1
|
Horton JR, Yu M, Zhou J, Tran M, Anakal RR, Lu Y, Blumenthal RM, Zhang X, Huang Y, Zhang X, Cheng X. Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs. Nat Commun 2025; 16:3672. [PMID: 40246927 PMCID: PMC12006351 DOI: 10.1038/s41467-025-58998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BCL11A, a transcription factor, is vital for hematopoiesis, including B and T cell maturation and the fetal-to-adult hemoglobin switch. Mutations in BCL11A are linked to neurodevelopmental disorders. BCL11A contains two DNA-binding zinc-finger arrays, low-affinity ZF2-3 and high-affinity ZF4-6, separated by a 300-amino-acid linker. ZF2-3 and ZF4-5 share 73% identity, including five out of six DNA base-interacting residues. These arrays bind similar short sequence motifs in clusters, with the linker enabling a broader binding span. Crystallographic structures of ZF4-6, in complex with oligonucleotides from the β-globin locus region, reveal DNA sequence recognition by residues Asn756 (ZF4), Lys784 and Arg787 (ZF5). A Lys784-to-Thr mutation, linked to a neurodevelopmental disorder with persistent fetal globin expression, reduces DNA binding over 10-fold but gains interaction with a variable base pair. BCL11A isoforms may form oligomers, enhancing chromatin occupancy and repressor functions by allowing multiple copies of both low- and high-affinity ZF arrays to bind DNA. These distinctive properties, apparently conserved among vertebrates, provide essential functional flexibility to this crucial regulator.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meigen Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melody Tran
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rithvi R Anakal
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX, 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Zhang H, Zeng J, Zhang F, Liu J, Liang L. Role of B-Cell Lymphoma/Leukemia 11A in Normal and Malignant Hematopoiesis. BIOLOGY 2025; 14:26. [PMID: 39857257 PMCID: PMC11759832 DOI: 10.3390/biology14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
B-cell lymphoma/leukemia 11A (BCL11A) is a crucial transcriptional regulator, widely recognized for its role in controlling fetal hemoglobin and its potential as a gene therapy target for inherited hemoglobinopathies. Beyond this, recent studies have also highlighted its key role in the maturation and function of immune cells and erythrocytes, mediated through the regulation of various molecules during hematopoietic development. The dysregulation of BCL11A disrupts downstream molecular pathways, contributing to the development of several hematological malignancies, particularly leukemias. This review provides a comprehensive overview of the role of BCL11A in normal and malignant hematopoiesis, details the hematological disorders associated with its dysregulation and explores the current therapeutic strategies targeting this transcription factor.
Collapse
Affiliation(s)
- Haihang Zhang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Junhao Zeng
- Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Fangling Zhang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (H.Z.); (F.Z.)
| |
Collapse
|
3
|
Liu W, Luo G. NEDD9 is transcriptionally regulated by HDAC4 and promotes breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling pathway. Neoplasia 2024; 57:101059. [PMID: 39326322 PMCID: PMC11470473 DOI: 10.1016/j.neo.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Breast cancer is a malignancy with a generally poor prognosis. With the advancement of molecular research, we have gained deeper insights into the cellular processes that drive breast cancer development. However, the precise mechanisms remain elusive. RESULTS Based on the CPTAC database, we found that NEDD9 expression is up-regulated in breast cancer tissues and is associated with poor prognosis in breast cancer patients. Functional experiments showed that NEDD9 promotes tumor growth and metastasis both in vitro and in vivo. Overexpression of NEDD9 disrupts mammary epithelial acinus formation and triggers epithelial-mesenchymal transition in breast cancer cells, effects that are reversed upon NEDD9 gene silencing. Mechanistically, NEDD9 upregulates its expression by inhibiting HDAC4 activity, leading to enhanced H3K9 acetylation of the NEDD9 gene promoter and activation of the FAK/NF-κB signaling pathway. Furthermore, NEDD9 overexpression promotes IL-6 secretion, which further drives breast cancer progression. Notably, NEDD9 activation fosters the pro-tumoral M2 macrophage polarization in the tumor microenvironment. NEDD9 stimulates IL-6 secretion, polarizes monocytes towards an M2-like phenotype, and enhances BC cell invasiveness. CONCLUSIONS These findings suggest that NEDD9 upregulation plays a pivotal role in breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling axis. Targeting NEDD9 may offer a promising therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
- Wenhong Liu
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China
| | - Guanghua Luo
- Department of Radiology, The First Affiliated Hospital of University of South China, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
4
|
Kątnik E, Gomułkiewicz A, Piotrowska A, Grzegrzółka J, Kmiecik A, Ratajczak-Wielgomas K, Urbaniak A, Glatzel-Plucińska N, Błasiak P, Dzięgiel P. BCL11A Expression in Non-Small Cell Lung Cancers. Int J Mol Sci 2023; 24:9848. [PMID: 37372998 DOI: 10.3390/ijms24129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
B-cell leukemia/lymphoma 11A (BCL11A) may be one of the potential biomarkers of non-small cell lung cancer (NSCLC). However, its role in the development of this cancer has not yet been precisely established. The aim of this study was to investigate the expression of BCL11A at the mRNA and protein levels in NSCLC cases and non-malignant lung tissue (NMLT) and to determine the relationship between BCL11A expression and the clinicopathological factors and Ki-67, Slug, Snail and Twist. The localization and the level of BCL11A protein were examined using immunohistochemistry (IHC) on 259 cases of NSCLC, and 116 NMLT samples were prepared as tissue microarrays and using immunofluorescence (IF) in the following cell lines: NCI-H1703, A549 and IMR-90. The mRNA expression of BCL11A was determined using real-time PCR in 33 NSCLC cases, 10 NMLT samples and the cell lines. BCL11A protein expression was significantly higher in NSCLC cases compared to NMLT. Nuclear expression was found in lung squamous cell carcinoma (SCC) cells, while cytoplasmic expression was demonstrated in adenocarcinoma (AC) cells. Nuclear expression of BCL11A decreased with increasing malignancy grade and correlated positively with Ki-67 and Slug and Twist expression. The opposite relationships were found for the cytoplasmic expression of BCL11A. Nuclear expression of BCL11A in NSCLC cells may affect tumor cell proliferation and change their phenotype, thus promoting tumor progression.
Collapse
Affiliation(s)
- Ewa Kątnik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Agnieszka Gomułkiewicz
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Anna Urbaniak
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Błasiak
- Department and Clinic of Thoracic Surgery, Wroclaw Medical University, 53-439 Wroclaw, Poland
- Lower Silesian Center of Oncology, Pulmonology and Hematology, 53-439 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
5
|
Zhou H, Chen J, Fan M, Cai H, Dong Y, Qiu Y, Zhuang Q, Lei Z, Li M, Ding X, Yan P, Lin A, Zheng S, Yan Q. KLF14 regulates the growth of hepatocellular carcinoma cells via its modulation of iron homeostasis through the repression of iron-responsive element-binding protein 2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:5. [PMID: 36600258 DOI: 10.1186/s13046-022-02562-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a multifactor-driven malignant tumor with rapid progression, which causes the difficulty to substantially improve the prognosis of HCC. Limited understanding of the mechanisms in HCC impedes the development of efficacious therapies. Despite Krüpple-Like factors (KLFs) were reported to be participated in HCC pathogenesis, the function of KLF14 in HCC remains largely unexplored. METHODS We generated KLF14 overexpressed and silenced liver cancer cells, and nude mouse xenograft models for the in vitro and in vivo study. Luciferase reporter assay, ChIP-qPCR, Co-IP, immunofluorescence were performed for mechanism research. The expression of KLF14 in HCC samples was analyzed by quantitative RT-PCR, Western blotting, and immunohistochemistry (IHC) analysis. RESULTS KLF14 was significantly downregulated in human HCC tissues, which was highly correlated with poor prognosis. Inhibition of KLF14 promoted liver cancer cells proliferation and overexpression of KLF14 suppressed cells growth. KLF14 exerts its anti-tumor function by inhibiting Iron-responsive element-binding protein 2 (IRP2), which then causes transferrin receptor-1(TfR1) downregulation and ferritin upregulation on the basis of IRP-IREs system. This then leading to cellular iron deficiency and HCC cells growth suppression in vitro and in vivo. Interestingly, KLF14 suppressed the transcription of IRP2 via recruiting SIRT1 to reduce the histone acetylation of the IRP2 promoter, resulting in iron depletion and cell growth suppression. More important, we found fluphenazine is an activator of KLF14, inhibiting HCC cells growth through inducing iron deficiency. CONCLUSION KLF14 acts as a tumor suppressor which inhibits the proliferation of HCC cells by modulating cellular iron metabolism via the repression of IRP2. We identified Fluphenazine, as an activator of KLF14, could be a potential compound for HCC therapy. Our findings therefore provide an innovative insight into the pathogenesis of HCC and a promising therapeutic target.
