1
|
Li XY, Wang XC, Gao RH, Chen XJ, Lu JJ. The binding investigation of ziprasidone with calf thymus DNA by multiple spectrums and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126217. [PMID: 40220687 DOI: 10.1016/j.saa.2025.126217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Ziprasidone (Zi) is a 2-indolone drug that has been recommended as first-line medication for schizophrenic treatment by major guides of China and America. In this paper, the binding mode of Zi and calf thymus (ctDNA) was investigated for the first time. Fluorescence spectrum studies preliminary verified that Zi bound to groove region of ctDNA. UV-vis spectra showed obvious hyperchromicity at 260 nm for ctDNA-Zi system compared to the absorption sum of ctDNA and Zi, which also could be concluded that the interaction mode of Zi to ctDNA was probably groove binding. In 1H NMR of Zi, the addition of ctDNA had no influence on its spectrum, and the viscosity of ctDNA was also unaffected by the addition of Zi. These phenomenon proved once again that Zi interacted with ctDNA at groove region. Besides, molecular docking results reflected that Zi indeed bound to minor groove region of ctDNA with hydrogen bonds as main acting force. This study elaborated detailedly the groove binding mode of antipsychotic drug Zi interacting with ctDNA, and provided effective information for the design and development of new-type antipsychotic drugs.
Collapse
Affiliation(s)
- Xiao-Yun Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Xue-Chao Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Ruo-Hui Gao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiao-Juan Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Jing-Jing Lu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
2
|
Mahdi MMM, Fitoz A, Yıldız C, Eskiköy Bayraktepe D, Yazan Z. Electrochemical and computational studies on the interaction between calf-thymus DNA and skin whitening agent arbutin. Bioelectrochemistry 2025; 164:108923. [PMID: 39893833 DOI: 10.1016/j.bioelechem.2025.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
The interaction between double-stranded calf thymus DNA (ctDNA) and the skin whitening agent arbutin (AR) examined by applying electrochemical and computational methods for the first time in literature. A single-use pencil graphite electrode via cyclic (CV) and differential pulse voltammetry (DPV) techniques were applied to determine the kinetic and thermodynamic parameters in the absence and presence of ctDNA. To examine the interaction process, oxidation peak currents and potentials of AR were observed prior to the addition of various ctDNA concentrations. The binding constants (KAR-DNA) and Gibbs free energy (ΔG°) values for the AR-DNA complex were determined as 1.82 × 104L/mol and -24.30 kJ/mol at 298 K, respectively. Temperature evaluation of the interaction was examined using thermodynamic parameters (ΔH°: -30.30 kJ/mol and ΔS°: -0.00197 kJ/mol) applying the Van't Hoff equation. The local interaction sites in the molecule structure were determined by applying Fukui functions and second-order perturbation theory in view of potential hydrogen binding centers. The optimized structure of AR was applied with a DNA structure revealing the binding position for AR-DNA complex. Experimental and computational examinations suggested that AR-DNA binds to ctDNA through a minor groove mode via conventional hydrogen bonds, hydrophobic interactions and van der Waals forces.
Collapse
Affiliation(s)
- Maryam M M Mahdi
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Alper Fitoz
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Ceren Yıldız
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | | | - Zehra Yazan
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
3
|
Pavithra K, Priyadharshini RD, Manickam V, Ragunathan P, Vennila KN, Elango KP. Insights into dopaminergic agent cabergoline-induced DNA-destabilisation through spectroscopic, thermodynamic and molecular docking/metadynamics simulation studies. Arch Biochem Biophys 2025; 769:110447. [PMID: 40320058 DOI: 10.1016/j.abb.2025.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/22/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
Investigating the interaction of therapeutic drugs with DNA is crucial for assessing the possibility of drugs inducing significant DNA alterations when administered. The dopaminergic drug cabergoline's (CBG) interaction with CT-DNA was investigated using multi-spectroscopic, calorimetric, electrophoresis, and computational approaches. The UV-Vis and fluorescence spectral results certified the complexation of CBG with CT-DNA. Though competitive dye displacement assay, viscosity measurements, 1H NMR, KI, and urea studies strongly evidenced the intercalation-type binding mode of CBG, the molecular docking studies disclosed CBG as a groove binder as well as a partial intercalator in the minor and major grooves of DNA, respectively. The significant distortions in the characteristic CD bands of CT-DNA and the results of GEL electrophoresis evidenced the DNA-destabilizing nature of CBG. The profound decrease of 7.3 °C in the Tm of CT-DNA in the presence of CBG reiterated CBG as a DNA destabiliser. The results of metadynamics simulation and binding studies of CBG with single-strand DNA showed that the high affinity of CBG towards ssDNA compared to the dsDNA triggered CBG to destabilise dsDNA. Interestingly, the three different thermodynamic parameters resulted in the calorimetric titration of CBG with CT-DNA, exposing the sequential binding pattern involved in the CBG/CT-DNA complexation and proposing the plausible mechanism of CBG-induced DNA destabilisation.
