1
|
Bathaei P, Imenshahidi M, Vahdati-Mashhadian N, Hosseinzadeh H. Effects of Crocus sativus and its active constituents on cytochrome P450: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03525-6. [PMID: 40167627 DOI: 10.1007/s00210-024-03525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 04/02/2025]
Abstract
Cytochrome P450 (CYP) enzymes play an important role in the biotransformation of drugs and endogenous substances. Clinical medications and herbal remedies can either enhance or inhibit the activity of CYP enzymes, leading to potential drug interactions between herbal supplements and prescribed medications. Such interactions can lead to serious consequences, especially for drugs with a narrow therapeutic index, such as digoxin, warfarin, and cyclosporine A. In this review article, we provide an updated review of the impact of saffron, and its active constituents, safranal and crocin, on the 12 major human CYP enzymes and possible drug interactions between saffron and prescription drugs. The available evidence indicates that saffron and its active constituents affect the expression or activity of some CYP isoforms, including the CYP1A1/2, CYP3A4, and CYP2E1 subfamily. Considering the important role of these CYPs in the biotransformation of frequently prescribed medications and the activation of procarcinogen into carcinogenic metabolites, it can be expected that the consumption of saffron and its active constituents may influence the pharmacokinetics and toxicity of several substances. In particular, given the critical role of CYP3A4 in drug metabolism, and saffron's inhibitory impact on this CYP enzyme, it appears that saffron's most significant interaction is linked to its inhibition of CYP3A4. In addition, the inhibitory effect of saffron on CYP1A1/2, and CYP2E1 expression can play a role in the chemopreventive effect of this herbal medicine. Additional research is crucial for evaluating the clinical significance of these interactions in patients who consume saffron along with prescription drugs and determining the dose that can lead to drug interactions.
Collapse
Affiliation(s)
- Pooneh Bathaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran
| | - Nasser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran.
| |
Collapse
|
2
|
Wei KL, Chen SC, Lin CY, Chou YT, Kuo WT, Chuah TW, Joseph Su JG. Dexlansoprazole is an aryl hydrocarbon receptor agonist. Food Chem Toxicol 2025; 197:115262. [PMID: 39832710 DOI: 10.1016/j.fct.2025.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/14/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Dexlansoprazole, a proton pump inhibitor, is commonly used to treat gastro-esophageal reflux disease and erosive esophagitis. The activated aryl hydrocarbon receptor (AhR) functions as a transcription factor by binding to the aryl hydrocarbon response element (AHRE) of its target genes, with cytochrome P450 (CYP) 1A1 being the most well-known target. In this study, we demonstrated that dexlansoprazole stimulates AhR activity, leading to increased CYP1A1 expression. Our findings indicate that treatment with 2 μM dexlansoprazole is sufficient to induce CYP1A1 mRNA and protein expression, as well as AHRE-mediated transcriptional activity, in both human and mouse cells. Using AhR signal-deficient mutant cells and specific AhR antagonists-SR1, GNF351, and CH-223191-we confirmed that AhR is required for dexlansoprazole-induced CYP1A1 expression. Additionally, we showed that dexlansoprazole promotes AhR nuclear translocation, acting as an AhR agonist. However, due to its lower potency compared to FICZ and ITE in activating AhR, dexlansoprazole suppresses FICZ- and ITE-induced CYP1A1 expression in human liver HepG2 and ovarian granulosa HO23 cell lines, suggesting that it functions as both an AhR agonist and a modulator. This study offers valuable insights into the potential clinical side effects of dexlansoprazole.
Collapse
Affiliation(s)
- Kuo-Liang Wei
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, 61363, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, ROC
| | - Shan-Chun Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Chih-Yi Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Yu-Ting Chou
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Wei-Tin Kuo
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Teik-Wei Chuah
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | - Jyan-Gwo Joseph Su
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC.
| |
Collapse
|
3
|
Serna E, Verdú D, Valls A, Belenguer-Varea Á, Tarazona-Santabalbina FJ, Borrás C, Viña J. Involvement of Aryl Hydrocarbon Receptor in Longevity and Healthspan: Insights from Humans, Mice, and C. elegans. Int J Mol Sci 2024; 25:9943. [PMID: 39337431 PMCID: PMC11432571 DOI: 10.3390/ijms25189943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
In previous studies, using transcriptomic analysis, we observed higher levels of aryl hydrocarbon receptor (AHR) gene expression in the peripheral blood cells of centenarians compared to octogenarians. This suggests the potential significance of this receptor in maintaining physiological balance and promoting healthy aging, possibly linked to its critical role in detoxifying xenobiotics. In our current study, we confirmed that AHR expression is indeed higher in centenarians. We employed C. elegans as a model known for its suitability in longevity studies to explore whether the AHR pathway has a significant impact on lifespan and healthspan. Our survival assays revealed that two different mutants of AHR-1 exhibited lower longevity. Additionally, we used a mouse model to examine whether supplementation with pomegranate extract modulates the expression of AHR pathway genes in the liver. Furthermore, we studied a nutritional strategy based on pomegranate extract administration to investigate its potential modulation of life- and healthspan in worms.
Collapse
Affiliation(s)
- Eva Serna
- Department of Physiology, School of Medicine, University of Valencia, CIBERFES, INCLIVA, 46010 Valencia, Spain; (D.V.); (A.V.); (C.B.); (J.V.)
- MODULAhR Group, University of Valencia, 46010 Valencia, Spain
| | - David Verdú
- Department of Physiology, School of Medicine, University of Valencia, CIBERFES, INCLIVA, 46010 Valencia, Spain; (D.V.); (A.V.); (C.B.); (J.V.)
- MODULAhR Group, University of Valencia, 46010 Valencia, Spain
| | - Alicia Valls
- Department of Physiology, School of Medicine, University of Valencia, CIBERFES, INCLIVA, 46010 Valencia, Spain; (D.V.); (A.V.); (C.B.); (J.V.)
- MODULAhR Group, University of Valencia, 46010 Valencia, Spain
| | - Ángel Belenguer-Varea
- Division of Geriatrics, Hospital Universitario de La Ribera, 46600 Valencia, Spain; (Á.B.-V.); (F.J.T.-S.)
| | | | - Consuelo Borrás
- Department of Physiology, School of Medicine, University of Valencia, CIBERFES, INCLIVA, 46010 Valencia, Spain; (D.V.); (A.V.); (C.B.); (J.V.)
| | - José Viña
- Department of Physiology, School of Medicine, University of Valencia, CIBERFES, INCLIVA, 46010 Valencia, Spain; (D.V.); (A.V.); (C.B.); (J.V.)
| |
Collapse
|
4
|
Liang S, Bo H, Zhang Y, Zhen H, Zhong L. Alizarin, an Agonist of AHR Receptor, Enhances CYP1A1 Enzyme Activity and Induces Transcriptional Changes in Hepatoma Cells. Molecules 2023; 28:7373. [PMID: 37959792 PMCID: PMC10650112 DOI: 10.3390/molecules28217373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The phytopigment alizarin was previously characterized as an anti-tumor drug owing to its antioxidant or antigenotoxic activities. However, the safety of alizarin is currently still under dispute. In this study, we explored the activity of alizarin in the AHR-CYP1A1 pathway and analyzed the transcriptional changes affected by alizarin using human hepatoma cell line HepG2-based assays. The results showed that alizarin decreased HepG2 cell viability in a dose-dependent manner, with IC50 values between 160.4 and 216.8 μM. Furthermore, alizarin significantly upregulated the expression of CYP1A1 and increased the ethoxyresorufin-O-deethylase activity. Alizarin also exhibited agonistic activity toward the AHR receptor in the XRE-mediated luciferase reporter gene assay, which was further confirmed via the molecular docking assay. In addition, the transcriptional analysis indicated that alizarin may act as a potential carcinogen through significantly enriching several items related to cancer in both DO and KEGG analysis. In brief, our findings indicated that alizarin shows agonistic activities to the AHR receptor through activating the AHR-CYP1A1 signaling pathway in HepG2 cells, which may lead to the risks for cancer developing.
Collapse
Affiliation(s)
- Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Haimei Bo
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Yue Zhang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Hongcheng Zhen
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
| | - Li Zhong
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding 071000, China; (H.B.); (Y.Z.); (H.Z.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
5
|
Xie S, Feng Y, Zhou A, Lu Z, JixingZou. Comparative analysis of two new zebrafish models: The cyp1a low-expression line and cyp1a knockout line under PAHs exposure. Gene 2023; 869:147391. [PMID: 36966979 DOI: 10.1016/j.gene.2023.147391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Cytochrome P450 1 (CYP1) is an important enzyme family involved in the metabolism of pollutants, and used as a biomarker to monitor environmental pollution. In this study, a fluorescence-labeled cyp1a zebrafish line, named as KI (cyp1a+/+-T2A-mCherry) (KICM), was originally constructed to monitor dioxin-like compounds in the environment. However, the cyp1a gene expression in the KICM line was inhibited by the fluorescence labeling, thus leading to a significantly increased sensitivity of KICM zebrafish line to PAHs. Then, a cyp1a knockout zebrafish line, named KOC, were constructed for comparative analysis with the cyp1a low-expression line. Interestingly, knockout of the cyp1a gene did not increase the sensitivity of zebrafish to PAHs as significantly as the cyp1a low-expression line. So, the expression levels of related genes in the aryl hydrocarbon receptor pathway were analyzed and the results showed that the expression level of cyp1b in KOC group was significantly higher than that of wild type and KICM under the same PAH exposure. This indicated that the effect of losing cyp1a was compensated by inducing expression of cyp1b. In conclusion, two new zebrafish models including cyp1a low-expression line and cyp1a knockout line were constructed in this study, which may provide a convenient model for subsequent studies on the toxicity mechanism of PAHs and the role of cyp1a in detoxification.