Collapse
Affiliation(s)
- Hui Zhou
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Junru Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Mingjie Fan
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Department of Pediatrics, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Huajian Cai
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yufei Dong
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yue Qiu
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qianqian Zhuang
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhaoying Lei
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Mengyao Li
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xue Ding
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Yan
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Aifu Lin
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| | - Qingfeng Yan
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Department of Pediatrics, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China. .,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
6
|
Du H, Wang Z, Guo R, Yang L, Liu G, Zhang Z, Xu Z, Tian Y, Yang Z, Li X, Chen B. Transcription factors Bcl11a and Bcl11b are required for the production and differentiation of cortical projection neurons. Cereb Cortex 2022; 32:3611-3632. [PMID: 34963132 PMCID: PMC9433425 DOI: 10.1093/cercor/bhab437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The generation and differentiation of cortical projection neurons are extensively regulated by interactive programs of transcriptional factors. Here, we report the cooperative functions of transcription factors Bcl11a and Bcl11b in regulating the development of cortical projection neurons. Among the cells derived from the cortical neural stem cells, Bcl11a is expressed in the progenitors and the projection neurons, while Bcl11b expression is restricted to the projection neurons. Using conditional knockout mice, we show that deficiency of Bcl11a leads to reduced proliferation and precocious differentiation of cortical progenitor cells, which is exacerbated when Bcl11b is simultaneously deleted. Besides defective neuronal production, the differentiation of cortical projection neurons is blocked in the absence of both Bcl11a and Bcl11b: Expression of both pan-cortical and subtype-specific genes is reduced or absent; axonal projections to the thalamus, hindbrain, spinal cord, and contralateral cortical hemisphere are reduced or absent. Furthermore, neurogenesis-to-gliogenesis switch is accelerated in the Bcl11a-CKO and Bcl11a/b-DCKO mice. Bcl11a likely regulates neurogenesis through repressing the Nr2f1 expression. These results demonstrate that Bcl11a and Bcl11b jointly play critical roles in the generation and differentiation of cortical projection neurons and in controlling the timing of neurogenesis-to-gliogenesis switch.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ziwu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Rongliang Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Tian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
7
|
Choi SR, Hwang CY, Lee J, Cho KH. Network Analysis Identifies Regulators of Basal-Like Breast Cancer Reprogramming and Endocrine Therapy Vulnerability. Cancer Res 2021; 82:320-333. [PMID: 34845001 DOI: 10.1158/0008-5472.can-21-0621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/13/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Basal-like breast cancer is the most aggressive breast cancer subtype with the worst prognosis. Despite its high recurrence rate, chemotherapy is the only treatment for basal-like breast cancer, which lacks expression of hormone receptors. In contrast, luminal A tumors express ERα and can undergo endocrine therapy for treatment. Previous studies have tried to develop effective treatments for basal-like patients using various therapeutics but failed due to the complex and dynamic nature of the disease. In this study, we performed a transcriptomic analysis of patients with breast cancer to construct a simplified but essential molecular regulatory network model. Network control analysis identified potential targets and elucidated the underlying mechanisms of reprogramming basal-like cancer cells into luminal A cells. Inhibition of BCL11A and HDAC1/2 effectively drove basal-like cells to transition to luminal A cells and increased ERα expression, leading to increased tamoxifen sensitivity. High expression of BCL11A and HDAC1/2 correlated with poor prognosis in patients with breast cancer. These findings identify mechanisms regulating breast cancer phenotypes and suggest the potential to reprogram basal-like breast cancer cells to enhance their targetability. SIGNIFICANCE: A network model enables investigation of mechanisms regulating the basal-to-luminal transition in breast cancer, identifying BCL11A and HDAC1/2 as optimal targets that can induce basal-like breast cancer reprogramming and endocrine therapy sensitivity.
Collapse
Affiliation(s)
- Sea R Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chae Young Hwang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jonghoon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Bhattacharya N, Ganguli-Indra G, Indra AK. CTIP2 and lipid metabolism: regulation in skin development and associated diseases. Expert Rev Proteomics 2021; 18:1009-1017. [PMID: 34739354 PMCID: PMC9119322 DOI: 10.1080/14789450.2021.2003707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION COUP-TF INTERACTING PROTEIN 2 (CTIP2) is a crucial transcription factor exhibiting its control through coupled modulation of epigenetic modification and transcriptional regulation of key genes related to skin, immune, and nervous system development. Previous studies have validated the essential role of CTIP2 in skin development and maintenance, propagating its effects in epidermal permeability barrier (EPB) homeostasis, wound healing, inflammatory diseases, and epithelial cancers. Lipid metabolism dysregulation, on the other hand, has also established its independent emerging role over the years in normal skin development and various skin-associated ailments. This review focuses on the relatively unexplored connections between CTIP2-mediated control of lipid metabolism and alteration of EPB homeostasis, delayed wound healing, inflammatory diseases exacerbation, and cancer promotion and progression. AREAS COVERED Here we have discussed the intricate interplay of various endogenous lipids and lipoproteins accompanying skin development and associated disease processes and the possible link to CTIP2-mediated regulation of lipid metabolism. EXPERT OPINION Establishing the link between CTIP2 and lipid metabolism alterations in the context of skin morphogenesis and diverse types of skin diseases including cancer can help us identify novel targets for effective therapeutic intervention.
Collapse
Affiliation(s)
- Nilika Bhattacharya
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University (OSU), Corvallis, OR, USA
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University (OSU), Corvallis, OR, USA
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University (OSU), Corvallis, OR, USA
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Biochemistry and Biophysics, OSU, Corvallis, OR, USA
- Linus Pauling Science Center, OSU, Corvallis, OR, USA
- Department of Dermatology, OHSU, Portland, OR, USA
| |
Collapse
|
9
|
Synthetic modified Fezf2 mRNA (modRNA) with concurrent small molecule SIRT1 inhibition enhances refinement of cortical subcerebral/corticospinal neuron identity from mouse embryonic stem cells. PLoS One 2021; 16:e0254113. [PMID: 34473715 PMCID: PMC8412356 DOI: 10.1371/journal.pone.0254113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/20/2021] [Indexed: 01/29/2023] Open
Abstract
During late embryonic development of the cerebral cortex, the major class of cortical output neurons termed subcerebral projection neurons (SCPN; including the predominant population of corticospinal neurons, CSN) and the class of interhemispheric callosal projection neurons (CPN) initially express overlapping molecular controls that later undergo subtype-specific refinements. Such molecular refinements are largely absent in heterogeneous, maturation-stalled, neocortical-like neurons (termed "cortical" here) spontaneously generated by established embryonic stem cell (ES) and induced pluripotent stem cell (iPSC) differentiation. Building on recently identified central molecular controls over SCPN development, we used a combination of synthetic modified mRNA (modRNA) for Fezf2, the central transcription factor controlling SCPN specification, and small molecule screening to investigate whether distinct chromatin modifiers might complement Fezf2 functions to promote SCPN-specific differentiation by mouse ES (mES)-derived cortical-like neurons. We find that the inhibition of a specific histone deacetylase, Sirtuin 1 (SIRT1), enhances refinement of SCPN subtype molecular identity by both mES-derived cortical-like neurons and primary dissociated E12.5 mouse cortical neurons. In vivo, we identify that SIRT1 is specifically expressed by CPN, but not SCPN, during late embryonic and postnatal differentiation. Together, these data indicate that SIRT1 has neuronal subtype-specific expression in the mouse cortex in vivo, and that its inhibition enhances subtype-specific differentiation of highly clinically relevant SCPN / CSN cortical neurons in vitro.