Collapse
Affiliation(s)
- Kandasamy Pavithra
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - R Durga Priyadharshini
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India
| | - Vyshnavi Manickam
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Preethi Ragunathan
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - K N Vennila
- Department of Physics, PSNA College of Engineering and Technology, Dindigul, 624622, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, India.
| |
Collapse
|
4
|
Razuwika R, Sookai S, Aronson R, Kaur M, Munro OQ. A Cytotoxic Indazole-based Gold(III) Carboxamide Pincer Complex Targeting DNA Through Dual Binding Modes of Groove Binding and Alkylation. Chemistry 2025; 31:e202404345. [PMID: 40162557 PMCID: PMC12080311 DOI: 10.1002/chem.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Gold(III) complexes have garnered increasing attention in drug delivery due to their structural and mechanistic similarities to cisplatin. This study investigates an indazole-based gold(III) carboxamide pincer complex, [N2·N6-bis(1-methyl-1H-indazol-3-yl)pyridine-2·6-dicarboxamide]gold(III) chloride (AuL), for its potential as an anticancer agent. Speciation analysis at physiological pH revealed that AuL predominantly exists as a neutral chlorinated species. The complex exhibited strong cytotoxicity against the MCF-7 breast cancer cell line, with an impressive IC50 value of 9 µM, while showing no significant activity against the HT-29 colon cancer cell line. Comprehensive analysis using electrophoresis, viscometry, ultraviolet-visible spectroscopy (UV-Vis), circular dichroism (CD), linear dichroism (LD) spectroscopy, and biomolecular simulations demonstrated that AuL binds to DNA via a dual mechanism, specifically minor groove binding and alkylation, with binding constants Ka1 = 1.48 × 109 M-1 and Ka2 = 6.59 × 105 M-1, respectively. Our data indicate that AuL initially binds to the minor groove of DNA, at which point a nucleobase substitutes the Cl ion, resulting in AuL binding directly to the DNA bases. In conclusion, the dual binding mode of AuL with DNA underscores its potential as a promising anticancer agent, opening new avenues for drug discovery and the development of metal-based therapeutics.
Collapse
Affiliation(s)
- Rufaro Razuwika
- Molecular Sciences Institute, School of ChemistryUniversity of the Witwatersrand1 Jan Smuts AvenueJohannesburg2050South Africa
| | - Sheldon Sookai
- Molecular Sciences Institute, School of ChemistryUniversity of the Witwatersrand1 Jan Smuts AvenueJohannesburg2050South Africa
| | - Ruth Aronson
- School of Molecular and Cell BiologyUniversity of the Witwatersrand1 Jan Smuts AvenueJohannesburg2050South Africa
| | - Mandeep Kaur
- School of Molecular and Cell BiologyUniversity of the Witwatersrand1 Jan Smuts AvenueJohannesburg2050South Africa
| | - Orde Q. Munro
- Molecular Sciences Institute, School of ChemistryUniversity of the Witwatersrand1 Jan Smuts AvenueJohannesburg2050South Africa
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
5
|
Charak S, Srivastava CM, Kumar D, Mittal L, Asthana S, Mehrotra R, Shandilya M. Beyond DNA interactions: Insights into idarubicin's binding dynamics with tRNA using spectroscopic and computational approaches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 266:113147. [PMID: 40101377 DOI: 10.1016/j.jphotobiol.2025.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Idarubicin (4-demethoxydaunomycin), a structural analogue of daunomycin derived from Streptomyces peucetius, exhibits enhanced anticancer efficacy due to the substitution of a methoxy group with a hydrogen atom. This study investigates the binding interactions of idarubicin with RNA using a multifaceted approach, including infrared (IR) spectroscopy, absorption spectroscopy, circular dichroism (CD), molecular docking, and molecular dynamics (MD) simulations. The IR results demonstrate significant binding to guanine and uracil, indicated by spectral shifts, while MD simulations reveal additional interactions with adenine, highlighting a flexible binding mechanism. The binding constant of the idarubicin-RNA complex was calculated to be K = 2.1 × 103 M-1, reflecting a strong affinity and stable interaction. Thermodynamic analysis shows that the negative Gibbs free energy (ΔG ∼ -4.57 kcal/mol) signifies spontaneous binding under physiological conditions. The binding free energy estimation was carried out to check the binding affinity, stability and interactions of the complex which was assessed through molecular dynamics simulations. The stability of the idarubicin-RNA complex is further supported by a hyperchromic effect observed in absorption spectroscopy, suggesting effective intercalation that enhances base exposure. The binding is driven by hydrogen bonding, π-π stacking interactions, and electrostatic forces, which collectively stabilize the complex. Notably, the conformational integrity of RNA is largely preserved, with key structural features remaining unchanged in both IR and CD analyses. Comparatively, idarubicin's interactions with RNA differ from those with DNA, where the latter shows more substantial conformational perturbations. These findings enhance our understanding of anthracycline functionality and provide valuable insights for developing novel analogues with improved efficacy and reduced side effects, informing future therapeutic strategies targeting RNA in cancer treatment.
