1
|
Zhang T, He C, Ota S, Kitakaze T, Yamaji R, Shimazu S, Yamashita Y, Ashida H. A Natural Chalcone Cardamonin Inhibited Transformation of Aryl Hydrocarbon Receptor Through Binding to the Receptor Competitively. Mol Nutr Food Res 2024; 68:e2400185. [PMID: 39165052 DOI: 10.1002/mnfr.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/21/2024] [Indexed: 08/22/2024]
Abstract
SCOPE Chalcones are widely present in most plants and have various health beneficial functions. This study investigates the suppressive effect of 13 natural and synthetic chalcones on transformation of aryl hydrocarbon receptor (AhR) induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3-methylcholanthrene (3-MC) in a cell-free system, Hepa-1c1c7 cells, and liver of ICR mice. METHODS AND RESULTS In the cell-free system, cardamonin dose-dependently inhibits AhR transformation. Chalcones with substitution on 2' and/or 6' position is important for the suppressive effect, while the substitution on 4' position is negatively for the effect. Moreover, cardamonin and 2'-hydroxychalcone competitively inhibit the binding of [3H]-3-MC to the AhR. In Hepa-1c1c7 cells, cardamonin inhibits AhR transformation and expression of cytochrome P4501A1 (CYP1A1) in a dose-dependent manner through suppressing TCDD-induced phosphorylation of both AhR and AhR nuclear translocator, heterodimerization of them, and nuclear translocation of AhR. In the liver of mice, oral administered cardamonin also inhibits 3-MC-induced AhR translocation and expression of CYP1A1. CONCLUSION Among used chalcones, a natural chalcone cardamonin competitively binds to AhR and suppresses its transformation. Thus, cardamonin is an effective food factor for suppression of the dioxin-caused biochemical alterations and toxicities.
Collapse
Affiliation(s)
- Tianshun Zhang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
- The Hormel Institute, University of Minnesota, Austin, Minnesota. 801 16th Ave NE, Austin, MN, 559122, USA
| | - Chao He
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Shieru Ota
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Tomoya Kitakaze
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka, Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8331, Japan
| | - Ryoichi Yamaji
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka, Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8331, Japan
| | - Sayuri Shimazu
- Research Facility Center for Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
2
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
3
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
4
|
Jiang Y, Xiao H, Sun L, Zhang Y, Liu S, Luo B. LMP2A suppresses the role of AHR pathway through ERK signal pathway in EBV-associated gastric cancer. Virus Res 2021; 297:198399. [PMID: 33753181 DOI: 10.1016/j.virusres.2021.198399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the function of the aryl hydrocarbon receptor (AHR) pathway in Epstein-Barr Virus (EBV)-associated gastric cancer (EBVaGC) and to explore the relationship between EBV and AHR expression. METHODS The expression of AHR in EBVaGC and EBV negative GC (EBVnGC) tissues was detected by immunohistochemistry (IHC). Real-time qPCR (RT-qPCR) and Western blot analysis were used to examine the expression of AHR, cytochrome P450 1A1 (CYP1A1), and cytochrome P450 1B1 (CYP1B1) in gastric cancer cells. The cell proliferation and migration assay were tested by CCK8 and transwell analysis. EBV-encoded latent membrane protein 2A (LMP2A) was over-expressed in SGC7901 cells and silenced in AGS-EBV cells to further identify its role in EBV positive GC cells. RESULTS It was found that EBV infection inhibited the expression of AHR in gastric cancer tissues and cell lines. We also found that the activation of AHR pathway can promote cell proliferation and migration. However, the function was restricted in EBVaGC cell lines compared with EBVnGC. LMP2A can suppress AHR expression and pathway activation by activating phosphorylation of extracellular signal-regulated kinase (ERK) in EBV positive GC cell lines. CONCLUSION EBV-encoded LMP2A regulated the function of the AHR pathway by activating the ERK signal pathway in EBV positive GC cell lines.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China; Department of Medical Affairs of the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China
| | - Lingling Sun
- Department of Pathology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China; Department of Clinical Laboratory, Central Hospital of Zibo, 19 Gongqingtuan Road, ZiBo, 255036, China
| | - Shuzhen Liu
- Department of Medical Affairs of the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266021, China
| |
Collapse
|
5
|
Dvořák Z, Poulíková K, Mani S. Indole scaffolds as a promising class of the aryl hydrocarbon receptor ligands. Eur J Med Chem 2021; 215:113231. [PMID: 33582577 DOI: 10.1016/j.ejmech.2021.113231] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 11/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR), deemed initially as a xenobiotic sensor, plays multiple physiological roles and is involved in various pathophysiological processes and many diseases' etiology. Therefore, the therapeutic and chemopreventive targeting of AhR is a fundamental issue. To date, thousands of structurally diverse ligands of AhR have been identified. The bottleneck in targeting the AhR is that it is a Janus-faced player with beneficial vs. harmful effects in the ligand-specific context. A distinct structural class of the AhR ligands is those with indole-based scaffolds. The present review summarizes the knowledge on the existing indole-derived AhR ligands, comprising natural and dietary compounds, synthetic compounds including clinically used drugs, endogenous intermediary metabolites, and catabolites produced by human microbiota. The examples of novel, indole ring containing, rational design based AhR ligands are presented. The molecular, in vitro, and in vivo effects are described.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Karolína Poulíková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Zhu K, Meng Q, Zhang Z, Yi T, He Y, Zheng J, Lei W. Aryl hydrocarbon receptor pathway: Role, regulation and intervention in atherosclerosis therapy (Review). Mol Med Rep 2019; 20:4763-4773. [PMID: 31638212 PMCID: PMC6854528 DOI: 10.3892/mmr.2019.10748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/05/2019] [Indexed: 12/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand‑activated transcription factor originally isolated and characterized as the dioxin or xenobiotic receptor. With the discovery of endogenous ligands and studies of AhR knockout mice, AhR has been found to serve an important role in several biological processes, including immune responses and developmental and pathological regulation. In particular, it has been considered as a new major player in cardiovascular diseases. Recent studies have revealed that the development of atherosclerosis is closely associated with AhR function. However, the roles of the AhR in the pathological development of atherosclerosis and atherosclerosis‑associated diseases remain unclear. The current review presents the molecular mechanisms involved in the regulation of AhR expression during inflammation, oxidative stress and lipid deposition. Additionally, the role of the AhR in atherosclerosis and atherosclerosis‑associated diseases is reviewed.