Collapse
|
10
|
Sidwell T, Rothenberg EV. Epigenetic Dynamics in the Function of T-Lineage Regulatory Factor Bcl11b. Front Immunol 2021; 12:669498. [PMID: 33936112 PMCID: PMC8079813 DOI: 10.3389/fimmu.2021.669498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Bcl11b is critically required to support the development of diverse cell types, including T lymphocytes, type 2 innate lymphoid cells, neurons, craniofacial mesenchyme and keratinocytes. Although in T cell development its onset of expression is tightly linked to T-lymphoid lineage commitment, the Bcl11b protein in fact regulates substantially different sets of genes in different lymphocyte populations, playing strongly context-dependent roles. Somewhat unusually for lineage-defining transcription factors with site-specific DNA binding activity, much of the reported chromatin binding of Bcl11b appears to be indirect, or guided in large part by interactions with other transcription factors. We describe evidence suggesting that a further way in which Bcl11b exerts such distinct stage-dependent functions is by nucleating changes in regional suites of epigenetic modifications through recruitment of multiple families of chromatin-modifying enzyme complexes. Herein we explore what is - and what remains to be - understood of the roles of Bcl11b, its cofactors, and how it modifies the epigenetic state of the cell to enforce its diverse set of context-specific transcriptional and developmental programs.
Collapse
Affiliation(s)
- Tom Sidwell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
11
|
Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci 2020; 13:51. [PMID: 32322190 PMCID: PMC7158892 DOI: 10.3389/fnmol.2020.00051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.
Collapse
Affiliation(s)
- Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| |
Collapse
|
12
|
Kulikova VA, Gromyko DV, Nikiforov AA. The Regulatory Role of NAD in Human and Animal Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:800-812. [PMID: 30200865 DOI: 10.1134/s0006297918070040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- V A Kulikova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - D V Gromyko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A A Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| |
Collapse
|
13
|
Kuri-Harcuch W, Velez-delValle C, Vazquez-Sandoval A, Hernández-Mosqueira C, Fernandez-Sanchez V. A cellular perspective of adipogenesis transcriptional regulation. J Cell Physiol 2018; 234:1111-1129. [PMID: 30146705 DOI: 10.1002/jcp.27060] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
Adipose cells store lipids in the cytoplasm and signal systemically through secretion of adipokines and other molecules that regulate body energy metabolism. Differentiation of fat cells and its regulation has been the focus of extensive research since the early 1970s. In this review, we had attempted to examine the research bearing on the control of adipose cell differentiation, some of it dating back to the early days when Howard Green and his group described the preadipocyte cell lines 3T3-L1 and 3T3-F442A during 1974-1975. We also concentrated our attention on research published during the last few years, emphasizing data described on transcription factors that regulate adipose differentiation, outside of those that were reported earlier as part of the canonical adipogenic transcriptional cascade, which has been the subject of ample reviews by several groups of researchers. We focused on the studies carried out with the two preadipocyte cell culture models, the 3T3-L1 and 3T3-F442A cells that have provided essential data on adipose biology.
Collapse
Affiliation(s)
- Walid Kuri-Harcuch
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cristina Velez-delValle
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfredo Vazquez-Sandoval
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia Hernández-Mosqueira
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Veronica Fernandez-Sanchez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
14
|
Liu N, Hargreaves VV, Zhu Q, Kurland JV, Hong J, Kim W, Sher F, Macias-Trevino C, Rogers JM, Kurita R, Nakamura Y, Yuan GC, Bauer DE, Xu J, Bulyk ML, Orkin SH. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 2018; 173:430-442.e17. [PMID: 29606353 DOI: 10.1016/j.cell.2018.03.016] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/16/2018] [Accepted: 03/06/2018] [Indexed: 01/06/2023]
Abstract
Fetal hemoglobin (HbF, α2γ2) level is genetically controlled and modifies severity of adult hemoglobin (HbA, α2β2) disorders, sickle cell disease, and β-thalassemia. Common genetic variation affects expression of BCL11A, a regulator of HbF silencing. To uncover how BCL11A supports the developmental switch from γ- to β- globin, we use a functional assay and protein binding microarray to establish a requirement for a zinc-finger cluster in BCL11A in repression and identify a preferred DNA recognition sequence. This motif appears in embryonic and fetal-expressed globin promoters and is duplicated in γ-globin promoters. The more distal of the duplicated motifs is mutated in individuals with hereditary persistence of HbF. Using the CUT&RUN approach to map protein binding sites in erythroid cells, we demonstrate BCL11A occupancy preferentially at the distal motif, which can be disrupted by editing the promoter. Our findings reveal that direct γ-globin gene promoter repression by BCL11A underlies hemoglobin switching.
Collapse
Affiliation(s)
- Nan Liu
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victoria V Hargreaves
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jesse V Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiyoung Hong
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Woojin Kim
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Falak Sher
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio Macias-Trevino
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN Bioresource Center, Tsukuba, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN Bioresource Center, Tsukuba, Japan
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel E Bauer
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas at Southwestern Medical Center, Dallas, TX, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
15
|
Dai Y, Chen T, Ijaz H, Cho EH, Steinberg MH. SIRT1 activates the expression of fetal hemoglobin genes. Am J Hematol 2017; 92:1177-1186. [PMID: 28776729 DOI: 10.1002/ajh.24879] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
High fetal hemoglobin (HbF, α2 γ2 ) levels ameliorate the clinical manifestations of sickle cell disease and β thalassemia. The mechanisms that repress HbF expression and silence γ-globin genes in adults are incompletely characterized and only a single HbF inducer, hydroxyurea, is approved for treatment, and only in patients with sickle cell disease. We identified SIRT1, a protein deacetylase, as a new inducer of γ-globin. SIRT1 knockdown decreased, while SIRT1 ectopic expression upregulated γ-globin gene (HBG) expression in primary human erythroid cells and in K562 cells. The small molecule SIRT1 activators SRT2104 and SRT1720 enhanced HBG expression in cord blood human erythroblasts and reactivated silenced HBG in adult human erythroblasts. Furthermore, SIRT1 binds in the β-globin gene cluster locus control region (LCR) and HBG promoters, promotes the looping of the LCR to HBG promoter, and increases the binding of RNA polymerase II and H4K16Ac in the HBG promoter. SIRT1 suppressed the expression of the HBG suppressors BCL11A, KLF1, HDAC1 and HDAC2. Lastly, SIRT1 did not change the proliferation of human erythroid progenitor cells or the expression of differentiation marker CD235a. These data suggest that SIRT1 activates HBG expression through facilitating LCR looping to the HBG promoter, inhibiting the expression of transcriptional suppressors of HBG, and indirectly increasing histone acetylation in the HBG promoter. SIRT1 is a potential therapeutic target for γ-globin gene induction, and small molecule SIRT1 activators might serve as a lead compound for the development of new HbF inducers.
Collapse
Affiliation(s)
- Yan Dai
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Tyngwei Chen
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Heba Ijaz
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Elizabeth H. Cho
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Martin H. Steinberg
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| |
Collapse
|
16
|
Tao H, Ma X, Su G, Yin J, Xie X, Hu C, Chen Z, Tan D, Xu Z, Zheng Y, Liu H, He C, Mao ZJ, Yin H, Wang Z, Chang W, Gale RP, Chen Z, Wu D, Yin B. BCL11A expression in acute myeloid leukemia. Leuk Res 2015; 41:71-5. [PMID: 26707798 DOI: 10.1016/j.leukres.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND BCL11A encodes a C2H2 type zinc-finger protein. During normal haematopoietic cell differentiation BCL11A expression is down-regulated. Data in mice suggest up-regulation of BCL11A is involved in the pathogenesis of myeloid leukaemias. BCL11A expression in persons with acute myeloid leukaemia (AML) is not systematically studied. OBJECTIVE Interrogate associations between BCL11A expression at diagnosis and clinical and laboratory valuables and outcomes in newly-diagnosed persons with AML. METHODS We determined BCL11A mRNA levels in bone marrow and blood mononuclear cells in 292 consecutive newly-diagnosed subjects with AML by reverse transcript and real-time polymerase chain reaction. Data were compared to mRNA levels in bone marrow cells of normals. RESULTS Subjects with BCL11A transcript levels at diagnosis exceeding the median value of 2.434 (±3.423 SD; 25th-75th inter-quartile range, 1.33-4.29) had higher WBC levels, a greater proportion of bone marrow myeloblasts, were more likely to be FAB M0 subtype, less likely to be FAB M3 subtype, more likely to be in the intermediate cytogenetic risk cohort, less likely to have a complex karyotype and more likely to have DNMT3A(R882) and FLT3-ITD mutations than subjects with transcript levels below the median value. In 89 subjects receiving conventional induction chemotherapy the complete remission rate was 54% (95% confidence interval [CI]; 33, 75%) in the lower BCL11A cohort and 65% (45, 85%; P=0.26) in the higher BCL11A cohort. 3 year survival was 33% (2, 65%) in the lower BCL11A cohort and 15% (0, 39%; P=0.35) in the high BCL11A cohort. CONCLUSION BCL11A transcript levels at diagnosis was significantly associated with several clinical and laboratory variables. There were also non-significant associations with complete remission rate and survival. These data suggest a possible role for BCL11A expression in AML biology.
