1
|
Vordos Z, Deli I, Anifanti M, Kluzek S, Koutlianos N, Kouidi E, Deligiannis A. The Effect of Dark Chocolate Consumption on Arterial Function in Endurance Male Runners: Prospective Cohort Study. Sports (Basel) 2024; 12:344. [PMID: 39728884 DOI: 10.3390/sports12120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Foods rich in polyphenols have beneficial effects on health. This study aimed to examine the impact of dark chocolate on endurance runners' arterial function. Forty-six male amateur runners, aged 25-55, participated. The initial assessments included clinical testing, arterial stiffness measurements, and a cardiopulmonary exercise test. The participants then consumed 50 g of dark chocolate (70% cocoa) daily for two weeks, maintaining their usual training routine. After this period, the baseline assessment was repeated. The results showed significant improvements. Pulse wave velocity decreased by 11.82% (p < 0.001), and augmentation index by 19.47% (p < 0.001). Systolic brachial blood pressure reduced by 2.12% (p < 0.05), diastolic by 2.79% (p < 0.05), and mean pressure by 2.41% (p < 0.05). Central arterial pressure also decreased, with systolic by 1.24% (p < 0.05), diastolic by 2.80% (p < 0.05), and mean pressure by 2.43% (p < 0.05). Resting heart rate increased by 4.57% (p < 0.05) and left ventricular ejection time decreased by 4.89% (p < 0.05), particularly in athletes over 40. Exercise time increased by 2.16% (p < 0.05), heart rate (max) by 1.15% (p < 0.05), VO2max by 2.31% (p < 0.05), and anaerobic threshold shifted by 6.91% (p < 0.001) in exercise time and 6.93% (p < 0.001) in VO2max. In conclusion, dark chocolate improves arterial function in endurance runners, enhancing vascular health.
Collapse
Affiliation(s)
- Zacharias Vordos
- Laboratory of Sports Medicine, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thermi, Greece
| | - Ifigeneia Deli
- Laboratory of Sports Medicine, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thermi, Greece
| | - Maria Anifanti
- Laboratory of Sports Medicine, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thermi, Greece
| | - Stefan Kluzek
- Sports & Exercise Medicine and Trauma & Orthopaedic Surgery, University of Nottingham, Nottingham NG7 2UH, UK
| | - Nikolaos Koutlianos
- Laboratory of Sports Medicine, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thermi, Greece
| | - Evangelia Kouidi
- Laboratory of Sports Medicine, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thermi, Greece
| | - Asterios Deligiannis
- Laboratory of Sports Medicine, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thermi, Greece
| |
Collapse
|
2
|
El Souda SS, Ahmed HH, Maamoun AA, Matloub AA, Aglan HA. Chemical Profile and Potential Application of Agri-food Waste Products for Counteracting Diabetes Induced Neuropathy in Rats. Chem Biodivers 2024; 21:e202400843. [PMID: 39140441 DOI: 10.1002/cbdv.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to prepare defatted ethanol extract of Abelmoschus esculentus leaves, Morus nigra leaves and Punica granatum peel, to identify the chemical composition of these extracts and to explore their efficacy in counteracting diabetic neuropathy. LC-ESI-MS spectrometry was the hyphenated tool for component identification of these extracts. Behavioral, biochemical, and histopathological investigations were carried out after treatments of diabetic rats. The phenolic contents in the extracts are 16.38, 34.75 and 40.57 mg GAE/g extract regarding A. esculentus leaves, M. nigra leaves and P. granatum peel respectively. Chemodiversity of the phenolic contents was observed from the LC/Mass, where A. esculentus extract contained isoflavonoids and flavanones, M. nigra extract consisted of benzofurans, prenylated flavonoids, stilbenes, and xanthones, and P. granatum extract was rich in ellagitanins, condensed tannins, and anthocyanins. The extracts normalize of blood glucose levels, enhance the explorative behavior of the rats and their response time to thermal pain, restore the oxidant/antioxidant balance, attenuate inflammation, augment brain monoamines levels and modulate MAO-A and Ache enzyme activity. Furthermore, they recovered brain histopathological alterations. Conclusively, this study offers experimental evidence for the neuroprotective impact of studied defatted ethanol extracts against diabetic neuropathy via their hypoglycemic effect, antioxidant activity, and anti-inflammatory potential.
Collapse
Affiliation(s)
- Sahar S El Souda
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Buhouth St, Giza, Dokki, P.O.12622 (ID: 60014618), Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Dokki, Egypt
| | - Amal A Maamoun
- Pharmacognosy Department, National Research Centre, 33 El Buhouth St, Cairo, Giza, Dokki, P.O.12622 (ID:60014618), Egypt
| | - Azza A Matloub
- Pharmacognosy Department, National Research Centre, 33 El Buhouth St, Cairo, Giza, Dokki, P.O.12622 (ID:60014618), Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Dokki, Egypt
| |
Collapse
|
3
|
Lin KH, Ramesh S, Agarwal S, Kuo WW, Kuo CH, Chen MYC, Lin YM, Ho TJ, Huang PC, Huang CY. Fisetin attenuates doxorubicin-induced cardiotoxicity by inhibiting the insulin-like growth factor II receptor apoptotic pathway through estrogen receptor-α/-β activation. Phytother Res 2023; 37:3964-3981. [PMID: 37186468 DOI: 10.1002/ptr.7855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023]
Abstract
Doxorubicin (DOX), an effective chemotherapeutic drug, has been used to treat various cancers; however, its cardiotoxic side effects restrict its therapeutic efficacy. Fisetin, a flavonoid phytoestrogen derived from a range of fruits and vegetables, has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity; however, the underlying mechanisms remain unclear. This study investigated fisetin's cardioprotective role and mechanism against DOX-induced cardiotoxicity in H9c2 cardiomyoblasts and ovariectomized (OVX) rat models. MTT assay revealed that fisetin treatment noticeably rescued DOX-induced cell death in a dose-dependent manner. Moreover, western blotting and TUNEL-DAPI staining showed that fisetin significantly attenuated DOX-induced cardiotoxicity in vitro and in vivo by inhibiting the insulin-like growth factor II receptor (IGF-IIR) apoptotic pathway through estrogen receptor (ER)-α/-β activation. The echocardiography, biochemical assay, and H&E staining results demonstrated that fisetin reduced DOX-induced cardiotoxicity by alleviating cardiac dysfunction, myocardial injury, oxidative stress, and histopathological damage. These findings imply that fisetin has a significant therapeutic potential against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, India
| | - Sakshi Agarwal
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yueh-Min Lin
- Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Pei-Chen Huang
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
4
|
Alzahrani MA, Binnshwan FM, Alsulaim KB, Mobeirek OA, Albakran NM, Albawardi FA, Almezaini AI, Alqahtani YK, Alghuyaythat WKZ, Abunohaiah I, AlAsmi R, Almannie R. Effect of Blackcurrant Consumption on the Genitourinary System: A Literature Review. Cureus 2023; 15:e44181. [PMID: 37641728 PMCID: PMC10460296 DOI: 10.7759/cureus.44181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 08/31/2023] Open
Abstract
Both in vivo and in vitro studies have shown that functional plant-based food such as fruits, vegetables, and berries can enhance health, have preventive effects, and reduce the risk of several chronic diseases. This review discusses blackcurrant fruit usage in humans and experimental animals and its effect on the genitourinary system (GUS). This comprehensive review demonstrates that blackcurrants and their bioactive compounds possess medicinal and therapeutic properties related to the GUS. Emphasis in the literature has been placed on the bioavailability of the active blackcurrant components. Nonetheless, future clinical trials are needed to investigate and improve the bioavailability of blackcurrant phenolic compounds, such as anthocyanins, and to expand the evidence that active blackcurrant compounds can treat various genitourinary diseases.
Collapse
Affiliation(s)
- Meshari A Alzahrani
- Department of Urology, College of Medicine, Majmaah University, Al-Majmaah, SAU
| | | | - Khaled B Alsulaim
- Medical School, College of Medicine, King Saud University, Riyadh, SAU
| | - Osama A Mobeirek
- Medical School, College of Medicine, King Saud University, Riyadh, SAU
| | - Nasser M Albakran
- Medical School, College of Medicine, King Saud University, Riyadh, SAU
| | - Fahad A Albawardi
- Medical School, College of Medicine, King Saud University, Riyadh, SAU
| | | | | | | | - Ibrahim Abunohaiah
- Department of Surgery, Division of Urology, Faculty of Medicine, King Saud University, King Saud University Medical City, Riyadh, SAU
| | - Raed AlAsmi
- Department of Surgery, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, SAU
| | - Raed Almannie
- Department of Surgery, Division of Urology, Faculty of Medicine, King Saud University, King Saud University Medical City, Riyadh, SAU
| |
Collapse
|
5
|
Bloomfield PM, Fisher JP, Shaw DM, Gant N. Cocoa flavanols protect cognitive function, cerebral oxygenation, and mental fatigue during severe hypoxia. J Appl Physiol (1985) 2023; 135:475-484. [PMID: 37471213 DOI: 10.1152/japplphysiol.00219.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
We tested the hypothesis that ingestion of cocoa flavanols would improve cognition during acute hypoxia equivalent to 5,500 m altitude (partial pressure of end-tidal oxygen = 45 mmHg). Using placebo-controlled double-blind trials, 12 participants ingested 15 mg·kg-1 of cocoa flavanols 90 min before completing cognitive tasks during normoxia and either poikilocapnic or isocapnic hypoxia (partial pressure of end-tidal carbon dioxide uncontrolled or maintained at the baseline value, respectively). Cerebral oxygenation was measured using functional near-infrared spectroscopy. Overall cognition was impaired by poikilocapnic hypoxia (main effect of hypoxia, P = 0.008). Cocoa flavanols improved a measure of overall cognitive performance by 4% compared with placebo (effect of flavanols, P = 0.033) during hypoxia, indicating a change in performance from "low average" to "average." The hypoxia-induced decrease in cerebral oxygenation was two-fold greater with placebo than with cocoa flavanols (effect of flavanols, P = 0.005). Subjective fatigue was increased by 900% with placebo compared with flavanols during poikilocapnic hypoxia (effect of flavanols, P = 0.004). Overall cognition was impaired by isocapnic hypoxia (effect of hypoxia, P = 0.001) but was not improved by cocoa flavanols (mean improvement = 1%; effect of flavanols, P = 0.72). Reaction time was impaired by 8% with flavanols during normoxia and further impaired by 11% during isocapnic hypoxia (effect of flavanols, P = 0.01). Our findings are the first to show that flavanol-mediated improvements in cognition and mood during normoxia persist during severe oxygen deprivation, conferring a neuroprotective effect.NEW & NOTEWORTHY We show for the first time that cocoa flavanols exert a neuroprotective effect during severe hypoxia. Following acute cocoa flavanol ingestion, we observed improvements in cognition, cerebral oxygenation, and subjective fatigue during normoxia and severe poikilocapnic hypoxia. Cocoa flavanols did not improve cognition during severe isocapnic hypoxia, suggesting a possible interaction with carbon dioxide.
