1
|
Caiado H, Cancela ML, Conceição N. Transcriptional Regulation of the Human MGP Promoter: Identification of Downstream Repressors. Int J Mol Sci 2024; 25:12597. [PMID: 39684309 DOI: 10.3390/ijms252312597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Matrix Gla protein (MGP) is a vitamin K-dependent γ-carboxylated protein that was initially identified as a physiological inhibitor of ectopic calcification, primarily affecting cartilage and the vascular system. Mutations in the MGP gene were found to be responsible for the Keutel syndrome, a condition characterized by abnormal calcifications in the cartilage, lungs, brain, and vascular system. MGP has been shown to be dysregulated in several tumors, including cervical, ovarian, urogenital, and breast cancers. Using bioinformatic approaches, transcription factor binding sites (TFBSs) containing CpG dinucleotides were identified in the MGP promoter, including those for YY1, GATA1, and C/EBPα. We carried out functional tests using transient transfections with a luciferase reporter assay, primarily for the transcription factors YY1, GATA1, C/EBPα, and RUNX2. By co-transfection analysis, we found that YY1, GATA1, and C/EBPα repressed the MGP promoter. Furthermore, the co-transfection with RUNX2 activated the MGP promoter. In addition, MGP expression is negatively or positively correlated with the studied TFs' expression levels in several cancer types. This study provides novel insights into MGP regulation by demonstrating that YY1, GATA1, and C/EBPα are negative regulators of the MGP promoter, and DNA methylation may influence their activity. The dysregulation of these mechanisms in cancer should be further elucidated.
Collapse
Affiliation(s)
- Helena Caiado
- Center of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - M Leonor Cancela
- Center of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Natércia Conceição
- Center of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Liu X, Tian L, Deng Z, Guo Y, Zhang S. Zoledronic Acid Accelerates Bone Healing in Carpal Navicular Fracture via Silencing Long Non-coding RNA Growth Arrest Specificity 5 to Modulate MicroRNA-29a-3p Expression. Mol Biotechnol 2024; 66:3238-3251. [PMID: 37861953 DOI: 10.1007/s12033-023-00931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Carpal navicular fractures are the most common carpal fractures. This study intends to explore the specific mechanism of Zoledronic Acid (ZA) in carpal navicular fracture healing via long non-coding RNA (lncRNA) growth arrest specificity 5 (GAS5) to mediate microRNA (miR)-29a-3p. A fractured rat model was constructed. Two weeks later, a subcutaneous injection of systemic ZA was implemented, and an injection of plasmid vectors interfered with GAS5 or miR-29a-3p expression was performed on the fracture site. Osteocalcin (OCN) and bone morphogenetic protein-2 (BMP-2) were determined, as well as serum levels of alkaline phosphatase (ALP), osteopontin (OPN) and osteoprotegerin (OPG) and bone mineral density. MC3T3-E1 cells were transfected with plasmid vectors interfering with GAS5 or miR-29a-3p, and cell proliferation and apoptosis were analyzed. GAS5 and miR-29a-3p expression in fractured rats was tested, together with their binding relationship. ZA promoted OCN and BMP-2 expression, increased bone mineral density and serum levels of ALP, OPN and OPG in fractured rats. GAS5 was upregulated and miR-29a-3p was down-regulated in fractured rats. Downregulation of GAS5 or upregulation of miR-29a-3p further promoted bone healing in fractured rats. GAS5 targets miR-29a-3p, and down-regulation of miR-29a-3p can reverse the effect of down-regulation of GAS5 on bone healing in fractured rats. ZA promoted the proliferation of MC3T3-E1 cells and inhibited apoptosis by regulating the GAS5/miR-29a-3p axis. ZA regulates miR-29a-3p expression by down-regulating GAS5 to promote carpal navicular fracture healing, promote MC3T3-E1 cell proliferation, and inhibit cell apoptosis.
Collapse
Affiliation(s)
- Xing Liu
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China.
| | - LiJun Tian
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China
| | - ZhiGang Deng
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China
| | - YuSong Guo
- Department of Orthopaedic Trauma 2, The Third Hospital of ShiJiaZhuang, No. 15 Tiyu South Street, Chang'an District, Shijiazhuang City, 050011, Hebei Province, China
| | - SanBing Zhang
- Department of Hand/Foot and Ankle Surgery, The Third Hospital of ShiJiaZhuang, Shijiazhuang City, 050011, Hebei Province, China
| |
Collapse
|
3
|
Li W, Zhang Z, Li Y, Wu Z, Wang C, Huang Z, Ye B, Jiang X, Yang X, Shi X. Effects of total flavonoids of Rhizoma Drynariae on biochemical indicators of bone metabolism: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1443235. [PMID: 39359242 PMCID: PMC11445651 DOI: 10.3389/fphar.2024.1443235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Background Evidence shows that the total flavonoids of Rhizoma Drynariae (TFRD) can improve bone mineral density (BMD). However, there is no evidence to summarize the improvement of biochemical indicators of bone metabolism (BIBM). Methods The PubMed, Web of Science, Cochrane Library, Embase, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database, Chongqing VIP Information Database (VIP) and SinoMed were searched from inception to 6 May 2024. The final included studies performed meta-analyses using RevMan 5.3. Results Nine randomized controlled trials (RCTs) were ultimately included. The TFRD group had higher bone gla protein (BGP) and type I procollagen-N-propeptide (PINP) compared to the Other therapies (WMD: 5.11; 95% CI: 3.37, 6.84; p < 0.00001; WMD: 13.89; 95% CI: 11.81, 15.97; p < 0.00001). The tartrate-resistant acid phosphatase (TRACP) decreased significantly (WMD: -1.34; 95% CI: -1.62, -1.06; p < 0.00001). The alkaline phosphatase (ALP) increased significantly (WMD: 7.47; 95% CI: 6.29, 8.66; p < 0.00001). There were no significant differences in serum calcium (SC) or serum phosphorus (SP) levels between the TFRD and control groups (WMD: 0.08; 95% CI: -0.04, 0.20; p = 0.17; WMD: 0.02; 95% CI: -0.02, 0.05; p = 0.36). Conclusion TFRD can stimulate bone formation and prevent bone resorption in osteoporosis (OP) patients, but it has no effect on SC and SP. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Wei Li
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zechen Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyi Li
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengjie Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Baisheng Ye
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Yang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolin Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Harwood DSL, Pedersen V, Bager NS, Schmidt AY, Stannius TO, Areškevičiūtė A, Josefsen K, Nørøxe DS, Scheie D, Rostalski H, Lü MJS, Locallo A, Lassen U, Bagger FO, Weischenfeldt J, Heiland DH, Vitting-Seerup K, Michaelsen SR, Kristensen BW. Glioblastoma cells increase expression of notch signaling and synaptic genes within infiltrated brain tissue. Nat Commun 2024; 15:7857. [PMID: 39251578 PMCID: PMC11385527 DOI: 10.1038/s41467-024-52167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Glioblastoma remains one of the deadliest brain malignancies. First-line therapy consists of maximal surgical tumor resection, accompanied by chemotherapy and radiotherapy. Malignant cells escape surgical resection by migrating into the surrounding healthy brain tissue, where they give rise to the recurrent tumor. Based on gene expression, tumor cores can be subtyped into mesenchymal, proneural, and classical tumors, each being associated with differences in genetic alterations and cellular composition. In contrast, the adjacent brain parenchyma where infiltrating malignant cells escape surgical resection is less characterized in patients. Using spatial transcriptomics (n = 11), we show that malignant cells within proneural or mesenchymal tumor cores display spatially organized differences in gene expression, although such differences decrease within the infiltrated brain tissue. Malignant cells residing in infiltrated brain tissue have increased expression of genes related to neurodevelopmental pathways and glial cell differentiation. Our findings provide an updated view of the spatial landscape of glioblastomas and further our understanding of the malignant cells that infiltrate the healthy brain, providing new avenues for the targeted therapy of these cells after surgical resection.