Collapse
Affiliation(s)
- Huiquan Tao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Xiao Ma
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Guangsong Su
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Jiawei Yin
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Xiaoli Xie
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Chenxi Hu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Zheng Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Dongming Tan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Zhongjuan Xu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Yanwen Zheng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Hong Liu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Chao He
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Zhengwei Jenny Mao
- Seattle Cancer Center Alliance, University of Washington Medical Center, Seattle, WA, USA
| | - Hongchao Yin
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Zhiwei Wang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China
| | - Weirong Chang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Robert Peter Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Zixing Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, Jiangsu province, China
| | - Bin Yin
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu province, China; Thrombosis and Hemostasis Key Lab of the Ministry of Health, Soochow University, Suzhou, Jiangsu province, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu province, China.
| |
Collapse
|
17
|
The Specification of Cortical Subcerebral Projection Neurons Depends on the Direct Repression of TBR1 by CTIP1/BCL11a. J Neurosci 2015; 35:7552-64. [PMID: 25972180 DOI: 10.1523/jneurosci.0169-15.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The acquisition of distinct neuronal fates is fundamental for the function of the cerebral cortex. We find that the development of subcerebral projections from layer 5 neurons in the mouse neocortex depends on the high levels of expression of the transcription factor CTIP1; CTIP1 is coexpressed with CTIP2 in neurons that project to subcerebral targets and with SATB2 in those that project to the contralateral cortex. CTIP1 directly represses Tbr1 in layer 5, which appears as a critical step for the acquisition of the subcerebral fate. In contrast, lower levels of CTIP1 in layer 6 are required for TBR1 expression, which directs the corticothalamic fate. CTIP1 does not appear to play a critical role in the acquisition of the callosal projection fate in layer 5. These findings unravel a key step in the acquisition of cell fate for closely related corticofugal neurons and indicate that differential dosages of transcriptions factors are critical to specify different neuronal identities.
Collapse
|
18
|
Xu C, Cai Y, Fan P, Bai B, Chen J, Deng HB, Che CM, Xu A, Vanhoutte PM, Wang Y. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues. Diabetes 2015; 64:1576-90. [PMID: 25475438 DOI: 10.2337/db14-1180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022]
Abstract
Adipose tissue is a pivotal organ determining longevity, due largely to its role in maintaining whole-body energy homeostasis and insulin sensitivity. SIRT1 is a NAD-dependent protein deacetylase possessing antiaging activities in a wide range of organisms. The current study demonstrates that mice with adipose tissue-selective overexpression of hSIRT1(H363Y), a dominant-negative mutant that disrupts endogenous SIRT1 activity, show accelerated development of metabolic aging. These mice, referred to as Adipo-H363Y, exhibit hyperglycemia, dyslipidemia, ectopic lipid deposition, insulin resistance, and glucose intolerance at a much younger age than their wild-type littermates. The metabolic defects of Adipo-H363Y are associated with abnormal epigenetic modifications and chromatin remodeling in their adipose tissues, as a result of excess accumulation of biotin, which inhibits endogenous SIRT1 activity, leading to increased inflammation, cellularity, and collagen deposition. The enzyme acetyl-CoA carboxylase 2 plays an important role in biotin accumulation within adipose tissues of Adipo-H363Y. Calorie restriction prevents biotin accumulation, abolishes abnormal histone biotinylation, and completely restores the metabolic and adipose functions of Adipo-H363Y. The effects are mimicked by short-term restriction of biotin intake, an approach potentially translatable to humans for maintaining the epigenetic and chromatin remodeling capacity of adipose tissues and preventing aging-associated metabolic disorders.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yu Cai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Pengcheng Fan
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Bo Bai
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Jie Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Han-Bing Deng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Chi-Ming Che
- Department of Chemistry and Chemical Biology Center, Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
20
|
Khaled WT, Choon Lee S, Stingl J, Chen X, Raza Ali H, Rueda OM, Hadi F, Wang J, Yu Y, Chin SF, Stratton M, Futreal A, Jenkins NA, Aparicio S, Copeland NG, Watson CJ, Caldas C, Liu P. BCL11A is a triple-negative breast cancer gene with critical functions in stem and progenitor cells. Nat Commun 2015; 6:5987. [PMID: 25574598 PMCID: PMC4338552 DOI: 10.1038/ncomms6987] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has poor prognostic outcome compared with other types of breast cancer. The molecular and cellular mechanisms underlying TNBC pathology are not fully understood. Here, we report that the transcription factor BCL11A is overexpressed in TNBC including basal-like breast cancer (BLBC) and that its genomic locus is amplified in up to 38% of BLBC tumours. Exogenous BCL11A overexpression promotes tumour formation, whereas its knockdown in TNBC cell lines suppresses their tumourigenic potential in xenograft models. In the DMBA-induced tumour model, Bcl11a deletion substantially decreases tumour formation, even in p53-null cells and inactivation of Bcl11a in established tumours causes their regression. At the cellular level, Bcl11a deletion causes a reduction in the number of mammary epithelial stem and progenitor cells. Thus, BCL11A has an important role in TNBC and normal mammary epithelial cells. This study highlights the importance of further investigation of BCL11A in TNBC-targeted therapies.
Collapse
Affiliation(s)
- Walid T. Khaled
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
- These authors contributed equally to this work
| | - Song Choon Lee
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
- These authors contributed equally to this work
| | - John Stingl
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Xiongfeng Chen
- SAIC-Frederic, National Cancer Institute-Frederick, Frederick, Maryland 21701, USA
| | - H. Raza Ali
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 0RE, UK
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fazal Hadi
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Juexuan Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Yong Yu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mike Stratton
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Andy Futreal
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Nancy A. Jenkins
- The Methodist Hospital Research Institute, 6670 Bertner Street, Houston, Texas 77030, USA
| | - Sam Aparicio
- Molecular Oncology Department, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Neal G. Copeland
- The Methodist Hospital Research Institute, 6670 Bertner Street, Houston, Texas 77030, USA
| | | | - Carlos Caldas
- Cancer Research UK Cambridge Institute, and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 0RE, UK
- Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| |
Collapse
|
21
|
Kuypers FA. Hemoglobin S Polymerization and Red Cell Membrane Changes. Hematol Oncol Clin North Am 2014; 28:155-79. [DOI: 10.1016/j.hoc.2013.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Bórquez DA, Olmos C, Álvarez S, Di Genova A, Maass A, González-Billault C. Bioinformatic survey for new physiological substrates of Cyclin-dependent kinase 5. Genomics 2013; 101:221-8. [DOI: 10.1016/j.ygeno.2013.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/26/2012] [Accepted: 01/26/2013] [Indexed: 11/27/2022]
|
23
|
Raynes R, Pombier KM, Nguyen K, Brunquell J, Mendez JE, Westerheide SD. The SIRT1 modulators AROS and DBC1 regulate HSF1 activity and the heat shock response. PLoS One 2013; 8:e54364. [PMID: 23349863 PMCID: PMC3548779 DOI: 10.1371/journal.pone.0054364] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/11/2012] [Indexed: 12/31/2022] Open
Abstract
The heat shock response, the cellular response to protein damaging stress, is critical in maintaining proteostasis. The heat shock response is regulated by the transcription factor HSF1, which is activated upon heat shock and other stresses to induce the expression of molecular chaperones. SIRT1 has previously been shown to activate HSF1 by deacetylating it, leading to increased DNA binding ability. We have investigated how the heat shock response may be controlled by factors influencing SIRT1 activity. We found that heat shock results in an increase in the cellular NAD+/NADH ratio and an increase in recruitment of SIRT1 to the hsp70 promoter. Furthermore, we found that the SIRT1 modulators AROS and DBC1 have an impact on hsp70 transcription, HSF1 acetylation status, and HSF1 recruitment to the hsp70 promoter. Therefore, AROS and DBC1 are now two new targets available for therapeutic regulation of the heat shock response.