Collapse
Affiliation(s)
- Kaixi Zhu
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Qingqi Meng
- Department of Orthopedics, Guangzhou Red Cross Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Zhi Zhang
- Department of Vascular, Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Tao Yi
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, USA
| | - Wei Lei
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
7
|
Kitakaze T, Makiyama A, Samukawa Y, Jiang S, Yamashita Y, Ashida H. A physiological concentration of luteolin induces phase II drug-metabolizing enzymes through the ERK1/2 signaling pathway in HepG2 cells. Arch Biochem Biophys 2019; 663:151-159. [PMID: 30641047 DOI: 10.1016/j.abb.2019.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
The flavon luteolin has various health-promoting activities including cardiovascular protection, anti-inflammatory activity and anticancer activity. A serum concentration of about 100 nM luteolin is reached by dietary habit. However, little is known about the function of luteolin over its physiological concentration range. In this study, we investigated whether a physiological concentration of luteolin could activate nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated expression of phase II drug-metabolizing enzymes in human hepatoma HepG2 cells. Interestingly, less than 1 nM of luteolin could induce phase II drug-metabolizing enzymes, such as GSTs, HO-1, and NQO1. Both 1 and 100 nM luteolin increased expression and activity of ALDH2, which metabolized toxic acetaldehyde into nontoxic acetic acid. Luteolin increased nuclear accumulation of Nrf2 and enhanced the ARE-binding complex through increasing the stability of the Nrf2 protein. Luteolin increased phosphorylation of Nrf2 at Ser40, and MEK inhibitors (U0126 and PD98059) canceled luteolin-induced phosphorylation of Nrf2. Furthermore, luteolin increased modified Keap1. In conclusion, a physiological concentration of luteolin induces the expression of phase II drug-metabolizing enzymes by enhancement of Nrf2 nuclear accumulation through MEK1/2-ERK1/2-mediated phosphorylation of Nrf2, increasing Nrf2 stability and inducing a conformational change of Keap1.
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Atsushi Makiyama
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yumi Samukawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Songyan Jiang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
8
|
Li H, Liu L, Liu C, Zhuang J, Zhou C, Yang J, Gao C, Liu G, Lv Q, Sun C. Deciphering Key Pharmacological Pathways of Qingdai Acting on Chronic Myeloid Leukemia Using a Network Pharmacology-Based Strategy. Med Sci Monit 2018; 24:5668-5688. [PMID: 30108199 PMCID: PMC6106618 DOI: 10.12659/msm.908756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Qingdai, a traditional Chinese medicine (TCM) used for the treatment of chronic myeloid leukemia (CML) with good efficacy, has been used in China for decades. However, due to the complexity of traditional Chinese medicinal compounds, the pharmacological mechanism of Qingdai needs further research. In this study, we investigated the pharmacological mechanisms of Qingdai in the treatment of CML using network pharmacology approaches. First, components in Qingdai that were selected by pharmacokinetic profiles and biological activity predicted putative targets based on a combination of 2D and 3D similarity measures with known ligands. Then, an interaction network of Qingdai putative targets and known therapeutic targets for the treatment of chronic myeloid leukemia was constructed. By calculating the 4 topological features (degree, betweenness, closeness, and coreness) of each node in the network, we identified the candidate Qingdai targets according to their network topological importance. The composite compounds of Qingdai and the corresponding candidate major targets were further validated by a molecular docking simulation. Seven components in Qingdai were selected and 32 candidate Qingdai targets were identified; these were more frequently involved in cytokine-cytokine receptor interaction, cell cycle, p53 signaling pathway, MAPK signaling pathway, and immune system-related pathways, which all play important roles in the progression of CML. Finally, the molecular docking simulation showed that 23 pairs of chemical components and candidate Qingdai targets had effective binding. This network-based pharmacology study suggests that Qingdai acts through the regulation of candidate targets to interfere with CML and thus regulates the occurrence and development of CML.
Collapse
Affiliation(s)
- Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Lijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland).,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Chao Zhou
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Jing Yang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Gongxi Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Qingliang Lv
- Department of Interventional Radiology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Changgang Sun
- Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| |
Collapse
|
9
|
Xue P, Fu J, Zhou Y. The Aryl Hydrocarbon Receptor and Tumor Immunity. Front Immunol 2018; 9:286. [PMID: 29487603 PMCID: PMC5816799 DOI: 10.3389/fimmu.2018.00286] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/31/2018] [Indexed: 01/31/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an important cytosolic, ligand-dependent transcription factor. Emerging evidence suggests the promoting role of the AhR in the initiation, promotion, progression, invasion, and metastasis of cancer cells. Studies on various tumor types and tumor cell lines have shown high AhR expression, suggesting that AhR is activated constitutively in tumors and facilitates their growth. Interestingly, immune evasion has been recognized as an emerging hallmark feature of cancer. A connection between the AhR and immune system has been recognized, which has been suggested as an immunosuppressive effector on different types of immune cells. Certain cancers can escape immune recognition via AhR signaling pathways. This review discusses the role of the AhR in tumor immunity and its potential mechanism of action in the tumor microenvironment.