Collapse
Affiliation(s)
- Dylan Scott Lykke Harwood
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Vilde Pedersen
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Schou Bager
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ane Yde Schmidt
- Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Aušrinė Areškevičiūtė
- Danish Reference Center for Prion Diseases, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Knud Josefsen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dorte Schou Nørøxe
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Rostalski
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maya Jeje Schuang Lü
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Alessio Locallo
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Joachim Weischenfeldt
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, USA
- German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Kristoffer Vitting-Seerup
- Section for Bioinformatics, Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Signe Regner Michaelsen
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- DCCC Brain Tumor Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
5
|
Tang H, Yu Y, Zhan X, Chai Y, Zheng Y, Liu Y, Xia D, Lin H. Zeolite imidazolate framework-8 in bone regeneration: A systematic review. J Control Release 2024; 365:558-582. [PMID: 38042375 DOI: 10.1016/j.jconrel.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Zeolite imidazolate framework-8 (ZIF-8) is a biomaterial that has been increasingly studied in recent years. It has several applications such as bone regeneration, promotion of angiogenesis, drug loading, and antibacterial activity, and exerts multiple effects to deal with various problems in the process of bone regeneration. This systematic review aims to provide an overview of the applications and effectiveness of ZIF-8 in bone regeneration. A search of papers published in the PubMed, Web of Science, Embase, and Cochrane Library databases revealed 532 relevant studies. Title, abstract, and full-text screening resulted in 39 papers being included in the review, including 39 in vitro and 22 animal studies. Appropriate concentrations of nano ZIF-8 can promote cell proliferation and osteogenic differentiation by releasing Zn2+ and entering the cell, whereas high doses of ZIF-8 are cytotoxic and inhibit osteogenic differentiation. In addition, five studies confirmed that ZIF-8 exhibits good vasogenic activity. In all in vivo experiments, nano ZIF-8 promoted bone formation. These results indicate that, at appropriate concentrations, materials containing ZIF-8 promote bone regeneration more than materials without ZIF-8, and with characteristics such as promoting angiogenesis, drug loading, and antibacterial activity, it is expected to show promising applications in the field of bone regeneration. STATEMENT OF SIGNIFICANCE: This manuscript reviewed the use of ZIF-8 in bone regeneration, clarified the biocompatibility and effectiveness in promoting bone regeneration of ZIF-8 materials, and discussed the possible mechanisms and factors affecting its promotion of bone regeneration. Overall, this study provides a better understanding of the latest advances in the field of bone regeneration of ZIF-8, serves as a design guide, and contributes to the design of future experimental studies.
Collapse
Affiliation(s)
- Hao Tang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuan Chai
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Hong Lin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| |
Collapse
|
6
|
Blair HC, Larrouture QC, Tourkova IL, Nelson DJ, Dobrowolski SF, Schlesinger PH. Epithelial-like transport of mineral distinguishes bone formation from other connective tissues. J Cell Biochem 2023; 124:1889-1899. [PMID: 37991446 PMCID: PMC10880123 DOI: 10.1002/jcb.30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.