Collapse
Affiliation(s)
- Peter M Bloomfield
- Exercise Neurometabolism Laboratory, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Department of Physiology, Faculty of Medical & Health Sciences, Manaaki Mānawa - The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - David M Shaw
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Whenuapai, Auckland, New Zealand
| | - Nicholas Gant
- Exercise Neurometabolism Laboratory, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Zhao Z, Gao W, Ding X, Xu X, Xiao C, Mao G, Xing W. The association between dietary intake of flavonoids and its subclasses and the risk of metabolic syndrome. Front Nutr 2023; 10:1195107. [PMID: 37476404 PMCID: PMC10354435 DOI: 10.3389/fnut.2023.1195107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Background The healthiest way to prevent metabolic syndrome (MetS) is through behavioral and nutritional adjustments. We examined the relationship between total flavonoids intake, flavonoid subclasses, and clinically manifest MetS. Methods A cross-sectional analysis was conducted among 28,719 individuals from the National Health and Nutrition Examination Survey (NHANES) and Food and Nutrient Database for Dietary Studies (FNDDS) 2007-2011 and 2017-2018. Two 24-h reviews were conducted to determine flavonoids intake and subclasses. The link between flavonoids intake and MetS was investigated using a multivariate logistic regression model. Results Q2 and Q3 of total flavonoids intake were associated with 20 and 19% lower risk of incident MetS after adjusting age and sex. Anthocyanidins and flavanones intake in Q2 and Q3 substantially reduced the MetS risk compared to Q1. MetS risk decreased steadily as the total intake of flavonoids increased to 237.67 mg/d. Flavanones and anthocyanidins also displayed V-shaped relationship curves (34.37 and 23.13 mg/d). Conclusion MetS was adversely linked with total flavonoids intake, flavanones, and anthocyanidins. Moreover, the most effective doses of total flavonoids, flavanones, and anthocyanidins were 237.67, 34.37, and 23.13 mg/d, respectively, potentially preventing MetS.
Collapse
Affiliation(s)
- Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaoli Ding
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Changqian Xiao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
7
|
Fraga CG, Trostchansky A, Rocha BS, Laranjinha J, Rubbo H, Galleano M. (Poly)phenols and nitrolipids: Relevant participants in nitric oxide metabolism. Mol Aspects Med 2023; 89:101158. [PMID: 36517273 DOI: 10.1016/j.mam.2022.101158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Nitric oxide (•NO) is an essential molecule able to control and regulate many biological functions. Additionally, •NO bears a potential toxicity or damaging effects under conditions of uncontrolled production, and because of its participation in redox-sensitive pathways and oxidizing reactions. Several plant (poly)phenols present in the diet are able to regulate the enzymes producing •NO (NOSs). In addition, (poly)phenols are implicated in defining •NO bioavailability, especially by regulating NADPH oxidases (NOXs), and the subsequent generation of superoxide and •NO depletion. Nitrolipids are compounds that are present in animal tissues because of dietary consumption, e.g. of olive oil, and/or as result of endogenous production. This endogenous production of nitrolipids is dependent on the nitrate/nitrite presence in the diet. Select nitrolipids, e.g. the nitroalkenes, are able to exert •NO-like signaling actions, and act as •NO reservoirs, becoming relevant for systemic •NO bioavailability. Furthermore, the presence of (poly)phenols in the stomach reduces dietary nitrite to •NO favoring nitrolipids formation. In this review we focus on the capacity of molecules representing these two groups of bioactives, i.e. (poly)phenols and nitrolipids, as relevant participants in •NO metabolism and bioavailability. This participation acquires especial relevance when human homeostasis is lost, for example under inflammatory conditions, in which the protective actions of (poly)phenols and/or nitrolipids have been associated with local and systemic •NO bioavailability.
Collapse
Affiliation(s)
- César G Fraga
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, CA, USA
| | - Andrés Trostchansky
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Barbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Monica Galleano
- Physical Chemistry, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular-Dr. Alberto Boveris (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Nasrollahi Z, ShahaniPour K, Monajemi R, Ahadi AM. Effect of quercetin and Abelmoschus esculentus (L.) Moench on lipids metabolism and blood glucose through AMPK-α in diabetic rats (HFD/STZ). J Food Biochem 2022; 46:e14506. [PMID: 36369969 DOI: 10.1111/jfbc.14506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a key enzyme in the glyconeogenesis pathway. The AMP-activated protein kinase alpha (AMPK-α) pathway regulates PEPCK, which itself is activated by the AMP/ATP ratio and liver kinase B1 (KB1). The Abelmoschus esculentus (L.) Moench (okra) plant contains a large amount of quercetin that can function as an agonist or an antagonist. The aim of this study was to examine the effects of quercetin flavonoid and A. esculentus extract on the level of AMPK-α expression and associated metabolic pathways. The findings demonstrate that metformin, quercetin, and okra extract may significantly raise AMPK-α levels while significantly lowering PEPCK and hormone-sensitive lipase (HSL) levels, in addition to improving glucose and lipid profiles. By stimulating KB1, these substances increased AMPK-α activation. Additionally, AMPK-α activation improved insulin resistance and Glucose transporter type 4 (GLUT4) gene expression levels. Since AMPK-α maintains energy balance and its activity has not been reported to be inhibited so far, it could be a potent therapeutic target. PRACTICAL APPLICATIONS: The development of effective AMPK-α agonists and antagonists holds promise for the treatment of metabolic disorders like diabetes. Dietary polyphenols are a valuable source for developing new drugs. However, due to the lack of understanding of the underlying mechanisms of their effect on cells, their use in the treatment of diabetes is controversial. In addition to chemicals that have medicinal benefits, chemists are searching for less harmful substances. Using plants containing bioactive chemicals for this purpose can be a good alternative to chemical drugs.
Collapse
Affiliation(s)
- Zohreh Nasrollahi
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Kahin ShahaniPour
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Mohammad Ahadi
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
9
|
Chocolate and Cocoa-Derived Biomolecules for Brain Cognition during Ageing. Antioxidants (Basel) 2022; 11:antiox11071353. [PMID: 35883844 PMCID: PMC9311747 DOI: 10.3390/antiox11071353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cognitive decline is a common problem in older individuals, often exacerbated by neurocognitive conditions, such as vascular dementia and Alzheimer’s disease, which heavily affect people’s lives and exert a substantial toll on healthcare systems. Currently, no cure is available, and commonly used treatments are aimed at limiting the progressive loss of cognitive functions. The absence of effective pharmacological treatments for the cognitive decline has led to the search for lifestyle interventions, such as diet and the use of nutraceuticals that can prevent and limit the loss of cognition. Cocoa and chocolate are foods derived from cocoa beans, commonly used in the population and with good acceptability. The purpose of this review was to collect current experimental evidence regarding the neuroprotective effect of chocolate and cocoa (or derived molecules) in the elderly. From a systematic review of the literature, 9 observational studies and 10 interventional studies were selected, suggesting that the biomolecules contained in cocoa may offer promising tools for managing cognitive decline, if provided in adequate dosages and duration of treatment. However, the molecular mechanisms of cocoa action on the central nervous system are not completely understood.
Collapse
|
10
|
Tanghe A, Heyman E, Lespagnol E, Stautemas J, Celie B, Op ‘t Roodt J, Rietzschel E, Dias Soares D, Hermans N, Tuenter E, Shadid S, Calders P. Acute Effects of Cocoa Flavanols on Blood Pressure and Peripheral Vascular Reactivity in Type 2 Diabetes Mellitus and Essential Hypertension. Nutrients 2022; 14:nu14132692. [PMID: 35807872 PMCID: PMC9268419 DOI: 10.3390/nu14132692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is associated with a high risk of vascular complications. Interestingly, cocoa flavanols (CF) can exert beneficial vascular effects in non-diabetic subjects. However, these effects have only been scarcely studied in T2DM. Therefore, we performed a study to assess the effects on vascular reactivity of a single dose of CF (790 mg) in T2DM and whether certain antihypertensive drugs may modulate these effects. Methods: 24 non-diabetic and 11 T2DM subjects were studied in a cross-over design. Fasting blood samples, blood pressure (BP), and arterial vasoreactivity (flow-mediated dilation) were assessed before and 70 min after capsule ingestion. Muscle microvascular reactivity was only assessed after capsule ingestion. Age, waist-to-hip ratio, BP at baseline, and the use of antihypertensive drugs were regarded as covariates in a mixed models analysis. Results: CF ingestion did not affect any parameter. However, independent of the type of capsules ingested, a decrease in diastolic BP by 3 mmHg (95% CI: −4.0; −2.0) and an increase in the change in brachial artery diameter (pre vs. post occlusion) by 0.06 mm (95% CI: 0.01; 0.12) were detected in the non-diabetic group, while they remained unchanged in the T2DM group. Conclusion: No beneficial effects of CF were detected on vascular reactivity parameters in T2DM and non-diabetic participants.
Collapse
Affiliation(s)
- Anouk Tanghe
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (A.T.); (J.S.); (B.C.)
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; (E.H.); (E.L.)
| | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; (E.H.); (E.L.)
- Institut Universitaire de France (IUF)
| | - Elodie Lespagnol
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, ULR 7369-URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; (E.H.); (E.L.)
| | - Jan Stautemas
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (A.T.); (J.S.); (B.C.)
| | - Bert Celie
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (A.T.); (J.S.); (B.C.)
| | - Jos Op ‘t Roodt
- School of Cardiovascular Diseases (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Ernst Rietzschel
- Department of Cardiology, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Danusa Dias Soares
- Department of Physical Education, The Federal University of Minas Gerais, Belo Horizonte 6627, Brazil;
| | - Nina Hermans
- Department of Pharmaceutical Sciences, University of Antwerp, 2610 Antwerp, Belgium; (N.H.); (E.T.)
| | - Emmy Tuenter
- Department of Pharmaceutical Sciences, University of Antwerp, 2610 Antwerp, Belgium; (N.H.); (E.T.)
| | - Samyah Shadid
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (A.T.); (J.S.); (B.C.)