Collapse
Affiliation(s)
- Rachel Raynes
- The Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Kathleen M. Pombier
- The Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Kevin Nguyen
- The Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Jessica Brunquell
- The Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Jamie E. Mendez
- The Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Sandy D. Westerheide
- The Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Li P, Xiao Y, Liu Z, Liu P. Using mouse models to study function of transcriptional factors in T cell development. CELL REGENERATION (LONDON, ENGLAND) 2012; 1:8. [PMID: 25408871 PMCID: PMC4230505 DOI: 10.1186/2045-9769-1-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/08/2012] [Indexed: 02/03/2023]
Abstract
Laboratory mice have widely been used as tools for basic biological research and models for studying human diseases. With the advances of genetic engineering and conditional knockout (CKO) mice, we now understand hematopoiesis is a dynamic stepwise process starting from hematopoietic stem cells (HSCs) which are responsible for replenishing all blood cells. Transcriptional factors play important role in hematopoiesis. In this review we compile several studies on using genetic modified mice and humanized mice to study function of transcriptional factors in lymphopoiesis, including T lymphocyte and Natural killer (NK) cell development. Finally, we focused on the key transcriptional factor Bcl11b and its function in regulating T cell specification and commitment.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Regenerative Biology, Guangzchou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China ; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yiren Xiao
- Key Laboratory of Regenerative Biology, Guangzchou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China ; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Zhixin Liu
- Key Laboratory of Regenerative Biology, Guangzchou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China ; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH UK
| |
Collapse
|
25
|
Zhu X, Wang Y, Pi W, Liu H, Wickrema A, Tuan D. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene. PLoS One 2012; 7:e47175. [PMID: 23071749 PMCID: PMC3468502 DOI: 10.1371/journal.pone.0047175] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022] Open
Abstract
The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.
Collapse
Affiliation(s)
- Xingguo Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia and College of Graduate Studies, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Yongchao Wang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia and College of Graduate Studies, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Wenhu Pi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia and College of Graduate Studies, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Hui Liu
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Amittha Wickrema
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Dorothy Tuan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia and College of Graduate Studies, Georgia Health Sciences University, Augusta, Georgia, United States of America
| |
Collapse
|
26
|
Kominami R. Role of the transcription factor Bcl11b in development and lymphomagenesis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:72-87. [PMID: 22450536 PMCID: PMC3365246 DOI: 10.2183/pjab.88.72] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
Bcl11b is a lineage-specific transcription factor expressed in various cell types and its expression is important for development of T cells, neurons and others. On the other hand, Bcl11b is a haploinsufficient tumor suppressor and loss of a Bcl11b allele provides susceptibility to mouse thymic lymphoma and human T-cell acute lymphoblastic leukemia. Although there are many transcription factors affecting both cell differentiation and cancer development, Bcl11b has several unique properties. This review describes phenotypes given by loss of Bcl11b and roles of Bcl11b in cell proliferation, differentiation and apoptosis, taking tissue development and lymphomagenesis into consideration.
Collapse
Affiliation(s)
- Ryo Kominami
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
27
|
Abstract
The NAD-dependent histone deacetylase sirtuin (Sirt)1 is implicated in a wide variety of physiological processes, ranging from tumorigenesis to mitochondrial biogenesis to neuronal development. Recent studies indicate that Sirt1 is a critical regulator of both the innate and adaptive immune response in mice and its altered functions are likely involved in autoimmune diseases. Small molecules that modulate Sirt1 functions are potential therapeutic reagents for autoimmune inflammatory diseases. In this review, we highlight the functions of Sirt1 in the immune system focusing on the underlying molecular mechanisms, and the potential of Sirt1 as a therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
28
|
Rahman S, Islam R. Mammalian Sirt1: insights on its biological functions. Cell Commun Signal 2011; 9:11. [PMID: 21549004 PMCID: PMC3103488 DOI: 10.1186/1478-811x-9-11] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 05/08/2011] [Indexed: 12/23/2022] Open
Abstract
Sirt1 (member of the sirtuin family) is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase that removes acetyl groups from various proteins. Sirt1 performs a wide variety of functions in biological systems. The current review focuses on the biological functions of Sirt1 in obesity-associated metabolic diseases, cancer, adipose tissue, aging, cellular senescence, cardiac aging and stress, prion-mediated neurodegeneration, inflammatory signaling in response to environmental stress, development and placental cell survival.
Collapse
Affiliation(s)
- Shahedur Rahman
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia -7003, Bangladesh.
| | | |
Collapse
|
29
|
Liu P, Li P, Burke S. Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity. Immunol Rev 2010; 238:138-49. [DOI: 10.1111/j.1600-065x.2010.00953.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
NAD: a master regulator of transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:681-93. [PMID: 20713194 DOI: 10.1016/j.bbagrm.2010.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 07/20/2010] [Accepted: 08/07/2010] [Indexed: 01/31/2023]
Abstract
Cellular processes such as proliferation, differentiation and death are intrinsically dependent upon the redox status of a cell. Among other indicators of redox flux, cellular NAD(H) levels play a predominant role in transcriptional reprogramming. In addition to this, normal physiological functions of a cell are regulated in response to perturbations in NAD(H) levels (for example, due to alterations in diet/metabolism) to maintain homeostatic conditions. Cells achieve this homeostasis by reprogramming various components that include changes in chromatin structure and function (transcription). The interdependence of changes in gene expression and NAD(H) is evolutionarily conserved and is considered crucial for the survival of a species (by affecting reproductive capacity and longevity). Proteins that bind and/or use NAD(H) as a co-substrate (such as, CtBP and PARPs/Sirtuins respectively) are known to induce changes in chromatin structure and transcriptional profiles. In fact, their ability to sense perturbations in NAD(H) levels has been implicated in their roles in development, stress responses, metabolic homeostasis, reproduction and aging or age-related diseases. It is also becoming increasingly clear that both the levels/activities of these proteins and the availability of NAD(H) are equally important. Here we discuss the pivotal role of NAD(H) in controlling the functions of some of these proteins, the functional interplay between them and physiological implications during calorie restriction, energy homeostasis, circadian rhythm and aging.
Collapse
|
31
|
X-linked mental retardation gene CASK interacts with Bcl11A/CTIP1 and regulates axon branching and outgrowth. J Neurosci Res 2010; 88:2364-73. [DOI: 10.1002/jnr.22407] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Zhang T, Kraus WL. SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1666-75. [PMID: 19879981 DOI: 10.1016/j.bbapap.2009.10.022] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 12/11/2022]
Abstract
Sirtuins comprise a family of NAD(+)-dependent protein deacetylases and ADP-ribosyltransferases. Mammalian SIRT1 - a homolog of yeast Sir2, the prototypical member of the sirtuin family - is an important regulator of metabolism, cell differentiation and senescence, stress response, and cancer. As an NAD(+)-dependent enzyme, SIRT1 regulates gene expression programs in response to cellular metabolic status, thereby coordinating metabolic adaptation of the whole organism. Several important mechanisms have emerged for SIRT1-dependent regulation of transcription. First, SIRT1 can modulate chromatin function through direct deacetylation of histones as well as by promoting alterations in the methylation of histones and DNA, leading to the repression of transcription. The latter is accomplished through the recruitment of other nuclear enzymes to chromatin for histone methylation and DNA CpG methylation, suggesting a broader role of SIRT1 in epigenetic regulation. Second, SIRT1 can interact and deacetylate a broad range of transcription factors and coregulators, thereby regulating target gene expression both positively and negatively. Cellular energy state, specifically NAD(+) metabolism, plays a major role in the regulation of SIRT1 activity. Recent studies on the NAD(+) biosynthetic enzymes in the salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase 1 (NMNAT-1), have revealed important functions for these enzymes in SIRT1-dependent transcription regulation. The collective molecular actions of SIRT1 control specific patterns of gene expression that modulate a wide variety of physiological outcomes.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
33
|
Kuo TY, Hong CJ, Hsueh YP. Bcl11A/CTIP1 regulates expression of DCC and MAP1b in control of axon branching and dendrite outgrowth. Mol Cell Neurosci 2009; 42:195-207. [PMID: 19616629 DOI: 10.1016/j.mcn.2009.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/27/2009] [Accepted: 07/03/2009] [Indexed: 12/14/2022] Open
Abstract
The extension of axon branches is important for target innervation but how axon branching is regulated is currently not well understood. Here, we report that Bcl11A/CTIP1/Evi9, a zinc finger transcription factor, downregulates axon branching. Knockdown of Bcl11A induced axon branching and multi-axon formation, as well as dendrite outgrowth. Due to alternative splicing, a single Bcl11A gene encodes two protein products, Bcl11A-L and -S. Bcl11A-L was found to be the main Bcl11A player in regulation of neurite arborization; Bcl11A-S is an antagonist of Bcl11A-L. Time-lapse study further suggests that Bcl11A-L knockdown enhances axon dynamics and increases the duration of axon outgrowth. Finally, the expression of DCC and MAP1b, two molecules involved in direction and branching of axon outgrowth, is controlled by Bcl11A-L. DCC overexpression rescues the phenotype induced by Bcl11A-L knockdown. In conclusion, this report provides the first evidence that Bcl11A is important for neurite arborization.