Collapse
Affiliation(s)
- Harry C Blair
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Irina L. Tourkova
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago IL
| | | | | |
Collapse
|
7
|
Wang SK, Zhang H, Wang YL, Lin HY, Seymen F, Koruyucu M, Wright JT, Kim JW, Simmer JP, Hu JCC. FAM20A mutations and transcriptome analyses of dental pulp tissues of enamel renal syndrome. Int Endod J 2023; 56:943-954. [PMID: 37159186 PMCID: PMC10524697 DOI: 10.1111/iej.13928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
AIM Biallelic loss-of-function FAM20A mutations cause amelogenesis imperfecta (AI) type IG, better known as enamel renal syndrome (ERS), characterized by severe enamel hypoplasia, delayed/failed tooth eruption, intrapulpal calcifications, gingival hyperplasia and nephrocalcinosis. FAM20A binds to FAM20C, the Golgi casein kinase (GCK) and potentiates its function to phosphorylate secreted proteins critical for biomineralization. While many FAM20A pathogenic mutations have been reported, the pathogeneses of orodental anomalies in ERS remain to be elucidated. This study aimed to identify disease-causing mutations for patients with ERS phenotypes and to discern the molecular mechanism underlying ERS intrapulpal calcifications. METHODOLOGY Phenotypic characterization and whole exome analyses were conducted for 8 families and 2 sporadic cases with hypoplastic AI. A minigene assay was performed to investigate the molecular consequences of a FAM20A splice-site variant. RNA sequencing followed by transcription profiling and gene ontology (GO) analyses were carried out for dental pulp tissues of ERS and the control. RESULTS Biallelic FAM20A mutations were demonstrated for each affected individual, including 7 novel pathogenic variants: c.590-5T>A, c.625T>A (p.Cys209Ser), c.771del (p.Gln258Argfs*28), c.832_835delinsTGTCCGACGGTGTCCGACGGTGTC CA (p.Val278Cysfs*29), c.1232G>A (p.Arg411Gln), c.1297A>G (p.Arg433Gly) and c.1351del (p.Gln451Serfs*4). The c.590-5T>A splice-site mutation caused Exon 3 skipping, which resulted in an in-frame deletion of a unique region of the FAM20A protein, p.(Asp197_Ile214delinsVal). Analyses of differentially expressed genes in ERS pulp tissues demonstrated that genes involved in biomineralization, particularly dentinogenesis, were significantly upregulated, such as DSPP, MMP9, MMP20 and WNT10A. Enrichment analyses indicated overrepresentation of gene sets associated with BMP and SMAD signalling pathways. In contrast, GO terms related to inflammation and axon development were underrepresented. Among BMP signalling genes, BMP agonists GDF7, GDF15, BMP3, BMP8A, BMP8B, BMP4 and BMP6 were upregulated, while BMP antagonists GREM1, BMPER and VWC2 showed decreased expression in ERS dental pulp tissues. CONCLUSIONS Upregulation of BMP signalling underlies intrapulpal calcifications in ERS. FAM20A plays an essential role in pulp tissue homeostasis and prevention of ectopic mineralization in soft tissues. This critical function probably depends upon MGP (matrix Gla protein), a potent mineralization inhibitor that must be properly phosphorylated by FAM20A-FAM20C kinase complex.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No.1, Changde St., Taipei City 100229, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No.8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48108, USA
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No.1, Changde St., Taipei City 100229, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No.8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hung-Ying Lin
- Department of Oral and Maxillofacial Surgery, National Taiwan University Hospital; No.1, Changde St., Taipei City 100229, Taiwan
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Altinbas University, Istanbul, 34147, Turkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, 34116, Turkey
| | - J Timothy Wright
- Department of Pediatric Dentistry, University of North Carolina School of Dentistry, CB 7450, 228 Brauer Hall, Chapel Hill, NC 27599, USA
| | - Jung-Wook Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48108, USA
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48108, USA
| |
Collapse
|
8
|
Zebrafish Models to Study Ectopic Calcification and Calcium-Associated Pathologies. Int J Mol Sci 2023; 24:ijms24043366. [PMID: 36834795 PMCID: PMC9967340 DOI: 10.3390/ijms24043366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Ectopic calcification refers to the pathological accumulation of calcium ions in soft tissues and is often the result of a dysregulated action or disrupted function of proteins involved in extracellular matrix mineralization. While the mouse has traditionally been the go-to model organism for the study of pathologies associated with abnormal calcium deposition, many mouse mutants often have exacerbated phenotypes and die prematurely, limiting the understanding of the disease and the development of effective therapies. Since the mechanisms underlying ectopic calcification share some analogy with those of bone formation, the zebrafish (Danio rerio)-a well-established model for studying osteogenesis and mineralogenesis-has recently gained momentum as a model to study ectopic calcification disorders. In this review, we outline the mechanisms of ectopic mineralization in zebrafish, provide insights into zebrafish mutants that share phenotypic similarities with human pathological mineralization disorders, list the compounds capable of rescuing mutant phenotypes, and describe current methods to induce and characterize ectopic calcification in zebrafish.
Collapse
|
9
|
Wei Y, Wang Z, He Q, Siddiqi SM, Zhou Z, Liu L, Song Y, Chen P, Li J, Zhang Y, Mao G, Wang B, Tang G, Qin X, Xu X, Huo Y, Guo H, Zhang H. Inverse Association between Plasma Phylloquinone and Risk of Ischemic Stroke in Chinese Adults with Hypertension and High BMI: A Nested Case-Control Study. J Nutr 2022; 152:1927-1935. [PMID: 35660920 DOI: 10.1093/jn/nxac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Evidence on the association between phylloquinone status and cardiovascular diseases is scarce and conflicting. These inconsistencies may be due to differences in individual characteristics of the study populations, which may modify the association. OBJECTIVE This study aimed to evaluate the association between plasma phylloquinone and the risk of first total stroke and its subtypes, and to examine potential effect modifications by BMI in patients with hypertension. METHODS We performed a nested case-control study including 604 first stroke cases and 604 matched controls. The mean age was 62.2 y (range, 45 to 75). Lower BMI was defined as <25 kg/m2 and higher BMI was defined as ≥25 kg/m2. The risks of the first stroke were estimated by ORs and 95% CIs using conditional logistic regression. The primary outcome was total stroke or ischemic stroke. RESULTS The relation between log-transformed phylloquinone concentration and stroke or ischemic stroke was modified by BMI. Higher phylloquinone concentrations were associated with lower stroke risk in those with a higher BMI. When plasma phylloquinone was assessed as tertiles, the adjusted ORs of first stroke and ischemic stroke for participants with a high BMI in tertile 2-3 were 0.70 (95% CI: 0.46, 1.08) and 0.57 (95% CI: 0.35, 0.92) compared with those in tertile 1, respectively. However, there was no significant association between plasma phylloquinone and risk of first total stroke or ischemic stroke for those with a lower BMI. Patients with a higher BMI and lower phylloquinone concentrations had the highest risk of ischemic stroke and showed a statistically significant difference compared with the reference group with a lower BMI and higher phylloquinone (OR = 1.80, 95% CI: 1.06, 3.10; P-interaction: 0.017). CONCLUSIONS In Chinese patients with hypertension, there was an inverse association between baseline plasma phylloquinone and risk of first ischemic stroke among those with a higher BMI. This trial was registered at clinicaltrials.gov as NCT00794885.
Collapse
Affiliation(s)
- Yaping Wei
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhuo Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiangqiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Sultan Mehmood Siddiqi
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Ziyi Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Lishun Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, China.,Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Guangyun Mao
- Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, China
| | - Binyan Wang
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Genfu Tang
- School of Health Administration, Anhui Medical University, Hefei, China
| | - Xianhui Qin
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Xu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
A ZIF-8-based multifunctional intelligent drug release system for chronic osteomyelitis. Colloids Surf B Biointerfaces 2022; 212:112354. [PMID: 35085938 DOI: 10.1016/j.colsurfb.2022.112354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
Abstract
Chronic osteomyelitis (COM) is an inflammatory bone disease caused by bacterial infection. Conventional treatment with antibiotics is prone to resistance and other side effects, and it is ineffective against inflammation caused by infection and bone loss. To treat COM comprehensively, based on the acidic microenvironment of osteomyelitis, we used ZIF-8 and celecoxib to construct a multifunctional intelligent drug release system with pH response effect, named CEL@ZIF-8. Material characterization revealed that celecoxib is successfully loaded into ZIF-8. Ion release and drug release experiments indicated that CEL@ZIF-8 can respond well to the pH and intelligently control the release of ions and drugs. Antibacterial assays manifested that CEL@ZIF-8 is able to inhibit the growth of bacteria significantly. In vitro cell experiments demonstrated that CEL@ZIF-8 can significantly up-regulate the expression of osteogenesis-related cytokines and down-regulate the levels of inflammatory factors. Studies verify that the novel drug release system possesses multiple functions: antibacterial, osteogenesis, anti-inflammatory and intelligent release, suggesting a tremendous clinical promise for the treatment of COM.