Collapse
Affiliation(s)
- Ping Xue
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinrong Fu
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Shanghai, China
| |
Collapse
|
10
|
Nakai R, Fukuda S, Kawase M, Yamashita Y, Ashida H. Curcumin and its derivatives inhibit 2,3,7,8,-tetrachloro-dibenzo-p-dioxin-induced expression of drug metabolizing enzymes through aryl hydrocarbon receptor-mediated pathway. Biosci Biotechnol Biochem 2017; 82:616-628. [PMID: 29191105 DOI: 10.1080/09168451.2017.1386086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Certain dioxins, including 2,3,7,8,-tetrachloro-dibenzo-p-dioxin (TCDD), are exogenous ligands for an aryl hydrocarbon receptor (AhR) and induces various drug-metabolizing enzymes. In this study, we examined the effect of curcumin on expression of drug-metabolizing enzymes through the AhR and NF-E2 related factor 2 (Nrf2) pathways. Curcumin dose-dependently inhibited TCDD-induced expression of phase I enzyme cytochrome P450 1A1 (CYP1A1) and phase II enzymes NAD(P)H:quinone oxidoreductase-1 (NQO1) and heme oxygenase 1 (HO-1) but not tert-butyl hydroquinone-induced NQO1 and HO-1, suggesting that curcumin inhibited only AhR pathway, but not Nrf2 one directly. Furthermore, we used 14 curcumin derivatives and obtained the correlation between hydrophobicity of the compounds and suppressive effect against AhR transformation. Results from the quantitative structure active correlative analysis indicated that methoxy groups and β-diketone structure possessing keto-enol tautomerism in curcumin were necessary to inhibit AhR transformation, and the addition of methyl and methoxy group(s) to the curcumin increased the inhibition effect.
Collapse
Affiliation(s)
- Rika Nakai
- a Department of Agrobioscience, Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Shun Fukuda
- a Department of Agrobioscience, Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Masaya Kawase
- b Department of Bioscience , Nagahama Institute of Bio-Science and Technology University , Nagahama , Japan
| | - Yoko Yamashita
- a Department of Agrobioscience, Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Hitoshi Ashida
- a Department of Agrobioscience, Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| |
Collapse
|
11
|
Liu Y, She W, Wang F, Li J, Wang J, Jiang W. 3, 3'-Diindolylmethane alleviates steatosis and the progression of NASH partly through shifting the imbalance of Treg/Th17 cells to Treg dominance. Int Immunopharmacol 2014; 23:489-498. [PMID: 25281898 DOI: 10.1016/j.intimp.2014.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
This study was designed to discuss the effects of 3, 3'-diindolylmethane (DIM) on methionine-choline-deficient (MCD)-diet induced mouse nonalcoholic steatohepatitis (NASH) and the potential mechanisms. NASH mice were administrated with or without DIM at different concentrations for 8 weeks. Both the in-vivo and in-vitro effects of DIM on Treg/Th17 imbalance during NASH progression were analyzed. The in-vivo blocking of CD25 or IL-17 was performed to respectively deplete respective function of Treg or Th17 subset. Besides, with the assistance of AhR antagonist CH223191 and anti-TLR4 neutralizing antibody, we designed the in-vitro DIM-incubation experiments to discuss the roles of aryl hydrocarbon receptor (AhR) (CYP1A1, CYP1B1) and toll-like receptor 4 (TLR4) on DIM's effects when shifting Treg/Th17 imbalance. Notably, in NASH mouse models, DIM alleviated hepatic steatosis and inflammation, and shifted the Treg/Th17 imbalance from MCD diet-induced Th17 dominance to Treg dominance. In-vitro, DIM not only significantly up-regulated the mRNAs of Foxp3 (Treg-specific) in purified spleen CD4(+) T cells, but also enhanced the immunosuppressive function of these Treg cells. Besides, DIM significantly up-regulated the proteins of CYP1A1 and CYP1B1 whereas down-regulated those of TLR4 on CD4(+) T cells from MCD-diet mice. Moreover, blocking AhR attenuated while blocking TLR4 enhanced the effects of DIM when regulating Treg/Th17 imbalance. Conclusively, DIM could be used as a potential therapeutic candidate to treat NASH based on its dramatic induction of Treg dominance to alleviate intra-hepatic inflammation, suggesting us a clue that the dietary cruciferous vegetables (containing abundant DIM) might exist as a protective factor for patients with NASH-related liver diseases.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weimin She
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fuping Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Li
- Department of Gastroenterology, Tongji Hospital Tongji University, Shanghai China
| | - Jiyao Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Zhang T, Yamashita Y, Yasuda M, Yamamoto N, Ashida H. Ashitaba (Angelica keiskei) extract prevents adiposity in high-fat diet-fed C57BL/6 mice. Food Funct 2014; 6:135-45. [PMID: 25406632 DOI: 10.1039/c4fo00525b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two main chalcones, 4-hydroxyderricin and xanthoangelol, from Ashitaba, which is a food ingredient and a folk medicine in Asia, have been demonstrated to modulate lipid metabolism in 3T3-L1 and HepG2 cells. In this study, we investigated the effects of Ashitaba extract on adiposity in mice fed a high-fat (HF) diet and its underlying mechanisms based on adipose tissue and hepatic lipid metabolism. C57BL/6 mice were fed a normal or HF diet supplemented with Ashitaba extract (0.01% and 0.1%, w/w) for 16 weeks. Ashitaba extract suppressed the HF diet-induced body weight gain and fat deposition in white adipose tissue, reduced plasma cholesterol, glucose, and insulin levels, increased the adiponectin level, lowered triglyceride and the liver cholesterol content, increased phosphorylation of AMP-activated protein kinase (AMPK) in adipose tissue and liver, inhibited lipogenesis in adipose tissue by down-expression of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein α and sterol regulatory element-binding protein 1 (SREBP1), inhibited lipogenesis in the liver by down-expression of SREBP1 and its target enzyme fatty acid synthase, and promoted fatty acid oxidation by up-expression of carnitine palmitoyltransferase-1A and PPARα. In conclusion, Ashitaba extract can possibly prevent adiposity through modulating lipid metabolism through phosphorylation of AMPK in adipose tissue and liver.