Collapse
Affiliation(s)
- Sonika Charak
- CSIR-National Physical Laboratory, New Delhi 110012, India; National Brain Research Centre, Manesar, Gurugram, Haryana 122051, India
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| | - Lovika Mittal
- Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shailendra Asthana
- Computational and Mathematical Biology Centre (CMBC), Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad 121001, India
| | | | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India.
| |
Collapse
|
6
|
Raj R, Kumar A, Savithri HS, Singh P. Groundnut bud necrosis virus encoded movement protein NSm binds to GTP and ATP. 3 Biotech 2025; 15:146. [PMID: 40321847 PMCID: PMC12044118 DOI: 10.1007/s13205-025-04305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Groundnut bud necrosis virus (GBNV) is a tripartite negative sense RNA virus that belongs to tospoviridae family. The M RNA encodes non-structural protein-m (NSm), a movement protein in tospoviruses. In this communication, we demonstrate that, GBNV NSm interacts with ATP and GTP. UV crosslinking with [γ-32P] ATP indicates that GBNV NSm forms two distinct complexes with ATP one of them is Mg2+ dependent and the other is Mg2+ independent. It also binds to ATP- and GTP-coupled agarose resin and shows competition with free ATP and GTP but not with UTP and CTP. The NSm-NTP interaction was further validated by intrinsic fluorescence quenching studies. NTPs and dNTPs both could quench the intrinsic fluorescence of NSm. However, maximum quenching of fluorescence occurred in the presence of GTP, followed by ATP, suggesting that it is the preferred ligand. The extent of fluorescence quenching with different concentrations of GTP was used to calculate the binding constant, and it was found to be 3 μM, lower than that reported for other proteins that can bind NTP. This is the first report of the GTP and ATP binding property of NSm from any Tospoviruses. Further, NSm could also hydrolyze GTP. Preliminary sequence analysis suggests the presence of two putative atypical Walker A motif from amino acid sequences 51-58 and 267-274, indicating that this sequence might be involved in NTP binding. This motif is conserved in most of the tospoviruses. NSm from GBNV an Asian clade, localize to ER network and remodels it to vesicles which has been proposed to be involved in movement through plasmodesmata (PD). Therefore, GTP-NSm interaction might be involved in signaling cell to cell trafficking.
Collapse
Affiliation(s)
- Rishi Raj
- Department of Botany, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Abhay Kumar
- ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar 842 002 India
| | - H. S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| | - Pratibha Singh
- Department of Botany, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| |
Collapse
|
7
|
Zhang J, Xiong Z, Zhang H, Tang BZ. Emergent clusteroluminescence from nonemissive molecules. Nat Commun 2025; 16:3910. [PMID: 40280920 PMCID: PMC12032425 DOI: 10.1038/s41467-025-59212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Once considered the exclusive property of conjugated molecules, efficient and visible-light luminescence from non-conjugated and nonemissive molecules in the clustered state, known as clusteroluminescence (CL), has attracted much attention recently due to its special photophysical behaviors and behind electronic interactions. This perspective discusses the development of the CL phenomenon, followed by the typical photophysical features, examples, mechanisms, and potential applications of CL materials, to provide a comprehensive picture of this emerging field. Starting with organic clusters, inorganic, metallic, and hybrid clusters with CL properties are also introduced, and the perspective shift from covalent interactions at the molecular level to non-covalent interactions at the aggregate level is invoked.
Collapse
Affiliation(s)
- Jianyu Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
| | - Ben Zhong Tang
- Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
8
|
Risi MC, Atiga S, Christopher TD, Henderson W, Saunders GC. Diacylthioureas - an overlooked class of ligands; the coordination chemistry of diacylated thiourea with platinum(II), palladium(II) and gold(III). Dalton Trans 2025; 54:4977-4989. [PMID: 39989187 DOI: 10.1039/d4dt03390f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Here, we report our initial investigations into the coordination chemistry of symmetric diacylated thiourea ligands ((RCONH)2CS) (R = Me, Et or Ph) acting as both mono and dianionic ligands with platinum(II), palladium(II) and gold(III) metal centres. Initial investigations were centred on mixed ligand bis(triphenylphosphine) (PPh3) complexes which were prepared by reactions between cis-[PtCl2(PPh3)2] and (RCONH)2CS. A subsequent series of mixed ligand complexes from the diethyl-diacylthiourea ligand ((CH2CH2CONH)2CS) with [PtCl2(dppe)] (dppe = Ph2PCH2CH2PPh2), [PdCl2(phen)] (phen = 1,10-phenanthroline), [AuCl2(anp)] (anp = cyclometallated 2-anilinopyridyl) and [PtCl2(COD)] (COD = 1,5-cyclooctadiene) were also prepared. The complexes were characterized by a combination of common techniques (MS, NMR and SC-XRD) which determined that the ligands coordinated to the metal centres in an unexpected S,N bidentate chelate manner in all instances. The complexes showed a small degree of aqueous instability as a result of hydrolysis. Computational techniques (NCI, EDA and HS) were used to analyse complexes whose solid state structure was able to be determined crystallographically. The presence of a chalcogen bond between the thiourea sulfur and acyl oxygen atoms was revealed which dominates the molecular structure. The cyclometallated 2-anilinopyridyl gold(III) complex 1f demonstrates intermolecular dimerism in the solid state. Hirshfeld surface analysis was used to determine the percentage contribution of inherent intermolecular interactions to crystal packing and the specific contacts responsible for spatial orientations in 1a, 1b, and 1f.