- Correspondence:
| |
Collapse
|
11
|
Wisnuwardani RW, De Henauw S, Forsner M, Gottrand F, Huybrechts I, Kafatos AG, Kersting M, Knaze V, Manios Y, Nova E, Molnár D, Rothwell JA, Scalbert A, Sette S, Widhalm K, Moreno LA, Michels N. Adolescents' dietary polyphenol intake in relation to serum total antioxidant capacity: the HELENA study. Int J Food Sci Nutr 2022; 73:71-81. [PMID: 33858286 DOI: 10.1080/09637486.2021.1910631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
We evaluated the association between intake of total polyphenols, polyphenol classes and the 10 most consumed individual polyphenols with serum total antioxidant capacity (TAC) in 749 European adolescents (53% girls; 15% overweight; 12.5-17.5 years-old) from the cross-sectional HELENA study of 2006-2007. Dietary polyphenol intake was calculated from two non-consecutive 24-h recalls matched with the Phenol-Explorer database. Multilevel linear models examined the associations between dietary polyphenols and TAC. Polyphenol intake was rather low (median = 321mg/day; p25 = 158; p75 = 536) and TAC was comparable to other literature findings (median = 1.57 mmol/L; p25 = 1.45; p75 = 1.74). Total polyphenol intake, polyphenol classes and the top 10 compounds were not associated with TAC in a linear, quadratic or cubic way in partially or fully confounder-adjusted models. A direct anti-oxidative effect of dietary polyphenol intake was not observed in European adolescents. Polyphenol biomarkers and additional antioxidant measures are needed in future prospective studies to confirm these results.
Collapse
Affiliation(s)
- Ratih W Wisnuwardani
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Faculty of Public Health, Mulawarman University, Samarinda, East Kalimantan, Indonesia
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria Forsner
- Department of Nursing, Umeå University, Umeå, Sweden
- School of Education, Health and Social Sciences, Dalarna University, Falun, Sweden
| | - Frédéric Gottrand
- CHU Lille, Inserm U995, Univ. Lille, Lille, France
- International Agency for Research on Cancer, Lyon Cedex 08, France
| | - Inge Huybrechts
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- International Agency for Research on Cancer, Lyon Cedex 08, France
| | - Antonios G Kafatos
- Clinic of Nutrition and Disease Prevention, School of Medicine, University of Crete, Crete, Greece
| | - Mathilde Kersting
- Research Department of Child Nutrition, Pediatric University Clinic, Ruhr-University Bochum, Bochum, Germany
| | - Viktoria Knaze
- International Agency for Research on Cancer, Lyon Cedex 08, France
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Esther Nova
- Department of Metabolism & Nutrition, Immunonutrition Research Group, Institute of Food Science, Technology and Nutrition, Madrid, Spain
| | - Dénes Molnár
- Departments of Pediatrics, Medical School, University of Pécs, Pécs, Hungary
| | | | | | - Stefania Sette
- CREA Research Centre for Food and Nutrition, Rome, Italy
| | - Kurt Widhalm
- Department of Pediatric, Division of Clinical Nutrition, Medical University of Vienna, Vienna, Austria
| | - Luis A Moreno
- Faculty of Health Science, GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
| | - Nathalie Michels
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Hsu YJ, Wei SY, Lin TY, Fang L, Hsieh YT, Chen YC. A strategy to engineer vascularized tissue constructs by optimizing and maintaining the geometry. Acta Biomater 2022; 138:254-272. [PMID: 34774782 DOI: 10.1016/j.actbio.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/01/2022]
Abstract
The success of engineered tissues is limited by the need for rapid perfusion of a functional vascular network that can control tissue engraftment and promote survival after implantation. Diabetic conditions pose an additional challenge, because high glucose and lipid concentrations cause an aggressive oxidative environment that impairs vessel remodeling and stabilization and impedes integration of engineered constructs into surrounding tissues. Thus, to achieve rapid vasculogenesis, angiogenesis, and anastomosis, hydrogels incorporating cells in their structure have been developed to facilitate formation of functional vascular networks within implants. However, their transport diffusivity decreases with increasing thickness, preventing the formation of a thick vascularized tissue. To address this, we used diffusion-based computational simulations to optimize the geometry of hydrogel structures. The results show that the micro-patterned constructs improved diffusion, thus supporting cell viability, and spreading while retaining their mechanical properties. Thick cell-laden bulk, linear, or hexagonal infill patterned hydrogels were implanted; and structural stability due to skin mobility was improved by the protective spacer. Larger and thicker perfused vascular networks formed in the hexagonal structures (∼17 mm diameter, ∼1.5 mm thickness) in both normal and diabetic mice on day 3, and they became functional and uniformly distributed on day 7. Moreover, transplanted islets were rapidly integrated subcutaneously in this engineered functional vascular bed, which significantly enhanced islet viability and insulin secretion. In summary, we developed a promising strategy for generating large, thick vascularized tissue constructs, which may support transplanted islet cells. These constructs showed potential for engineering other vascularized tissues in regenerative therapy. STATEMENT OF SIGNIFICANCE: Diffusion-based computational simulations were used to optimize the geometry of hydrogel structures, i.e., hexagonal cell-laden hydrogels. To maintain the hydrogel's structural integrity, a spacer was designed and co-implanted subcutaneously to increase the permeability of explants. The spacer provides the structural integrity to improve the permeability of the implanted hydrogel. Otherwise, the implanted hydrogel may be easily squeezed and deformed by compression from the skin mobility of mice. Here, we successfully developed a cell-based strategy for rapidly generating large, functional vasculature (diameter ∼17 mm and thickness ∼1.5 mm) in both normal and diabetic mice and demonstrated its advantages over currently available methods in a clinically-relevant animal model. This concept could serve as a basis for engineering and repairing other tissues in animals.
Collapse
|
13
|
Moreno RU, Gonzalez-Sarrias A, Espin JC, Tomas-Barberan F, Janes ME, Cheng H, Finley JW, Greenway FL, Losso JN. Effects of red raspberry polyphenols and metabolites on biomarkers of inflammation and insulin resistance in type 2 diabetes: A pilot study. Food Funct 2022; 13:5166-5176. [DOI: 10.1039/d1fo02090k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Berry fruits are rich in polyphenolic compounds (PCs) and may promote health benefits. Anthocyanin (ACNs) concentrations of red raspberry (RR)(Rubus idaeus) extracts were 887.6 ± 262.8 μg/g consisting mainly of...
Collapse
|
14
|
Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int J Mol Sci 2021; 23:ijms23010183. [PMID: 35008609 PMCID: PMC8745076 DOI: 10.3390/ijms23010183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Ageing, in a natural way, leads to the gradual worsening of the functional capacity of all systems and, eventually, to death. This process is strongly associated with higher metabolic and oxidative stress, low-grade inflammation, accumulation of DNA mutations and increased levels of related damage. Detrimental changes that accumulate in body cells and tissues with time raise the vulnerability to environmental challenges and enhance the risk of major chronic diseases and mortality. There are several theses concerning the mechanisms of ageing: genetic, free radical telomerase, mitochondrial decline, metabolic damage, cellular senescence, neuroendocrine theory, Hay-flick limit and membrane theories, cellular death as well as the accumulation of toxic and non-toxic garbage. Moreover, ageing is associated with structural changes within the myocardium, cardiac conduction system, the endocardium as well as the vasculature. With time, the cardiac structures lose elasticity, and fibrotic changes occur in the heart valves. Ageing is also associated with a higher risk of atherosclerosis. The results of studies suggest that some natural compounds may slow down this process and protect against age-related diseases. Animal studies imply that some of them may prolong the lifespan; however, this trend is not so obvious in humans.
Collapse
|
15
|
Repeated Oral Administration of Flavan-3-ols Induces Browning in Mice Adipose Tissues through Sympathetic Nerve Activation. Nutrients 2021; 13:nu13124214. [PMID: 34959764 PMCID: PMC8707158 DOI: 10.3390/nu13124214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
We previously found increases in uncoupling protein (Ucp)-1 transcription in brown adipose tissue (BAT) of mice following a single oral dose of flavan 3-ol (FL)s, a fraction of catechins and procyanidins. It was confirmed that these changes were totally reduced by co-treatment of adrenaline blockers. According to these previous results, FLs possibly activate sympathetic nervous system (SNS). In this study, we confirmed the marked increase in urinary catecholamine (CA) s projecting SNS activity following a single dose of 50 mg/kg FLs. In addition, we examined the impact of the repeated administration of 50 mg/kg FLs for 14 days on adipose tissues in mice. In BAT, FLs tended to increase the level of Ucp-1 along with significant increase of thermogenic transcriptome factors expressions, such as peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and PR domain-containing (PRDM)1. Expression of browning markers, CD137 and transmembrane protein (TMEM) 26, in addition to PGC-1α were increased in epididymal adipose (eWAT) by FLs. A multilocular morphology with cell size reduction was shown in the inguinal adipose (iWAT), together with increasing the level of Ucp-1 by FLs. These results exert that FLs induce browning in adipose, and this change is possibly produced by the activation of the SNS.
Collapse
|
16
|
Kumari M, Kokkiligadda A, Dasriya V, Naithani H. Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. J Appl Microbiol 2021; 133:104-119. [PMID: 34724304 DOI: 10.1111/jam.15342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022]
Abstract
The growing interest of consumers towards nutritionally enriched, and health promoting foods, provoke interest in the eventual development of fermented functional foods. Soymilk is a growing trend that can serve as a low-cost non-dairy alternative with improved functional and nutritional properties. Soymilk acts as a good nutrition media for the growth and proliferation of the micro-organism as well as for their bioactivities. The bioactive compounds produced by fermentation of soymilk with lactic acid bacteria (LAB) exhibit enhanced nutritional values, and several improved health benefits including antihypertensive, antioxidant, antidiabetic, anticancer and hypocholesterolaemic effects. The fermented soymilk is acquiring a significant position in the functional food industry due to its increased techno-functional qualities as well as ensuring the survivability of probiotic bacteria producing diverse metabolites. This review covers the important benefits conferred by the consumption of soymilk fermented by LAB producing bioactive compounds. It provides a holistic approach to obtain existing knowledge on the biofunctional attributes of fermented soymilk, with a focus on the functionality of soymilk fermented by LAB.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Anusha Kokkiligadda
- Department of Dairy Microbiology, College of Dairy Technology, Sri Venkateswara Veterinary University, Tirupti, Andhra Pradesh, India
| | - Vaishali Dasriya
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
17
|
Tanghe A, Heyman E, Vanden Wyngaert K, Van Ginckel A, Celie B, Rietzschel E, Calders P, Shadid S. Evaluation of blood pressure lowering effects of cocoa flavanols in diabetes mellitus: A systematic review and meta-analysis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Mohammad A, Shahnaz T, Sorayya K. Effect of 8 weeks' supplementation grape seed extract on insulin resistance in iranian adolescents with metabolic syndrome: A randomized controlled trial. Diabetes Metab Syndr 2021; 15:197-203. [PMID: 33385766 DOI: 10.1016/j.dsx.2020.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Insulin resistance in adolescents is a major health concern. The aim of this study was to evaluate the effect of grape seed extract on insulin resistance in adolescents with metabolic syndrome (MetS). METHODS Participants were divided into grape seed extract (GSE) and placebo groups (n = 24 each) and received 100 mg/day of GSE or placebo and were placed on a weight loss diet for 8 weeks. Anthropometric and biochemical indices, blood pressure, dietary intake, and physical activity were measured before and after the intervention. RESULTS Forty-two participants completed the trial. After the intervention, the age, sex, baseline values, energy intake and physical activity as a covariate adjusted using ANCOVA for determine differences between groups. The MD (mean difference ±SEM) of HOMA-IR between the GSE group (-1.46 ± 0.45) and the placebo group (-0.48 ± 0.47), (p = 0.020), and the MD of insulin between the GSE group (-7.05 ± 2.11) and the placebo group (-1.71 ± 2.12), (p = 0.024), were significant. Although changes were observed in other variables, they were not statistically significant. CONCLUSIONS GSE improves insulin concentration and insulin resistance in adolescents with MetS and provides a basis for possible application of the GSE in the clinical management of MetS in adolescents. This study registered under Randomized Clinical Trials.gov Identifier no. IRCT2013112611288N7.
