID: 19322784 DOI: 10.1002/pmic.200800662] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri-phosphate during anoxia. In terms of neural protection, voltage-dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase-like protein-3 and vesicle amine transport protein-1. One protein was found to be increased by anoxia; pre-proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
15
|
Martínez-Solano L, Reales-Calderón JA, Nombela C, Molero G, Gil C. Proteomics of RAW 264.7 macrophages upon interaction with heat-inactivatedCandida albicanscells unravel an anti-inflammatory response. Proteomics 2009; 9:2995-3010. [DOI: 10.1002/pmic.200800016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
RanBP10 acts as a novel coactivator for the androgen receptor. Biochem Biophys Res Commun 2008; 368:121-5. [DOI: 10.1016/j.bbrc.2008.01.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/13/2008] [Indexed: 11/17/2022]
|
17
|
Swiderek H, Logan A, Al-Rubeai M. Cellular and transcriptomic analysis of NS0 cell response during exposure to hypoxia. J Biotechnol 2008; 134:103-11. [DOI: 10.1016/j.jbiotec.2008.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 11/23/2007] [Accepted: 01/02/2008] [Indexed: 11/16/2022]
|
18
|
Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 2007; 6:10. [PMID: 18154684 PMCID: PMC2373902 DOI: 10.1186/jbiol61] [Citation(s) in RCA: 410] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 08/07/2007] [Accepted: 10/12/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eukaryotic cells have evolved various response mechanisms to counteract the deleterious consequences of oxidative stress. Among these processes, metabolic alterations seem to play an important role. RESULTS We recently discovered that yeast cells with reduced activity of the key glycolytic enzyme triosephosphate isomerase exhibit an increased resistance to the thiol-oxidizing reagent diamide. Here we show that this phenotype is conserved in Caenorhabditis elegans and that the underlying mechanism is based on a redirection of the metabolic flux from glycolysis to the pentose phosphate pathway, altering the redox equilibrium of the cytoplasmic NADP(H) pool. Remarkably, another key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is known to be inactivated in response to various oxidant treatments, and we show that this provokes a similar redirection of the metabolic flux. CONCLUSION The naturally occurring inactivation of GAPDH functions as a metabolic switch for rerouting the carbohydrate flux to counteract oxidative stress. As a consequence, altering the homoeostasis of cytoplasmic metabolites is a fundamental mechanism for balancing the redox state of eukaryotic cells under stress conditions.
Collapse
Affiliation(s)
- Markus Ralser
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
In order to observe the effects of nicotine on protein expression in rat vascular smooth muscle cells (SMCs), nicotine treated SMCs were studied by proteomic technologies combining two-dimensional electrophoresis (2-DE) and peptide mass fingerprinting (PMF). Real-time RT-PCR was used to validate the differentially expressed proteins. We found that 11 protein spots were significantly up-regulated and one down-regulated by nicotine treatment. The results of PMF showed that these up- and down-regulated proteins could be divided into three groups according to their functions: cytoskeleton proteins, regulatory proteins and enzymes. Simultaneously, we also verified their consistent alteration at the transcriptional level through real-time RT-PCR. The affected proteins turned out to be mainly associated with cell migration, proliferation and energy metabolism, and are responsible for nicotine-related cardiovascular damage.
Collapse
|
20
|
Kusaka T, Ueno M, Miki T, Kanenishi K, Nagai Y, Huang CL, Okamoto Y, Ogawa T, Onodera M, Itoh S, Akiguchi I, Sakamoto H. Accumulation of triosephosphate isomerase, with sequence homology to Beta amyloid peptides, in vessel walls of the newborn piglet hippocampus. Microsc Res Tech 2007; 70:648-55. [PMID: 17393492 DOI: 10.1002/jemt.20448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated whether beta-amyloid (Abeta)-like immunoreactivity was seen in the brains of newborn piglets. The immunoreactivity for Abeta(1-42) and Abeta(1-40) proteins, but not Abeta precursor protein, was present in CD68-positive perivascular cells of the hippocampus and in parts of the meninges. It was colocalized with immunoreactivity for receptor for advanced glycation end product and tumor necrosis factor-alpha. The protein with a molecular mass of 27 kDa, which was recognized by the Abeta antibodies, was identified as triosephosphate isomerase (TPI) with sequence homology to Abeta peptides by N-terminal amino acid sequencing, mass fingerprint analysis using matrix-associated laser desorption/ionization mass spectrometry, and Western blotting. Western blotting assay also revealed that detectable expression of Abeta proteins were not seen in the piglet brains. These findings indicate that TPI with sequence homology to Abeta peptides accumulates in perivascular cells of the microglia/macrophage lineage located around arterial vessels of the newborn piglet hippocampus.