Collapse
Affiliation(s)
- Matthew C Risi
- Chemistry and Applied Physics, Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Simeon Atiga
- Chemistry and Applied Physics, Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Timothy D Christopher
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William Henderson
- Chemistry and Applied Physics, Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Graham C Saunders
- Chemistry and Applied Physics, Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|
9
|
Ilieva S, Petkov N, Gargallo R, Novakov C, Rangelov M, Todorova N, Vasilev A, Cheshmedzhieva D. Bioaggregachromism of Asymmetric Monomethine Cyanine Dyes as Noncovalent Binders for Nucleic Acids. BIOSENSORS 2025; 15:187. [PMID: 40136984 PMCID: PMC11940764 DOI: 10.3390/bios15030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Two new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes-(E)-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide (3a) and (E)-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide (3b)-were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments. The newly synthesized dyes contain hydrophobic functional groups attached to the chromophore, enhancing their affinity for the hydrophobic regions of nucleic acids within the biological matrix. The dyes' photophysical properties were investigated in aqueous solutions and DMSO, as well as in the presence of nucleic acids. The dyes exhibit notable aggregachromism in both pure aqueous and buffered solutions. The observed aggregation phenomena were further elucidated using computational methods. Fluorescence titration experiments revealed that upon contact with nucleic acids, the dyes exhibit bioaggregachromism-aggregachromism on the surfaces of the respective biomolecular matrix (RNA or DNA). This bioaggregachromism was further confirmed by CD spectroscopy. Given the pronounced aggregachromism detected, we conclude that the dyes investigated in this study are highly suitable for use as fluorogenic probes in biomolecular recognition techniques. The unique absorption and fluorescence spectra of these dyes make them promising fluorogenic markers for various bioanalytical methods related to biomolecular recognition.
Collapse
Affiliation(s)
- Sonia Ilieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria; (S.I.); (N.P.)
| | - Nikolay Petkov
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria; (S.I.); (N.P.)
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franqués 1-11, E-08028 Barcelona, Spain;
| | - Christo Novakov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl.103A, 1113 Sofia, Bulgaria;
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Aleksey Vasilev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria; (S.I.); (N.P.)
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl.103A, 1113 Sofia, Bulgaria;
| | - Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria; (S.I.); (N.P.)
| |
Collapse
|
10
|
Wang Y, Li J, Li X, Gao B, Chen J, Song Y. Spectroscopic and molecular docking studies on binding interactions of camptothecin drugs with bovine serum albumin. Sci Rep 2025; 15:8055. [PMID: 40055448 PMCID: PMC11889159 DOI: 10.1038/s41598-025-92607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/01/2025] [Indexed: 03/12/2025] Open
Abstract
This study investigates the binding interactions between bovine serum albumin (BSA) and camptothecin (CPT) drugs (camptothecin, 10-hydroxycamptothecin, topotecan, and irinotecan) using UV-Vis spectroscopy, fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, and molecular docking techniques. The fluorescence quenching of BSA by CPT drugs follows a static mechanism, with binding constants (Kb) ranging from 4.23 × 103 M- 1 (CPT) to 101.30 × 103 M- 1 (irinotecan), demonstrating significant drug binding selectivity. Thermodynamic analysis reveals distinct interaction mechanisms: topotecan binding is driven by hydrogen bonding (ΔH = - 10.96 kJ·mol- 1) and hydrophobic interactions (ΔS = 0.066 kJ·mol- 1·K- 1), while irinotecan exhibits stronger binding dominated by electrostatic forces (ΔH = - 86.77 kJ·mol- 1) with significant entropy loss (ΔS = - 0.161 kJ·mol- 1·K- 1). Molecular docking confirms preferential binding at Sudlow site I of BSA, with hydrophobic interactions and hydrogen bonding as the primary driving forces. These findings provide a comprehensive understanding of CPT-BSA interactions, offering valuable insights for the design of albumin-based drug delivery systems with optimized pharmacokinetic profiles.