Collapse
Affiliation(s)
- Ting-Yu Kuo
- Graduate Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | | | | |
Collapse
|
34
|
Ganguli-Indra G, Wasylyk C, Liang X, Millon R, Leid M, Wasylyk B, Abecassis J, Indra A. CTIP2 expression in human head and neck squamous cell carcinoma is linked to poorly differentiated tumor status. PLoS One 2009; 4:e5367. [PMID: 19399189 PMCID: PMC2671404 DOI: 10.1371/journal.pone.0005367] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 03/31/2009] [Indexed: 02/07/2023] Open
Abstract
Background We have demonstrated earlier that CTIP2 is highly expressed in mouse skin during embryogenesis and in adulthood. CTIP2 mutant mice die at birth with epidermal differentiation defects and a compromised epidermal permeability barrier suggesting its role in skin development and/or homeostasis. CTIP2 has also been suggested to function as tumor suppressor in cells, and several reports have described a link between chromosomal rearrangements of CTIP2 and human T cell acute lymphoblast leukemia (T-ALL). The aim of the present study was to look into the pattern of CTIP2 expression in Head and Neck Squamous Cell Carcinoma (HNSCC). Methodology/Principal Findings In the present study, we analyzed CTIP2 expression in human HNSCC cell lines by western blotting, in paraffin embedded archival specimens by immunohistochemistry (IHC), and in cDNA samples of human HNSCC by qRT-PCR. Elevated levels of CTIP2 protein was detected in several HNSCC cell lines. CTIP2 staining was mainly detected in the basal layer of the head and neck normal epithelium. CTIP2 expression was found to be significantly elevated in HNSCC (p<0.01), and increase in CTIP2 expression was associated with poorly differentiated tumor status. Nuclear co-localization of CTIP2 protein and cancer stem cell (CSC) marker BMI1 was observed in most, if not all of the cells expressing BMI1 in moderately and poorly differentiated tumors. Conclusions/Significance We report for the first time expression of transcriptional regulator CTIP2 in normal human head and neck epithelia. A statistically significant increase in the expression of CTIP2 was detected in the poorly differentiated samples of the human head and neck tumors. Actual CTIP2, rather than the long form of CTIP2 (CTIP2L) was found to be more relevant to the differentiation state of the tumors. Results demonstrated existence of distinct subsets of cancer cells, which express CTIP2 and underscores the use of CTIP2 and BMI1 co-labeling to distinguish tumor initiating cells or cancer stem cells (CSCs) from surrounding cancer cells.
Collapse
MESH Headings
- Base Sequence
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Line, Tumor
- DNA Primers/genetics
- DNA, Neoplasm/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polycomb Repressive Complex 1
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (GGI); (AI)
| | - Christine Wasylyk
- IGBMC, Inserm U596 and CNRS UMR 7104, Illkirch, France
- Université Louis Pasteur, Strasbourg, France
| | - Xiaobo Liang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | | | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
| | - Bohdan Wasylyk
- IGBMC, Inserm U596 and CNRS UMR 7104, Illkirch, France
- Université Louis Pasteur, Strasbourg, France
| | | | - Arup Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (GGI); (AI)
| |
Collapse
|
35
|
Chen Z, Luo HY, Steinberg MH, Chui DH. BCL11A represses HBG transcription in K562 cells. Blood Cells Mol Dis 2009; 42:144-9. [DOI: 10.1016/j.bcmd.2008.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/02/2008] [Indexed: 11/16/2022]
|
36
|
|
37
|
Golonzhka O, Liang X, Messaddeq N, Bornert JM, Campbell AL, Metzger D, Chambon P, Ganguli-Indra G, Leid M, Indra AK. Dual role of COUP-TF-interacting protein 2 in epidermal homeostasis and permeability barrier formation. J Invest Dermatol 2008; 129:1459-70. [PMID: 19092943 DOI: 10.1038/jid.2008.392] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
COUP-TF-interacting protein 2 (CTIP2; also known as Bcl11b) is a transcription factor that plays key roles in the development of the central nervous and immune systems. CTIP2 is also highly expressed in the developing epidermis, and at lower levels in the dermis and in adult skin. Analyses of mice harboring a germline deletion of CTIP2 revealed that the protein plays critical roles in skin during development, particularly in keratinocyte proliferation and late differentiation events, as well as in the development of the epidermal permeability barrier. At the core of all of these actions is a relatively large network of genes, described herein, that is regulated directly or indirectly by CTIP2. The analysis of conditionally null mice, in which expression of CTIP2 was ablated specifically in epidermal keratinocytes, suggests that CTIP2 functions in both cell and non-cell autonomous contexts to exert regulatory influence over multiple phases of skin development, including barrier establishment. Considered together, our results suggest that CTIP2 functions as a top-level regulator of skin morphogenesis.
Collapse
Affiliation(s)
- Olga Golonzhka
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 2008; 113:1075-85. [PMID: 18948576 DOI: 10.1182/blood-2008-03-144436] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
NF1 inactivation occurs in specific human cancers, including juvenile myelomonocytic leukemia, an aggressive myeloproliferative disorder of childhood. However, evidence suggests that Nf1 loss alone does not cause leukemia. We therefore hypothesized that inactivation of the Nf1 tumor suppressor gene requires cooperating mutations to cause acute leukemia. To search for candidate genes that cooperate with Nf1 deficiency in leukemogenesis, we performed a forward genetic screen using retroviral insertion mutagenesis in Nf1 mutant mice. We identified 43 common proviral insertion sites that contain candidate genes involved in leukemogenesis. One of these genes, Bcl11a, confers a growth advantage in cultured Nf1 mutant hematopoietic cells and causes early onset of leukemia of either myeloid or lymphoid lineage in mice when expressed in Nf1-deficient bone marrow. Bcl11a-expressing cells display compromised p21(Cip1) induction, suggesting that Bcl11a's oncogenic effects are mediated, in part, through suppression of p21(Cip1). Importantly, Bcl11a is expressed in human chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia samples. A subset of AML patients, who had poor outcomes, of 16 clusters, displayed high levels of BCL11A in leukemic cells. These findings suggest that deregulated Bcl11a cooperates with Nf1 in leukemogenesis, and a therapeutic strategy targeting the BCL11A pathway may prove beneficial in the treatment of leukemia.
Collapse
|
39
|
Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 2008; 7:854-68. [PMID: 18827828 DOI: 10.1038/nrd2681] [Citation(s) in RCA: 558] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs)--enzymes that affect the acetylation status of histones and other important cellular proteins--have been recognized as potentially useful therapeutic targets for a broad range of human disorders. Pharmacological manipulations using small-molecule HDAC inhibitors--which may restore transcriptional balance to neurons, modulate cytoskeletal function, affect immune responses and enhance protein degradation pathways--have been beneficial in various experimental models of brain diseases. Although mounting data predict a therapeutic benefit for HDAC-based therapy, drug discovery and development of clinical candidates face significant challenges. Here, we summarize the current state of development of HDAC therapeutics and their application for the treatment of human brain disorders such as Rubinstein-Taybi syndrome, Rett syndrome, Friedreich's ataxia, Huntington's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Aleksey G Kazantsev
- Harvard Medical School, Massachusetts General Hospital, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts 02129-4404, USA.
| | | |
Collapse
|
40
|
BCL11A is a major HbF quantitative trait locus in three different populations with beta-hemoglobinopathies. Blood Cells Mol Dis 2008; 41:255-258. [PMID: 18691915 DOI: 10.1016/j.bcmd.2008.06.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/24/2008] [Indexed: 11/23/2022]
Abstract
Increased HbF levels or F-cell (HbF containing erythrocyte) numbers can ameliorate the disease severity of beta-thalassemia major and sickle cell anemia. Recent genome-wide association studies reported that single nucleotide polymorphisms (SNPs) in BCL11A gene on chromosome 2p16.1 were correlated with F-cells among healthy northern Europeans, and HbF among Sardinians with beta-thalassemias. In this study, we showed that SNPs in BCL11A were associated with F-cell numbers in Chinese with beta-thalassemia trait, and with HbF levels in Thais with either beta-thalassemia or HbE trait and in African Americans with sickle cell anemia. Taken together, the data suggest that the functional motifs responsible for modulating F-cells and HbF levels reside within a 3 kb region in the second intron of BCL11A.