Collapse
Affiliation(s)
- Alizadeh Mohammad
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition Tabriz University of Medical Sciences, Attar Nishabouri St., Tabriz, Iran, Postal code: 5166614711, POBOX: 14711.
| | - Taghizadeh Shahnaz
- Student Research Committee, Department of Biochemistry and Diet Therapy, Faculty of Nutrition Tabriz University of Medical Sciences, Attar Nishabouri St., Tabriz, Iran, Postal code: 5166614711, POBOX: 14711.
| | - Kheirouri Sorayya
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition Tabriz University of Medical Sciences, Attar Nishabouri St., Tabriz, Iran, Postal code: 5166614711, POBOX: 14711.
| |
Collapse
|
19
|
Shaw K, Singh J, Sirant L, Neary JP, Chilibeck PD. Effect of Dark Chocolate Supplementation on Tissue Oxygenation, Metabolism, and Performance in Trained Cyclists at Altitude. Int J Sport Nutr Exerc Metab 2020; 30:420-426. [PMID: 32916656 DOI: 10.1123/ijsnem.2020-0051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/19/2020] [Accepted: 08/03/2020] [Indexed: 11/18/2022]
Abstract
Dark chocolate (DC) is high in flavonoids and has been shown to increase nitric oxide in the blood. Increased nitric oxide has the potential to improve delivery of oxygen to muscle, especially in hypoxic conditions, such as altitude. Our aim was to assess the impact of DC supplementation on cycling performance at altitude. Twelve healthy, trained cyclists (n = 2 females, n = 10 males; age = 35 [12] years; height = 177 [7] cm; mass = 75.2 [11.0] kg; VO2max = 55 [6] ml·kg-1·min-1) were randomized to supplement with 60 g of DC or placebo twice per day for 14 days in a double-blind crossover study. After the 2 weeks of supplementation, the participants attended a laboratory session in which they consumed 120 g of DC or placebo and then cycled for 90 min at 50% peak power output, followed immediately by a 10-km time trial (TT) at simulated altitude (15% O2). The plasma concentration of blood glucose and lactate were measured before and at 15, 30, 60, and 90 min during the steady-state exercise and post TT, while muscular and prefrontal cortex oxygenation was measured continuously throughout exercise using near-infrared spectroscopy. DC resulted in a higher concentration of blood glucose (5.5 [0.5] vs. 5.3 [0.9] mmol/L) throughout the trial and lower blood lactate concentration following the TT (7.7 [1.92] vs. 10.0 [4.6] mmol/L) compared with the placebo. DC had no effect on the TT performance (19.04 [2.16] vs. 19.21 ± 1.96 min) or oxygenation status in either the prefrontal cortex or muscle. The authors conclude that, although it provided some metabolic benefit, DC is not effective as an ergogenic aid during TT cycling at simulated altitude.
Collapse
|
20
|
DI Pierro F, Khan A, Bertuccioli A, Maffioli P, Derosa G, Khan S, Khan BA, Nigar R, Ujjan I, Devrajani BR. Quercetin Phytosome® as a potential candidate for managing COVID-19. Minerva Gastroenterol (Torino) 2020; 67:190-195. [PMID: 33016666 DOI: 10.23736/s2724-5985.20.02771-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
When looking for new antiviral compounds aimed to counteract the COVID-19, a disease caused by the recently identified novel Coronavirus (SARS-CoV-2), the knowledge of the main viral proteins is fundamental. The major druggable targets of SARS-CoV-2 include 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase, and spike (S) protein. Molecular docking studies have highlighted that quercetin, a natural polyphenol belonging to the flavonol class, inhibits 3CLpro, PLpro and S proteins. Biophysical technics have then very recently confirmed that quercetin is reasonably a potent inhibitor of 3CLpro. The likely antiviral properties of quercetin are anyway challenged by its very poor oral bioavailability profile and any attempt to overcome this limit should be welcome. A phospholipid delivery form of quercetin (Quercetin Phytosome®) has been recently tested in humans to evaluate a possible improvement in oral bioavailability. After hydrolysis of the conjugated form (mainly glucuronide) of quercetin found in human plasma, the pharmacokinetics results have demonstrated an increased bioavailability rate by about 20-fold for total quercetin. It has been also observed that the presence of specific glucuronidase could yield free systemic quercetin in human body. Taking also into considerations its anti-inflammatory and thrombin-inhibitory actions, a bioavailable form of quercetin, like Quercetin Phytosome®, should be considered a possible candidate to clinically face COVID-19.
Collapse
Affiliation(s)
| | - Amjad Khan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Saeed Khan
- Department of Molecular Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Bilal A Khan
- Department of Molecular Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Roohi Nigar
- Department of Obstetrics and Gynecology, Bilawal Medical College, Liaquat University of Medical and Health Sciences, Jamshoro, Sindh, Pakistan
| | - Ikram Ujjan
- Department of Pathology, Liaquat University of Medical and Health Sciences, Jamshoro, Sindh, Pakistan
| | - Bikha R Devrajani
- Department of Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Sindh, Pakistan
| |
Collapse
|
21
|
Abstract
My interest in biological chemistry proceeded from enzymology in vitro to the study of physiological chemistry in vivo Investigating biological redox reactions, I identified hydrogen peroxide (H2O2) as a normal constituent of aerobic life in eukaryotic cells. This finding led to developments that recognized the essential role of H2O2 in metabolic redox control. Further research included studies on GSH, toxicological aspects (the concept of "redox cycling"), biochemical pharmacology (ebselen), nutritional biochemistry and micronutrients (selenium, carotenoids, flavonoids), and the concept of "oxidative stress." Today, we recognize that oxidative stress is two-sided. It has its positive side in physiology and health in redox signaling, "oxidative eustress," whereas at higher intensity, there is damage to biomolecules with potentially deleterious outcome in pathophysiology and disease, "oxidative distress." Reflecting on these developments, it is gratifying to witness the enormous progress in redox biology brought about by the science community in recent years.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
22
|
Boriollo MFG, Alves VE, Silva TA, Silva JJ, Barros GBS, Dias CTS, Höfling JF, Oliveira NMS. Decrease of the DXR-induced genotoxicity and nongenotoxic effects of Theobroma cacao revealed by micronucleus assay. BRAZ J BIOL 2020; 81:268-277. [PMID: 32696851 DOI: 10.1590/1519-6984.223687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the genotoxicity of lyophilized glycolic extract of Theobroma cacao Linné seeds (TCL), using the micronucleus assay in bone marrow of mice. The interaction between TCL and doxorubicin (DXR) was also analyzed. Experimental groups were evaluated 24-48 h after treatment with N-Nitroso-N-ethylurea (NEU: 50 mg/kg), DXR (5 mg/kg), NaCl (145 mM), TCL (0.5-2 g/kg), and TCL (2 g/kg) in combination with DXR (antigenotoxic assays). Analysis of micronucleated polychromatic erythrocytes (MNPCEs) showed no significant differences between all the treatment doses of TCL and NaCl control. Mice experimentally treated with DXR and NEU significantly induced MNPCEs. However, a significant reduction of MNPCEs was also observed when TCL was administered in combination with the chemotherapeutic agent DXR. The analysis of the PCE/NCE ratio revealed no significant differences between the NaCl control, all doses of TCL, and DXR. However, there were significant differences in the PCE/NCE ratio between positive NEU control and all other treatments. The PCE/NCE ratio observed after treatment with TCL and DXR showed significant differences and intermediate values to controls (NaCl and NEU). This study suggests absence of genotoxicity and cytotoxicity of TCL, regardless of dose, sex, and time. TCL reduced genotoxic effects induced by DXR, suggesting potential antigenotoxic effects.