Collapse
|
6
|
Haduch A, Bromek E, Kuban W, Daniel WA. The Engagement of Cytochrome P450 Enzymes in Tryptophan Metabolism. Metabolites 2023; 13:metabo13050629. [PMID: 37233670 DOI: 10.3390/metabo13050629] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Tryptophan is metabolized along three main metabolic pathways, namely the kynurenine, serotonin and indole pathways. The majority of tryptophan is transformed via the kynurenine pathway, catalyzed by tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase, leading to neuroprotective kynurenic acid or neurotoxic quinolinic acid. Serotonin synthesized by tryptophan hydroxylase, and aromatic L-amino acid decarboxylase enters the metabolic cycle: serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine→serotonin. Recent studies indicate that serotonin can also be synthesized by cytochrome P450 (CYP), via the CYP2D6-mediated 5-methoxytryptamine O-demethylation, while melatonin is catabolized by CYP1A2, CYP1A1 and CYP1B1 via aromatic 6-hydroxylation and by CYP2C19 and CYP1A2 via O-demethylation. In gut microbes, tryptophan is metabolized to indole and indole derivatives. Some of those metabolites act as activators or inhibitors of the aryl hydrocarbon receptor, thus regulating the expression of CYP1 family enzymes, xenobiotic metabolism and tumorigenesis. The indole formed in this way is further oxidized to indoxyl and indigoid pigments by CYP2A6, CYP2C19 and CYP2E1. The products of gut-microbial tryptophan metabolism can also inhibit the steroid-hormone-synthesizing CYP11A1. In plants, CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of tryptophan to form indole-3-acetaldoxime while CYP83B1 was reported to form indole-3-acetaldoxime N-oxide in the biosynthetic pathway of indole glucosinolates, considered to be defense compounds and intermediates in the biosynthesis of phytohormones. Thus, cytochrome P450 is engaged in the metabolism of tryptophan and its indole derivatives in humans, animals, plants and microbes, producing biologically active metabolites which exert positive or negative actions on living organisms. Some tryptophan-derived metabolites may influence cytochrome P450 expression, affecting cellular homeostasis and xenobiotic metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| |
Collapse
|
7
|
Hwang YJ, Shin DY, Kim MJ, Jang H, Kim S, Yang H, Jang WI, Park S, Shim S, Lee SB. StemRegenin 1 Mitigates Radiation-Mediated Hematopoietic Injury by Modulating Radioresponse of Hematopoietic Stem/Progenitor Cells. Biomedicines 2023; 11:biomedicines11030824. [PMID: 36979803 PMCID: PMC10045038 DOI: 10.3390/biomedicines11030824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Hematopoietic injury resulting from the damage of hematopoietic stem/progenitor cells (HSPCs) can be induced by either nuclear accident or radiotherapy. Radiomitigation of HSPCs is critical for the development of medical countermeasure agents. StemRegenin 1 (SR1) modulates the maintenance and function of HSPCs under non-stress conditions. However, the impact of SR1 in radiation-induced hematopoietic injury both in vivo and in vitro remains unknown. In this study, we found that treatment with SR1 after irradiation of C57BL/6 mice significantly mitigates TBI-induced death (80% of SR1-treated mice survival vs. 30% of saline-treated mice survival) with enhanced recovery of peripheral blood cell counts, with the density and cell proliferation of bone marrow components as observed by Hematoxylin and Eosin (H&E) and Ki-67 staining. Interestingly, in vitro analysis of human HSPCs showed that SR1 enhanced the population of human HSPCs (CD34+) under both non-irradiating and irradiating conditions, and reduced radiation-induced DNA damage and apoptosis. Furthermore, SR1 attenuated the radiation-induced expression of a member of the pro-apoptotic BCL-2 family and activity of caspase-3. Overall, these results suggested that SR1 modulates the radioresponse of HSPCs and might provide a potential radiomitigator of hematopoietic injury, which contributes to increase the survival of patients upon irradiation.
Collapse
Affiliation(s)
- You Jung Hwang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong-Yeop Shin
- Center for Medical Innovation of Biomedical Research Institute, Seoul National University Hospital, Seoul 01812, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Soyeon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyunwon Yang
- Biohealth Convergence, Seoul Women’s University, Seoul 01812, Republic of Korea
| | - Won Il Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (S.B.L.); Tel.: +82-2-3399-5873 (S.S.); +82-2-3399-5874 (S.B.L.)
| | - Seung Bum Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.S.); (S.B.L.); Tel.: +82-2-3399-5873 (S.S.); +82-2-3399-5874 (S.B.L.)
| |
Collapse
|
8
|
Lu YC, Kuan YH, Lin CY, Chou YT, Chen SC, Gao GL, Hsu CW, Su JGJ. Alizarin as a New Activator of the Aryl Hydrocarbon Receptor Signaling Pathway. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221136669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alizarin (1,2-dihydroxyanthraquinone) is a natural red dye extracted from the roots of Rubia cordifolia L. (family Rubiaceae). Alizarin has been used as a biological red stain for calcium. The aryl hydrocarbon receptor (AhR) has critical roles in multiple physiological pathways. This study aimed to determine whether alizarin is an unreported ligand of AhR. In the present study, we investigated the effects on cytochrome P450 (CYP) 1A1 mRNA, protein expression, AhR nuclear translocation, aryl hydrocarbon response element (AHRE) reporter activity, and AhR-specific antagonist following alizarin treatment of cells of the human hepatoma cell line, HepG2, and murine hepatoma cell line, Hepa-1c1c7. Alizarin induced CYP1A1 mRNA and protein expression in HepG2 and Hep-1c1c7 cells. Such induction was not present in C4 (B13NBii1) cells, which are AhR signal deficient, C12 (B15ECiii2) cells, which reduce AhR protein levels. The alizarin-induced responses were blocked by CH-223191, which is an AhR antagonist. Alizarin, the same as with the AhR ligand, induced the nuclear localization of AhR, as well as stimulated the transcriptional activity of AHRE. The results of this study suggest that alizarin is an AhR agonist.
Collapse
Affiliation(s)
- Yin-Che Lu
- Department of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yi Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yu-Ting Chou
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Shan-Chun Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Guan-Lun Gao
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
- Department of Biological Resources, National Chiayi University, Chiayi, Taiwan
| | - Chiang Wei Hsu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jyan-Gwo Joseph Su
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
9
|
Soliño M, Larrayoz IM, López EM, Rey-Funes M, Bareiro M, Loidl CF, Girardi E, Caltana L, Brusco A, Martínez A, López-Costa JJ. CB1 Cannabinoid Receptor is a Target for Neuroprotection in Light Induced Retinal Degeneration. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10734. [PMID: 38390616 PMCID: PMC10880786 DOI: 10.3389/adar.2022.10734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 02/24/2024]
Abstract
In the last few years, an increasing interest in the neuroprotective effect of cannabinoids has taken place. The aim of the present work was to study the effects of modulating cannabinoid receptor 1 (CB1) in the context of light induced retinal degeneration (LIRD), using an animal model that resembles many characteristics of human age-related macular degeneration (AMD) and other degenerative diseases of the outer retina. Sprague Dawley rats (n = 28) were intravitreally injected in the right eye with either a CB1 agonist (ACEA), or an antagonist (AM251). Contralateral eyes were injected with respective vehicles as controls. Then, rats were subjected to continuous illumination (12,000 lux) for 24 h. Retinas from 28 animals were processed by GFAP-immunohistochemistry (IHC), TUNEL technique, Western blotting (WB), or qRT-PCR. ACEA-treated retinas showed a significantly lower number of apoptotic nuclei in the outer nuclear layer (ONL), lower levels of activated Caspase-3 by WB, and lower levels of glial reactivity by both GFAP-IHC and WB. qRT-PCR revealed that ACEA significantly decreased the expression of Bcl-2 and CYP1A1. Conversely, AM251-treated retinas showed a higher number of apoptotic nuclei in the ONL, higher levels of activated Caspase-3 by WB, and higher levels of glial reactivity as determined by GFAP-IHC and WB. AM251 increased the expression of Bcl-2, Bad, Bax, Aryl hydrocarbon Receptor (AhR), GFAP, and TNFα. In summary, the stimulation of the CB1 receptor, previous to the start of the pathogenic process, improved the survival of photoreceptors exposed to LIRD. The modulation of CB1 activity may be used as a neuroprotective strategy in retinal degeneration and deserves further studies.
Collapse
Affiliation(s)
- Manuel Soliño
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Ester María López
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Manuel Rey-Funes
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Mariana Bareiro
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Cesar Fabián Loidl
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Elena Girardi
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Laura Caltana
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Juan José López-Costa
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Nataraj B, Maharajan K, Malafaia G, Hemalatha D, Ahmed MAI, Ramesh M. Gene expression profiling in liver of zebrafish exposed to ethylhexyl methoxycinnamate and its photoproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154046. [PMID: 35217044 DOI: 10.1016/j.scitotenv.2022.154046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, the ecotoxicological potential of organic ultraviolet filters (OU-VFs) has received growing attention. However, the toxicity of its photoproducts or transformation products on freshwater vertebrates has been little explored. Therefore, the aim of the present study is to evaluate the possible adverse effects of ethylhexyl methoxycinnamate (EHMC) and its photoproducts [2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA)] on the expression of stress-responsive and antioxidant genes. For this, zebrafish (Danio rerio) adults were exposed to pollutants at an environmentally relevant concentration (3 μg/L) and evaluated after 7, 14, and 21 days of exposure. The results of the principal component analysis (PCA) and two-way repeated measures (RM) ANOVA revealed that EHMC, 2-EH, and 4-MBA exposure caused significant downregulation of the genes hsp70, nrf2, cyp1a, ahr, sod1, sod2, cat, gstp1, gpx1a, gss, and gsr (on all trial days) in the liver of the animals. On the other hand, taken together, our data did not show significant differences between the effects induced by EHMC and its photoproducts. The genes evaluated in the present study play a major role in regulating the defensive antioxidant response against EHMC and its photoproducts. Additionally, our study provides an insight into the mechanisms of those OU-VFs in freshwater fish.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Guilherme Malafaia
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Devan Hemalatha
- Department of Zoology, PSG College of Arts & Science, Coimbatore, Tamil Nadu - 641014, India
| | | | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
11
|
The role of heat-not-burn, snus and other nicotine-containing products as interventions for epileptic patients who take phenytoin and smoke cigarettes. Toxicol Rep 2022; 9:1114-1119. [DOI: 10.1016/j.toxrep.2022.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
|
12
|
Schweizer M, von der Ohe PC, Gräff T, Kühnen U, Hebel J, Heid C, Kundy L, Kuttler J, Moroff FM, Schlösinger AF, Schulze-Berge P, Triebskorn R, Panagopoulou E, Damalas DE, Thomaidis NS, Köhler HR. Heart rate as an early warning parameter and proxy for subsequent mortality in Danio rerio embryos exposed to ionisable substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151744. [PMID: 34808159 DOI: 10.1016/j.scitotenv.2021.151744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Environmental risk assessments of organic chemicals usually do not consider pH as a key factor. Hence, most substances are tested at a single pH only, which may underestimate the toxicity of ionisable substances with a pKa in the range of 4-10. Thus, the ability to consider the pH-dependent toxicity would be crucial for a more realistic assessment. Moreover, there is a tendency in acute toxicity tests to focus on mortality only, while little attention is paid to sublethal endpoints. We used Danio rerio embryos exposed to ten ionisable substances (the acids diclofenac, ibuprofen, naproxen and triclosan and the bases citalopram, fluoxetine, metoprolol, propranolol, tramadol and tetracaine) at four external pH levels, investigating the endpoints mortality (LC50) and heart rate (EC20). Dose-response curves were fitted with an ensemble-model to determine the true uncertainty and variation around the mean endpoints. The ensemble considers eight (heart rate) or twelve (mortality) individual models for binominal and Poisson distributed data, respectively, selected based on the Akaike Information Criterion (AIC). In case of equally good models, the mean endpoint of all models in the ensemble was calculated, resulting in more robust ECx estimates with lower 'standard errors' as compared to randomly selected individual models. We detected a high correlation between mortality (LC50) at 96 hpf and reduced heart rate (EC20) at 48 hpf for all compounds and all external pH levels (r = 0.98). Moreover, the observed pH-dependent effects were strongly associated with log D and thus, likely driven by differences in uptake (toxicokinetic) rather than internal (toxicodynamic) processes. Prospectively, the a priori consideration of pH-dependent effects of ionisable substances might make testing at different pH levels redundant, while the endpoint of mortality might even be replaced by a reliable sublethal proxy that would reduce the exposure, accelerating the evaluation process.