Collapse
|
11
|
Cancela ML, Laizé V, Conceição N, Kempf H, Murshed M. Keutel Syndrome, a Review of 50 Years of Literature. Front Cell Dev Biol 2021; 9:642136. [PMID: 33996798 PMCID: PMC8117146 DOI: 10.3389/fcell.2021.642136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Keutel syndrome (KS) is a rare autosomal recessive genetic disorder that was first identified in the beginning of the 1970s and nearly 30 years later attributed to loss-of-function mutations in the gene coding for the matrix Gla protein (MGP). Patients with KS are usually diagnosed during childhood (early onset of the disease), and the major traits include abnormal calcification of cartilaginous tissues resulting in or associated with malformations of skeletal tissues (e.g., midface hypoplasia and brachytelephalangism) and cardiovascular defects (e.g., congenital heart defect, peripheral pulmonary artery stenosis, and, in some cases, arterial calcification), and also hearing loss and mild developmental delay. While studies on Mgp -/- mouse, a faithful model of KS, show that pathologic mineral deposition (ectopic calcification) in cartilaginous and vascular tissues is the primary cause underlying many of these abnormalities, the mechanisms explaining how MGP prevents abnormal calcification remain poorly understood. This has negative implication for the development of a cure for KS. Indeed, at present, only symptomatic treatments are available to treat hypertension and respiratory complications occurring in the KS patients. In this review, we summarize the results published in the last 50 years on Keutel syndrome and present the current status of the knowledge on this rare pathology.
Collapse
Affiliation(s)
- M. Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
- Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Hervé Kempf
- UMR 7365 CNRS-Université de Lorraine, IMoPA, Vandoeuvre-lès-Nancy, France
| | - Monzur Murshed
- Department of Medicine and Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Shriners Hospital for Children, Montreal, QC, Canada
| |
Collapse
|
12
|
Leurs N, Martinand-Mari C, Ventéo S, Haitina T, Debiais-Thibaud M. Evolution of Matrix Gla and Bone Gla Protein Genes in Jawed Vertebrates. Front Genet 2021; 12:620659. [PMID: 33790944 PMCID: PMC8006282 DOI: 10.3389/fgene.2021.620659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/08/2021] [Indexed: 01/05/2023] Open
Abstract
Matrix Gla protein (Mgp) and bone Gla protein (Bgp) are vitamin-K dependent proteins that bind calcium in their γ-carboxylated versions in mammals. They are recognized as positive (Bgp) or negative (Mgp and Bgp) regulators of biomineralization in a number of tissues, including skeletal tissues of bony vertebrates. The Mgp/Bgp gene family is poorly known in cartilaginous fishes, which precludes the understanding of the evolution of the biomineralization toolkit at the emergence of jawed vertebrates. Here we took advantage of recently released genomic and transcriptomic data in cartilaginous fishes and described the genomic loci and gene expression patterns of the Mgp/Bgp gene family. We identified three genes, Mgp1, Mgp2, and Bgp, in cartilaginous fishes instead of the single previously reported Mgp gene. We describe their genomic loci, resulting in a dynamic evolutionary scenario for this gene family including several events of local (tandem) duplications, but also of translocation events, along jawed vertebrate evolution. We describe the expression patterns of Mgp1, Mgp2, and Bgp in embryonic stages covering organogenesis in the small-spotted catshark Scyliorhinus canicula and present a comparative analysis with Mgp/Bgp family members previously described in bony vertebrates, highlighting ancestral features such as early embryonic, soft tissues, and neuronal expressions, but also derived features of cartilaginous fishes such as expression in fin supporting fibers. Our results support an ancestral function of Mgp in skeletal mineralization and a later derived function of Bgp in skeletal development that may be related to the divergence of bony vertebrates.
Collapse
Affiliation(s)
- Nicolas Leurs
- ISEM, CNRS, IRD, EPHE, Univ. Montpellier, Montpellier, France
| | | | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Inserm UMR 1051, Univ. Montpellier, Montpellier, France
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
13
|
Li C, Li J, He F, Li K, Li X, Zhang Y. Matrix Gla protein regulates adipogenesis and is serum marker of visceral adiposity. Adipocyte 2020; 9:68-76. [PMID: 32000575 PMCID: PMC6999844 DOI: 10.1080/21623945.2020.1721692] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
Objective Matrix Gla protein (MGP) is a potent calcification inhibitor. Mgp-/- mice display increased proportion of brown adipose tissue. However, whether MGP is involved in fat metabolism remains unclear. This study aims to investigate the involvement. Methods Expression of adipocyte differentiation markers was examined by RT-qPCR. Adipocyte formation was assessed by Oil Red staining. Serum triglyceride, cholesterol, and desphosphorylated-uncarboxylated MGP (dp-ucMGP) were quantified by ELISA. Visceral fat was detected by bioelectrical impedance analysis. Results MGP is highly expressed in visceral fat. MGP expression is induced during preadipocyte differentiation. Knockout of MGP leads to retardation of 3T3-L1 differentiation. Intracellular triglyceride amount is impaired while glycerol release is increased in MGP-depleted cells. Serum dp-ucMGP level is significantly increased in individual with higher visceral fat index (VFI) and waist height ratio (WHtR), but not body mass index (BMI). Additionally, dp-ucMGP positively correlates to low-density lipoprotein cholesterol (LDL-C) level. Conclusions MGP is involved in fat metabolism and serum inactive MGP level is associated with visceral fat. Our study uncovers for the first time the link between MGP and fat metabolism, and sheds light on the potential of dp-ucMGP as a novel serum marker.