Collapse
|
41
|
Dai Y, Faller DV. Transcription Regulation by Class III Histone Deacetylases (HDACs)-Sirtuins. TRANSLATIONAL ONCOGENOMICS 2008; 3:53-65. [PMID: 21566744 PMCID: PMC3022360 DOI: 10.4137/tog.s483] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sirtuins are NAD(+)-dependent histone deacetylases (Class III HDACs). Recently, Sirtuins have been shown to play important roles, both direct and indirect, in transcriptional regulation. This transcriptional control, through incorporation of Sirtuins into transcription complexes and deacetylation of histones locally at gene promoters, or direct interaction with specific transcription factors, is central to the participation of Sirtuins in multiple diverse processes, including aging, apoptosis, hormone responses, stress tolerance, differentiation, metabolism and development. Here we review the contribution of the Sirtuin family, at multiple molecular levels, to transcriptional regulation.
Collapse
Affiliation(s)
- Yan Dai
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, U.S.A
| | | |
Collapse
|
42
|
Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W, Usala G, Busonero F, Maschio A, Albai G, Piras MG, Sestu N, Lai S, Dei M, Mulas A, Crisponi L, Naitza S, Asunis I, Deiana M, Nagaraja R, Perseu L, Satta S, Cipollina MD, Sollaino C, Moi P, Hirschhorn JN, Orkin SH, Abecasis GR, Schlessinger D, Cao A. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A 2008; 105:1620-5. [PMID: 18245381 PMCID: PMC2234194 DOI: 10.1073/pnas.0711566105] [Citation(s) in RCA: 517] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Indexed: 12/16/2022] Open
Abstract
beta-Thalassemia and sickle cell disease both display a great deal of phenotypic heterogeneity, despite being generally thought of as simple Mendelian diseases. The reasons for this are not well understood, although the level of fetal hemoglobin (HbF) is one well characterized ameliorating factor in both of these conditions. To better understand the genetic basis of this heterogeneity, we carried out genome-wide scans with 362,129 common SNPs on 4,305 Sardinians to look for genetic linkage and association with HbF levels, as well as other red blood cell-related traits. Among major variants affecting HbF levels, SNP rs11886868 in the BCL11A gene was strongly associated with this trait (P < 10(-35)). The C allele frequency was significantly higher in Sardinian individuals with elevated HbF levels, detected by screening for beta-thalassemia, and patients with attenuated forms of beta-thalassemia vs. those with thalassemia major. We also show that the same BCL11A variant is strongly associated with HbF levels in a large cohort of sickle cell patients. These results indicate that BCL11A variants, by modulating HbF levels, act as an important ameliorating factor of the beta-thalassemia phenotype, and it is likely they could help ameliorate other hemoglobin disorders. We expect our findings will help to characterize the molecular mechanisms of fetal globin regulation and could eventually contribute to the development of new therapeutic approaches for beta-thalassemia and sickle cell anemia.
Collapse
Affiliation(s)
- Manuela Uda
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Renzo Galanello
- Clinica Pediatrica, Ospedale Microcitemico, Via Jenner s/n 09121 Cagliari, Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121Cagliari, Italy
| | - Serena Sanna
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Guillaume Lettre
- Children's Hospital of Boston, 300 Longwood Avenue, Boston, MA 02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142
| | - Vijay G. Sankaran
- Children's Hospital of Boston, 300 Longwood Avenue, Boston, MA 02115
- Department of Pediatric Oncology, Dana–Farber Cancer Institute, Boston, MA 02115
| | - Weimin Chen
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109; and
| | - Gianluca Usala
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Fabio Busonero
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Andrea Maschio
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Giuseppe Albai
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Maria Grazia Piras
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Natascia Sestu
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Sandra Lai
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Mariano Dei
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Antonella Mulas
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Laura Crisponi
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Silvia Naitza
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Isadora Asunis
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Manila Deiana
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Ramaiah Nagaraja
- **Gerontology Research Center, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Lucia Perseu
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| | - Stefania Satta
- Clinica Pediatrica, Ospedale Microcitemico, Via Jenner s/n 09121 Cagliari, Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121Cagliari, Italy
| | - Maria Dolores Cipollina
- Clinica Pediatrica, Ospedale Microcitemico, Via Jenner s/n 09121 Cagliari, Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121Cagliari, Italy
| | - Carla Sollaino
- Clinica Pediatrica, Ospedale Microcitemico, Via Jenner s/n 09121 Cagliari, Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121Cagliari, Italy
| | - Paolo Moi
- Clinica Pediatrica, Ospedale Microcitemico, Via Jenner s/n 09121 Cagliari, Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, 09121Cagliari, Italy
| | - Joel N. Hirschhorn
- Children's Hospital of Boston, 300 Longwood Avenue, Boston, MA 02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142
| | - Stuart H. Orkin
- Children's Hospital of Boston, 300 Longwood Avenue, Boston, MA 02115
- Department of Pediatric Oncology, Dana–Farber Cancer Institute, Boston, MA 02115
| | - Gonçalo R. Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109; and
| | - David Schlessinger
- **Gerontology Research Center, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Antonio Cao
- *Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy 09042
| |
Collapse
|
43
|
Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S, Foglio M, Zelenika D, Boland A, Rooks H, Best S, Spector TD, Farrall M, Lathrop M, Thein SL. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet 2007; 39:1197-9. [PMID: 17767159 DOI: 10.1038/ng2108] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 07/02/2007] [Indexed: 11/09/2022]
Abstract
F cells measure the presence of fetal hemoglobin, a heritable quantitative trait in adults that accounts for substantial phenotypic diversity of sickle cell disease and beta thalassemia. We applied a genome-wide association mapping strategy to individuals with contrasting extreme trait values and mapped a new F cell quantitative trait locus to BCL11A, which encodes a zinc-finger protein, on chromosome 2p15. The 2p15 BCL11A quantitative trait locus accounts for 15.1% of the trait variance.
Collapse
Affiliation(s)
- Stephan Menzel
- King's College London School of Medicine, Division of Gene and Cell Based Therapy, King's Denmark Hill Campus, London SE5 9PJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kuo TY, Hsueh YP. Expression of zinc finger transcription factor Bcl11A/Evi9/CTIP1 in rat brain. J Neurosci Res 2007; 85:1628-36. [PMID: 17455301 DOI: 10.1002/jnr.21300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bcl11A/Evi9/CTIP1, a Kruppel-like zinc finger gene, plays an important role in B-cell development. In addition to expression in B lymphocytes, Bcl11A/Evi9/CTIP1 is also highly expressed in the brain, although its function there is still unclear. In the present study, regional and subcellular distributions of Bcl11A/Evi9/CTIP1 in rat brain were investigated by immunostaining and biochemical fractionation. Using antibodies recognizing the first 18 amino acid residues of Bcl11A/Evi9/CTIP1, the distribution of 2 isoforms of Bcl11A/Evi9/CTIP1 gene products, Bcl11A-L/Evi9a and Bcl11A-S/Evi9c, was examined. In rat brain, both Bcl11A-L/Evi9a and Bcl11A-S/Evi9c were expressed, although the amount of Bcl11A-S/Evi9c protein was higher. Bcl11A-S/Evi9c was widely expressed in different regions of the rat brain. In contrast, Bcl11A-L/Evi9a was more restricted, being expressed in the cerebral cortex, hippocampus, and olfactory bulb. At the subcellular level, biochemical fractionation and confocal analysis of adult rat brain revealed that, in addition to being in the nuclei of neurons, fractions of Bcl11A-L/Evi9a and Bcl11A-S/Evi9c could be found in extranuclear locations. Double staining with the synaptic marker synaptophysin indicated a synaptic distribution of Bcl11A/Evi9/CTIP1. Postsynaptic density was also biochemically purified and subjected to immunoblotting using Bcl11A/Evi9/CTIP1 antibodies. The results showed that Bcl11A-L/Evi9a was enriched in the PSD I and PSD II fractions. In contrast, only a trace amount of Bcl11A-S was detected in PSD fractions. Our study also indicated that a fraction of Bcl11A/Evi9/CTIP1 was present in the cytoplasm, even at synapses. To regulate gene expression in the nuclei, nuclear translocation of Bcl11A/Evi9/CTIP1 may be one of the mechanisms controlling neuronal Bcl11A/Evi9/CTIP1 function.