Collapse
Affiliation(s)
- Tianshun Zhang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | |
Collapse
|
13
|
Rouse M, Singh NP, Nagarkatti PS, Nagarkatti M. Indoles mitigate the development of experimental autoimmune encephalomyelitis by induction of reciprocal differentiation of regulatory T cells and Th17 cells. Br J Pharmacol 2014; 169:1305-21. [PMID: 23586923 DOI: 10.1111/bph.12205] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/06/2013] [Accepted: 03/27/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Dietary indole derivatives, indole-3-carbinol (I3C) and diindolylmethane (DIM), possess anti-cancer properties and exhibit the characteristics of aryl hydrocarbon receptor (AhR) ligands. Because AhR activation has recently been shown to regulate T cell differentiation, we tested the hypothesis that I3C and DIM may mediate anti-inflammatory properties by promoting regulatory T cell (T-regs) differentiation while inhibiting Th17 cells. EXPERIMENTAL APPROACH We investigated the therapeutic efficacy of I3C and DIM against experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS). The efficacy was evaluated based on clinical scores of paralysis, histopathology, serum cytokines and infiltration of T cells in the CNS. We next studied the mechanism of induction of T cells against myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅ ) peptide, both in vivo and in vitro, specifically investigating the differentiation of T-regs and Th17 cells, and determined if indoles were acting through AhR. KEY RESULTS Pretreatment of EAE mice with I3C or DIM completely prevented the clinical symptoms and cellular infiltration into the CNS. Also, post-treatment of EAE with I3C or DIM proved highly effective in curtailing the overall severity of the disease. In addition, I3C or DIM promoted the generation of T-regs, while down-regulating the induction of MOG-specific Th17 cells. The regulation of FoxP3 induction and suppression of Th17 cells by indoles in vivo and in vitro were found to be AhR-dependent. CONCLUSIONS AND IMPLICATIONS Together, our studies demonstrate for the first time that I3C and DIM may serve as novel therapeutics to suppress neuroinflammation seen during MS through activation of AhR.
Collapse
Affiliation(s)
- Michael Rouse
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
14
|
Mitoshi M, Kuriyama I, Nakayama H, Miyazato H, Sugimoto K, Kobayashi Y, Jippo T, Kuramochi K, Yoshida H, Mizushina Y. Suppression of allergic and inflammatory responses by essential oils derived from herbal plants and citrus fruits. Int J Mol Med 2014; 33:1643-51. [PMID: 24682420 DOI: 10.3892/ijmm.2014.1720] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/07/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the biological activity of 20 essential oils (EOs) derived from herbal plants and citrus fruits. The in vitro anti-allergic and anti-inflammatory activities of these oils were investigated, and the EO which was found to have the strongest activity of the 20 EOs examined, was investigated further to identify its components and bioactive compounds. The in vitro anti-allergic activity was determined by measuring the release of β-hexosaminidase from rat basophilic leukemia (RBL-2H3) cells treated with the calcium ionophore, A23187. The in vitro anti-inflammatory activity was determined by measuring the production of tumor necrosis factor-α (TNF-α) in RAW264.7 murine macrophages treated with lipopolysaccharide. Among the EOs examined, lemongrass [Cymbopogon citratus (DC.) Stapf] elicited the strongest anti-allergic and anti-inflammatory effects. A principal component of this EO is citral (3,7-dimethyl-2,6-octadien-1-al) (74.5%), a mixture of the stereoisomers, geranial (trans-citral, 40.16%) and neral (cis-citral, 34.24%), as determined by chromatography-mass spectrometry analysis. The activities of citral and geranial are similar to those of lemongrass EO. These compounds elicited significant in vivo anti-allergic and anti-inflammatory effects, suppressing an immunoglobulin E (IgE)-induced passive cutaneous anaphylactic reaction in mice and a 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory mouse ear edema, respectively. Our data demonstrate that lemongrass EO and its constituents, citral and geranial, may be a therapeutic candidate for allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Mai Mitoshi
- Laboratory of Food and Nutritional Sciences, Faculty of Nutrition, Kobe Gakuin University, Kobe, Hyogo 651‑2180, Japan
| | - Isoko Kuriyama
- Laboratory of Food and Nutritional Sciences, Faculty of Nutrition, Kobe Gakuin University, Kobe, Hyogo 651‑2180, Japan
| | - Hiroto Nakayama
- Research and Development Center, Nagaoka Perfumery Co., Ltd., Ibaraki, Osaka 567-0005, Japan
| | - Hironari Miyazato
- Research and Development Center, Nagaoka Perfumery Co., Ltd., Ibaraki, Osaka 567-0005, Japan
| | - Keiichiro Sugimoto
- Research and Development Center, Nagaoka Perfumery Co., Ltd., Ibaraki, Osaka 567-0005, Japan
| | - Yuko Kobayashi
- Department of Food and Nutrition, Faculty of Human Life Sciences, Senri Kinran University, Suita, Osaka 565‑0873, Japan
| | - Tomoko Jippo
- Department of Food and Nutrition, Faculty of Human Life Sciences, Senri Kinran University, Suita, Osaka 565‑0873, Japan
| | - Kouji Kuramochi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hiromi Yoshida
- Laboratory of Food and Nutritional Sciences, Faculty of Nutrition, Kobe Gakuin University, Kobe, Hyogo 651‑2180, Japan
| | - Yoshiyuki Mizushina