Collapse
Affiliation(s)
- Mona Schweizer
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | | | - Thomas Gräff
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Ute Kühnen
- German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Janine Hebel
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Christoph Heid
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Lone Kundy
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Julia Kuttler
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Friederike-Marie Moroff
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Anne-Frida Schlösinger
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Pia Schulze-Berge
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany; Steinbeis-Transfer Center Ecotoxicology and Ecophysiology, Blumenstrasse 13, D-72108 Rottenburg, Germany
| | - Elena Panagopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
| | - Dimitrios E Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15784 Athens, Greece
| | - Heinz-R Köhler
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| |
Collapse
|
13
|
Nguyen PTTT, Pagé-Larivière F, Williams K, O'Brien J, Crump D. Developmental and Hepatic Gene Expression Changes in Chicken Embryos Exposed to p-Tert-Butylphenyl Diphenyl Phosphate and Isopropylphenyl Phosphate via Egg Injection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:739-747. [PMID: 34913512 DOI: 10.1002/etc.5274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) are used in a variety of products such as clear coats, resins, and plastics; however, research into their toxicological effects is limited. p-Tert-butylphenyl diphenyl phosphate (BPDP) and isopropylphenyl phosphate (IPPP) are two OPFRs that were prioritized for whole-animal toxicological studies based on observed effects in cultured avian hepatocytes in a previous study. The present study investigates the toxicity of BPDP and IPPP in chicken embryos at different developmental stages by evaluating morphological and gene expression endpoints. Chicken eggs were exposed via air cell injection to 0-250 μg/g (nominal) of either compound and then artificially incubated. At day 11 (midincubation), liver samples were collected for mRNA expression analysis; and at day 20 (1 day prehatch), morphological measurements and liver samples for transcriptomic evaluation were collected. At 250 μg/g, gallbladder size was significantly reduced for both compounds, head/bill length and tarsus length were significantly decreased, and liver somatic index was significantly increased following IPPP exposure only. No effects on mortality were observed up to the highest administered concentration for either chemical. Using a ToxChip polymerase chain reaction array, we report significant differences in hepatic gene expression for both compounds and time points; the most pronounced transcriptomic effects occurred at midincubation. Genes related to xenobiotic metabolism, bile acid/cholesterol regulation, and oxidative stress were significantly dysregulated. Given these changes observed throughout avian embryonic development, further research into the long-term effects of BPDP and IPPP are warranted, especially as they pertain to liver cholestasis. Environ Toxicol Chem 2022;41:739-747. © 2021 Her Majesty the Queen in Right of Canada. Environmental Toxicology and Chemistry © 2021 SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.
Collapse
Affiliation(s)
- Phuoc Tyler T-T Nguyen
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Carleton University, Ottawa, Ontario, Canada
| | - Florence Pagé-Larivière
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Kim Williams
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jason O'Brien
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Carleton University, Ottawa, Ontario, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Sharma S, Dar OI, Singh K, Thakur S, Kesavan AK, Kaur A. Genomic markers for the biological responses of Triclosan stressed hatchlings of Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67370-67384. [PMID: 34254240 DOI: 10.1007/s11356-021-15109-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) used commonly in pharmaceuticals and personal care products has become the most common pollutant in water. Three-day-old hatchlings of an indigenous fish, Labeo rohita, were given 96h exposure to a nonlethal (60 μg L-1) and two moderately lethal concentrations (67 and 97 μg L-1) of TCS and kept for 10 days of recovery for recording transcriptomic alterations in antioxidant/detoxification (SOD, GST, CAT, GPx, GR, CYP1a and CYP3a), metabolic (LDH, ALT and AST) and neurological (AchE) genes and DNA damage. The data were subjected to principal component analysis (PCA) for obtaining biomarkers for the toxicity of TCS. Hatchlings were highly sensitive to TCS (96h LC50 = 126 μg L-1 and risk quotient = 40.95), 96h exposure caused significant induction of CYP3a, AChE and ALT but suppression of all other genes. However, expression of all the genes increased significantly (except for a significant decline in ALT) after recovery. Concentration-dependent increase was also observed in DNA damage [Tail Length (TL), Tail Moment (TM), Olive Tail Moment (OTM) and Percent Tail DNA (TDNA)] after 96 h. The damage declined significantly over 96h values at 60 and 67 μg L-1 after recovery, but was still several times more than control. TCS elicited genomic alterations resulted in 5-11% mortality of exposed hatchlings during the recovery period. It is evident that hatchlings of L. rohita are a potential model and PCA shows that OTM, TL, TM, TDNA, SOD and GR (association with PC1 during exposure and recovery) are the biomarkers for the toxicity of TCS. Graphical abstract.
Collapse
Affiliation(s)
- Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirpal Singh
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sharad Thakur
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anup Kumar Kesavan
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
15
|
Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int J Mol Sci 2021; 22:ijms222312808. [PMID: 34884615 PMCID: PMC8657965 DOI: 10.3390/ijms222312808] [Citation(s) in RCA: 395] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023] Open
Abstract
Human cytochrome P450 (CYP) enzymes, as membrane-bound hemoproteins, play important roles in the detoxification of drugs, cellular metabolism, and homeostasis. In humans, almost 80% of oxidative metabolism and approximately 50% of the overall elimination of common clinical drugs can be attributed to one or more of the various CYPs, from the CYP families 1–3. In addition to the basic metabolic effects for elimination, CYPs are also capable of affecting drug responses by influencing drug action, safety, bioavailability, and drug resistance through metabolism, in both metabolic organs and local sites of action. Structures of CYPs have recently provided new insights into both understanding the mechanisms of drug metabolism and exploiting CYPs as drug targets. Genetic polymorphisms and epigenetic changes in CYP genes and environmental factors may be responsible for interethnic and interindividual variations in the therapeutic efficacy of drugs. In this review, we summarize and highlight the structural knowledge about CYPs and the major CYPs in drug metabolism. Additionally, genetic and epigenetic factors, as well as several intrinsic and extrinsic factors that contribute to interindividual variation in drug response are also reviewed, to reveal the multifarious and important roles of CYP-mediated metabolism and elimination in drug therapy.
Collapse
|
16
|
Malliou F, Andriopoulou CE, Gonzalez FJ, Kofinas A, Skaltsounis AL, Konstandi M. Oleuropein-Induced Acceleration of Cytochrome P450-Catalyzed Drug Metabolism: Central Role for Nuclear Receptor Peroxisome Proliferator-Activated Receptor α. Drug Metab Dispos 2021; 49:833-843. [PMID: 34162688 PMCID: PMC11022892 DOI: 10.1124/dmd.120.000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022] Open
Abstract
Oleuropein (OLE), the main constituent of Olea europaea, displays pleiotropic beneficial effects in health and disease, which are mainly attributed to its anti-inflammatory and cardioprotective properties. Several food supplements and herbal medicines contain OLE and are available without a prescription. This study investigated the effects of OLE on the main cytochrome P450s (P450s) catalyzing the metabolism of many prescribed drugs. Emphasis was given to the role of peroxisome proliferator-activated receptor α (PPARα), a nuclear transcription factor regulating numerous genes including P450s. 129/Sv wild-type and Ppara-null mice were treated with OLE for 6 weeks. OLE induced Cyp1a1, Cyp1a2, Cyp1b1, Cyp3a14, Cyp3a25, Cyp2c29, Cyp2c44, Cyp2d22, and Cyp2e1 mRNAs in liver of wild-type mice, whereas no similar effects were observed in Ppara-null mice, indicating that the OLE-induced effect on these P450s is mediated by PPARα. Activation of the pathways related to phosphoinositide 3-kinase/protein kinase B (AKT)/forkhead box protein O1, c-Jun N-terminal kinase, AKT/p70, and extracellular signal-regulated kinase participates in P450 induction by OLE. These data indicate that consumption of herbal medicines and food supplements containing OLE could accelerate the metabolism of drug substrates of the above-mentioned P450s, thus reducing their efficacy and the outcome of pharmacotherapy. Therefore, OLE-induced activation of PPARα could modify the effects of drugs due to their increased metabolism and clearance, which should be taken into account when consuming OLE-containing products with certain drugs, in particular those of narrow therapeutic window. SIGNIFICANCE STATEMENT: This study indicated that oleuropein, which belongs to the main constituents of the leaves and olive drupes of Olea europaea, induces the synthesis of the major cytochrome P450s (P450s) metabolizing the majority of prescribed drugs via activation of peroxisome proliferator-activated receptor α. This effect could modify the pharmacokinetic profile of co-administered drug substrates of the P450s, thus altering their therapeutic efficacy and toxicity.
Collapse
Affiliation(s)
- Foteini Malliou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Christina E Andriopoulou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Frank J Gonzalez
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Aristeidis Kofinas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| |
Collapse
|
17
|
Daytime Restricted Feeding Modifies the Temporal Expression of CYP1A1 and Attenuated Damage Induced by Benzo[a]pyrene in Rat Liver When Administered before CYP1A1 Acrophase. TOXICS 2021; 9:toxics9060130. [PMID: 34199736 PMCID: PMC8228946 DOI: 10.3390/toxics9060130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that heterodimerizes with the AhR nuclear translocator (ARNT) to modulate CYP1A1 expression, a gene involved in the biotransformation of benzo[a]pyrene (BaP). The AhR pathway shows daily variations under the control of the circadian timing system. Daytime restricted feeding (DRF) entrains the expression of genes involved in the processing of nutrients and xenobiotics to food availability. Therefore, we evaluate if temporal AhR, ARNT, and CYP1A1 hepatic expression in rats are due to light/dark cycles or fasting/feeding cycles promoted by DRF. Our results show that AhR oscillates throughout the 24 h period in DRF and ad libitum feeding rats (ALF), showing maximum expression at the same time points. DRF modified the peak of ARNT expression at ZT5; meanwhile, ALF animals showed a peak of maximum expression at ZT17. An increased expression of CYP1A1 was linked to the meal time in both groups of animals. Although a high CYP1A1 expression has been previously associated with BaP genotoxicity, our results show that, compared with the ALF group, DRF attenuated the BaP-CYP1A1 induction potency, the liver DNA-BaP adducts, the liver concentration of unmetabolized BaP, and the blood aspartate aminotransferase and alanine aminotransferase activities when BaP is administered prior to the acrophase of CYP1A1 expression. These results demonstrate that DRF modifies the ARNT and CYP1A1 expression and protects from BaP toxicity.