Collapse
Affiliation(s)
- Ting-Yu Kuo
- Graduate Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
45
|
Abstract
Sirtuins are a conserved family of proteins found in all domains of life. The first known sirtuin, Sir2 (silent information regulator 2) of Saccharomyces cerevisiae, from which the family derives its name, regulates ribosomal DNA recombination, gene silencing, DNA repair, chromosomal stability and longevity. Sir2 homologues also modulate lifespan in worms and flies, and may underlie the beneficial effects of caloric restriction, the only regimen that slows aging and extends lifespan of most classes of organism, including mammals. Sirtuins have gained considerable attention for their impact on mammalian physiology, since they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. In this review we describe our current understanding of the biological function of the seven mammalian sirtuins, SIRT1-7, and we will also discuss their potential as mediators of caloric restriction and as pharmacological targets to delay and treat human age-related diseases.
Collapse
|
46
|
Abstract
Sirtuins are a conserved family of proteins found in all domains of life. The first known sirtuin, Sir2 (silent information regulator 2) of Saccharomyces cerevisiae, from which the family derives its name, regulates ribosomal DNA recombination, gene silencing, DNA repair, chromosomal stability and longevity. Sir2 homologues also modulate lifespan in worms and flies, and may underlie the beneficial effects of caloric restriction, the only regimen that slows aging and extends lifespan of most classes of organism, including mammals. Sirtuins have gained considerable attention for their impact on mammalian physiology, since they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. In this review we describe our current understanding of the biological function of the seven mammalian sirtuins, SIRT1-7, and we will also discuss their potential as mediators of caloric restriction and as pharmacological targets to delay and treat human age-related diseases.
Collapse
|
47
|
Grabarczyk P, Przybylski GK, Depke M, Völker U, Bahr J, Assmus K, Bröker BM, Walther R, Schmidt CA. Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells. Oncogene 2006; 26:3797-810. [PMID: 17173069 DOI: 10.1038/sj.onc.1210152] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The B-cell chronic lymphocytic leukemia (CLL)/lymphoma 11B gene (BCL11B) encodes a Krüppel-like zinc-finger protein, which plays a crucial role in thymopoiesis and has been associated with hematopoietic malignancies. It was hypothesized that BCL11B may act as a tumor-suppressor gene, but its precise function has not yet been elucidated. Here, we demonstrate that the survival of human T-cell leukemia and lymphoma cell lines is critically dependent on Bcl11b. Suppression of Bcl11b by RNA interference selectively induced apoptosis in transformed T cells whereas normal mature T cells remained unaffected. The apoptosis was effected by simultaneous activation of death receptor-mediated and intrinsic apoptotic pathways, most likely as a result of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) upregulation and suppression of the Bcl-xL antiapoptotic protein. Our data indicate an antiapoptotic function of Bcl11b. The resistance of normal mature T lymphocytes to Bcl11b suppression-induced apoptosis and restricted expression pattern make it an attractive therapeutic target in T-cell malignancies.
Collapse
Affiliation(s)
- P Grabarczyk
- Clinic for Internal Medicine C, University of Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
McCarthy FM, Cooksey AM, Wang N, Bridges SM, Pharr GT, Burgess SC. Modeling a whole organ using proteomics: the avian bursa of Fabricius. Proteomics 2006; 6:2759-71. [PMID: 16596704 DOI: 10.1002/pmic.200500648] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While advances in proteomics have improved proteome coverage and enhanced biological modeling, modeling function in multicellular organisms requires understanding how cells interact. Here we used the chicken bursa of Fabricius, a common experimental system for B cell function, to model organ function from proteomics data. The bursa has two major functional cell types: B cells and the supporting stromal cells. We used differential detergent fractionation-multidimensional protein identification technology (DDF-MudPIT) to identify 5198 proteins from all cellular compartments. Of these, 1753 were B cell specific, 1972 were stroma specific and 1473 were shared between the two. By modeling programmed cell death (PCD), cell differentiation and proliferation, and transcriptional activation, we have improved functional annotation of chicken proteins and placed chicken-specific death receptors into the PCD process using phylogenetics. We have identified 114 transcription factors (TFs); 42 of the bursal B cell TFs have not been reported before in any B cells. We have also improved the structural annotation of a newly sequenced genome by confirming the in vivo expression of 4006 "predicted", and 6623 ab initio, ORFs. Finally, we have developed a novel method for facilitating structural annotation, "expressed peptide sequence tags" (ePSTs) and demonstrate its utility by identifying 521 potential novel proteins from the chicken "unassigned chromosome".
Collapse
Affiliation(s)
- Fiona M McCarthy
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Anekonda TS. Resveratrol—A boon for treating Alzheimer's disease? ACTA ACUST UNITED AC 2006; 52:316-26. [PMID: 16766037 DOI: 10.1016/j.brainresrev.2006.04.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/16/2022]
Abstract
Resveratrol, a red wine polyphenol, is known to protect against cardiovascular diseases and cancers, as well as to promote antiaging effects in numerous organisms. It also modulates pathomechanisms of debilitating neurological disorders, such as strokes, ischemia, and Huntington's disease. The role of resveratrol in Alzheimer's disease is still unclear, although some recent studies on red wine bioactive compounds suggest that resveratrol modulates multiple mechanisms of Alzheimer's disease pathology. Emerging literature indicates that mechanisms of aging and Alzheimer's disease are intricately linked and that these mechanisms can be modulated by both calorie restriction regimens and calorie restriction mimetics, the prime mediator of which is the SIRT1 protein, a human homologue of yeast silent information regulator (Sir)-2, and a member of NAD+-dependent histone deacetylases. Calorie restriction regimens and calorie restriction-mimetics trigger sirtuins in a wide variety of organisms, ranging from bacteria to mouse. In a mouse model of Huntington's disease, resveratrol-induced SIRT1 was found to protect neurons against ployQ toxicity and in Wallerian degeneration slow mice, resveratrol was found to protect the degeneration of neurons from axotomy, suggesting that resveratrol may possess therapeutic value to neuronal degeneration. This paper mainly focuses on the role of resveratrol in modulating AD pathomechanisms.
Collapse
Affiliation(s)
- Thimmappa S Anekonda
- Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, 97006, USA.
| |
Collapse
|
50
|
Topark-Ngarm A, Golonzhka O, Peterson VJ, Barrett B, Martinez B, Crofoot K, Filtz TM, Leid M. CTIP2 associates with the NuRD complex on the promoter of p57KIP2, a newly identified CTIP2 target gene. J Biol Chem 2006; 281:32272-83. [PMID: 16950772 PMCID: PMC2547407 DOI: 10.1074/jbc.m602776200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2 (CTIP2), also known as Bcl11b, is a transcriptional repressor that functions by direct, sequence-specific DNA binding activity or by recruitment to the promoter template by interaction with COUP-TF family members. CTIP2 is essential for both T cell development and axonal projections of corticospinal motor neurons in the central nervous system. However, little is known regarding the molecular mechanism(s) by which CTIP2 contributes to either process. CTIP2 complexes that were isolated from SK-N-MC neuroblastoma cells were found to harbor substantial histone deacetylase activity, which was likely conferred by the nucleosome remodeling and deacetylation (NuRD) complex. CTIP2 was found to associate with the NuRD complex through direct interaction with both RbAp46 and RbAp48, and components of the NuRD complex were found to be recruited to an artificial promoter template in a CTIP2-dependent manner in transfected cells. Finally, the NuRD complex and CTIP2 were found to co-occupy the promoter template of p57KIP2, a gene encoding a cyclin-dependent kinase inhibitor, and identified herein as a novel transcriptional target of CTIP2 in SK-N-MC cells. Therefore, it seems likely that the NuRD complex may be involved in transcriptional repression of CTIP2 target genes and contribute to the function(s) of CTIP2 within a neuronal context.
Collapse
Affiliation(s)
- Acharawan Topark-Ngarm
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | |
Collapse
|