Collapse
Affiliation(s)
- Takashi Kusaka
- Maternal and Perinatal Center, Faculty of Medicine, Kagawa University, Miki-cho 1750-1, Kita-gun, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nakamura M, Kuramasu A, Nakashima I, Fujihara K, Itoyama Y. Candidate antigens specifically detected by cerebrospinal fluid-IgG in oligoclonal IgG bands-positive multiple sclerosis patients. Proteomics Clin Appl 2007; 1:681-7. [PMID: 21136723 DOI: 10.1002/prca.200700182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Indexed: 11/10/2022]
Abstract
The aim of the present study was to detect antigenic proteins that react specifically with cerebrospinal fluid (CSF)-IgG from oligoclonal IgG bands (OB)-positive multiple sclerosis (MS) patients. To identify such antigenic proteins, we developed a rat brain proteome map using 2-DE and applied it to the immunoscreening of brain proteins that react with CSF-IgG but not with serum-IgG in OB-positive MS patients. After sequential MALDI-TOF mass spectrometry, eight proteins [two neuronal proteins (tubulin β-2 and γ enolase-2), HSP-1, Tpi-1 protein and cellular enzymes (creatine kinase, phosphopyruvate hydratase, triosephosphate isomerase and phosphoglycerate kinase-1)] were identified as candidate antigens in seven MS patients. Reactivity to tubulin was seen in Western blotting in four patients, and CSF-specific anti-tubulin IgG was detected in one patient. In addition, CSF-specific anti-gamma enolase IgG was found in another patient. These findings suggest that intrathecal immune responses may occur against a broad range of proteins in MS.
Collapse
Affiliation(s)
- Masashi Nakamura
- Department of Neurology, Tohoku University School of Medicine, Aoba-ku, Sendai, Japan.
| | | | | | | | | |
Collapse
|
22
|
Teilum M, Krogh M, Wieloch T, Mattiasson G. Hypothermia affects translocation of numerous cytoplasmic proteins following global cerebral ischemia. J Proteome Res 2007; 6:2822-32. [PMID: 17536849 DOI: 10.1021/pr070057l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a decapitation ischemia model, we studied translocation of proteins to and from the cytosol in normothermic (NT) and hypothermic (HT) rat brains. 2D gel analysis identified 74 proteins whose cytosolic level changed significantly after 15 min of ischemia. HT preserved the cytosolic levels of several glycolytic enzymes, as well as many plasticity related proteins, otherwise decreased following NT ischemia. The levels of redox-related proteins was lower in HT than in NT. Our results indicate that translocation of proteins to and from the cytosol is an important issue during ischemia.
Collapse
Affiliation(s)
- Maria Teilum
- Lab for Experimental Brain Research, BMC A13, Lund University, Sweden.
| | | | | | | |
Collapse
|
23
|
Martin-Rendon E, Hale SJM, Ryan D, Baban D, Forde SP, Roubelakis M, Sweeney D, Moukayed M, Harris AL, Davies K, Watt SM. Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells 2006; 25:1003-12. [PMID: 17185612 DOI: 10.1634/stemcells.2006-0398] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Umbilical cord blood (UCB) and bone marrow (BM)-derived stem and progenitor cells possess two characteristics required for successful tissue regeneration: extensive proliferative capacity and the ability to differentiate into multiple cell lineages. Within the normal BM and in pathological conditions, areas of hypoxia may have a role in maintaining stem cell fate or determining the fine equilibrium between their proliferation and differentiation. In this study, the transcriptional profiles and proliferation and differentiation potential of UCB CD133(+) cells and BM mesenchymal cells (BMMC) exposed to normoxia and hypoxia were analyzed and compared. Both progenitor cell populations responded to hypoxic stimuli by stabilizing the hypoxia inducible factor (HIF)-1alpha protein. Short exposures to hypoxia increased the clonogenic myeloid capacity of UCB CD133(+) cells and promoted a significant increase in BMMC number. The differentiation potential of UCB CD133(+) clonogenic myeloid cells was unaltered by short exposures to hypoxia. In contrast, the chondrogenic differentiation potential of BMMCs was enhanced by hypoxia, whereas adipogenesis and osteogenesis were unaltered. When their transcriptional profiles were compared, 183 genes in UCB CD133(+) cells and 45 genes in BMMC were differentially regulated by hypoxia. These genes included known hypoxia-responsive targets such as BNIP3, PGK1, ENO2, and VEGFA, and other genes not previously described to be regulated by hypoxia. Several of these genes, namely CDTSPL, CCL20, LSP1, NEDD9, TMEM45A, EDG-1, and EPHA3 were confirmed to be regulated by hypoxia using quantitative reverse transcriptase polymerase chain reaction. These results, therefore, provide a global view of the signaling and regulatory network that controls oxygen sensing in human adult stem/progenitor cells derived from hematopoietic tissues.