Collapse
Affiliation(s)
- M F G Boriollo
- Laboratório de Genética Molecular, Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba - FOP, Universidade Estadual de Campinas - UNICAMP, Av. Limeira, 901, Bairro Areião, CEP 13414-903, Piracicaba, SP, Brasil
| | - V E Alves
- Laboratório de Farmacogenética e Biologia Molecular, Faculdade de Ciências Médicas, Universidade José do Rosário Vellano - UNIFENAS, Rodovia MG 179, Km 0, Campus Universitário, CEP 37132-440, Alfenas, MG, Brasil
| | - T A Silva
- Laboratório de Farmacogenética e Biologia Molecular, Faculdade de Ciências Médicas, Universidade José do Rosário Vellano - UNIFENAS, Rodovia MG 179, Km 0, Campus Universitário, CEP 37132-440, Alfenas, MG, Brasil
| | - J J Silva
- Laboratório de Genética Molecular, Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba - FOP, Universidade Estadual de Campinas - UNICAMP, Av. Limeira, 901, Bairro Areião, CEP 13414-903, Piracicaba, SP, Brasil
| | - G B S Barros
- Laboratório de Farmacogenética e Biologia Molecular, Faculdade de Ciências Médicas, Universidade José do Rosário Vellano - UNIFENAS, Rodovia MG 179, Km 0, Campus Universitário, CEP 37132-440, Alfenas, MG, Brasil
| | - C T S Dias
- Departamento de Ciências Exatas, Escola de Agricultura "Luiz de Queiroz" - ESALQ, Universidade de são Paulo - USP, Av. Pádua Dias, 11, CEP 13418-900, Piracicaba, SP, Brasil
| | - J F Höfling
- Laboratório de Genética Molecular, Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba - FOP, Universidade Estadual de Campinas - UNICAMP, Av. Limeira, 901, Bairro Areião, CEP 13414-903, Piracicaba, SP, Brasil
| | - N M S Oliveira
- Laboratório de Farmacogenética e Biologia Molecular, Faculdade de Ciências Médicas, Universidade José do Rosário Vellano - UNIFENAS, Rodovia MG 179, Km 0, Campus Universitário, CEP 37132-440, Alfenas, MG, Brasil
| |
Collapse
|
23
|
Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020; 33:166-190. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Inflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation. Targeting the formation or accumulation of oxidized biomolecules, particularly oxidized lipids, in immune cells and mitochondria could be beneficial for age-related inflammation and comorbidities. Recent Advances: Inflammation is central to age-related decline in health and exhibits a complex relationship with mitochondrial redox state and metabolic function. Improvements in mass spectrometric methods have led to the identification of families of oxidized phospholipids (OxPLs), cholesterols, and fatty acids that increase during inflammation and which modulate nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), activator protein 1 (AP1), and NF-κB redox-sensitive transcription factor activity. Critical Issues: The kinetic and spatial resolution of the modified lipidome has profound and sometimes opposing effects on inflammation, promoting initiation at high concentration and resolution at low concentration of OxPLs. Future Directions: There is an emerging opportunity to prevent or delay age-related inflammation and vascular comorbidity through a resolving (oxy)lipidome that is dependent on improving mitochondrial quality control and restoring redox homeostasis.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Ivana Milic
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Christian Heiss
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Opeyemi S Ademowo
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Cologne Center for Molecular Medicine Cologne, and CECAD, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andrew Devitt
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
24
|
The influence of different concentrations of flavanol chocolate bars under acute supplement conditions on exercise and performance. Eur J Appl Physiol 2020; 120:2075-2082. [PMID: 32627052 DOI: 10.1007/s00421-020-04389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/02/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The purpose of this study was to assess the effects and acute dosage of different flavanol concentrations in a dark chocolate bar on physiological parameters during steady state (SS) and incremental exercise. METHODS In a double-blind, randomised, crossover study, 15 healthy participants with a mean ± SD age of 30 ± 7 years; stature 176.8 ± 8.6 cm and body mass 80.3 ± 8.4 kg supplemented with high flavanol (HF) (1060 mg), moderate flavanol (MF) (746 mg), low flavanol (LF) (406 mg), or a control (CON) (88 mg) chocolate bar (~ 34 g), 2 h prior to 40 min of SS cycling (80% gas-exchange threshold) followed by an incremental test to volitional fatigue. During the SS cycle oxygen consumption ([Formula: see text]), respiratory exchange ratio (RER) and heart rate (HR) were continuously monitored. Plasma samples were collected prior to commencing exercise to determine nitrate (NO3-) and nitrite (NO2-) levels under each condition. RESULTS There was no observed effect between flavanol concentrations on [Formula: see text], RER, and HR during SS cycling (P > 0.05). [Formula: see text], peak power, HR peak, and RER peak also did not significantly differ between conditions (P > 0.05). There was a small trend for higher plasma NO2- levels following higher flavanol concentration; however, this did not reach statistical significance (P > 0.05). CONCLUSION Acute supplementation with cocoa of differing flavanol concentrations does not appear to have any effect on exercise and performance. It is plausible that longer flavanol supplementation periods might have greater accumulative effects and thus may potentially elicit a larger effect.
Collapse
|
25
|
In Vitro Antigenotoxic, Antihelminthic and Antioxidant Potentials Based on the Extracted Metabolites from Lichen, Candelariella vitellina. Pharmaceutics 2020; 12:pharmaceutics12050477. [PMID: 32456266 PMCID: PMC7285106 DOI: 10.3390/pharmaceutics12050477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/22/2023] Open
Abstract
Lichens have recently received great attention due to their pharmacological potentials. The antigenotoxic potential of C. vitellina extract (25 and 50 µg/mL) was assessed in normal human peripheral blood lymphocytes (HPBL) against Mitomycin C (MMC) co-treatments. Flow cytometric analyses of cell cycle distribution, as well as apoptosis (Annexin V/PI), revealed that the extract had significantly (p ≤ 0.05) ameliorated the MMC toxicity by reducing the apoptotic cells and normalized the cell cycle phases. C. vitellina exhibited antigenotoxicity by ameliorating the diminished mitotic index and DNA single-strand breaks caused by MMC. Herein, the hydromethanolic extract (80%) of Candelariella vitellina (Japan) lichen, exhibited very low cytotoxicity towards normal human peripheral lymphocytes (HPBL) with IC50 >1000 µg/mL. In order to explore the antihelminthic effect, Echinococcus granulosus protoscoleces were used in vitro. Eosin staining revealed significant (p ≤ 0.05) dose and time-dependent scolicidal effects of the extract confirmed by degenerative alterations as observed by electron scan microscopy. Furthermore, primary and secondary metabolites were investigated using GC-MS and qualitative HPLC, revealing the presence of sugars, alcohols, different phenolic acids and light flavonoids. Significant antioxidant capacities were also demonstrated by DPPH radical-scavenging assay. In conclusion, the promising antigenotoxic, antihelminthic and antioxidant potentials of C. vitellina extract encourage further studies to evaluate its possible therapeutic potency.
Collapse
|
26
|
Tumova S, Houghton MJ, Williamson G. The effect of quercetin on endothelial cells is modified by heterocellular interactions. Food Funct 2020; 11:3916-3925. [PMID: 32363357 DOI: 10.1039/d0fo00141d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Single cell-type models are useful for determining mechanisms, but in vivo, cell-cell interactions are important, and neighbouring cells can impact endothelial cell function. Quercetin can attenuate endothelial dysfunction by modulating vascular tone and reducing inflammation. We determined the effect of quercetin on a co-culture between Human Umbilical Vein Endothelial Cells (HUVEC) and human HepG2 hepatic cells or human LHCN-M2 muscle cells. Heme oxygenase-1 (HO-1) mRNA and protein were decreased, pyruvate dehydrogenase kinase (PDK) 4 and glucose transporter (GLUT) 3 mRNA increased, and GLUT1 protein decreased in HUVEC when cultured with HepG2. GLUT transporters, but not the other targets, were similarly regulated in co-culture with muscle cells. Some but not all of the effects were mediated by lactate and transforming growth factor β1. Quercetin added apically to the endothelial cells upregulated HO-1 and downregulated PDK4 both in monoculture and in co-culture, but the total PDK4 levels were higher in the presence of HepG2 cells. In the absence of general permeability changes, glucose transport across the endothelial monolayer was elevated in the presence of HepG2 cells, however this effect was moderated by quercetin applied on the apical side of the endothelial cells. At lower glucose concentration, apical quercetin also promoted glucose uptake in HepG2 cells. Co-culturing HUVEC with the HepG2 cells showed capacity to modulate quercetin-elicited changes in endothelial gene transcription and glucose transport.
Collapse
|
27
|
Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds. Int J Microbiol 2020; 2020:9483670. [PMID: 32184829 PMCID: PMC7060864 DOI: 10.1155/2020/9483670] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022] Open
Abstract
This study reports on the isolation and identification of Methylobacterium radiotolerans MAMP 4754 from the seeds of the medicinal plant, Combretum erythrophyllum, for the purposes of investigating antimicrobial and antioxidant activities from this endophyte. The strain identity was confirmed by 16S rRNA-based phylogeny and Scanning Electron Microscopy (SEM). Ethyl acetate and chloroform (1 : 1 v/v) extracts from the endophyte were tested for antimicrobial and antioxidant activity on a total of 7 bacterial species (3 Gram-positive and 4 Gram-negative) using the standard Minimum Inhibitory Concentration (MIC) protocol and Quantitative Radical Scavenging activity using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay, respectively. The MICs were recorded at 250 μg/mL for B. subtilis ATCC 19659, B. cereus ATCC 1076, E. coli ATCC1053, and 62.5 μg/mL for K. oxytoca ATCC 13182 and M. smegmatis ATCC 21293, while an IC50 of 5.65 μg/mL was recorded with the DPPH assay. Qualitative phytochemical analysis was positive for alkaloids, flavonoids, and steroids. Gas chromatography/mass spectrometry (GC/MS) analysis revealed the presence of 9-octadecene, 2,4-dinitrophenyl acetate, and 2(5H)-furanone, which have been previously reported for the targeted activities. M. radiotolerans MAMP 4754 tested positive for antimicrobial and antioxidant activity and this is linked to the production of plant-derived secondary metabolites by this strain.
Collapse
|
28
|
Abd El-Hack ME, Abdelnour SA, Taha AE, Khafaga AF, Arif M, Ayasan T, Swelum AA, Abukhalil MH, Alkahtani S, Aleya L, Abdel-Daim MM. Herbs as thermoregulatory agents in poultry: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134399. [PMID: 31757531 DOI: 10.1016/j.scitotenv.2019.134399] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The adverse effect of increased environmental temperature during summer season on avian industry has received great global concern. High temperature leads to severe economic loss in poultry production, because it is considered as valuable stress factor. Several practical methods were used to alleviate the adverse impact of increased temperature; among them were dietary modifications. So, several types of herbs are supplemented to reduce the deleterious influences of thermal stress altitudes in various animals, and even to prevent their adverse impacts. Therefore, sustainable supports for dietary modification based on herbs supplementations are largely needed, particularly when consider the additional advantages of herbs such as availability, actual efficiency, low cost, as well as their free from residual impact and antibiotic resistance. Numerous types of herbs were concluded to their efficient properties by poultry breeders to overcome a variety of the harmful effects of high ambient temperature. The present article deliberates the different practical applications of several members of the traditional herbal wealth to improve the general health state of poultry particularly as thermoregulatory and immunomodulatory agents, and for countering the heat stress-associated immunosuppressive effects. Additionally, the antioxidant activity of herbal growth promoters and their influence on improvement of production performances were a special aim of this review. The reported information will be helpful for improvement of general production and health status of birds reared under the heat stress via enhancement of immune response and stress tolerance, and popularizes usage of herbs amongst poultry producers.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, 40100, Pakistan
| | - Tugay Ayasan
- East Mediterranean Agricultural Research Institute, Adana, Turkey
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohammad H Abukhalil
- Department of Biology, Faculty of Science, Al-Hussein Bin Talal University, Ma'an 71110, Jordan; Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an 71110, Jordan
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University Besançon Cedex, France.