Collapse
Affiliation(s)
- Yuhe Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Junfeng Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xuanda Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Yun Song
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
11
|
Mustafa G, Sabir S, Sumrra SH, Zafar W, Arshad MN, Hassan AU, Akhtar A, Ashfaq M, Ashfaq M, Mohamed Asiri A. Synthesis, structure elucidation, SC-XRD/DFT, molecular modelling simulations and DNA binding studies of 3,5-diphenyl-4,5-dihydro-1 H-pyrazole chalcones. J Biomol Struct Dyn 2025; 43:1831-1846. [PMID: 38084878 DOI: 10.1080/07391102.2023.2293260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2025]
Abstract
Deoxyribonucleic acid (DNA) acts as the most important intracellular target for various drugs. Exploring the DNA binding interactions of small bioactive molecules offers a structural guideline for designing new drugs with higher clinical efficacy and enhanced selectivity. This study presents the facile synthesis of pyrazoline-derived compounds (4a)-(4f) by reacting substituted chalcones with hydrazine hydrate using formic acid. The structure elucidation of substituted pyrazoline compounds was carried out using 1H-NMR, FT-IR and elemental analyses. While the crystal structures of two compounds (4a) and (4b) have been resolved by single-crystal X-ray diffraction (SC-XRD) analysis. Hirshfeld surface analysis also endorsed their greater molecular stability. Computational calculations at DFT/B3LYP/6-311++G(d,p) were executed to compare the structural properties (bond angle and bond length) and explore reactivity descriptors, frontier molecular orbitals (FMO), Mulliken atomic charges (MAC), molecular electrostatic potential (MEP) and electronic properties. All the compounds were evaluated for DNA binding interactions by UV-Vis spectrophotometric analysis. The results revealed that compounds (4a)-(4f) bind to DNA via non-covalent binding mode having binding constant values ranging from 1.22 × 103 to 6.81 × 104 M-1. The negative values of Gibbs free energy also proved the interaction of studied compounds with DNA as a spontaneous process. The findings of molecular docking simulations depicted that these studied compounds showed significant binding interactions with DNA and these results were consistent with experimental findings. Compound (4b) was concluded as the most potent compound of the series with the highest binding constant (4.95 × 104) and strongest binding affinity (-8.48 kcal/mol).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Sabreena Sabir
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | | | - Wardha Zafar
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Nadeem Arshad
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ul Hassan
- Lunan Research Institute, Beijing Institute of Technology, Tengzhou, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Arusa Akhtar
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Ashfaq
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Maryam Ashfaq
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Abdullah Mohamed Asiri
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Nivedya T, Ramasamy SK, Jose J, Kumar SKA. Effect of 6,6-Substitution on 2,2'-Bipyridine and Probing Biomolecular Interaction Through Experimental and Computational Studies Towards Anticancer Potency. J Fluoresc 2025:10.1007/s10895-025-04189-y. [PMID: 39992325 DOI: 10.1007/s10895-025-04189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
The current study focuses on the cytotoxicity assessment of 6,6'-substituted 2,2'-bipyridine derivatives containing functional groups, namely methyl (-CH3, L1), acid (-COOH, L2), ester (-COOCH3, L3), semicarbozone (-CONHNH2, L4). The ligands exhibited high solubility in dimethyl sulfoxide (DMSO) and moderately soluble in dimethyl formamide (DMF), acetonitrile (ACN) and low solubility in water. The ligands display a significant π→π* transition in the region of 270 nm to 305 nm. The emission spectra of the ligands reveal a prominent band in the 300 nm to 450 nm range, with a Stokes shift of 120 cm- 1. UV-VIS spectra analysis, the ligands (L1-L4, 1mM) demonstrated stability in various environmental like water, glutathione (GSH, 1mM), and MTT condition (10% DMSO). The interaction of ligands with DNA was assessed through calf thymus deoxyribonucleic acid (ctDNA) binding assay, viscosity studies, and ethidium bromide (EtBr) displacement assay, with L1 and L4 exhibiting the highest interaction. The MTT assay was conducted for 24 h and 48 h using ligands (L1-L4) and doxorubicin in MCF-7, HeLa, and L929 cell lines. Ligand L4 showed high potency IC50 values after 48 h in MCF-7 (1.28 µM) and HeLa (1.81 µM), but its potency is lower than doxorubicin. Overall, for the first time these results suggest that L4 has high anticancer activity at lower concentrations against breast and cervical cancers.