- Laboratory of Food and Nutritional Sciences, Faculty of Nutrition, Kobe Gakuin University, Kobe, Hyogo 651‑2180, Japan
| |
Collapse
|
15
|
Kasai S, Ishigaki T, Takumi R, Kamimura T, Kikuchi H. Beta-catenin signaling induces CYP1A1 expression by disrupting adherens junctions in Caco-2 human colon carcinoma cells. Biochim Biophys Acta Gen Subj 2013; 1830:2509-16. [PMID: 23174221 DOI: 10.1016/j.bbagen.2012.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/15/2012] [Accepted: 11/12/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aryl hydrocarbon (Ah) receptor is one of the best known ligand-activated transcription factors. The present study has focused on the wound-healing process on Ah receptor function. METHODS Depletion of calcium from culture medium of Caco-2 human colon carcinoma cells by transfer to Minimal Essential Medium (Spinner Modification; S-MEM) destroyed adherens junctions and the cells were used as the model of wound-healing process. RESULTS Calcium depletion induced both nuclear translocation of the Ah receptor, and increased expression of CYP1A1 and Slug mRNAs in Caco-2 cells. However, expression of Slug mRNA was not significantly induced by treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Knockdown of the Ah receptor and treatment with Ah receptor antagonists decreased level of CYP1A1 mRNA. The fragment of E-cadherin released by gamma-secretase was not involved in induction of CYP1A1 mRNA following S-MEM treatment. Knockdown of beta-catenin increased levels of Ah receptor mRNA, which may be attributable to direct or indirect involvement of beta-catenin in suppression of the Ah receptor gene. CONCLUSIONS Our results suggest that mRNA induction of some genes by destruction of adherens junctions depends on the Ah receptor. beta-Catenin, one of the components of the adherens junction, was released from the E-cadherin complex, which resulted in its increased interaction with the Ah receptor, and was translocated into the nucleus, and consequently the target genes would be transcribed. GENERAL SIGNIFICANCE Our observations suggest that some aspects of the molecular mechanism of wound healing involve the Ah receptor.
Collapse
Affiliation(s)
- Shuya Kasai
- Science of Biosources, United Graduate School of Agricultural Science, Iwate University, Morioka 020-8551, Japan
| | | | | | | | | |
Collapse
|
16
|
Zhang T, Jiang S, He C, Kimura Y, Yamashita Y, Ashida H. Black soybean seed coat polyphenols prevent B(a)P-induced DNA damage through modulating drug-metabolizing enzymes in HepG2 cells and ICR mice. Mutat Res 2013; 752:34-41. [PMID: 23370448 DOI: 10.1016/j.mrgentox.2013.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 12/21/2022]
Abstract
Black soybean seed coat is a rich source of polyphenols that have been reported to have various physiological functions. The present study investigated the potential protective effects of polyphenolic extracts from black soybean seed coat on DNA damage in human hepatoma HepG2 cells and ICR mice. The results from micronucleus (MN) assay revealed that black soybean seed coat extract (BE) at concentrations up to 25μg/mL was non-genotoxic. It is noteworthy that BE (at 4.85μg/mL) and its main components, procyanidins (PCs) and cyanidin 3-glucoside (C3G), at 10μM significantly reduced the genotoxic effect induced by benzo[a]pyrene [B(a)P]. To obtain insights into the underlying mechanism, we investigated BE and its main components on drug-metabolizing enzyme expression. The results of this study demonstrate that BE and its main components, PCs and C3G, down-regulated B(a)P-induced cytochrome P4501A1 (CYP1A1) expression by inhibiting the transformation of aryl hydrocarbon receptor. Moreover, they increased expression of detoxifying defense enzymes, glutathione S-transferases (GSTs) via increasing the binding of nuclear factor-erythroid-2-related factor 2 to antioxidant response elements. Collectively, we found that PCs and C3G, which are the main active compounds of BE, down-regulated CYP1A1 and up-regulated GST expression to protect B(a)P-induced DNA damage in HepG2 cells and ICR mice effectively.
Collapse
Affiliation(s)
- Tianshun Zhang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Nishiumi S, Mukai R, Ichiyanagi T, Ashida H. Suppression of lipopolysaccharide and galactosamine-induced hepatic inflammation by red grape pomace. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9315-9320. [PMID: 22928618 DOI: 10.1021/jf302298n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Grape pomace is generated in the production process of wine and grape juices and is an industrial waste. This study investigated whether an intake of grape pomace was able to suppress chronic inflammation induced by lipopolysaccharide (LPS) and galactosamine (GalN) in vivo. When Sprague-Dawley rats were orally given methanolic extracts from red and white grape pomace, the extracts inhibited the LPS/GalN-evoked activation of nuclear factor-κB (NF-κB) dose-dependently, and red grape pomace exerted a stronger effect than white grape one. Next, rats were fed an AIN93 M-based diet containing 5% red grape pomace for 7 days, followed by the intraperitoneal injection of LPS and GalN. The intake of the red grape pomace-supplemented diet was found to suppress the LPS/GalN-induced activation of NF-κB and expression of inducible nitric oxide synthase and cyclooxygenase-2 proteins. These results suggest that red grape pomace may contain an abundance of effective compound(s) for anti-inflammatory action.