Collapse
|
18
|
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic heme-containing monooxygenase. CYP1B1 contributes to the oxidative metabolism of xenobiotics, drugs, and endogenous substrates like melatonin, fatty acids, steroid hormones, and retinoids, which are involved in diverse critical cellular functions. CYP1B1 plays an important role in the pathogenesis of cardiovascular diseases, hormone-related cancers and is responsible for anti-cancer drug resistance. Inhibition of CYP1B1 activity is considered as an approach in cancer chemoprevention and cancer chemotherapy. CYP1B1 can activate anti-cancer prodrugs in tumor cells which display overexpression of CYP1B1 in comparison to normal cells. CYP1B1 involvement in carcinogenesis and cancer progression encourages investigation of CYP1B1 interactions with its ligands: substrates and inhibitors. Computational methods, with a simulation of molecular dynamics (MD), allow the observation of molecular interactions at the binding site of CYP1B1, which are essential in relation to the enzyme’s functions.
Collapse
|
19
|
An EAV-HP insertion in the promoter region of SLCO1B3 has pleiotropic effects on chicken liver metabolism based on the transcriptome and proteome analysis. Sci Rep 2021; 11:7571. [PMID: 33828143 PMCID: PMC8026973 DOI: 10.1038/s41598-021-87054-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/23/2021] [Indexed: 02/01/2023] Open
Abstract
Solute carrier organic anion transporter 1B3 (SLCO1B3) is an important liver primarily highly expressed gene, its encoded protein (OATP1B3) involved in the transport of multi-specific endogenous and exogenous substances. We previously reported that an EAV-HP inserted mutation (IM+) in the 5' flanking region of SLCO1B3 was the causative mutation of chicken blue eggs, and a further research showed that IM+ significantly reduced the expression of SLCO1B3 in liver. Herein, we confirmed a cholate response element (IR-1) played an important role in activating SLCO1B3 and in vitro experiments showed that the activation of IR-1 can be significantly reduced by the EAV-HP IM+ . We performed transcriptome and proteomic analysis using the same set of IM+ and IM- liver tissues from Yimeng hens (a Chinese indigenous breed) to study the effect of SLCO1B3 and OATP1B3 expression reduction on chicken liver function. The results showed that common differential expression pathways were screened out from both transcriptome and proteome, in which fatty acid metabolism and drug metabolism-cytochrome P450 were significantly enriched in the KEGG analysis. The lipid-related metabolism was weakened in IM+ group, which was validated by serum biochemical assay. We unexpectedly found that EAV-HP fragment was highly expressed in the liver of the IM+ chickens. We cloned the EAV-HP full-length transcript and obtained the complete open reading frame. It is worth noting that there was some immune related differential expressed genes, such as NFKBIZ, NFKBIA, and IL1RL1, which were higher expressed in the IM+ group, which may due to the high expression of EAV-HP. Our study showed that EAV-HP IM+ reduced the expression of SLCO1B3 in liver, resulting in the decrease of fatty metabolism and exogenous substance transport capacity. The mutation itself also expressed in the liver and may be involved in the immune process. The mechanism needs further study.
Collapse
|
20
|
Zhu K, Shen C, Tang C, Zhou Y, He C, Zuo Z. Improvement in the screening performance of potential aryl hydrocarbon receptor ligands by using supervised machine learning. CHEMOSPHERE 2021; 265:129099. [PMID: 33272675 DOI: 10.1016/j.chemosphere.2020.129099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
The aryl hydrocarbon receptor (AhR), which is a ligand-dependent transcription factor, plays a crucial role in the regulation of xenobiotic metabolism. There are a large number of artificial or natural molecules in the environment that can activate AhR. In this study, we developed a virtual screening procedure to identify potential ligands of AhR. One structure-based method and two ligand-based methods were used for the virtual screening procedure. The results showed that the precision rate (0.96) and recall rate (0.64) of our procedure were significantly higher than those of a procedure used in a previous study, which suggests that supervised machine learning techniques can greatly improve the performance of virtual screening. Moreover, a pesticide dataset including 777 frequently used pesticides was screened. Seventy-seven pesticides were identified as potential AhR ligands by all three screening methods, among which 12 have never been previously reported as AhR agonists. Two non-agonist AhR ligands and 14 of the 77 pesticides were randomly selected for testing by in vitro and in vivo assays. All 14 pesticides showed different degrees of AhR agonistic activity, and none of the two non-agonist AhR ligand pesticides showed AhR agonistic activity, which suggests that our procedure had good robustness. Four of the pesticides were reported as AhR agonists for the first time, suggesting that these pesticides may need further toxicity assessment. In general, our procedure is a rapid, powerful and computationally inexpensive tool for predicting chemicals with AhR agonistic activity, which could be useful for environmental risk prediction and management.
Collapse
Affiliation(s)
- Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
21
|
Meyer-Alert H, Wiseman S, Tang S, Hecker M, Hollert H. Identification of molecular toxicity pathways across early life-stages of zebrafish exposed to PCB126 using a whole transcriptomics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111716. [PMID: 33396047 DOI: 10.1016/j.ecoenv.2020.111716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Although withdrawn from the market in the 1980s, polychlorinated biphenyls (PCBs) are still found ubiquitously in the aquatic environment and pose a serious risk to biota due to their teratogenic potential. In fish, early life-stages are often considered most sensitive with regard to their exposure to PCBs and other dioxin-like compounds. However, little is known about the molecular drivers of the frequently observed teratogenic effects. Therefore, the aims of our study were to: (1) characterize the baseline transcriptome profiles at different embryonic life-stages in zebrafish (Danio rerio); and (2) to identify the molecular response to PCB exposure and life-stage specific-effects of the chemical on associated processes. For both objectives, embryos were sampled at 12, 48, and 96 h post-fertilization (hpf) and subjected to Illumina sequence-by-synthesis and RNAseq analysis. Results revealed that with increasing age more genes and related pathways were upregulated both in terms of number and magnitude. Yet, other transcripts followed an opposite pattern with greater transcript abundance at the earlier time points. Additionally, embryos were exposed to PCB126, a potent agonist of the aryl hydrocarbon receptor (AHR). ClueGO network analysis revealed significant enrichment of genes associated with basic cell metabolism, communication, and homeostasis as well as eye development, muscle formation, and skeletal formation. We selected eight genes involved in the affected pathways for an in-depth characterization of their regulation throughout normal embryogenesis and after exposure to PCB126 by quantification of transcript abundances every 12 h until 118 hpf. Among these, fgf7 and c9 stood out because of their strong upregulation by PCB126 exposure at 48 and 96 hpf, respectively. Cyp2aa12 was upregulated from 84 hpf on. Fabp10ab, myhz1.1, col8a1a, sulf1, and opn1sw1 displayed specific regulation depending on the developmental stage. Overall, we demonstrate that (1) the developmental transcriptome of zebrafish is highly dynamic, and (2) dysregulation of gene expression by exposure to PCB126 was significant and in several cases not directly connected to AHR-signaling. Hence, this study improves the understanding of linkages between molecular events and apical outcomes that are of regulatory relevance.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Song Tang
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Savassi LA, Paschoalini AL, Arantes FP, Rizzo E, Bazzoli N. Heavy metal contamination in a highly consumed Brazilian fish: immunohistochemical and histopathological assessments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:542. [PMID: 32712724 DOI: 10.1007/s10661-020-08515-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Due to industrial, rural, and domestic waste disposal, heavy metals such as cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), copper (Cu), and iron (Fe) continually infiltrate aquatic environments. These pollutants do not degrade naturally and, thus, have a high capacity for bioaccumulation in tissues and organs. The present study uses histological and immunohistochemical analyses to evaluate the contamination status of Salminus franciscanus, a large and economically important fish. Levels of Cd, Cr, Pb, Zn, Cu, and Fe were evaluated by atomic absorption spectrometry in the liver and muscle of fish sampled from two tributaries of the upper São Francisco River Basin, Brazil: the Abaeté and Paraopeba Rivers. In addition, histopathological alterations and expressions of three environmental biomarkers were assessed: metallothionein (MT), heat shock protein-70 (HSP70), and cytochrome P450-1A (CYP1A). The results show that fish from the Paraopeba River are unsuitable for human consumption, with several metals being detected above the safe limits established by the World Health Organization. Histopathological alterations in the liver and spleen were also significantly more frequent in fish from the Paraopeba River than in those from the Abaeté River (P < 0.05). Significant differences in the expressions of environmental biomarkers were observed between the rivers. Fish from the Abaeté River presented significantly higher values of the gonadosomatic index (GSI) and lower levels of metal contamination in the liver and muscle.
Collapse
Affiliation(s)
- Lourenço Almeida Savassi
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Alessandro Loureiro Paschoalini
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, 30535-610, Brazil
| | - Fabio Pereira Arantes
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, 30535-610, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Nilo Bazzoli
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, 30535-610, Brazil.
| |
Collapse
|
23
|
Xie S, Zhou A, Feng Y, Zhang Y, Li J, Sun Z, Fan L, Zou J. Cytochrome P450 1A mRNA in the Gambusia affinis and Response to Several PAHs. Biochem Genet 2020; 58:551-565. [PMID: 32504241 DOI: 10.1007/s10528-020-09955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 03/05/2020] [Indexed: 11/26/2022]
Abstract
Cytochrome P4501A (CYP1A) has been used as a specific biomarker for monitoring water contamination such as PAHs, PCBs and dioxins. In the present study, the cyp1a gene of Gambusia affinis was cloned and sequenced and their expressions under PAHs exposure were characterized. The newly identified cyp1a encodes a protein with 521 amino acids that shared 96-80% identity with other Cyprinodontiformes fishes. RT-PCR analysis revealed that the basal mRNA level of cyp1a was highly expressed in liver and intestine. The expression level of cyp1a was significantly induced by exposure to 100 μg/L 3, 4-Benzopyrene (BaP) for 5 days in the muscle, testis, brain, liver and intestine of adult male fish. Except in the testis, the induced mRNA level of cyp1a ultimately decreased after prolonging the exposure time to 25 days. As for testis, the induced mRNA level of cyp1a was maintained at a high level during the entire exposure time under 100 μg/L BaP exposure. Furthermore, the expression of cyp1a increased with exposure time under a relatively low exposure concentrations 1 μg/L. Regarding the effects of other PAHs, D(a,h)A, BbF, and BaA showed a statistically significant effect of induction on mRNA level of cyp1a in the muscle, testis, brain, liver and intestine.