Collapse
Affiliation(s)
- Enca Martin-Rendon
- Stem Cell Research Laboratory, National Blood Service, Oxford Centre, The John Radcliffe Hospital, Headington, OX3 9BQ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ralser M, Heeren G, Breitenbach M, Lehrach H, Krobitsch S. Triose phosphate isomerase deficiency is caused by altered dimerization--not catalytic inactivity--of the mutant enzymes. PLoS One 2006; 1:e30. [PMID: 17183658 PMCID: PMC1762313 DOI: 10.1371/journal.pone.0000030] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/02/2006] [Indexed: 10/26/2022] Open
Abstract
Triosephosphate isomerase (TPI) deficiency is an autosomal recessive disorder caused by various mutations in the gene encoding the key glycolytic enzyme TPI. A drastic decrease in TPI activity and an increased level of its substrate, dihydroxyacetone phosphate, have been measured in unpurified cell extracts of affected individuals. These observations allowed concluding that the different mutations in the TPI alleles result in catalytically inactive enzymes. However, despite a high occurrence of TPI null alleles within several human populations, the frequency of this disorder is exceptionally rare. In order to address this apparent discrepancy, we generated a yeast model allowing us to perform comparative in vivo analyses of the enzymatic and functional properties of the different enzyme variants. We discovered that the majority of these variants exhibit no reduced catalytic activity per se. Instead, we observed, the dimerization behavior of TPI is influenced by the particular mutations investigated, and by the use of a potential alternative translation initiation site in the TPI gene. Additionally, we demonstrated that the overexpression of the most frequent TPI variant, Glu104Asp, which displays altered dimerization features, results in diminished endogenous TPI levels in mammalian cells. Thus, our results reveal that enzyme deregulation attributable to aberrant dimerization of TPI, rather than direct catalytic inactivation of the enzyme, underlies the pathogenesis of TPI deficiency. Finally, we discovered that yeast cells expressing a TPI variant exhibiting reduced catalytic activity are more resistant against oxidative stress caused by the thiol-oxidizing reagent diamide. This observed advantage might serve to explain the high allelic frequency of TPI null alleles detected among human populations.
Collapse
Affiliation(s)
- Markus Ralser
- Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Gino Heeren
- Department of Cell Biology, University of SalzburgSalzburg, Austria
| | | | - Hans Lehrach
- Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular GeneticsBerlin, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Hansson SR, Chen Y, Brodszki J, Chen M, Hernandez-Andrade E, Inman JM, Kozhich OA, Larsson I, Marsál K, Medstrand P, Xiang CC, Brownstein MJ. Gene expression profiling of human placentas from preeclamptic and normotensive pregnancies. Mol Hum Reprod 2006; 12:169-79. [PMID: 16556680 DOI: 10.1093/molehr/gal011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate patterns of gene expression in placental samples from patients with preeclampsia (PE), persistent bilateral uterine artery notching (without PE), and normal controls. This study included placental tissue from nine women with PE, seven with uncomplicated pregnancies and five with bilateral uterine artery notching in Doppler velocimetry tracings. Human cDNA microarrays with 6500 transcripts/genes were used and the results verified with real-time PCR and in-situ hybridization. Multidimensional scaling method and random permutation technique demonstrated significant differences among the three groups examined. Within the 6.5K arrays, 6198 elements were unique cDNA clones representing 5952 unique UniGenes and 5695 unique LocusLinks. Multidimensional scaling plots showed 5000 genes that met our quality criteria; among these, 366 genes were significantly different in at least one comparison. Differences in three genes of interest were confirmed with real-time PCR and in-situ hybridization; acid phosphatase 5 was shown to be overexpressed in PE samples and calmodulin 2 and v-rel reticuloendotheliosis viral oncogene homolog A (RELA) were downregulated in PE and uterine artery notch placentas. In conclusion downregulation of RELA and calmodulin 2 might represent an attempt by the placenta to compensate for elevations in intracellular calcium, possibly caused by hypoxia and/or apoptosis, in both pregnancies with uterine artery notching and preeclampsia.