Collapse
Affiliation(s)
- Shin Nishiumi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | |
Collapse
|
18
|
Wee XK, Yang T, Go ML. Exploring the anticancer activity of functionalized isoindigos: synthesis, drug-like potential, mode of action and effect on tumor-induced xenografts. ChemMedChem 2012; 7:777-91. [PMID: 22416043 DOI: 10.1002/cmdc.201200018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Indexed: 01/12/2023]
Abstract
Meisoindigo has been used as an indirubin substitute for the treatment of chronic myeloid leukemia (CML) for several years. In view of its poor solubility and erratic absorption, several investigations have focused on developing analogues with more desirable physicochemical profiles. Here, we investigated the structure-activity relationship (SAR) of meisoindigo with respect to its antiproliferative activity on leukemic K562 cells and found that appending a phenalkyl side chain onto the lactam NH resulted in analogues that retained good activity. Furthermore, analogues in which the phenyl ring was substituted with a basic heterocycle were significantly more soluble than meisoindigo while retaining acceptable antiproliferative profiles. The most promising analogue (E)-1-(2-(4-methylpiperazin-1-yl)ethyl)-[3,3'-biindolinylidene]-2,2'-dione (5-4) is more potent than meisoindigo across a panel of malignant cells, with at least 40 times greater solubility than meisoindigo, little or no tendency to aggregate in solution and capable of significantly extending the lifespans of animals with K562 induced xenografts. Mechanistically, it induced apoptotic cell death and disrupted the progression of K562 cells from the G(1) to G(2) phase. Taken together, our findings highlighted the feasibility of addressing the physicochemical deficits of the isoindigo scaffold by systematic modifications which was achieved without overt loss of growth inhibitory activity.
Collapse
Affiliation(s)
- Xi Kai Wee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | |
Collapse
|
19
|
Ravichandran K, Pal A, Ravichandran R. Effect of indirubin-3-monoxime against lung cancer as evaluated by histological and transmission electron microscopic studies. Microsc Res Tech 2011; 73:1053-8. [PMID: 20169620 DOI: 10.1002/jemt.20832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study is to evaluate the antitumor effect of indirubin-3-monoxime and its mode of action in benzo(α)pyrene [B(α)P] induced lung cancer in A/J mice. Light microscopic examination of lung sections of [B(α)P] induced lung cancer mice revealed the presence of adenocarcinoma characterized by extensive proliferation of alveolar epithelium and loss of alveolar spaces. The control lung tissue showed a normal architecture with clear alveolar spaces. Interestingly the indirubin-3-monoxime treated groups showed the reduced adenocarcinoma with appearance of alveolar spaces. Transmission Electron Microscopic (TEM) studies of lung sections of [B(α)P] induced lung cancer mice showed the presence of phaemorphic cells with dense granules and increased mitochondria. The lung sections of mice treated with indirubin-3-monoxime showed the presence of shrunken, fragmented, and condensed nuclei implying apoptosis. The effects were dose dependent and prominent in 10 mg/kg/5 d/week groups suggesting the therapeutic role of indirubin analogue against this deadly human malignancy. Here, our results indicate that indirubin-3-monoxime brings antitumor effect against [B(α)P] induced lung cancer by its apoptotic action in A/J mice.
Collapse
Affiliation(s)
- Kameswaran Ravichandran
- Department of Zoology, Unit of Biomonitoring and Management, University of Madras, Guindy Campus, Chennai 600025, India
| | | | | |
Collapse
|
20
|
Abel J, Haarmann-Stemmann T. An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol Chem 2011; 391:1235-48. [PMID: 20868221 DOI: 10.1515/bc.2010.128] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.
Collapse
Affiliation(s)
- Josef Abel
- Institut für Umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universität Düsseldorf gGmbH, Auf'm Hennekamp 50, Düsseldorf, Germany
| | | |
Collapse
|
21
|
Procházková J, Kozubík A, Machala M, Vondráček J. Differential effects of indirubin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on the aryl hydrocarbon receptor (AhR) signalling in liver progenitor cells. Toxicology 2010; 279:146-54. [PMID: 20951181 DOI: 10.1016/j.tox.2010.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/21/2010] [Accepted: 10/07/2010] [Indexed: 11/29/2022]
Abstract
In the present study, we investigated the effects of potential endogenous ligand indirubin on the aryl hydrocarbon receptor (AhR) signalling, with a focus on the AhR-dependent gene expression and cell cycle progression in rat liver progenitor cells, and compared them with the effects of a model toxic AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The low (picomolar and nanomolar) doses of indirubin, corresponding to expected endogenous levels, induced a transient translocation of AhR to the nucleus, while high (micromolar) doses induced a long-term AhR nuclear translocation, followed by its degradation, similar to the effects of TCDD. Whereas high doses of indirubin recruited AhR/ARNT1 dimer to rat Cyp1a1 promoter, the low doses did not induce its DNA binding, as revealed by the chromatin immunoprecipitation assay. This corresponded with the fact that the micromolar doses of indirubin significantly increased Cyp1a1/1b1 mRNA in a way similar to TCDD, while the low doses of indirubin were only poor inducers of Cyp1a1/1b1 expression. Comparable patterns of expression were observed also for other AhR gene targets, such as Nqo1 and Nrf2. Also, only micromolar doses of indirubin were able to mimic the effects of TCDD on cell cycle and proliferation of liver progenitor cells or hepatoma cells. Nevertheless, indirubin at low concentrations may have unique effects on gene expression in non-tumorigenic cells. Although both TCDD and the high doses of indirubin repressed plakoglobin (Jup) expression, the picomolar doses of indirubin, unlike the equimolar doses of TCDD, increased mRNA levels of this important desmosomal and adherens junctions constituent. These present data suggest that the outcome of AhR activation induced by indirubin at concentrations expected in vivo may differ from the AhR signalling triggered by exogenous toxic ligands, such as TCDD.