Collapse
Affiliation(s)
- Chaomin Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fang He
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Kun Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Clinical Laboratory, ShanXi Mineral Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
14
|
Chen Y, Zhao X, Wu H. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler Thromb Vasc Biol 2020; 40:1078-1093. [PMID: 32237904 DOI: 10.1161/atvbaha.120.313131] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the association between vascular calcification and arterial stiffness, highlighting the important genetic factors, systemic and local microenvironmental signals, and underlying signaling pathways and molecular regulators of vascular calcification. Elevated oxidative stress appears to be a common procalcification factor that induces osteogenic differentiation and calcification of vascular cells in a variety of disease conditions such as atherosclerosis, diabetes mellitus, and chronic kidney disease. Thus, the role of oxidative stress and oxidative stress-regulated signals in vascular smooth muscle cells and their contributions to vascular calcification are highlighted. In relation to diabetes mellitus, the regulation of both hyperglycemia and increased protein glycosylation, by AGEs (advanced glycation end products) and O-linked β-N-acetylglucosamine modification, and its role in enhancing intracellular pathophysiological signaling that promotes osteogenic differentiation and calcification of vascular smooth muscle cells are discussed. In the context of chronic kidney disease, this review details the role of calcium and phosphate homeostasis, parathyroid hormone, and specific calcification inhibitors in regulating vascular calcification. In addition, the impact of the systemic and microenvironmental factors on respective intrinsic signaling pathways that promote osteogenic differentiation and calcification of vascular smooth muscle cells and osteoblasts are compared and contrasted, aiming to dissect the commonalities and distinctions that underlie the paradoxical vascular-bone mineralization disorders in aging and diseases.
Collapse
Affiliation(s)
- Yabing Chen
- From the Departments of Pathology (Y.C.), The University of Alabama at Birmingham.,Birmingham Veterans Affairs Medical Center, Research Department, AL (Y.C.)
| | - Xinyang Zhao
- Biochemistry (X.Z.), The University of Alabama at Birmingham
| | - Hui Wu
- Pediatric Dentistry (H.W.), The University of Alabama at Birmingham
| |
Collapse
|
15
|
Vera LM, Lock EJ, Hamre K, Migaud H, Leeming D, Tocher DR, Taylor JF. Enhanced micronutrient supplementation in low marine diets reduced vertebral malformation in diploid and triploid Atlantic salmon (Salmo salar) parr, and increased vertebral expression of bone biomarker genes in diploids. Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110327. [PMID: 31461683 DOI: 10.1016/j.cbpb.2019.110327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Previously we showed that, for optimum growth, micronutrient levels should be supplemented above current National Research Council (2011) recommendations for Atlantic salmon when they are fed diets formulated with low levels of marine ingredients. In the present study, the impact of graded levels (100, 200, 400%) of a micronutrient package (NP) on vertebral deformities and bone gene expression were determined in diploid and triploid salmon parr fed low marine diets. The prevalence of radiologically detectable spinal deformities decreased with increasing micronutrient supplementation in both ploidy. On average, triploids had a higher incidence of spinal deformity than diploids within a given diet. Micronutrient supplementation particularly reduced prevalence of fusion deformities in diploids and compression and reduced spacing deformities in triploids. Prevalence of affected vertebrae within each spinal region (cranial, caudal, tail and tail fin) varied significantly between diet and ploidy, and there was interaction. Prevalence of deformities was greatest in the caudal region of triploids and the impact of graded micronutrient supplementation in reducing deformities also greatest in triploids. Diet affected vertebral morphology with length:height (L:H) ratio generally increasing with level of micronutrient supplementation in both ploidy with no difference between ploidy. Increased dietary micronutrients level in diploid salmon increased the vertebral expression of several bone biomarker genes including bone morphogenetic protein 2 (bmp2), osteocalcin (ostcn), alkaline phosphatase (alp), matrix metallopeptidase 13 (mmp13), osteopontin (opn) and insulin-like growth factor 1 receptor (igf1r). In contrast, although some genes showed similar trends in triploids, vertebral gene expression was not significantly affected by dietary micronutrients level. The study confirmed earlier indications that dietary micronutrient levels should be increased in salmon fed diets with low marine ingredients and that there are differences in nutritional requirements between ploidies.
Collapse
Affiliation(s)
- Luisa M Vera
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Erik-Jan Lock
- Institute of Marine Research (formerly National Institute of Nutrition and Seafood Research), Nordnes, Bergen 5817, Norway
| | - Kristen Hamre
- Institute of Marine Research (formerly National Institute of Nutrition and Seafood Research), Nordnes, Bergen 5817, Norway
| | - Herve Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - John F Taylor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
16
|
Zhang Y, Zhao L, Wang N, Li J, He F, Li X, Wu S. Unexpected Role of Matrix Gla Protein in Osteoclasts: Inhibiting Osteoclast Differentiation and Bone Resorption. Mol Cell Biol 2019; 39:e00012-19. [PMID: 30988158 PMCID: PMC6549463 DOI: 10.1128/mcb.00012-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Matrix Gla protein (MGP) is an extracellular protein responsible for inhibiting mineralization. MGP inhibits osteoblast mineralization and bone formation by regulating the deposition of bone matrix. However, Mgp-/- mice display an osteopenic phenotype. To explain this contradiction, we investigated the role of MGP in osteoclastogenesis, the other side of bone remodeling. We found that MGP expression is markedly increased by osteoclastic commitment. Osteoclast differentiation and bone resorption are accelerated by MGP depletion while suppressed by MGP overexpression. The in vivo results confirmed its inhibitory role in osteoclastogenesis by the administration of Cre-dependent FLEX-On recombinant MGP-AAV to LysM Cre mice. Furthermore, we found that the expression and nuclear translocation of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), are under the control of MGP. MGP loss results in elevation of intracellular Ca2+ flux. Vitronectin-induced activation of Src/Rac1 is magnified in the absence of MGP but reduced when MGP is overexpressed. Inhibition of Src activation or NFATc1 nuclear import rescues the increased osteoclastogenesis induced by MGP deficiency. These observations (i) establish, for the first time to our knowledge, that MGP plays an essential role in osteoclast differentiation and function, (ii) enrich the current knowledge of MGP function, and (iii) indicate the potential of MGP as a therapeutic target for low-bone-mass disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Liting Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Naining Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Fang He
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
17
|