Collapse
Affiliation(s)
- T Nivedya
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Selva Kumar Ramasamy
- Department of Chemistry, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jiya Jose
- Department of Bioscience, Rajagiri College of Social Sciences, Kalamassery, 683104, India
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
13
|
Ozkan-Ariksoysal D, Pantelidou E, Dendrinou-Samara C, Girousi S. Nanoparticle-Based DNA Biosensor: Synthesis of Novel Manganese Nanoparticles Applied in the Development of a Sensitive Electrochemical Double-Stranded/Single-Stranded DNA Biosensor. MICROMACHINES 2025; 16:232. [PMID: 40047689 PMCID: PMC11857743 DOI: 10.3390/mi16020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/09/2025]
Abstract
The development of electrochemical DNA biosensors occurred by applying different organically coated Mn-NPs such as MnCO3@OAm, MnCO3@TEG and MnO2/Mn2O3@TEG, as well as naked MnCO3 NPs (where OAm = oleylamine and TEG = tetraethylene glycol). The detection performances of PGEs were modified with different types of Mn-NPs, according to the guanine signal magnitudes obtained after double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) immobilization at these surfaces. DNA interaction studies were realized using UV-vis, circular dichroism (CD), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) techniques. In addition, a 3- to 5.4-fold increase in guanine response in the presence of dsDNA and a 2.3-fold increase in the presence of ssDNA were obtained with the developed biosensor. The increased signals in DNA immobilization at the electrode surfaces modified with Mn-NPs compared to bare PGE clearly show that the modification of Mn-NPs increases the electroactive surface area of the electrode. The detection limit (LOD) of dsDNA was calculated as 7.86 μg·L-1 using the MnO2/Mn2O3@TEG type of the Mn-NP-modified biosensor, while the detection limit of ssDNA was calculated as 3.49 μg·L-1 with the MnCO3@OAm type Mn-NP-modified biosensor. The proposed sensor was applied to a human DNA sample where the amount of dsDNA extract was found to be 0.62 ± 0.03 mg·L-1 after applying the MnO2/Mn2O3@TEG type of Mn-NP-modified biosensor.
Collapse
Affiliation(s)
- Dilsat Ozkan-Ariksoysal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova 35100, Izmir, Türkiye
| | - Elpida Pantelidou
- Laboratory of Inorganic Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.P.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.P.); (C.D.-S.)
| | - Stella Girousi
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
14
|
Zarei A, Moradi S, Hosseinzadeh L, Salavati MB, Jalilian F, Shahlaei M, Sadrjavadi K, Adibi H. Synthesis, characterization, cytotoxic investigation of curcumin-based chromene derivatives and study of DNA interaction via experimental and computational methods. J Mol Struct 2025; 1322:140331. [DOI: 10.1016/j.molstruc.2024.140331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
|
15
|
Nasir H, Abbas N, Arfan M, Aftab U, Rafi A, Hafeez H, Latif M. Schiff bases targeting an Sw-480 colorectal cell line: synthesis, characterization, ds-DNA binding and anticancer studies. RSC Adv 2025; 15:1527-1539. [PMID: 39831037 PMCID: PMC11740299 DOI: 10.1039/d4ra06962e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/10/2024] [Indexed: 01/22/2025] Open
Abstract
In present studies, six Schiff bases were prepared, characterized and evaluated for their anti-tumor activity against the colorectal cancer cell line SW-480. The test compounds were characterized by various physico-chemical techniques such as M. P., TLC, UV, FT-IR, elemental analysis, 1H-NMR spectroscopy etc. and investigated for their non-covalent DNA binding potential. The electronic absorption and hydrodynamic studies expressed strong complementary evidence that the Schiff bases are binding between the narrow walls of the helical DNA grooves and were stabilized via electrostatic interactions through groove binding as the dominant binding mode. Moreover, these studies also revealed that the tested compound had significant non-covalent binding to chicken (ck) blood ds-DNA at blood pH (7.4) and body temperature 310 K: the calculated values of standard Gibbs free energy changes (ΔG = -RT ln K f) for all compounds were negative which manifested the spontaneity of binding for all compounds. The cytotoxicity of the compounds was found through triplicate testing and the O. D. values were compared to find the percentage viability of the cells. The IC50 values of the compounds were estimated through dose-dependent curves. HSB3, HSB4 and HSB1 showed relatively potent anti-cancer activity with IC50 values of 7.0913 μg mL-1, 17.1469 μg mL-1 and 17.5254 μg mL-1, respectively. The same compounds had also exhibited relatively better ds-DNA binding efficacy with binding constant values (9.1 × 105, 3.5 × 105 and 5.13 × 104 respectively).