Collapse
Affiliation(s)
- Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
22
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
23
|
Kawano Y, Nishiumi S, Tanaka S, Nobutani K, Miki A, Yano Y, Seo Y, Kutsumi H, Ashida H, Azuma T, Yoshida M. Activation of the aryl hydrocarbon receptor induces hepatic steatosis via the upregulation of fatty acid transport. Arch Biochem Biophys 2010; 504:221-7. [PMID: 20831858 DOI: 10.1016/j.abb.2010.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix/Per-ARNT-Sim domain transcription factor, which is activated by various xenobiotic ligands. AHR is known to be abundant in liver tissue and to be associated with hepatic steatosis. However, it has not yet been elucidated how the activation of AHR promotes hepatic steatosis. The aim of this study is to clarify the role of AHR in hepatic steatosis. The intraperitoneal injection of 3-methylcholanthrene (3MC), a potent AHR ligand, into C57BL/6J mice significantly increased the levels of triglycerides and six long-chain monounsaturated fatty acids in the livers of mice, resulting in hepatic microvesicular steatosis. 3MC significantly enhanced the expression level of fatty acid translocase (FAT), a factor regulating the uptake of long-chain fatty acids into hepatocytes, in the liver. In an in vitro experiment using human hepatoma HepG2 cells, 3MC increased the expression level of FAT, and the downregulation of AHR by AHR siRNA led to the suppression of 3MC-induced FAT expression. In addition, the mRNA level of peroxisome proliferator-activated receptor (PPAR) α, an upstream factor of FAT, was increased in the livers of 3MC-treated mice. Taking together, AHR activation induces hepatic microvesicular steatosis by increasing the expression level of FAT.
Collapse
Affiliation(s)
- Yuki Kawano
- Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tanaka S, Nishiumi S, Nishida M, Mizushina Y, Kobayashi K, Masuda A, Fujita T, Morita Y, Mizuno S, Kutsumi H, Azuma T, Yoshida M. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activation. Clin Exp Immunol 2010; 160:283-92. [PMID: 20030669 PMCID: PMC2857952 DOI: 10.1111/j.1365-2249.2009.04083.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 01/19/2023] Open
Abstract
Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.
Collapse
Affiliation(s)
- S Tanaka
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kusunoki-Cho, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kinehara M, Fukuda I, Yoshida KI, Ashida H. Aryl hydrocarbon receptor-mediated induction of the cytosolic phospholipase A(2)alpha gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse hepatoma Hepa-1c1c7 cells. J Biosci Bioeng 2010; 108:277-81. [PMID: 19716514 DOI: 10.1016/j.jbiosc.2009.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/10/2009] [Accepted: 04/14/2009] [Indexed: 01/22/2023]
Abstract
Upon binding to ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) is activated to form a heterodimer with an aryl hydrocarbon receptor nuclear translocator (Arnt). This complex binds to DNA. It has been shown that the AhR bonds to a DNA sequence called the dioxin response element (DRE), which controls the expression of battery genes. It is reported that TCDD releases arachidonic acid from membrane phospholipids via activation of phospholipase A(2)s (PLA(2)s) in various cell types. Recently, we demonstrated that the TCDD-activated AhR binds to the second intron of the Pla2g4a gene, which encodes cytosolic phospholipase A(2)alpha (cPLA(2)alpha), in mouse hepatoma Hepa-1c1c7 cells. This result suggests that Pla2g4a appears to be a target gene of the AhR. In the present study, we investigated whether the transcriptional regulation of Pla2g4a is dependent on the AhR in Hepa-1c1c7 cells. Treatment of the cells with TCDD increased mRNA expression of Pla2g4a and enzymatic activity of PLA(2,) while this increased expression was not observed in AhR-defective c12 cells. After transient transfection of an Ahr gene-expressing plasmid into the c12 cells, expression of Pla2g4a was increased by TCDD. These results indicate that Pla2g4a may be a novel target gene of the AhR, and its transcriptional induction is mediated through binding of the AhR to the second intron of Pla2g4a, although this target site does not have a typical DRE sequence.