Bäck M, Aranyi T, Cancela ML, Carracedo M, Conceição N, Leftheriotis G, Macrae V, Martin L, Nitschke Y, Pasch A, Quaglino D, Rutsch F, Shanahan C, Sorribas V, Szeri F, Valdivielso P, Vanakker O, Kempf H. Endogenous Calcification Inhibitors in the Prevention of Vascular Calcification: A Consensus Statement From the COST Action EuroSoftCalcNet. Front Cardiovasc Med 2019; 5:196. [PMID: 30713844 PMCID: PMC6345677 DOI: 10.3389/fcvm.2018.00196] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/19/2018] [Indexed: 01/29/2023] Open
Abstract
The physicochemical deposition of calcium-phosphate in the arterial wall is prevented by calcification inhibitors. Studies in cohorts of patients with rare genetic diseases have shed light on the consequences of loss-of-function mutations for different calcification inhibitors, and genetic targeting of these pathways in mice have generated a clearer picture on the mechanisms involved. For example, generalized arterial calcification of infancy (GACI) is caused by mutations in the enzyme ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (eNPP1), preventing the hydrolysis of ATP into pyrophosphate (PPi). The importance of PPi for inhibiting arterial calcification has been reinforced by the protective effects of PPi in various mouse models displaying ectopic calcifications. Besides PPi, Matrix Gla Protein (MGP) has been shown to be another potent calcification inhibitor as Keutel patients carrying a mutation in the encoding gene or Mgp-deficient mice develop spontaneous calcification of the arterial media. Whereas PPi and MGP represent locally produced calcification inhibitors, also systemic factors contribute to protection against arterial calcification. One such example is Fetuin-A, which is mainly produced in the liver and which forms calciprotein particles (CPPs), inhibiting growth of calcium-phosphate crystals in the blood and thereby preventing their soft tissue deposition. Other calcification inhibitors with potential importance for arterial calcification include osteoprotegerin, osteopontin, and klotho. The aim of the present review is to outline the latest insights into how different calcification inhibitors prevent arterial calcification both under physiological conditions and in the case of disturbed calcium-phosphate balance, and to provide a consensus statement on their potential therapeutic role for arterial calcification.
Collapse
Affiliation(s)
- Magnus Bäck
- Translational Cardiology, Center for Molecular Medicine, Karolinska University Hospital Stockholmt, Stockholm, Sweden
| | - Tamas Aranyi
- Research Center for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - M Leonor Cancela
- Department of Biomedical Sciences and Medicine, Algarve Biomedical Centre, Centre of Marine Sciences/CCMAR, University of Algarve, Faro, Portugal
| | - Miguel Carracedo
- Translational Cardiology, Center for Molecular Medicine, Karolinska University Hospital Stockholmt, Stockholm, Sweden
| | - Natércia Conceição
- Department of Biomedical Sciences and Medicine, Algarve Biomedical Centre, Centre of Marine Sciences/CCMAR, University of Algarve, Faro, Portugal
| | - Georges Leftheriotis
- LP2M, University of Nice-Sophia Antipolis and Vascular Physiology and Medicine, University Hospital of Nice, Nice, France
| | - Vicky Macrae
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ludovic Martin
- PXE Reference Center, Angers University Hospital, Angers, France
| | - Yvonne Nitschke
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | | | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | - Catherine Shanahan
- British Heart Foundation Centre of Research Excellence, James Black Centre, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Victor Sorribas
- Laboratory of Molecular Toxicology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Flora Szeri
- Research Center for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pedro Valdivielso
- Internal Medicine, Instituto de Investigación Biomédica (IBIMA), Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Hervé Kempf
- UMR 7365 CNRS-Université de Lorraine, IMoPA, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
18
|
de Melo Pereira D, Habibovic P. Biomineralization-Inspired Material Design for Bone Regeneration. Adv Healthc Mater 2018; 7:e1800700. [PMID: 30240157 DOI: 10.1002/adhm.201800700] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/23/2018] [Indexed: 12/22/2022]
Abstract
Synthetic substitutes of bone grafts, such as calcium phosphate-based ceramics, have shown some good clinical successes in the regeneration of large bone defects and are currently extensively used. In the past decade, the field of biomineralization has delivered important new fundamental knowledge and techniques to better understand this fascinating phenomenon. This knowledge is also applied in the field of biomaterials, with the aim of bringing the composition and structure, and hence the performance, of synthetic bone graft substitutes even closer to those of the extracellular matrix of bone. The purpose of this progress report is to critically review advances in mimicking the extracellular matrix of bone as a strategy for development of new materials for bone regeneration. Lab-made biomimicking or bioinspired materials are discussed against the background of the natural extracellular matrix, starting from basic organic and inorganic components, and progressing into the building block of bone, the mineralized collagen fibril, and finally larger, 2D and 3D constructs. Moreover, bioactivity studies on state-of-the-art biomimicking materials are discussed. By addressing these different topics, an overview is given of how far the field has advanced toward a true bone-mimicking material, and some suggestions are offered for bridging current knowledge and technical gaps.
Collapse
Affiliation(s)
- Daniel de Melo Pereira
- MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| | - Pamela Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| |
Collapse
|
19
|
Takeuchi Y, Kito A, Itoh S, Naruse H, Fujikawa J, Sadek KM, Akiyama S, Yamashiro T, Wakisaka S, Abe M. Kruppel-Like Factor 4 represses osteoblast differentiation via ciliary Hedgehog signaling. Exp Cell Res 2018; 371:417-425. [PMID: 30193838 DOI: 10.1016/j.yexcr.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/14/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Primary cilia are appendages observed in most types of cells, and serve as cellular antennae for sensing environmental signals. Evidence is accumulating that correct ciliogenesis and ciliary functions are indispensable for normal skeletal development by regulating signaling pathways important for bone development. However, whether ciliogenesis is regulated by bone-related factors in osteoblasts is largely unknown. Here we show that Kruppel-Like Factor 4 (KLF4), which is known to repress osteoblast differentiation, supports the formation and maintenance of cilia in cultured osteoblasts; however, the length of the cilia observed in KLF4-induced cells were significantly shorter compared to the control cells. Basal Hedgehog signaling was repressed by KLF4. Significantly, activating Hedgehog signaling using a Smoothened agonist significantly rescued osteoblast mineralization and osteoblastic gene expressions. Global gene expression analysis showed that KLF4 induced number of genes including the nuclear receptor, Pregnane X receptor (PXR), and PXR repressed calvarial osteoblast mineralization and repressed Gli1 expression similar as the effect observed by inducing KLF4. Our results implicate that KLF4 plays important roles for maintaining osteoblasts in an immature state by repressing basal activation of the Hedgehog signaling.