Collapse
Affiliation(s)
- Hammad Nasir
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology Islamabad 44000 Pakistan
| | - Naeem Abbas
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology Islamabad 44000 Pakistan
| | - Muhammad Arfan
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology Islamabad 44000 Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences Lahore Pakistan
| | - Ali Rafi
- Department of Pharmacology, University of Health Sciences, Jinnah Campus Kala Shah kaku Sheikhupura 39030 Pakistan
| | - Hamna Hafeez
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology Islamabad 44000 Pakistan
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University Madinah Saudi Arabia
- Department of Basic Medical Sciences, College of Medicine, Taibah University Madinah Saudi Arabia
| |
Collapse
|
16
|
da Silva NNP, Palmeira-Mello MV, Acésio NO, Moraes CAF, Honorato J, Castellano EE, Tavares DC, Oliveira KM, Batista AA. Ru(II)-diphosphine/N,S-mercapto complexes and their anti-melanoma properties. Dalton Trans 2025; 54:605-615. [PMID: 39560113 DOI: 10.1039/d4dt02575j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
We have synthesized and characterized a novel series of ruthenium complexes with formulas [RuCl(N-S)(dppm)2]PF6 (Ru1), [Ru(N-S)(dppm)2]PF6 (Ru2), [Ru(N-S)(dppe)2]PF6 (Ru3), [Ru(N-S)(dppen)2]PF6 (Ru4), [Ru(N-S)(bpy)2]PF6 (Ru5). In these formulas, N-S or S represents H2mq (2-mercapto-4(3H)-quinazoline); dppe (1,2'-bis(diphenylphosphine)ethane), dppm (1,1'-bis(diphenylphosphine)methane), or dppen (1,2'-bis(diphenylphosphine)ethene); and bpy refers to 2,2'-bipyridine. We have also compared the cytotoxicity of cisplatin with these ruthenium complexes to murine melanoma cells (B16-F10), human melanoma cells (A-375), and the non-tumoral human keratinocyte cell line (HaCat). All the ruthenium complexes inhibited melanoma cell growth in a dose-dependent manner. [Ru(2mq)(dppen)2]PF6 was four times more active toward A-375 cells than toward HaCat cells, inhibited colony formation in HaCat and A-375 cells (with a more pronounced effect on A-375 cells), altered A-375 cell morphology, and inhibited cell migration at 0.2 and 0.4 μM. In addition, we investigated how these ruthenium complexes interact with biomolecules such as DNA and Human Serum Albumin (HSA). All the ruthenium complexes interacted weakly with DNA, possibly through the grooves. Based on fluorescence assays, the ruthenium complexes interacted moderately with HSA. In light of these results, ruthenium complexes bearing phosphine and H2mq display promising cytotoxic properties against melanoma.
Collapse
Affiliation(s)
- Nádija N P da Silva
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| | - Marcos V Palmeira-Mello
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| | | | - Carlos A F Moraes
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| | - João Honorato
- Physics Institute of São Carlos, University of São Paulo - USP, CEP 13560-970, São Carlos, SP, Brazil
| | - Eduardo E Castellano
- Physics Institute of São Carlos, University of São Paulo - USP, CEP 13560-970, São Carlos, SP, Brazil
| | - Denise C Tavares
- University of Franca - UNIFRAN, CEP 14404-600, Franca, SP, Brazil
| | - Katia M Oliveira
- Institute of Chemistry, University of Brasília - UnB, CEP 70910-900, Brasília, DF, Brazil.
| | - Alzir A Batista
- Departament of Chemistry, Federal University of São Carlos - UFSCar, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
17
|
Dorairaj DP, Kumar P, Rajasekaran H, Bhuvanesh N, Hsu SCN, Karvembu R. Copper(II) complexes containing hydrazone and bipyridine/phenanthroline ligands for anticancer application against breast cancer cells. J Inorg Biochem 2025; 262:112759. [PMID: 39426333 DOI: 10.1016/j.jinorgbio.2024.112759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
In this work, mixed ligand Cu(II) complexes containing hydrazone and bipyridine ligands (CB1-CB5), or hydrazone and phenanthroline ligands (CP1-CP5) have been synthesized and characterized by spectroscopic and analytical techniques. Single crystal X-ray structure of complex CB1 revealed that two nitrogen atoms from bipyridine, one carbonyl oxygen, one azomethine nitrogen and one hydroxyl oxygen from the hydrazone ligand coordinated to Cu(II) ion, adopting a distorted square pyramidal geometry. Interaction of these complexes with calf thymus (CT) DNA and bovine serum albumin (BSA) was analyzed by absorption and emission studies. Further, the in vitro anticancer activity of the complexes was investigated exclusively against the breast cancer cells namely MCF7, T47D and MDA MB 231, and a normal breast MCF 10a cell line. The phenanthroline bearing complexes (CP1-CP5) displayed better activity than their bipyridine counterparts as seen from the IC50 values. In addition, the most active complex CP1 having an IC50 value of 5.8 ± 0.3 μM against T47D cancer cells was investigated for its mode of cell death through acridine orange/ethidium bromide(AO/EB), 4',6-diamidino-2-phenylindole (DAPI) and Annexin-V fluorescein isothiocyanate (FITC) staining assays which revealed apoptosis. Lastly, the cell cycle analysis revealed that complex CP1 induced cell death in T47D cancer cells at the G0/G1 phase.