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
29
|
Mehrabani S, Arab A, Mohammadi H, Amani R. The effect of cocoa consumption on markers of oxidative stress: A systematic review and meta-analysis of interventional studies. Complement Ther Med 2019; 48:102240. [PMID: 31987247 DOI: 10.1016/j.ctim.2019.102240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
A number of studies have examined the beneficial effects of cocoa consumption on markers of oxidative stress in different population, however, the findings have been inconclusive. Herein, we systematically reviewed available interventional studies to elucidate the overall impact of cocoa consumption on markers of oxidative stress among adult population. PubMed, Cochrane's library, Science Direct, Scopus, Google scholar and ISI web of science databases were searched for all available literature until March 2019 for relevant studies. The Jadad scale was used to assess the quality of each study. A total of 48 studies out of 1402 met the inclusion criteria and were included in our systematic review and 16 of them were entered in meta-analysis. The pooled estimate from the random-effect model showed cocoa consumption significantly reduced malondialdehyde (SMD: -0.71; 95 % CI, -1.41 to -0.01; P = 0.048) and 8-iso-prostaglandin F2α (WMD: -43.76; 95 % CI, -76.25 to -11.28; P = 0.008) but not the other markers of oxidative stress. Our findings support the concept that cocoa consumption plays an important role in the human metabolic pathway through reducing the oxidative stress. In order to draw a firm link between cocoa and oxidative stress, more clinical trials with adequate sample size and sufficient follow-up periods are warranted.
Collapse
Affiliation(s)
- Sanaz Mehrabani
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
30
|
Kim K, Brothers RM. Acute consumption of flavanol-rich cocoa beverage improves attenuated cutaneous microvascular function in healthy young African Americans. Microvasc Res 2019; 128:103931. [PMID: 31654654 DOI: 10.1016/j.mvr.2019.103931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/08/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022]
Abstract
Flavanols have beneficial effects on vascular health and we have recently demonstrated that cerebral vasodilatory capacity in healthy young African Americans (AA) is improved with acute flavanol intake relative to aged-matched Caucasian Americans (CA). However, whether the positive benefits of acute flavanol consumption would also be present in the cutaneous microvascular circulation of AA remains unknown. Thus, we hypothesized that acute consumption of flavanol-rich cocoa (FC) would improve the previously reported reduced cutaneous microvascular responses to local heating in young AA. Seven AA and seven CA participated in this double-blind crossover study. Data were collected on two different days, separated by a minimum of one week. Two intradermal microdialysis membranes were inserted in the forearm and each site was randomly assigned to receive lactated Ringer's solution or NO synthase (NOS) inhibitor. Participants were randomly assigned to consume either a non-flavanol containing (NF) beverage or FC beverage. Cutaneous vascular conductance (CVC) was calculated as cutaneous blood flux/mean arterial pressure and normalized as % maximal CVC (%CVCmax). The difference in %CVCmax between the Ringer's site and NOS inhibited site was calculated to assess NO contribution (Δ %CVCmax). In the Ringer's site, acute consumption of FC beverage improved %CVCmax during 39 °C heating when compared to NF beverage in AA (NF: 36 ± 6 vs. FC: 47 ± 5%CVCmax; P < .01) while there was similar %CVCmax during 39 °C heating between beverages in CA (NF: 55 ± 4 vs. FC: 59 ± 5%CVCmax; P = .40). During 39 °C heating, NO contribution was significantly higher with FC beverage than NF beverage in AA (NF: 27 ± 5 vs. FC: 35 ± 4 Δ %CVCmax; P = .03) while there was similar NO contribution between beverages in CA (NF: 42 ± 4 vs. FC: 45 ± 4 Δ %CVCmax; P = .36). This data suggests that acute consumption of FC could be a therapeutic solution to improve an attenuated microvascular function in young AA.
Collapse
Affiliation(s)
- Kiyoung Kim
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States of America
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States of America.
| |
Collapse
|
31
|
Fujii Y, Suhara Y, Sukikara Y, Teshima T, Hirota Y, Yoshimura K, Osakabe N. Elucidation of the Interaction between Flavan-3-ols and Bovine Serum Albumin and Its Effect on Their In-Vitro Cytotoxicity. Molecules 2019; 24:molecules24203667. [PMID: 31614668 PMCID: PMC6832702 DOI: 10.3390/molecules24203667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Flavan-3-ols (FLs), specifically catechin and its oligomer B-type procyanidins, are suggested to potently bind to bovine serum albumin (BSA). We examined the interaction between BSA and FLs by fluorescence quenching and found the following order of binding activities to BSA: cinnamtannin A2 (A2; tetramer) > procyanidin C1 (C1; trimer) ≈ procyanidin B2 (B2, dimer) > (−)epicatechin (EC, monomer). Docking simulations between BSA and each compound at the binding site showed that the calculated binding energies were consistent with the results of our experimental assay. FLs exerted cytotoxicity at 1000 μg/mL in F11 cell culture with fetal bovine serum containing BSA. In culture containing serum-free medium, FLs exhibited significant cell proliferation at 10−4 μg/mL and cytotoxicity was observed at concentrations greater than 10 μg/mL. Results of this study suggest that interactions between polyphenols and BSA should be taken into account when evaluating procyanidin in an in vitro cell culture system.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bio-Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan.
| | - Yoshitomo Suhara
- Department of Bio-Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan.
| | - Yusuke Sukikara
- Department of Bio-Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan.
| | - Tomohiro Teshima
- Department of Bio-Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan.
| | - Yoshihisa Hirota
- Department of Machinery and Control Systems, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan.
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan.
| | - Naomi Osakabe
- Department of Bio-Science and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama 337-8570, Japan.
| |
Collapse
|
32
|
Brothers RM, Fadel PJ, Keller DM. Racial disparities in cardiovascular disease risk: mechanisms of vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 317:H777-H789. [PMID: 31397168 DOI: 10.1152/ajpheart.00126.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) accounts for a third of all deaths in the United States making it the leading cause of morbidity and mortality. Although CVD affects individuals of all races/ethnicities, the prevalence of CVD is highest in non-Hispanic black (BL) individuals relative to other populations. The mechanism(s) responsible for elevated CVD risk in the BL population remains incompletely understood. However, impaired vascular vasodilator capacity and exaggerated vascular vasoconstrictor responsiveness are likely contributing factors, both of which are present even in young, otherwise healthy BL individuals. Within this review, we highlight some historical and recent data, collected from our laboratories, of impaired vascular function, in terms of reduced vasodilator capacity and heightened vasoconstrictor responsiveness, in the peripheral and cerebral circulations in BL individuals. We provide data that such impairments may be related to elevated oxidative stress and subsequent reduction in nitric oxide bioavailability. In addition, divergent mechanisms of impaired vasodilatory capacity between BL men and women are discussed. Finally, we propose several directions where future research is needed to fill in knowledge gaps, which will allow for better understanding of the mechanisms contributing to impaired vascular function in this population. Ultimately, this information will allow for better lifestyle and therapeutic approaches to be implemented in an effort to minimize the increased CVD burden in the BL population.
Collapse
Affiliation(s)
- R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
33
|
Fujii Y, Suzuki K, Adachi T, Taira S, Osakabe N. Corticotropin-releasing hormone is significantly upregulated in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 as an (-)-epicatechin tetramer. J Clin Biochem Nutr 2019; 65:29-33. [PMID: 31379411 PMCID: PMC6667379 DOI: 10.3164/jcbn.19-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022] Open
Abstract
Cinnamtannin A2, an (−)-epicatechin tetramer, was reported to have potent physiological activity. Cinnamtannin A2 is rarely absorbed from the gastrointestinal tract into the blood and the mechanisms of its beneficial activities are unknown. Cinnamtannin A2 reported to increase sympathetic nervous activity, which was induced by various stressors. In present study, we examined the stress response in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 by monitoring mRNA expression of corticotropin-releasing hormone (CRH) and c-fos using in situ hybridization. Corticotropin-releasing hormone mRNA showed a tendency to increase at 15 min and significantly increased at 60 min following a single oral administration of 100 µg/kg cinnamtannin A2. After a single dose of 10 µg/kg cinnamtannin A2, there was significant upregulation of CRH mRNA at 60 min. These results suggested that cinnamtannin A2 was recognized as a stressor in central nervous system and this may lead to its beneficial effects on circulation and metabolism.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, 1 Kanayagawa, Fukushima 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
34
|
Fujii Y, Suzuki K, Adachi T, Taira S, Osakabe N. Corticotropin-releasing hormone is significantly upregulated in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 as an (-)-epicatechin tetramer. J Clin Biochem Nutr 2019. [PMID: 31379411 DOI: 10.3164/jcbn.19.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cinnamtannin A2, an (-)-epicatechin tetramer, was reported to have potent physiological activity. Cinnamtannin A2 is rarely absorbed from the gastrointestinal tract into the blood and the mechanisms of its beneficial activities are unknown. Cinnamtannin A2 reported to increase sympathetic nervous activity, which was induced by various stressors. In present study, we examined the stress response in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 by monitoring mRNA expression of corticotropin-releasing hormone (CRH) and c-fos using in situ hybridization. Corticotropin-releasing hormone mRNA showed a tendency to increase at 15 min and significantly increased at 60 min following a single oral administration of 100 µg/kg cinnamtannin A2. After a single dose of 10 µg/kg cinnamtannin A2, there was significant upregulation of CRH mRNA at 60 min. These results suggested that cinnamtannin A2 was recognized as a stressor in central nervous system and this may lead to its beneficial effects on circulation and metabolism.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, 1 Kanayagawa, Fukushima 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
35
|
Tumova S, Kerimi A, Williamson G. Long term treatment with quercetin in contrast to the sulfate and glucuronide conjugates affects HIF1α stability and Nrf2 signaling in endothelial cells and leads to changes in glucose metabolism. Free Radic Biol Med 2019; 137:158-168. [PMID: 31029788 DOI: 10.1016/j.freeradbiomed.2019.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Endothelial functionality profoundly contributes to cardiovascular health. The effects of flavonoids shown to improve endothelial performance include regulating blood pressure by modulating endothelial nitric oxide synthase and NADPH oxidases, but their impact on glucose uptake and metabolism has not been explored. We treated human umbilical vein endothelial cells (HUVEC) with the flavonoid quercetin and its circulating metabolites acutely and chronically, then assessed glucose uptake, glucose metabolism, gene transcription and protein expression. Acute treatment had no effect on glucose uptake, ruling out any direct interaction with sugar transporters. Long term treatment with quercetin, but not quercetin 3-O-glucuronide or 3'-O-sulfate, significantly increased glucose uptake. Heme oxygenase-1 (HO-1) was induced by quercetin but not its conjugates, but was not implicated in the glucose uptake stimulation since hemin, a classical inducer of HO-1, did not affect glucose metabolism. Quercetin increased stability of the transcription factor hypoxia induced factor 1α (HIF1α), a powerful stimulant of glucose metabolism, which was also paralleled by treatment with a prolyl-4-hydroxylase inhibitor dimethyloxalylglycine (DMOG). 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which regulates the rate of glycolysis, was upregulated by both quercetin and DMOG. Pyruvate dehydrogenase kinase (PDK) isoforms regulate pyruvate dehydrogenase; PDK2 and PDK4 were down-regulated by both effectors, but only DMOG also upregulated PDK1 and PDK3. Quercetin, but not DMOG, increased glucose-6-phosphate dehydrogenase. Chronic quercetin treatment also stimulated glucose transport across the HUVEC monolyer in a 3D culture model. Gene expression of several flavonoid transporters was repressed by quercetin, but this was either abolished (Organic anion transporter polypeptide 4C1) or reversed (Multidrug resistance gene 1) by both conjugates. We conclude that quercetin and its circulating metabolites differentially modulate glucose uptake/metabolism in endothelial cells, through effects on HIF1α and transcriptional regulation of energy metabolism.