Collapse
Affiliation(s)
- Shaolin Xie
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Aiguo Zhou
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongyong Feng
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yue Zhang
- Departments of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Junyi Li
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhuolin Sun
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Lanfen Fan
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jixing Zou
- College of Marine Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
24
|
Avilla MN, Malecki KMC, Hahn ME, Wilson RH, Bradfield CA. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem Res Toxicol 2020; 33:860-879. [PMID: 32259433 PMCID: PMC7175458 DOI: 10.1021/acs.chemrestox.9b00476] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
Collapse
Affiliation(s)
- Mele N. Avilla
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Kristen M. C. Malecki
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Rachel H. Wilson
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
- McArdle
Laboratory for Cancer Research, University of Wisconsin School of Medicine
and Public Health, Madison, Wisconsin 53705-227, United States
| |
Collapse
|
25
|
Gorczyca L, Aleksunes LM. Transcription factor-mediated regulation of the BCRP/ ABCG2 efflux transporter: a review across tissues and species. Expert Opin Drug Metab Toxicol 2020; 16:239-253. [PMID: 32077332 DOI: 10.1080/17425255.2020.1732348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction: The breast cancer resistance protein (BCRP/ABCG2) is a member of the ATP-binding cassette superfamily of transporters. Using the energy garnered from the hydrolysis of ATP, BCRP actively removes drugs and endogenous molecules from the cell. With broad expression across the liver, kidney, brain, placenta, testes, and small intestines, BCRP can impact the pharmacokinetics and pharmacodynamics of xenobiotics.Areas covered: The purpose of this review is to summarize the transcriptional signaling pathways that regulate BCRP expression across various tissues and mammalian species. We will cover the endobiotic- and xenobiotic-activated transcription factors that regulate the expression and activity of BCRP. These include the estrogen receptor, progesterone receptor, peroxisome proliferator-activated receptor, constitutive androstane receptor, pregnane X receptor, nuclear factor e2-related factor 2, and aryl hydrocarbon receptor.Expert opinion: Key transcription factors regulate BCRP expression and function in response to hormones and xenobiotics. Understanding this regulation provides an opportunity to improve pharmacotherapeutic outcomes by enhancing the efficacy and reducing the toxicity of drugs that are substrates of this efflux transporter.
Collapse
Affiliation(s)
- Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA.,Division of Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| |
Collapse
|
26
|
van der Oost R, McKenzie DJ, Verweij F, Satumalay C, van der Molen N, Winter MJ, Chipman JK. Identifying adverse outcome pathways (AOP) for Amsterdam city fish by integrated field monitoring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103301. [PMID: 31794920 DOI: 10.1016/j.etap.2019.103301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 05/23/2023]
Abstract
The European City Fish project aimed to develop a generic methodology for ecological risk assessment for urban rivers. Since traditional methods only consider a small fraction of substances present in the water cycle, biological effect monitoring is required for a more reliable assessment of the pollution status. A major challenge for environmental risk assessment (ERA) is the application of adverse outcome pathways (AOP), i.e. the linking of pollutant exposure via early molecular and biochemical changes to physiological effects and, ultimately, effects on populations and ecosystems. We investigated the linkage between responses at these different levels. Many AOP aspects were investigated, from external and internal exposure to different classes of micropollutants, via molecular key events (MKE) the impacts on organs and organisms (fish physiology), to changes in the population dynamics of fish. Risk assessment procedures were evaluated by comparing environmental quality standards, bioassay responses, biomarkers in caged and feral fish, and the impact on fish populations. Although no complete AOP was observed, indirect relationships linking pollutant exposure via MKE to impaired locomotion were demonstrated at the most polluted site near a landfill for chemical waste. The pathway indicated that several upstream key events requiring energy for stress responses and toxic defence are likely to converge at a single common MKE: increased metabolic demands. Both fish biomarkers and the bioanalytical SIMONI strategy are valuable indicators for micropollutant risks to fish communities.
Collapse
Affiliation(s)
- Ron van der Oost
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands.
| | - David J McKenzie
- UMR Marbec (CNRS-IRD-Ifremer-Université Montpellier), Montpellier, France
| | - Frank Verweij
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - Carl Satumalay
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - Natascha van der Molen
- Technology, Research & Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - J Kevin Chipman
- Biosciences, University of Birmingham, B15 2TT, Birmingham, United Kingdom
| |
Collapse
|
27
|
Meyer-Alert H, Larsson M, Hollert H, Keiter SH. Benzo[a]pyrene and 2,3-benzofuran induce divergent temporal patterns of AhR-regulated responses in zebrafish embryos (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109505. [PMID: 31394372 DOI: 10.1016/j.ecoenv.2019.109505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Biotests like the fish embryo toxicity test have become increasingly popular in risk assessment and evaluation of chemicals found in the environment. The large range of possible endpoints is a big advantage when researching on the mode of action of a certain substance. Here, we utilized the frequently used model organism zebrafish (Danio rerio) to examine regulative mechanisms in the pathway of the aryl-hydrocarbon receptor (AHR) in early development. We exposed embryos to representatives of two chemical classes known to elicit dioxin-like activity: benzo[a]pyrene for polycyclic aromatic hydrocarbons (PAHs) and 2,3-benzofuran for polar O-substituted heterocycles as a member of heterocyclic compounds in general (N-, S-, O-heterocycles; NSO-hets). We measured gene transcription of the induced P450 cytochromes (cyp1), their formation of protein and biotransformation activity throughout the whole embryonic development until 5 days after fertilization. The results show a very specific time course of transcription depending on the chemical properties (e.g. halogenation, planarity, Kow), the physical decay and the biodegradability of the tested compound. However, although this temporal pattern was not precisely transferable onto the protein level, significant regulation in enzymatic activity over time could be detected. We conclude, that a careful choice of time and end point as well as consideration of the chemical properties of a substance are fairly important when planning, conducting and especially evaluating biotests.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| |
Collapse
|
28
|
Pagé-Larivière F, Chiu S, Jones SP, Farhat A, Crump D, O'Brien JM. Prioritization of 10 organic flame retardants using an avian hepatocyte toxicogenomic assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3134-3144. [PMID: 30133003 DOI: 10.1002/etc.4260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
As the number of chemicals developed and used by industry increases, the inherent limitations of traditional toxicology approaches become an unavoidable issue. To help meet the demand for toxicity evaluation, new methods, such as high-throughput toxicity screening, are currently being developed to permit rapid determination of toxic, molecular, and/or biochemical effects of a wide range of chemicals. In the present study, we demonstrate the utility of an avian in vitro toxicogenomics screening approach to determine the cytotoxic and transcriptomic effects of 10 organic flame retardants (OFRs) currently of international priority for ecological risk evaluation to prioritize and inform future toxicological studies. Hepatocytes from 2 avian species, chicken and double-crested cormorant, were prepared and exposed for 24 h to various concentrations (0-300 μM) of the following 10 OFRs: Chemical Abstracts Service registration numbers 29761-21-5, 56803-37-3 (p-tert-butylphenyl diphenyl phosphate [BPDP]), 65652-41-7, 68937-41-7 (phenol, isopropylated, phosphate [3:1] [IPPP]), 95906-11-9, 19186-97-1, 26040-51-7, 35948-25-5, 21850-44-2, and 25713-60-4. Cell viability, the 7-ethoxyresorufin-O-deethylase assay, and transcriptomic analysis using species-specific ToxChip polymerase chain reaction arrays were performed to evaluate the in vitro effect of these OFRs. Of the 10 OFRs assessed, BPDP and IPPP elicited the strongest cytotoxic and transcriptomic responses in both chicken and double-crested cormorant hepatocytes and are therefore recommended as priority candidates for further wildlife toxicological investigations. Environ Toxicol Chem 2018;37:3134-3144. © 2018 Crown in the right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Florence Pagé-Larivière
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Stephanie P Jones
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Amani Farhat
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jason M O'Brien
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Expression, Localization, and Activity of the Aryl Hydrocarbon Receptor in the Human Placenta. Int J Mol Sci 2018; 19:ijms19123762. [PMID: 30486367 PMCID: PMC6321474 DOI: 10.3390/ijms19123762] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
The human placenta is an organ between the blood of the mother and the fetus, which is essential for fetal development. It also plays a role as a selective barrier against environmental pollutants that may bypass epithelial barriers and reach the placenta, with implications for the outcome of pregnancy. The aryl hydrocarbon receptor (AhR) is one of the most important environmental-sensor transcription factors and mediates the metabolism of a wide variety of xenobiotics. Nevertheless, the identification of dietary and endogenous ligands of AhR suggest that it may also fulfil physiological functions with which pollutants may interfere. Placental AhR expression and activity is largely unknown. We established the cartography of AhR expression at transcript and protein levels, its cellular distribution, and its transcriptional activity toward the expression of its main target genes. We studied the profile of AhR expression and activity during different pregnancy periods, during trophoblasts differentiation in vitro, and in a trophoblast cell line. Using diverse methods, such as cell fractionation and immunofluorescence microscopy, we found a constitutive nuclear localization of AhR in every placental model, in the absence of any voluntarily-added exogenous activator. Our data suggest an intrinsic activation of AhR due to the presence of endogenous placental ligands.
Collapse
|
30
|
Sharma R, Williams IS, Gatchie L, Sonawane VR, Chaudhuri B, Bharate SB. Furanoflavones pongapin and lanceolatin B blocks the cell cycle and induce senescence in CYP1A1-overexpressing breast cancer cells. Bioorg Med Chem 2018; 26:6076-6086. [PMID: 30448188 DOI: 10.1016/j.bmc.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022]
Abstract
Expression of cytochrome P450-1A1 (CYP1A1) is suppressed under physiologic conditions but is induced (a) by polycyclic aromatic hydrocarbons (PAHs) which can be metabolized by CYP1A1 to carcinogens, and (b) in majority of breast cancers. Hence, phytochemicals or dietary flavonoids, if identified as CYP1A1 inhibitors, may help in preventing PAH-mediated carcinogenesis and breast cancer. Herein, we have investigated the cancer chemopreventive potential of a flavonoid-rich Indian medicinal plant, Pongamia pinnata (L.) Pierre. Methanolic extract of its seeds inhibits CYP1A1 in CYP1A1-overexpressing normal human HEK293 cells, with IC50 of 0.6 µg/mL. Its secondary metabolites, the furanoflavonoids pongapin/lanceolatin B, inhibit CYP1A1 with IC50 of 20 nM. Although the furanochalcone pongamol inhibits CYP1A1 with IC50 of only 4.4 µM, a semisynthetic pyrazole-derivative P5b, has ∼10-fold improved potency (IC50, 0.49 μM). Pongapin/lanceolatin B and the methanolic extract of P. pinnata seeds protect CYP1A1-overexpressing HEK293 cells from B[a]P-mediated toxicity. Remarkably, they also block the cell cycle of CYP1A1-overexpressing MCF-7 breast cancer cells, at the G0-G1 phase, repress cyclin D1 levels and induce cellular-senescence. Molecular modeling studies demonstrate the interaction pattern of pongapin/lanceolatin B with CYP1A1. The results strongly indicate the potential of methanolic seed-extract and pongapin/lanceolatin B for further development as cancer chemopreventive agents.