Collapse
Affiliation(s)
- Masaki Kinehara
- Department of Agrobioscience, Kobe University, Rokkodai, Nada-ku, Hyogo, Japan
| | | | | | | |
Collapse
|
26
|
Ishida T, Yoshida M, Arita M, Nishitani Y, Nishiumi S, Masuda A, Mizuno S, Takagawa T, Morita Y, Kutsumi H, Inokuchi H, Serhan CN, Blumberg RS, Azuma T. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis. Inflamm Bowel Dis 2010; 16:87-95. [PMID: 19572372 PMCID: PMC3070396 DOI: 10.1002/ibd.21029] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Resolvin E1 (RvE1), an endogenous lipid mediator derived from eicosapentaenoic acid, has been identified in local inflammation during the healing stage. RvE1 reduces inflammation in several types of animal models including peritonitis and retinopathy and blocks human neutrophil transendothelial cell migration. The RvE1 receptor ChemR23 is expressed on myeloid cells such as macrophages and dendritic cells. The aim of this study was to determine whether RvE1 regulates colonic inflammation when the innate immune response of macrophages plays a key role in pathogenesis and tissue damage. METHODS The RvE1 receptor ChemR23 was expressed in mouse peritoneal macrophages as defined by flow cytometry. Peritoneal macrophages were pretreated with RvE1, followed by lipopolysaccharide stimulation, whereupon transcriptional levels of proinflammatory cytokines were analyzed. RESULTS RvE1 treatment led to inhibition of proinflammatory cytokines including TNF-alpha and IL-12p40. In HEK293 cells, pretreatment with RvE1 inhibited TNF-alpha-induced nuclear translocation of NF-kappaB in a ChemR23-dependent manner. These results suggested that RvE1 could regulate proinflammatory responses of macrophages expressing ChemR23. Therefore, we investigated the beneficial effects of RvE1 in dextran sulfate sodium-induced colitis. RvE1 treatment led to amelioration of colonic inflammation. CONCLUSIONS These results indicate that RvE1 suppresses proinflammatory responses of macrophages. RvE1 and its receptor may therefore be useful as therapeutic targets in the treatment of human inflammatory bowel disease and other inflammatory disorders.
Collapse
Affiliation(s)
- Tsukasa Ishida
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Japan
| | - Makoto Arita
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University, Tokyo, Japan
| | - Yosuke Nishitani
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Japan
| | - Atsuhiro Masuda
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Shigeto Mizuno
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Tetsuya Takagawa
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yoshinori Morita
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hiromu Kutsumi
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hideto Inokuchi
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Charles N Serhan
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Takeshi Azuma
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
27
|
Kinehara M, Fukuda I, Yoshida KI, Ashida H. High-throughput evaluation of aryl hydrocarbon receptor-binding sites selected via chromatin immunoprecipitation-based screening in Hepa-1c1c7 cells stimulated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Genes Genet Syst 2009; 83:455-68. [PMID: 19282623 DOI: 10.1266/ggs.83.455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Upon binding to ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) is activated to form a heterodimer with an aryl hydrocarbon receptor nuclear translocator (Arnt) and binds to DNA. It has been shown that the binding of AhR to DNA depends on the dioxin response element (DRE) and controls xenobiotic-response genes. AhR-binding DNA fragments from mouse hepatoma Hepa-1c1c7 cells stimulated with TCDD were once enriched in a chromatin immunoprecipitation (ChIP) DNA library and screened through a high-throughput southwestern chemistry-based enzyme-linked immunosorbent assay (SW-ELISA). After screening 1700 fragments, the ChIP-SW-ELISA screening strategy allowed us to isolate 77 fragments tightly interacting with AhR in the presence of TCDD. Only 39 of the 77 fragments appeared to contain a typical DRE, indicating that in some cases the DRE was dispensable for AhR-binding, while 75 fragments were located within promoter-distal regions. Genomic mapping of the 77 fragments enabled us to estimate 121 potential AhR targets including known targets such as Cyp1A1 and Cyp1B1, but only a limited number exhibited an altered expression dependent on TCDD. This study revealed the fact that TCDD-activated AhR frequently binds to promoter-distal regions even without a DRE and is not always involved in transcriptional regulation, suggesting that within the genome DNA-binding of AhR could take place often in many regions without cis-regulatory elements and might not be a key determinant to establish its regulatory function.
Collapse
Affiliation(s)
- Masaki Kinehara
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Japan
| | | | | | | |
Collapse
|
28
|
Functionalized 3-benzylidene-indolin-2-ones: inducers of NAD(P)H-quinone oxidoreductase 1 (NQO1) with antiproliferative activity. Bioorg Med Chem 2008; 17:2077-90. [PMID: 19200740 DOI: 10.1016/j.bmc.2008.12.052] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/22/2008] [Indexed: 11/20/2022]
Abstract
Functionalized benzylidene-indolin-2-ones are widely associated with antiproliferative activity. The scaffold is not normally associated with chemoprevention in spite of the presence of a nitrogen-linked Michael acceptor moiety that may predispose members to induction of NQO1, a widely used biomarker of chemopreventive potential. To investigate this possibility, we have synthesized and evaluated a series of functionalized 3-benzylidene-indolin-2-ones for induction of NQO1 in murine Hepa1c1c7 cells as well as antiproliferative activity against two human cancer cell lines (MCF-7, HCT116). The benzylideneindolinones were found to be good inducers of NQO1 activity, with 85% of test compounds able to increase basal NQO1 activity by more than twofold at concentrations of 10 microM. By contrast, fewer compounds (11%) tested at the same concentration were able to reduce cell viability by more than 50%. Structure activity relationships showed that the nitrogen linked Michael acceptor moiety was an essential requirement for both activities. This common feature notwithstanding, substitution of the 3-benzylidene-indolin-2-one core structure affected NQO1 induction and antiproliferative activities in dissimilar ways, underscoring different structural requirements for these two activities. Nonetheless, promising compounds (10, 42, 45-48) were identified that combine selective induction of NQO1 with potent antiproliferative activity. A potential advantage of such agents would be the ability to provide added protection to normal cells by the up-regulation of NQO1 and other phase II enzymes while simultaneously targeting neoplastic cells.
Collapse
|
29
|
Ashida H, Nishiumi S, Fukuda I. An update on the dietary ligands of the AhR. Expert Opin Drug Metab Toxicol 2008; 4:1429-47. [DOI: 10.1517/17425255.4.11.1429] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|