Collapse
Affiliation(s)
- Sarka Tumova
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK; Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Notting Hill BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia.
| |
Collapse
|
36
|
Jaramillo Flores ME. Cocoa Flavanols: Natural Agents with Attenuating Effects on Metabolic Syndrome Risk Factors. Nutrients 2019; 11:nu11040751. [PMID: 30935075 PMCID: PMC6520706 DOI: 10.3390/nu11040751] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/30/2022] Open
Abstract
The interest in cacao flavanols is still growing, as bioactive compounds with potential benefits in the prevention of chronic diseases associated with inflammation, oxidative stress and metabolic disorders. Several analytical methodologies support that the flavanols in cacao-derived products can be absorbed, have bioactive properties, and thus can be responsible for their beneficial effects on human health. However, it must be considered that their biological actions and underlying molecular mechanisms will depend on the concentrations achieved in their target tissues. Based on the antioxidant properties of cacao flavanols, this review focuses on recent advances in research regarding their potential to improve metabolic syndrome risk factors. Additionally, it has included other secondary plant metabolites that have been investigated for their protective effects against metabolic syndrome. Studies using laboratory animals or human subjects represent strong available evidence for biological effects of cacao flavanols. Nevertheless, in vitro studies are also included to provide an overview of these phytochemical mechanisms of action. Further studies are needed to determine if the main cacao flavanols or their metabolites are responsible for the observed health benefits and which are their precise molecular mechanisms.
Collapse
Affiliation(s)
- Maria Eugenia Jaramillo Flores
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas-Instituto Politecnico Nacional, Wilfrido Massieu s/n esq, Manuel Stampa, Unidad Profesional Adolfo López Mateos, Alcaldía G. A. Madero, Ciudad de México CP 07738, Mexico.
| |
Collapse
|
37
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Abstract
BACKGROUND Cocoa flavanols (CFs) have antioxidant and anti-inflammatory capacities and can improve vascular function. It has recently been suggested that CF intake may improve exercise performance and recovery. This systematic review aimed to evaluate the literature on the effects of CF intake on exercise performance and recovery and exercise-induced changes in vascular function, cognitive function, oxidative stress, inflammation, and metabolic parameters. METHODS Two electronic databases (Pubmed and Web of Science) were searched for studies examining the combination of CF intake and exercise in humans (up to 28 March 2017). Articles were included if the exact amount of CFs was mentioned. The methodological quality and level of bias of the 13 included studies was assessed according to the checklist for randomized controlled trials from the Dutch Cochrane center. RESULTS Acute, sub-chronic (2 weeks) and chronic (3 months) CF intake reduced exercise-induced oxidative stress. Evidence on the effect of CF on exercise-induced inflammation and platelet activation was scarce. Acute CF intake reduced and tempered the exercise-induced increase in blood pressure in obese participants. Acute and sub-chronic CF intake altered fat and carbohydrate metabolism during exercise. Acute and sub-chronic CF intake did not have ergogenic effects in athletes, while chronic CF intake improved mitochondrial efficiency in untrained participants. While combining sub-chronic CF intake and exercise training improved cardiovascular risk factors and vascular function, evidence on the synergistic effects of CF and exercise training on oxidative stress, inflammation, and fat and glucose metabolism was lacking. CONCLUSION CF intake may improve vascular function, reduce exercise-induced oxidative stress, and alter fat and carbohydrate utilization during exercise, but without affecting exercise performance. There is a strong need for future studies examining the synergetic effect of chronic CF intake and exercise training.
Collapse
|
39
|
Zangeneh S, Torki M, Lotfollahian H, Abdolmohammadi A. Effects of dietary supplemental lysophospholipids and vitamin C on performance, antioxidant enzymes, lipid peroxidation, thyroid hormones and serum metabolites of broiler chickens reared under thermoneutral and high ambient temperature. J Anim Physiol Anim Nutr (Berl) 2018; 102:1521-1532. [DOI: 10.1111/jpn.12935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/10/2018] [Accepted: 05/15/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Samira Zangeneh
- Animal Science Department; College of Agriculture and Natural Resources; Razi University; Kermanshah Iran
| | - Mehran Torki
- Animal Science Department; College of Agriculture and Natural Resources; Razi University; Kermanshah Iran
| | - Houshang Lotfollahian
- Department of Nutrition; Animal Science Research Institution; Agricultural Research, Education and Extension Organization (AREEO); Karaj Iran
| | - Alireza Abdolmohammadi
- Animal Science Department; College of Agriculture and Natural Resources; Razi University; Kermanshah Iran
| |
Collapse
|
40
|
Fujii Y, Suzuki K, Hasegawa Y, Nanba F, Toda T, Adachi T, Taira S, Osakabe N. Single oral administration of flavan 3-ols induces stress responses monitored with stress hormone elevations in the plasma and paraventricular nucleus. Neurosci Lett 2018; 682:106-111. [PMID: 29902479 DOI: 10.1016/j.neulet.2018.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023]
Abstract
We previously confirmed that postprandial alterations in the circulation and metabolism after a single oral dose of flavan 3-ols (mixture of catechin and catechin oligomers) were involved in an increase in sympathetic nervous activity. However, it is well known that, in response to various stresses, activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs together with sympathetic nerve activity, which is associated with activation of the sympathetic-adrenal-medullary (SAM) axis. In this study, we examined whether the HPA axis was activated after a single dose of flavan 3-ols. We administered an oral dose of 10 or 50 mg/kg flavan 3-ols to male ICR mice, removed the brains, and fixed them in paraformaldehyde-phosphate buffer. Other animals that were treated similarly were decapitated, and blood was collected. In the paraventricular nucleus (PVN), c-fos mRNA expression increased significantly at 15 min after administration of either 10 or 50 mg/kg flavan 3-ols. Corticotropin-releasing hormone (CRH) mRNA expression levels significantly increased at 240 min after administration of 10 mg/kg flavan 3-ols, and at 60 min after administration of 50 mg/kg flavan 3-ols. Plasma corticosterone levels were also significantly increased at 240 min after ingestion of 50 mg/kg flavan 3-ols. In this experiment, we confirmed that the ingestion of flavan 3-ols acted as a stressor in mammals with activation both the SAM and HPA axes.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Yahiro Hasegawa
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan
| | - Fumio Nanba
- Department of Research and Development, Fujicco Co. Ltd. Hyogo, 650-8558, Japan
| | - Toshiya Toda
- Department of Research and Development, Fujicco Co. Ltd. Hyogo, 650-8558, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, Kanayagawa, Fukushima, 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Munumaku, Saitama, 337-8570, Japan.
| |
Collapse
|
41
|
Nakagawa Y, Ishimura K, Oya S, Kamino M, Fujii Y, Nanba F, Toda T, Ishii T, Adachi T, Suhara Y, Osakabe N. Comparison of the sympathetic stimulatory abilities of B-type procyanidins based on induction of uncoupling protein-1 in brown adipose tissue (BAT) and increased plasma catecholamine (CA) in mice. PLoS One 2018; 13:e0201203. [PMID: 30059510 PMCID: PMC6066223 DOI: 10.1371/journal.pone.0201203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/10/2018] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES We previously found that elevated energy expenditure following a single oral dose of flavan 3-ols (FL), a mixture of catechins and B type procyanidins, is caused by sympathetic nerve activation. In the present study, we compared the activity of the FL components (-)-epicatechin (EC; monomer), procyanidin B2 (B2; dimer), procyanidin C1 (C1; trimer), cinnamtannin A2 (A2; tetramer), and more than pentamer fraction (P5). METHODS Male ICR mice were treated with a single oral dose of FL, EC, B2, C1, A2, or P5. The animals were sacrificed and blood and brown adipose tissue (BAT) sampled. The plasma catecholamine (CA) levels and BAT uncoupling protein (UCP)-1 mRNA expression were determined. RESULTS A single dose of 10 mg/kg FL significantly increased plasma CA and UCP-1 mRNA levels. B2, C1, and A2, but not EC and P5 (all at 1 mg/kg), significantly increased plasma adrenaline levels. Plasma noradrenaline was significantly elevated by B2 and A2, but not by EC, C1, or P5. UCP-1 mRNA levels were significantly increased by C1 and P5. In the dose response study of A2, 10-3 mg/kg A2 increased UCP-1 mRNA levels significantly, but not 10-2 and 10-1 mg/kg A2. In addition, combination treatment with 10-1 mg/kg A2 and yohimbine, an α2 adrenalin blocker, remarkably increased UCP-1 mRNA levels. CONCLUSION These results suggest that FL and its components, except EC, increase UCP-1 mRNA and plasma CA with varying efficacy.