Collapse
Affiliation(s)
- S R Hansson
- Department of Obstetrics and Gynecology, Lund University Hospital, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yamaji R, Chatani E, Harada N, Sugimoto K, Inui H, Nakano Y. Glyceraldehyde-3-phosphate dehydrogenase in the extracellular space inhibits cell spreading. Biochim Biophys Acta Gen Subj 2005; 1726:261-71. [PMID: 16125849 DOI: 10.1016/j.bbagen.2005.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 11/23/2022]
Abstract
The occurrence and the novel function of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the extracellular space were studied. The extracellular GAPDH with the same molecular mass as the intracellular GAPDH was detected in the conditioned medium of mammalian cultured cell lines such as COS-7, HEK293, MCF-7, HepG2, PC-12, and Neuro-2a cells. Western blot analysis represented the occurrence of GAPDH, but not alpha-tubulin (an intracellular marker protein), in the conditioned medium of COS-7 cells. Furthermore, GAPDH was found in rat serum. These results indicate that GAPDH was secreted outside of the cells. Addition of GAPDH to the cultured medium of COS-7, HEK293, and HepG2 cells allowed cells to undergo morphological changes. In COS-7 cells, the extracellular GAPDH inhibited cell spreading without influencing the cell growth. Western blot and immunofluorescent microscopy analyses revealed that the extracellular GAPDH bound to COS-7 cells in time- and dose-dependent manners. However, a mutant substituting Ser for Cys at position 151 of GAPDH resulted in no binding to the cells, no decreased cell-spreading efficiency and no cell morphological changes. These results indicate that the Cys151 was involved in the binding of GAPDH to cells and the GAPDH-inhibited cell spreading.
Collapse
Affiliation(s)
- Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 5998531, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Jiang P, Gan M, Huang H, Shen X, Wang S, Yao K. Proteome analysis of antiproliferative mechanism of 12-O-tetradecanoylphorbol 13-acetate on cultured nasopharyngeal carcinoma CNE2 cells. J Proteome Res 2005; 4:599-605. [PMID: 15822940 DOI: 10.1021/pr0497677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
12-O-Tetradecanoyl-phorbol-13-acetate (TPA) is a plant derivative with multiple function as tumor promoter, differentiation revulsant or leukemia therapy drug. The molecular mechanism of its function is perplexing. Many studies have focused on the mechanism of TPA stimulation in tumor promotion of mouse models or terminal differentiation of leukemia cells, but the effect of TPA on nasopharyngeal carcinoma (NPC) remains unclear, while TPA was considered to be associated with NPC development. In the present study, we employed proteomics techniques to study protein changes of a poorly differentiated squamous carcinoma cell line-CNE2 of human NPCs cells induced by TPA. Six significantly and reproducibly changed proteins were identified and their functional implications were discussed in some details.
Collapse
Affiliation(s)
- Peizhou Jiang
- Cancer Research Institute and Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
JIANG PZ, GAN M, HUANG H, SHEN XM, WANG S, YAO KT. Proteomics-based Identification of Proteins with Altered Expression Induced by 12-O-Tetradecanoylphorbol 13-acetate in Nasopharyngeal Carcinoma CNE2 Cells. Acta Biochim Biophys Sin (Shanghai) 2005. [DOI: 10.1111/j.1745-7270.2005.00016.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Kundrotas PJ, Karshikoff A. Charge sequence coding in statistical modeling of unfolded proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1702:1-8. [PMID: 15450845 DOI: 10.1016/j.bbapap.2004.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 06/18/2004] [Accepted: 07/01/2004] [Indexed: 11/30/2022]
Abstract
Unfolded proteins recently attracted attention due to accumulation of experimental evidences for their significant role in different life processes. Modeling of electrostatic interactions (EI) in unfolded state of proteins is becoming increasingly important as well. In this paper, we stress on the importance of how the sequence of charged residues of a given protein is incorporated into the models for calculation of EI in the unfolded state. On the basis of the distributions of distances between titratable sites of charged residues calculated for polypeptide chains of various compositions, it was found that the distance distribution for a pair of residues, located close to each other along the sequence of a protein, depends on what residues constitute the pair in question. It was concluded that the consideration of these residue-specific distributions is essential for a statistical model to be accurate from the physical point of view. It was suggested that use of distance intervals in the spherical model of unfolded proteins accounts better for the charge sequence than the set of single distance values. This was illustrated by comparison of the pK values of the titratable groups of the unfolded N-terminal SH3 domain of the Drosophila protein drk to the available experimental data.
Collapse
Affiliation(s)
- Petras J Kundrotas
- Department of Biosciences at Novum, Karolinska Institutet, SE-141 57 Huddinge, Sweden.
| | | |
Collapse
|