Collapse
Affiliation(s)
- Rajni Sharma
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ibidapo S Williams
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Linda Gatchie
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Vinay R Sonawane
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Bhabatosh Chaudhuri
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK; Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
31
|
Hamad MF, Dayyih WAA, Laqqan M, AlKhaled Y, Montenarh M, Hammadeh ME. The status of global DNA methylation in the spermatozoa of smokers and non-smokers. Reprod Biomed Online 2018; 37:581-589. [PMID: 30366840 DOI: 10.1016/j.rbmo.2018.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/06/2023]
Abstract
RESEARCH QUESTION Does regular smoking affect semen quality and the levels of DNA methylation in mature human spermatozoa? DESIGN Spermatozoa from 109 men were evaluated (55 smokers and 54 non-smokers). DNA was extracted from purified spermatozoa, and DNA methylation was quantified by enzyme-linked immunosorbent assay (ELISA). RESULTS Global DNA methylation of non-smokers is significantly lower (P < 0.001) than that of smokers (4.85 ± 2.72 and 7.08 ± 1.77 ng/μl, respectively). Moreover, the mean global DNA methylation levels were significantly correlated (r = 0.22;P = 0.02) with non-condensed chromatin in the spermatozoa. Levels of non-condensed chromatin were significantly higher (P < 0.001) in smokers (29.75 ± 9.38%) compared with non-smokers (20.96 ± 11.31%). Furthermore, global sperm DNA methylation was negatively correlated with high significance (P < 0.010) with sperm: count (r = -0.27), motility (r = -0.30) and vitality (r = -0.26). CONCLUSION Smoking interferes with DNA methylation. Also, DNA methylation is significantly correlated with sperm parameters and sperm non-condensed chromatin. These data emphasize another detrimental effect of smoking on male fertility. DNA methylation may, therefore, be considered as a fertility marker in men.
Collapse
Affiliation(s)
- Mohammed F Hamad
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; IVF and Andrology Laboratory, Department of Obstetrics and Gynaecology, Saarland University Hospital, Building 9, Homburg/Saar 66424, Germany; Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66424, Homburg/Saar, Germany.
| | - Wael A Abu Dayyih
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Mohammad Laqqan
- IVF and Andrology Laboratory, Department of Obstetrics and Gynaecology, Saarland University Hospital, Building 9, Homburg/Saar 66424, Germany
| | - Yasir AlKhaled
- IVF and Andrology Laboratory, Department of Obstetrics and Gynaecology, Saarland University Hospital, Building 9, Homburg/Saar 66424, Germany
| | - Mathias Montenarh
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66424, Homburg/Saar, Germany
| | - Mohammed E Hammadeh
- IVF and Andrology Laboratory, Department of Obstetrics and Gynaecology, Saarland University Hospital, Building 9, Homburg/Saar 66424, Germany
| |
Collapse
|
32
|
Aflatoxin B1 metabolism: Regulation by phase I and II metabolizing enzymes and chemoprotective agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:79-89. [DOI: 10.1016/j.mrrev.2018.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/26/2018] [Indexed: 01/13/2023]
|
33
|
Zhang X, Kang X, Wu H, Silver K, Zhang J, Ma E, Zhu KY. Transcriptome-wide survey, gene expression profiling and exogenous chemical-induced transcriptional responses of cytochrome P450 superfamily genes in migratory locust (Locusta migratoria). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 100:66-77. [PMID: 29959977 DOI: 10.1016/j.ibmb.2018.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) belong to a large superfamily of heme-containing enzymes catalyzing at least 60 different types of chemically distinct reactions. Insect CYPs play key roles in biotransformation of insecticides and plant chemicals, and are implicated in insecticide resistance and insect adaptation to their host plants. Insect CYPs are well studied in model insects, but little is known about the CYP superfamily in paurometabolous insects. We employed Illumina sequencing technology to identify 71 partial and 78 full-length open reading frames (ORFs) of LmCYP genes from the migratory locust (Locusta migratoria), one of the most destructive paurometabolous insect pests in the world. Seventy-eight LmCYPs with complete ORFs were formally named and classified into 19 families and 43 subfamilies. The majority of LmCYPs were mainly expressed in nymphal and adult stages, but LmCYP expression varied widely among thirteen different tissues examined. Regulatory elements were predicted in the promoter regions of LmCYP genes, and subsequent exposure of locusts to 12 different exogenous chemicals showed that 2-tridecanone and xanthotoxin were the most effective at increasing LmCYP expression. Our results represent the first transcriptome-wide analysis of the LmCYP superfamily from migratory locust, and provide a foundation for understanding the physiological functions, functional diversity, evolution, and regulatory mechanisms controlling the expression of the CYP gene superfamily in the locust.
Collapse
Affiliation(s)
- Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaolin Kang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Haihua Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kristopher Silver
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
34
|
Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci 2018; 40:328-347. [PMID: 29752874 DOI: 10.1111/ics.12466] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Collapse
Affiliation(s)
- C Serre
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - V Busuttil
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - J-M Botto
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| |
Collapse
|
35
|
Schiering C, Vonk A, Das S, Stockinger B, Wincent E. Cytochrome P4501-inhibiting chemicals amplify aryl hydrocarbon receptor activation and IL-22 production in T helper 17 cells. Biochem Pharmacol 2018; 151:47-58. [PMID: 29501585 DOI: 10.1016/j.bcp.2018.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
Abstract
The aryl hydrocarbon receptor (AHR) controls interleukin 22 production by T helper 17 cells (Th17). IL-22 contributes to intestinal homeostasis but has also been implicated in chronic inflammatory disorders and colorectal cancer, highlighting the need for appropriate regulation of IL-22 production. Upon activation, the AHR induces expression of cytochrome P4501 (CYP1) enzymes which in turn play an important feedback role that curtails the duration of AHR signaling by metabolizing AHR ligands. Recently we described how agents that inhibit CYP1 function potentiate AHR signaling by disrupting metabolic clearance of the endogenous ligand 6-formylindolo[3,2-b]carbazole (FICZ). In the present study, we investigated the immune-modulating effects of environmental pollutants such as polycyclic aromatic hydrocarbons on Th17 differentiation and IL-22 production. Using Th17 cells deficient in CYP1 enzymes (Cyp1a1/1a2/1b1-/-) we show that these chemicals potentiate AHR activation through inhibition of CYP1 enzymes which leads to increases in intracellular AHR agonists. Our findings demonstrate that IL-22 production by Th17 cells is profoundly enhanced by impaired CYP1-function and strongly suggest that chemicals able to modify CYP1 function or expression may disrupt AHR-mediated immune regulation by altering the levels of endogenous AHR agonist(s).
Collapse
Affiliation(s)
- Chris Schiering
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Anne Vonk
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36 Södertälje, Sweden.
| | - Srustidhar Das
- Karolinska Institutet, Department of Medicine, Solna (MedS), K2, L2:04 171 76 Stockholm, Sweden.
| | | | - Emma Wincent
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Forskargatan 20, 151 36 Södertälje, Sweden; Karolinska Institutet, Institute of Environmental Medicine, Box 210, 171 77 Stockholm, Sweden.
| |
Collapse
|
36
|
Hessel-Pras S, Ehlers A, Braeuning A, Lampen A. The aryl hydrocarbon receptor and retinoid receptors cross-talk at the CYP1A1 promoter in vitro. EXCLI JOURNAL 2018; 17:246-256. [PMID: 29743862 PMCID: PMC5938535 DOI: 10.17179/excli2018-1147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/08/2018] [Indexed: 01/28/2023]
Abstract
The epithelium of the small intestine plays an important role in detoxification processes due to the presence of various xenobiotic-metabolizing enzymes from phase I and II, as well as transport proteins of the ATP-binding cassette superfamily. Exposure to xenobiotics induces the expression of these proteins in the small intestine, with multiple signaling pathways stimulated by exogenous compounds converging at individual gene promoters by mechanisms which have not been fully understood yet. In this context the promoter region of the CYP1A1 gene, encoding the phase I monooxygenase cytochrome P450 1A1, was analyzed by chromatin immunoprecipitation with regard to binding of xeno-sensing receptors following stimulation of Caco-2 cells with agonists of the aryl hydrocarbon receptor (AHR) and retinoid receptors. Histone acetylation in the regulatory region of CYP1A1 was enhanced by treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or all-trans retinoic acid (at-RA). Binding of retinoid-X-receptor (RXR) α to the promoter region was detected in response to at-RA, while AHR bound to the gene promoter following its activation by TCDD. Of note, enhanced RXRα binding was also detected after AHR stimulation, and increased AHR binding was observed after retinoid receptor activation by at-RA. Exposure of Caco-2 cells to mixtures of AHR and retinoid receptor agonists yielded synergistic induction of CYP1A1 mRNA. In conclusion, the present data improve our knowledge on retinoic acid-dependent effects on CYP1A1 expression and demonstrate unexpected mixture effects by cross-talk of the different receptors.
Collapse
Affiliation(s)
- Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Anke Ehlers
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
37
|
Chen YJ, Huang BY, Yang CN. Molecular modeling on HIF-2α-ARNT dimer destabilization caused by R171A and/or V192D mutations in HIF-2α. J Mol Graph Model 2017; 79:35-45. [PMID: 29132019 DOI: 10.1016/j.jmgm.2017.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Oxygen homeostasis in normal and tumor cells is mediated by hypoxia-inducible factors (HIFs), which are active as heterodimer complexes, such as HIF-2α-aryl hydrocarbon receptor nuclear translocator (ARNT) and HIF-1α-ARNT. A series of mutations on the interfaces between HIF-2α and ARNT and on the domain-domain interface within HIF-2α has been reported to exert varying effects on HIF-2α-ARNT dimerization. In the present study, molecular dynamic simulations were conducted to evaluate HIF-2α mutations, namely R171A, V192D, and R171A/V192D, which are not involved in the interaction with ARNT but impede HIF-2α-ARNT dimerization. Our results indicate that these mutations induct local conformation leading to a shortened (by V192D) or widened (by R171A and R171A/V192D) Y91-E346 separation distance, where E346 and Y91 are located on the HIF-2α and interact with ARNT according to electrostatic and geometrical shape complementarity, respectively.