Collapse
Affiliation(s)
- Yuta Nakagawa
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Munumaku, Saitama, Japan
| | - Kana Ishimura
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Munumaku, Saitama, Japan
| | - Satomi Oya
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Munumaku, Saitama, Japan
| | - Masaki Kamino
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Munumaku, Saitama, Japan
| | - Yasuyuki Fujii
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Munumaku, Saitama, Japan
| | - Fumio Nanba
- Department of Research and Development, Fujicco. Co. Ltd., Kobe, Hyogo, Japan
| | - Toshiya Toda
- Department of Research and Development, Fujicco. Co. Ltd., Kobe, Hyogo, Japan
| | - Takeshi Ishii
- Department of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshitomo Suhara
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Munumaku, Saitama, Japan
| | - Naomi Osakabe
- Department of Bio-science and Engineering, Shibaura Institute of Technology, Munumaku, Saitama, Japan
| |
Collapse
|
42
|
Qu R, Jia Y, Liu J, Jin S, Han T, Na L. Dietary Flavonoids, Copper Intake, and Risk of Metabolic Syndrome in Chinese Adults. Nutrients 2018; 10:nu10080991. [PMID: 30060622 PMCID: PMC6116064 DOI: 10.3390/nu10080991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/13/2018] [Accepted: 07/26/2018] [Indexed: 01/31/2023] Open
Abstract
The effects of flavonoids and copper (Cu) on metabolic syndrome (MetS) have been investigated separately, but no information exists about the joint associations between flavonoids and Cu on the risk of MetS in population studies. In this cross-sectional study, a total of 9108 people aged 20⁻75 years from the Harbin Cohort Study on Diet, Nutrition, and Chronic Non-Communicable Diseases (HDNNCDS) were included. Flavonoid intakes were calculated based on the flavonoid database created in our laboratory. Cu and other nutrient intakes were estimated using the Chinese Food Composition Table. Among all study subjects, a total of 2635 subjects (28.9%) met the diagnostic criteria for inclusion in the MetS group. Total flavonoids (fourth vs. first quartile, odds ratio (OR): 0.77, 95% confidence interval (CI) 0.66⁻0.90, Ptrend = 0.002) and Cu (OR 0.81, 90% CI: 0.70⁻0.94, Ptrend = 0.020) were inversely associated with the risk of MetS after adjusting for potential confounders. Higher flavonoid intake was more strongly associated with a lower risk of MetS with high levels of Cu intake (Pinteraction = 0.008). Dose⁻response effects showed an L-shaped curve between the total intake of five flavonoids and the risk of MetS. These results suggest that higher flavonoid intake is associated with a lower risk of MetS, especially under high levels of Cu intake.
Collapse
Affiliation(s)
- Rongge Qu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Yubing Jia
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Junyi Liu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Shanshan Jin
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Lixin Na
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| |
Collapse
|
43
|
Williamson G, Kay CD, Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr Rev Food Sci Food Saf 2018; 17:1054-1112. [DOI: 10.1111/1541-4337.12351] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Colin D. Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Inst. North Carolina State Univ. North Carolina Research Campus Kannapolis NC 28081 U.S.A
| | - Alan Crozier
- Dept. of Nutrition Univ. of California Davis CA 95616 U.S.A
- School of Medicine Dentistry and Nursing, Univ. Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
44
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
45
|
Qian BJ, Tian CC, Ling XH, Yu LL, Ding FY, Huo JH, Zhu LC, Wen YL, Zhang JH, Jing P. miRNA-150-5p associate with antihypertensive effect of epigallocatechin-3-gallate revealed by aorta miRNome analysis of spontaneously hypertensive rat. Life Sci 2018; 203:193-202. [DOI: 10.1016/j.lfs.2018.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/14/2018] [Accepted: 04/22/2018] [Indexed: 12/12/2022]
|
46
|
Al-Dashti YA, Holt RR, Stebbins CL, Keen CL, Hackman RM. Dietary Flavanols: A Review of Select Effects on Vascular Function, Blood Pressure, and Exercise Performance. J Am Coll Nutr 2018; 37:553-567. [PMID: 29718795 DOI: 10.1080/07315724.2018.1451788] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An individual's diet affects numerous physiological functions and can play an important role in reducing the risk of cardiovascular disease. Epidemiological and clinical studies suggest that dietary flavanols can be an important modulator of vascular risk. Diets and plant extracts rich in flavanols have been reported to lower blood pressure, especially in prehypertensive and hypertensive individuals. Flavanols may act in part through signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxing and constricting factors. During exercise, flavanols have been reported to modulate metabolism and respiration (e.g., maximal oxygen uptake, O2 cost of exercise, and energy expenditure), and reduce oxidative stress and inflammation, resulting in increased skeletal muscle efficiency and endurance capacity. Flavanol-induced reductions in blood pressure during exercise may decrease the work of the heart. Collectively, these effects suggest that flavanols can act as an ergogenic aid to help delay the onset of fatigue. More research is needed to better clarify the effects of flavanols on vascular function, blood pressure regulation, and exercise performance and establish safe and effective levels of intake. Flavanol-rich foods and food products can be useful components of a healthy diet and lifestyle program for those seeking to better control their blood pressure or to enhance their physical activity. Key teaching points • Epidemiological and clinical studies indicate that dietary flavanols can reduce the risk of vascular disease. • Diets and plant extracts rich in flavanols have been reported to lower blood pressure and improve exercise performance in humans. • Mechanisms by which flavanols may reduce blood pressure function include alterations in signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxation and constriction factors. • Mechanisms by which flavanols may enhance exercise performance include modulation of metabolism and respiration (e.g., maximal oxygen uptake, O2 cost of exercise, and energy expenditure) and reduction of oxidative stress and inflammation. These effects can result in increased skeletal muscle efficiency and endurance capacity. • Further research is needed to clarify the amount, timing, and frequency of flavanol intake for blood pressure regulation and exercise performance.
Collapse
Affiliation(s)
- Yousef A Al-Dashti
- a Department of Nutrition , University of California, Davis , Davis , California , USA
| | - Roberta R Holt
- a Department of Nutrition , University of California, Davis , Davis , California , USA
| | - Charles L Stebbins
- b Department of Internal Medicine , University of California, Davis , Davis , California , USA
| | - Carl L Keen
- a Department of Nutrition , University of California, Davis , Davis , California , USA.,b Department of Internal Medicine , University of California, Davis , Davis , California , USA
| | - Robert M Hackman
- a Department of Nutrition , University of California, Davis , Davis , California , USA
| |
Collapse
|
47
|
Dhulekar J, Simionescu A. Challenges in vascular tissue engineering for diabetic patients. Acta Biomater 2018; 70:25-34. [PMID: 29396167 PMCID: PMC5871600 DOI: 10.1016/j.actbio.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Hyperglycemia and dyslipidemia coexist in diabetes and result in inflammation, degeneration, and impaired tissue remodeling, processes which are not conducive to the desired integration of tissue engineered products into the surrounding tissues. There are several challenges for vascular tissue engineering such as non-thrombogenicity, adequate burst pressure and compliance, suturability, appropriate remodeling responses, and vasoactivity, but, under diabetic conditions, an additional challenge needs to be considered: the aggressive oxidative environment generated by the high glucose and lipid concentrations that lead to the formation of advanced glycation end products (AGEs) in the vascular wall. Extracellular matrix-based scaffolds have adequate physical properties and are biocompatible, however, these scaffolds are altered in diabetes by the formation AGEs and impaired collagen degradation, consequently increasing vascular wall stiffness. In addition, vascular cells detect and respond to altered stimuli from the matrix by pathological remodeling of the vascular wall. Due to the immunomodulatory effects of mesenchymal stem cells (MSCs), they are frequently used in tissue engineering in order to protect the scaffolds from inflammation. MSCs together with antioxidant treatments of the scaffolds are expected to protect the vascular grafts from diabetes-induced alterations. In conclusion, as one of the most daunting environments that could damage the ECM and its interaction with cells is progressively built in diabetes, we recommend that cells and scaffolds used in vascular tissue engineering for diabetic patients are tested in diabetic animal models, in order to obtain valuable results regarding their resistance to diabetic adversities. STATEMENT OF SIGNIFICANCE Almost 25 million Americans have diabetes, characterized by high levels of blood sugar that binds to tissues and disturbs the function of cardiovascular structures. Therefore, patients with diabetes have a high risk of cardiovascular diseases. Surgery is required to replace diseased arteries with implants, but these fail after 5-10 years because they are made of non-living materials, not resistant to diabetes. New tissue engineering materials are developed, based on the patients' own stem cells, isolated from fat, and added to extracellular matrix-based scaffolds. Our main concern is that diabetes could damage the tissue-like implants. Thus we review studies related to the effect of diabetes on tissue components and recommend antioxidant treatments to increase the resistance of implants to diabetes.
Collapse
|
48
|
Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signaling: (-)-Epicatechin as a paradigm. Mol Aspects Med 2018; 61:31-40. [PMID: 29421170 DOI: 10.1016/j.mam.2018.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/31/2022]
Abstract
Polyphenols are bioactives claimed to be responsible for some of the health benefits provided by fruit and vegetables. It is currently accepted that the bioactivities of polyphenols can be mostly ascribed to their interactions with proteins and lipids. Such interactions can affect cell oxidant production and cell signaling, and explain in part the ability of polyphenols to promote health. EC can modulate redox sensitive signaling by: i) defining the extent of oxidant levels that can modify cell signaling, function, and fate, e.g. regulating enzymes that generate superoxide, hydrogen peroxide and nitric oxide; or ii) regulating the activation of transcription factors sensible to oxidants. The latter includes the regulation of the nuclear factor E2-related factor 2 (Nfr2) pathway, which in turn can promote the synthesis of antioxidant defenses, and of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway, which mediates the expression of oxidants generating enzymes, as well as proteins not involved in redox reactions. In summary, a significant amount of data vindicates the participation of EC in redox regulated signaling pathways. Progress in the understanding of the molecular mechanisms involved in EC biological actions will help to define recommendations in terms of which fruit and vegetables are healthier and the amounts necessary to provide health effects.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, USA.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
49
|
Xiao L, Luo G, Tang Y, Yao P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem Toxicol 2018; 114:190-203. [PMID: 29432835 DOI: 10.1016/j.fct.2018.02.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/18/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022]
Abstract
Iron is a life-supporting micronutrient that is required in the human diet, and is essential for maintaining physiological homeostasis. Properly harnessing a redox-active metal such as iron is a great challenge for cells and organisms because an excess of highly reactive iron catalyzes the formation of reactive oxygen species and can lead to cell and tissue damage. Quercetin is a typical flavonoid that is commonly found in fruits and vegetables and has versatile biological effects. From a classical viewpoint, owing to its unique chemical characteristics, quercetin has long been associated with iron metabolism only in the context of its iron-chelating and ROS-scavenging activities. However, within the field of human iron biology, expanding concepts of the roles of quercetin are flourishing, and great strides are being made in understanding the interactions between quercetin and iron. This progress highlights the varied roles of quercetin in iron metabolism, which involve much more than iron chelation alone. A review of these studies provides an ideal context to summarize recent progress and discuss compelling evidence for therapeutic opportunities that could arise from a better understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
50
|
Osakabe N, Terao J. Possible mechanisms of postprandial physiological alterations following flavan 3-ol ingestion. Nutr Rev 2018; 76:174-186. [DOI: 10.1093/nutrit/nux070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|