Collapse
Affiliation(s)
- Yuto Takeuchi
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan; Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Akiyoshi Kito
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan; Osaka University Dental Hospital Division of Special Care Dentistry, Osaka, Japan
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Haruna Naruse
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Junji Fujikawa
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan; Osaka University Dental Hospital Division of Special Care Dentistry, Osaka, Japan
| | - Kadry Mahamed Sadek
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Damnhour University, Egypt
| | - Shigehisa Akiyama
- Osaka University Dental Hospital Division of Special Care Dentistry, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Makoto Abe
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| |
Collapse
|
20
|
Chiyoya M, Seya K, Yu Z, Daitoku K, Motomura S, Imaizumi T, Fukuda I, Furukawa KI. Matrix Gla protein negatively regulates calcification of human aortic valve interstitial cells isolated from calcified aortic valves. J Pharmacol Sci 2018; 136:257-265. [PMID: 29653899 DOI: 10.1016/j.jphs.2018.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 02/05/2023] Open
Abstract
Calcified aortic valve stenosis (CAS) is a common heart valve disease in elderly people, and is mostly accompanied by ectopic valve calcification. We recently demonstrated that tumor necrosis factor-α (TNF-α) induces calcification of human aortic valve interstitial cells (HAVICs) obtained from CAS patients. In this study, we investigated the role of matrix Gla protein (MGP), a known calcification inhibitor that antagonizes bone morphogenetic protein 2 (BMP2) in TNF-α-induced calcification of HAVICs. HAVICs isolated from aortic valves were cultured, and calcification was significantly induced with 30 ng/mL TNF-α. Gene expression of the calcigenic marker, BMP2, was significantly increased in response to TNF-α, while the gene and protein expression of MGP was strongly decreased. To confirm the role of MGP, MGP-knockdown HAVICs and HAVICs overexpressing MGP were generated. In HAVICs, in which MGP expression was inhibited by small interfering RNA, calcification and BMP2 gene expression were induced following long-term culture for 32 days in the absence of TNF-α. In contrast, HAVICs overexpressing MGP had significantly decreased TNF-α-induced calcification. These results suggest that MGP acts as a negative regulator of HAVIC calcification, and as such, may be helpful in the development of new therapies for ectopic calcification of the aortic valve.
Collapse
Affiliation(s)
- Mari Chiyoya
- Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Zaiqiang Yu
- Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kazuyuki Daitoku
- Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Shigeru Motomura
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Ikuo Fukuda
- Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Ken-Ichi Furukawa
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|
21
|
Dahlberg S, Ede J, Schurgers L, Vermeer C, Kander T, Klarin B, Schött U. Desphospho-Uncarboxylated Matrix-Gla Protein Is Increased Postoperatively in Cardiovascular Risk Patients. Nutrients 2018; 10:E46. [PMID: 29303985 PMCID: PMC5793274 DOI: 10.3390/nu10010046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Matrix Gla protein (MGP) is an extrahepatic protein that is dependent on glutamate carboxylation, a vitamin K-dependent process. Its dysfunctional form, desphospho-uncarboxylated-MGP, has been associated with increased arterial calcification and stiffness. The aim of this study was to measure the degree of postoperative carboxylation of MGP and two other Gla proteins in patients scheduled for abdominal or orthopaedic surgery. METHODS Forty patients undergoing abdominal or orthopaedic surgery were included. Blood samples were collected preoperatively and four days after the surgery. Desphospho-carboxylated MGP (dp-cMGP), desphospho-uncarboxylated MGP (dp-ucMGP), carboxylated osteocalcin (OC) (cOC), uncarboxylated OC (ucOC), and uncarboxylated prothrombin (PIVKA-II) were analysed. RESULTS Preoperatively, 29 patients had dp-ucMGP levels above the reference values. Patients with pre-existing cardiovascular comorbidities had higher dp-ucMGP preoperatively compared with patients with no record of cardiovascular disease. Postoperatively, this number increased to 36 patients, and median dp-ucMGP levels increased (p < 0.0001) and correlated to a PIVKA-II increase (r = 0.44). On the other hand, dp-cMGP levels did not significantly alter. Decreased levels of ucOC and cOC were seen after surgery (p = 0.017 and p = 0.0033, respectively). Comorbidities, possible nutritional defects, and complications affecting Gla protein activity and function were identified. CONCLUSIONS Dp-ucMGP was high preoperatively, and had further increased postoperatively. This pattern was linked to several comorbidities, possible nutritional defects, and postoperative complications, which motivates further research about potential interactions between perioperative corrective treatments with vitamin K supplements, cardiovascular biomarkers, and incidents of stroke and myocardial infarction events.
Collapse
Affiliation(s)
- Sofia Dahlberg
- Institution of Clinical Science Lund, Medical Faculty, Lund University, S-22185 Lund, Sweden.
| | - Jacob Ede
- Institution of Clinical Science Lund, Medical Faculty, Lund University, S-22185 Lund, Sweden.
| | - Leon Schurgers
- Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| | - Cees Vermeer
- R&D Group VitaK, Maastricht University, Oxfordlaan 55, 6229 ER Maastricht, The Netherlands.
| | - Thomas Kander
- Institution of Clinical Science Lund, Medical Faculty, Lund University, S-22185 Lund, Sweden.
- Department of Anaesthesiology and Intensive Care, Institution of Clinical Sciences Lund, Lund University and Skane University Hospital, S-22185 Lund, Sweden.
| | - Bengt Klarin
- Institution of Clinical Science Lund, Medical Faculty, Lund University, S-22185 Lund, Sweden.
- Department of Anaesthesiology and Intensive Care, Institution of Clinical Sciences Lund, Lund University and Skane University Hospital, S-22185 Lund, Sweden.
| | - Ulf Schött
- Institution of Clinical Science Lund, Medical Faculty, Lund University, S-22185 Lund, Sweden.