Collapse
Affiliation(s)
- Ya-Jyun Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Bo-Yen Huang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Chia-Ning Yang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan; Scientific Multi-Simulation Center, National University of Kaohsiung, Kaohsiung, Taiwan.
| |
Collapse
|
38
|
Kajta M, Wnuk A, Rzemieniec J, Litwa E, Lason W, Zelek-Molik A, Nalepa I, Rogóż Z, Grochowalski A, Wojtowicz AK. Depressive-like effect of prenatal exposure to DDT involves global DNA hypomethylation and impairment of GPER1/ESR1 protein levels but not ESR2 and AHR/ARNT signaling. J Steroid Biochem Mol Biol 2017; 171:94-109. [PMID: 28263910 DOI: 10.1016/j.jsbmb.2017.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023]
Abstract
Several lines of evidence suggest that exposures to Endocrine Disrupting Chemicals (EDCs) such as pesticides increase the risks of neuropsychiatric disorders. Despite extended residual persistence of dichlorodiphenyltrichloroethane (DDT) in the environment, the mechanisms of perinatal actions of DDT that could account for adult-onset of depression are largely unknown. This study demonstrated the isomer-specific induction of depressive-like behavior and impairment of Htr1a/serotonin signaling in one-month-old mice that were prenatally exposed to DDT. The effects were reversed by the antidepressant citalopram as evidenced in the forced swimming (FST) and tail suspension (TST) tests in the male and female mice. Prenatally administered DDT accumulated in mouse brain as determined with gas chromatography and tandem mass spectrometry, led to global DNA hypomethylation, and altered the levels of methylated DNA in specific genes. The induction of depressive-like behavior and impairment of Htr1a/serotonin signaling were accompanied by p,p'-DDT-specific decrease in the levels of estrogen receptors i.e. ESR1 and/or GPER1 depending on sex. In contrast, o,p'-DDT did not induce depressive-like effects and exhibited quite distinct pattern of biochemical alterations that was related to aryl hydrocarbon receptor (AHR), its nuclear translocator ARNT, and ESR2. Exposure to o,p'-DDT increased AHR expression in male and female brains, and reduced expression levels of ARNT and ESR2 in the female brains. The evolution of p,p'-DDT-induced depressive-like behavior was preceded by attenuation of Htr1a and Gper1/GPER1 expression as observed in the 7-day-old mouse pups. Because p,p'-DDT caused sex- and age-independent attenuation of GPER1, we suggest that impairment of GPER1 signaling plays a key role in the propagation of DDT-induced depressive-like symptoms.
Collapse
Affiliation(s)
- Malgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland.
| | - Agnieszka Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Joanna Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Ewa Litwa
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Wladyslaw Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Agnieszka Zelek-Molik
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Zofia Rogóż
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343 Krakow, Poland
| | - Adam Grochowalski
- Department of Analytical Chemistry, Krakow University of Technology, Warszawska Street 24, 31-155 Krakow, Poland
| | - Anna K Wojtowicz
- Department of Animal Biotechnology, Faculty of Animal Sciences, University of Agriculture, Redzina Street 1B, 30-248 Krakow, Poland
| |
Collapse
|
39
|
Polonikov AV, Bushueva OY, Bulgakova IV, Freidin MB, Churnosov MI, Solodilova MA, Shvetsov YD, Ivanov VP. A comprehensive contribution of genes for aryl hydrocarbon receptor signaling pathway to hypertension susceptibility. Pharmacogenet Genomics 2017; 27:57-69. [PMID: 27977510 DOI: 10.1097/fpc.0000000000000261] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present study was designed to investigate whether genetic polymorphisms of the aryl hydrocarbon receptor (AHR) signaling pathway are involved in the molecular basis of essential hypertension (EH). METHODS A total of 2160 unrelated Russian individuals comprising 1341 EH patients and 819 healthy controls were recruited into the study. Seven common AHR pathway single-nucleotide polymorphisms (SNPs) such as rs2066853, rs2292596, rs2228099, rs1048943, rs762551, rs1056836, and rs1800566 were genotyped by TaqMan-based allele discrimination assays. RESULTS We found that SNP rs2228099 of ARNT is associated with an increased risk of EH (odds ratio=1.20 95% confidence interval: 1.01-1.44, P=0.043) in a dominant genetic model, whereas polymorphism rs762551 of CYP1A2 showed an association with a decreased risk of disease in a recessive genetic model (odds ratio=0.68, 95% confidence interval: 0.52-0.89, P=0.006). A log-likelihood ratio test enabled identification of epistatic interaction effects on EH susceptibility for all SNPs. MB-MDR analysis showed that cigarette smoking, rs1048943, rs762551, rs1056836, and rs2228099 were significant contributing factors in 19, 18, 13, 13, and 11 interaction models, respectively. The best MDR model associated with EH risk included rs1048943, rs762551, rs1056836, and cigarette smoking (cross-validation consistency 100%, prediction error 45.7%, Ppermutation<0.0001). The mRNA expression and in-silico function prediction analyses have confirmed a regulatory potential for a majority of SNPs associated with EH susceptibility. CONCLUSION Our pilot study was the first to show that gene-gene and gene-environment interactions in the AHR signaling pathway represent important determinants for the development of EH, and the pathway may become an attractive target for a pharmacological intervention in hypertensive patients in the future.
Collapse
Affiliation(s)
- Alexey V Polonikov
- aDepartment of Biology, Medical Genetics and Ecology bLaboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk cPopulation Genetics Laboratory, Research Institute for Medical Genetics, Tomsk dDepartment of Medical Biological Disciplines, Belgorod State University, Belgorod, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ferreira RS, Chivittz CDC, Santos GSD, Zanette J. Cytochrome P450 1A mRNA in the guppy Phalloceros caudimaculatus and response to beta-naphthoflavone and environmental samples. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:86-93. [PMID: 27821351 DOI: 10.1016/j.aquatox.2016.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
The cytochrome P450 1A (CYP1A) mRNA is induced by environmental contaminants such as PAHs, PCBs and dioxins. The present study cloned the CYP1A transcript from the guppy Phalloceros caudimaculatus, which represents a potential fish for toxicological studies in South America. The newly identified CYP1A encodes a protein with 521 amino acids that shared 96-70% identity with other fishes. The characterization of organ- and time-dependent induction of CYP1A using RT-qPCR was evaluated after waterborne exposure to beta-naphthoflavone (BNF; 1μM). The minimum exposure time that elicited significant CYP1A induction was 1h for liver, gill, gut, brain, anal fin and fingerlings; 2h for dorsal fin; and 4h for kidney and tail fin. CYP1A tended to reach peak induction in the first few hours (4h-8h) of experiment in most organs, although levels remained induced until the end of the experiment (96h). Validation of CYP1A use in environmental sample was performed by exposing P. caudimaculatus to elutriate made from sediment of three streams located in adjacent areas of the Patos Lagoon Estuary (RS, Brazil). CYP1A in liver, gills and anal fin was induced by elutriate made from urban (S1) and industrial (S2) sites; and not induced by a reference site located 22 Km from potential contaminant sources, suggesting that environmental contamination plays a role in this induction. The results suggest that fins could be used for CYP1A biomarker analysis and employed in non-lethal biopsy methods for environmental monitoring. The responsiveness of the newly identified CYP1A to BNF and elutriate indicates that the guppy P. caudimaculatus could be used for environmental toxicology investigations in South American environments.
Collapse
Affiliation(s)
- Roger Stacke Ferreira
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil; Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais (PPGBAC), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
| | - Cíntia da Cruz Chivittz
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil; Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais (PPGBAC), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
| | - Guilherme Senna Dos Santos
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
| | - Juliano Zanette
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil; Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais (PPGBAC), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
41
|
Szychowski KA, Wnuk A, Kajta M, Wójtowicz AK. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons. ENVIRONMENTAL RESEARCH 2016; 151:106-114. [PMID: 27474938 DOI: 10.1016/j.envres.2016.07.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed paradoxical effect of TCS action, which caused the decrease in activity and protein expression of Cyp1a1 and the increase in protein level of AhR. Therefore, we determined the effects of TCS on the production of ROS. Our results revealed that TCS increased the production of ROS and that this effect of TCS was reversed by 10µM N-acetyl-L-cysteine (NAC), the ROS scavenger. To confirm an involvement of ROS in TCS-induced neurotoxicity we measured AhR, Cyp1a1, and Cyp1b1 mRNA expression levels in cells co-treated with TCS and NAC. In the presence of NAC, TCS enhanced mRNA expression of the cytochromes and AhR at 3 and 6h, respectively. We postulate that TCS exhibits primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling are mediated by TCS-induced ROS production, whereas secondary effects of TCS are due to transcriptional activity of AhR and estrogenic properties of TCS.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland
| | - Agnieszka Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Małgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Anna K Wójtowicz
- Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland.
| |
Collapse
|
42
|
Hara F, Tatebe J, Watanabe I, Yamazaki J, Ikeda T, Morita T. Molecular Hydrogen Alleviates Cellular Senescence in Endothelial Cells. Circ J 2016; 80:2037-46. [PMID: 27477846 DOI: 10.1253/circj.cj-16-0227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Substantial evidence indicates that molecular hydrogen (H2) has beneficial vascular effects because of its antioxidant and/or anti-inflammatory effects. Thus, hydrogen-rich water may prove to be an effective anti-aging drink. This study examined the effects of H2on endothelial senescence and clarified the mechanisms involved. METHODS AND RESULTS Hydrogen-rich medium was produced by a high-purity hydrogen gas generator. Human umbilical vein endothelial cells (HUVECs) were incubated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for various time periods in normal or hydrogen-rich medium. The baseline H2concentration in hydrogen-rich medium was 0.55±0.07 mmol/L. This concentration gradually decreased, and H2was almost undetectable in medium after 12 h. At 24 h after TCDD exposure, HUVECs treated with TCDD exhibited increased 8OHdG and acetyl-p53 expression, decreased nicotinamide adenine dinucleotide (NAD(+))/NADH ratio, impaired Sirt1 activity, and enhanced senescence-associated β-galactosidase. However, HUVECs incubated in hydrogen-rich medium did not exhibit these TCDD-induced changes accompanying Nrf2 activation, which was observed even after H2was undetectable in the medium. Chrysin, an inhibitor of Nrf2, abolished the protective effects of H2on HUVECs. CONCLUSIONS H2has long-lasting antioxidant and anti-aging effects on vascular endothelial cells through the Nrf2 pathway, even after transient exposure to H2. Hydrogen-rich water may thus be a functional drink that increases longevity. (Circ J 2016; 80: 2037-2046).
Collapse
Affiliation(s)
- Fumihiko Hara
- Department of Cardiovascular Medicine, Toho University School of Medicine
| | | | | | | | | | | |
Collapse
|
43
|
Holen E, Olsvik PA. β-naphthoflavone interferes with cyp1c1, cox2 and IL-8 gene transcription and leukotriene B4 secretion in Atlantic cod (Gadus morhua) head kidney cells during inflammation. FISH & SHELLFISH IMMUNOLOGY 2016; 54:128-134. [PMID: 27041667 DOI: 10.1016/j.fsi.2016.03.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate how β-naphthoflavone interacts with lipopolysaccharide (LPS) and polyinosinic acid: polycytidylic acid (poly I: C) induced innate immune parameters as well as phase I and phase II detoxification enzymes in head kidney cells isolated from Atlantic cod. β-naphthoflavone is a pure agonist of aryl hydrocarbon receptor (AhR) while LPS and poly I: C are not. β-naphthoflavone was added to head kidney leukocytes alone or together with LPS or poly I: C and the responses were evaluated in terms of protein and gene expression. The results showed that β-naphthoflavone (25 nM), with and without LPS, significantly induced cytochrome P450 (cyp1c) transcription in cod head kidney cells. β-naphthoflavone (100 nM) in the presence of the virus mimic, poly I: C, also increased cyp1c1transcription. LPS induced cyp1c1, cyclooxygenase 2 (cox2), interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 (IL-8) transcription, genes that were not affected by the tested β-naphthoflavone concentrations alone. However, β-naphthoflavone (25 and 50 nM) strengthened LPS induced cox2 and IL-8 transcription. Cod head kidney cells exposed to β-naphthoflavone concentrations ranging from 25 to 100 nM, with and without LPS or poly I: C, expressed AhR protein. LPS or β-naphthoflavone (5-50 nM) significantly induced leukotriene B4 (LTB4) secretion compared to control. In conclusion, this study suggests that β-naphthoflavone could interfere with LPS induced immune cell signaling in cod head kidney cells.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway.
| | - Pål A Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
44
|
Molecular evidence for the existence of an aryl hydrocarbon receptor pathway in scallops Chlamys farreri. Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:74-84. [DOI: 10.1016/j.cbpb.2016.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/14/2016] [Accepted: 02/23/2016] [Indexed: 11/22/2022]
|
45
|
Rao PSS, Ande A, Sinha N, Kumar A, Kumar S. Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells. PLoS One 2016; 11:e0155791. [PMID: 27203850 PMCID: PMC4874604 DOI: 10.1371/journal.pone.0155791] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022] Open
Abstract
While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP) 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC), which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1) and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS) in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold) and both ROS (>2 fold) and HIV-1 replication (>3-fold) after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold), and upon chronic CSC treatment to U1 cells (>30-fold). In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in CSC-treated cells of myeloid lineage. This study warrants a closer examination of the role of CYP1B1 in smoking-mediated enhanced HIV replication.
Collapse
Affiliation(s)
- PSS Rao
- Department of pharmaceutical sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Anusha Ande
- Division of pharmacology and toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Namita Sinha
- Department of pharmaceutical sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Anil Kumar
- Division of pharmacology and toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Santosh Kumar
- Department of pharmaceutical sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
46
|
Förstner U, Hollert H, Brinkmann M, Eichbaum K, Weber R, Salomons W. Dioxin in the Elbe river basin: policy and science under the water framework directive 2000-2015 and toward 2021. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:9. [PMID: 27752444 PMCID: PMC5044960 DOI: 10.1186/s12302-016-0075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/17/2016] [Indexed: 05/30/2023]
Abstract
A critical review of the last 25 years of dioxin policy in the Elbe river catchment is presented along seven main theses of the River Basin Community (RBC)-Elbe background document "Pollutants" for the Management Plan 2016-2021. In this period, polychlorinated dibenzodioxins/-furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) will play a major role: (i) as new priority substances for which environmental quality standards (EQSs) need to be derived (Directive 2013/39/EC); (ii) in the search for innovative solutions in sediment remediation (i.e., respecting the influence of mechanical processes; Flood Risk Directive 2007/60/EC); and (iii) as indicators at the land-sea interface (Marine Strategy Framework Directive 2008/56/EC). In the Elbe river catchment, aspects of policy and science are closely connected, which became particularly obvious in a classic example of dioxin hot spot contamination, the case of the Spittelwasser creek. Here, the "source-first principle" of the first cycle of the European Water Framework Directive (WFD) had to be confirmed in a controversy on the dioxin hot spots with Saxony-Anhalt's Agency for Contaminated Sites (LAF). At the Spittelwasser site, the move from "inside the creek" to "along the river banks" goes parallel to a general paradigm shift in retrospective risk assessment frameworks and remediation techniques for organic chemicals (Ortega-Calvo et al. 2015). With respect to dioxin, large-scale stabilization applying activated carbon additions is particularly promising. Another important aspect is the assessment of the ecotoxicology of dioxins and dl- PCBs in context of sediment mobility and flood risk assessment, which has been studied in the project framework FloodSearch. Currently, the quality goals of the WFD to reach a "good chemical status" are not met in many catchment areas because substances such as mercury do and others probably will (PCDD/Fs and dl-PCB) exceed biota-EQS values catchment area-wide. So far, relating biota-EQS values to sediment-EQSs is not possible. To overcome these limitations, the DioRAMA project was initiated, which has led to improved approaches for the assessment of dioxin-contaminated sediment using in vitro bioassays and to a robust dataset on the interrelation between dioxins and dioxin-like compounds in sediments and biota.
Collapse
Affiliation(s)
- Ulrich Förstner
- Institute of Environmental Technology and Energy Economics, University of Technology Hamburg-Harburg, Eissendorfer Street, 21071 Hamburg, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Roland Weber
- POPs Environmental Consulting, Lindenfirststrasse 23, 73527 Schwäbisch Gmünd, Germany
| | - Wim Salomons
- Kromme Elleboog 21, 9751 RB, Haren, Groningen Netherlands
| |
Collapse
|
47
|
Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health. Toxicol Appl Pharmacol 2016; 294:11-20. [DOI: 10.1016/j.taap.2016.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
|
48
|
Sekine T, Hirata T, Mine T, Fukano Y. Activation of transcription factors in human bronchial epithelial cells exposed to aqueous extracts of mainstream cigarette smoke in vitro. Toxicol Mech Methods 2016; 26:22-31. [DOI: 10.3109/15376516.2015.1123788] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Aryl Hydrocarbon Receptor Activates NDRG1 Transcription under Hypoxia in Breast Cancer Cells. Sci Rep 2016; 6:20808. [PMID: 26852918 PMCID: PMC4745107 DOI: 10.1038/srep20808] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/12/2016] [Indexed: 12/12/2022] Open
Abstract
Hypoxia has been intensively investigated over the past several decades based on the observations that hypoxic tumors are more resistant to therapy and have a worse prognosis. Previously, we reported that N-myc downstream-regulated gene 1 (NDRG1) is strongly up-regulated under hypoxia and may play an important role in tumor adaptation to fluctuating oxygen concentrations. However, the regulatory mechanism of NDRG1 under hypoxia remains elusive. Therefore, the purpose of this study was to identify the transcription factors that regulate NDRG1 and to investigate the functional roles of NDRG1 in hypoxia. We showed that binding sites of aryl hydrocarbon receptor (AHR) were predicted in the NDRG1 promoter. Nuclear AHR was up-regulated in the presence of cobalt and hypoxia. AHR translocated to nuclei and bound between base pairs -412 and -388 of the NDRG1 promoter in hypoxia. Moreover, hypoxia-mimetic induction of NDRG1 was attenuated by knockdown of AHR expression. Also, overexpression of AHR facilitated cell proliferation and migration via up-regulation of NDRG1. These results showed for the first time that AHR positively regulates NDRG1 transcription through an AHR binding site by way of hypoxia-mimetic signaling, which may lead to development of a specific therapeutic regimen to prevent tumor malignancy under hypoxia.
Collapse
|
50
|
Brinkmann M, Koglin S, Eisner B, Wiseman S, Hecker M, Eichbaum K, Thalmann B, Buchinger S, Reifferscheid G, Hollert H. Characterisation of transcriptional responses to dioxins and dioxin-like contaminants in roach (Rutilus rutilus) using whole transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:412-423. [PMID: 26410716 DOI: 10.1016/j.scitotenv.2015.09.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 05/10/2023]
Abstract
There is significant concern regarding the contamination of riverine sediments with dioxins and dioxin-like compounds (DLCs), including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs) and some polycyclic aromatic hydrocarbons (PAHs). The majority of studies investigating the ecotoxicology of DLCs in fish have focused on a few standard model species. However, there is significant uncertainty as to whether these model species are representative of native river fish, particularly in Europe. In this study, the transcriptional responses following exposure to equipotent concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCB 156 or the dioxin-like PAH, benzo[k]fluoranthene (BkF), were investigated in juvenile roach (Rutilus rutilus), a fish species that constitutes a large proportion of the fish biomass in freshwater bodies throughout Europe. To this end, RNA sequencing analysis was used to comprehensively characterise the molecular mechanisms and pathways of toxicity of these DLCs. Whole transcriptome analyses using ClueGO software revealed that DLCs have the potential to disrupt a number of important processes, including energy metabolism, oogenesis, the immune system, apoptosis and the response to oxidative stress. However, despite using equipotent concentrations, there was very little conservation of the transcriptional responses observed in fish exposed to different DLCs. TCDD provoked significant specific changes in the levels of transcripts related to immunotoxicity and carbohydrate metabolism, while PCB 156 caused virtually no specific effects. Exposure to BkF affected the most diverse suite of molecular functions and biological processes, including blood coagulation, oxidative stress responses, unspecific responses to organic or inorganic substances/stimuli, cellular redox homeostasis and specific receptor pathways. To our knowledge, this is the first study of the transcriptome-wide effects of different classes of DLCs in fish. These findings represent an important step towards describing complete toxicity pathways of DLCs, which will be important in the context of informing risk assessments of DLC toxicity in native fish species.
Collapse
Affiliation(s)
- Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sven Koglin
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Bryanna Eisner
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; School of the Environment & Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Beat Thalmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sebastian Buchinger
- Federal Institute of Hydrology (BfG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology (BfG), Department G3: Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing 400715, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China.
| |
Collapse
|