- Department of Anaesthesiology and Intensive Care, Institution of Clinical Sciences Lund, Lund University and Skane University Hospital, S-22185 Lund, Sweden.
| |
Collapse
|
22
|
Donor Age and Cell Passage Affect Osteogenic Ability of Rat Bone Marrow Mesenchymal Stem Cells. Cell Biochem Biophys 2017; 72:543-9. [PMID: 25634304 DOI: 10.1007/s12013-014-0500-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tissue engineering allows the restoration of pathologically damaged tissues such as cartilage and bone using bio-scaffolds containing functionally active cells. Bone-marrow-derived mesenchymal stem cells (BMSCs) are a promising source of cells for tissue engineering due to their multilineage differentiation potential. However, proliferative and osteogenic abilities of BMSCs, and quantity of stem cells decreases in the bone marrow in aged population. We cultured BMSCs isolated from rats of various ages and evaluated their morphology, activity, and differentiation potential. Cultured BMSCs formed monolayer of fibroblast-like cells and maintained their characteristic morphology for 7-10 generations. Flow cytometry showed that aging of the cultured cell population correlated with the decrease in the expression of mesenchymal and hematopoietic surface markers, such as CD44, CD45, CD90, and CD29. We detected strong correlation between the age of BMSC donor and ALP activity in BMSC culture induced with low doses of dexamethasone and vitamin C. Cells from 2- and 6-week-old donor SD rats exhibited markedly increased ALP activity that coincided with increased bone content and strong positive staining of mineralized nodules. In contrast, BMSCs isolated from 10-month-old donors showed the lowest ALP activity, and decreased bone content and mineralized nodules formation. Our results demonstrate that the increase in donor age negatively affects proliferation and differentiation capacity of BMSCs in culture.
Collapse
|
23
|
Kim MS, Kim ES, Sohn CM. Dietary intake of vitamin K in relation to bone mineral density in Korea adults: The Korea National Health and Nutrition Examination Survey (2010-2011). J Clin Biochem Nutr 2015; 57:223-7. [PMID: 26566308 PMCID: PMC4639586 DOI: 10.3164/jcbn.14-98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/02/2015] [Indexed: 11/22/2022] Open
Abstract
Low vitamin K nutritional status has been associated with increased risk of fracture, however inconsistent results exist to support the role of vitamin K on bone mineral density depending on ethnic difference and gender. Our objective was to determine vitamin K intake in Korean adults, examine correlation between vitamin K intake and bone mineral density. This study analyzed raw data from the fifth Korea National Health and Nutrition Examination Survey for adults (2,785 men, 4,307 women) aged over 19 years. Cross-sectional analyses showed only positive association between vitamin K intake and femur bone mineral density in men after adjusting bone-related factors. However, women in high tertiles of vitamin K intake had a significantly higher bone mineral density both in femur and lumber as compared to women in lowest tertiles (p<0.05). The risk for osteoporosis was decreased as vitamin K intake increased in women, but this effect was not persisted after adjusting factors. The findings of this study indicate that low dietary vitamin K intake was associated with low bone mineral density in subjects. From these results we may suggest an increase in dietary vitamin K intakes for maintaining bone mineral density. (2010-02CON-21-C, 2011-02CON-06-C).
Collapse
Affiliation(s)
- Mi-Sung Kim
- Department of Food and Nutrition, Wonkwang University, Iksandae-ro, Iksan, Jeonbuk 570-749, Korea
| | - Eun-Soo Kim
- Department of Food and Nutrition, Wonkwang University, Iksandae-ro, Iksan, Jeonbuk 570-749, Korea
| | - Cheong-Min Sohn
- Department of Food and Nutrition, Wonkwang University, Iksandae-ro, Iksan, Jeonbuk 570-749, Korea
| |
Collapse
|
24
|
Structural Modeling Insights into Human VKORC1 Phenotypes. Nutrients 2015; 7:6837-51. [PMID: 26287237 PMCID: PMC4555152 DOI: 10.3390/nu7085313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 11/17/2022] Open
Abstract
Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) catalyses the reduction of vitamin K and its 2,3-epoxide essential to sustain γ-carboxylation of vitamin K-dependent proteins. Two different phenotypes are associated with mutations in human VKORC1. The majority of mutations cause resistance to 4-hydroxycoumarin- and indandione-based vitamin K antagonists (VKA) used in the prevention and therapy of thromboembolism. Patients with these mutations require greater doses of VKA for stable anticoagulation than patients without mutations. The second phenotype, a very rare autosomal-recessive bleeding disorder caused by combined deficiency of vitamin K dependent clotting factors type 2 (VKCFD2) arises from a homozygous Arg98Trp mutation. The bleeding phenotype can be corrected by vitamin K administration. Here, we summarize published experimental data and in silico modeling results in order to rationalize the mechanisms of VKA resistance and VKCFD2.
Collapse
|
25
|
Oldenburg J, Watzka M, Bevans CG. VKORC1 and VKORC1L1: Why do Vertebrates Have Two Vitamin K 2,3-Epoxide Reductases? Nutrients 2015; 7:6250-80. [PMID: 26264021 PMCID: PMC4555119 DOI: 10.3390/nu7085280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 01/01/2023] Open
Abstract
Among all cellular life on earth, with the exception of yeasts, fungi, and some prokaryotes, VKOR family homologs are ubiquitously encoded in nuclear genomes, suggesting ancient and important biological roles for these enzymes. Despite single gene and whole genome duplications on the largest evolutionary timescales, and the fact that most gene duplications eventually result in loss of one copy, it is surprising that all jawed vertebrates (gnathostomes) have retained two paralogous VKOR genes. Both VKOR paralogs function as entry points for nutritionally acquired and recycled K vitamers in the vitamin K cycle. Here we present phylogenetic evidence that the human paralogs likely arose earlier than gnathostomes, possibly in the ancestor of crown chordates. We ask why gnathostomes have maintained these paralogs throughout evolution and present a current summary of what we know. In particular, we look to published studies about tissue- and developmental stage-specific expression, enzymatic function, phylogeny, biological roles and associated pathways that together suggest subfunctionalization as a major influence in evolutionary fixation of both paralogs. Additionally, we investigate on what evolutionary timescale the paralogs arose and under what circumstances in order to gain insight into the biological raison d’être for both VKOR paralogs in gnathostomes.
Collapse
Affiliation(s)
- Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | - Matthias Watzka
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | | |
Collapse
|
26
|
Karn RC, Chung AG, Laukaitis CM. Did androgen-binding protein paralogs undergo neo- and/or Subfunctionalization as the Abp gene region expanded in the mouse genome? PLoS One 2014; 9:e115454. [PMID: 25531410 PMCID: PMC4274081 DOI: 10.1371/journal.pone.0115454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.
Collapse
Affiliation(s)
- Robert C. Karn
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
- * E-mail:
| | - Amanda G. Chung
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
| | - Christina M. Laukaitis
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
| |
Collapse
|