Collapse
Affiliation(s)
| | - Prashant Kumar
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Haritha Rajasekaran
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
18
|
Elwell CE, Stein E, Lewis A, Hamaway S, Alexis KA, Tanski JM, Barnum TJ, Connelly CM, Tyler LA. Synthesis, characterization and comparative biological activity of a novel set of Cu(II) complexes containing azole-based ligand frames. J Inorg Biochem 2025; 262:112736. [PMID: 39332382 DOI: 10.1016/j.jinorgbio.2024.112736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024]
Abstract
The synthesis and spectroscopic characterization of three complexes containing a substituted 2-(2-pyridyl)benzothiazole (PyBTh) group in the ligand frame are reported along with the comparative biological activity. The ligands have been substituted at the 6-position with either a methoxy (Py(OMe)BTh) or a methyl group (Py(Me)BTh). Reaction of Py(OMe)BTh with either CuCl2 or Cu(NO3)2·2.5 H2O yielded the monomeric [Cu(Py(OMe)BTh))2(NO3)]NO3·1.5 MeOH, (1·1.5 MeOH) complex or the dimeric [Cu(Py(OMe)BTh)Cl2]2 (2), respectively, with the nuclearity of the complex dependent on the starting Cu(II) salt. Reaction between the methyl substituted ligand and Cu(NO3)2·2.5 H2O resulted in the isolation of Cu(Py(Me)BTh)(NO3)2·0.5 THF (3·0.5 THF). Complexes 1-3 were fully characterized. Cyclic voltammetry measurements were performed on all three complexes as well as on [Cu(PyBTh)2(H2O)](BF4)2 (4), a compound previously reported by us which contains the unsubstituted 2-(2-pyridyl)benzothiazole ligand. The biological activity was studied and included concentration dependent DNA binding and cleavage, antibacterial activity, and cancer cell toxicity. All complexes exhibited DNA cleavage activity, however 2 and 4 were found to be the most potent. Mechanistic studies revealed that the nuclease activity is dependent on an oxidative mechanism reliant principally on O2-. Antibacterial studies revealed complex 4 was more potent compared to 1-3. Cancer cell toxicity studies were carried out on HeLa, PC-3, and MCF7 cells with 1-4, Cu(QBTh)(NO3)2(H2O) and Cu(PyBIm)3(BF4)2. The differences in the observed toxicities suggests the importance of the ligand and its substituents in modulating cell death.
Collapse
Affiliation(s)
- Courtney E Elwell
- Department of Chemistry and Biochemistry, Union College, Schenectady, NY 12308, United States
| | - Emily Stein
- Department of Chemistry and Biochemistry, Union College, Schenectady, NY 12308, United States
| | - Adam Lewis
- Department of Chemistry and Biochemistry, Union College, Schenectady, NY 12308, United States
| | - Stefan Hamaway
- Department of Chemistry and Biochemistry, Union College, Schenectady, NY 12308, United States
| | - Kennedy A Alexis
- Department of Chemistry and Biochemistry, Union College, Schenectady, NY 12308, United States
| | - Joseph M Tanski
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, United States
| | - Timothy J Barnum
- Department of Chemistry and Biochemistry, Union College, Schenectady, NY 12308, United States
| | - Colleen M Connelly
- Department of Chemistry and Biochemistry, Union College, Schenectady, NY 12308, United States.
| | - Laurie A Tyler
- Department of Chemistry and Biochemistry, Union College, Schenectady, NY 12308, United States.
| |
Collapse
|
19
|
Ishkitiev N, Micheva M, Miteva M, Gaydarova S, Tzachev C, Lozanova V, Lozanov V, Cheshmedzhieva D, Kandinska M, Ilieva S, Gargallo R, Baluschev S, Stoynov S, Dyankova-Danovska T, Nedelcheva-Veleva M, Landfester K, Mihaylova Z, Vasilev A. Nanoconfined Chlorine-Substituted Monomethine Cyanine Dye with a Propionamide Function Based on the Thiazole Orange Scaffold-Use of a Fluorogenic Probe for Cell Staining and Nucleic Acid Visualization. Molecules 2024; 29:6038. [PMID: 39770126 PMCID: PMC11677322 DOI: 10.3390/molecules29246038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated. The synthesis of a new dicationic asymmetric monomethine cyanine dye with benzo[d]thiazolium-N-propionamide and chloroquinoline end groups is presented. The photophysical properties of the newly synthesized dye were examined through the combined application of spectroscopic and theoretical methods. The applicability of the dye as a fluorogenic nucleic acid probe was proven by UV-VIS spectroscopy and fluorescence titration. The dye-nucleic acid interaction mode was investigated by UV-Vis and CD spectroscopy. The newly synthesized dicationic dye, like other similar fluorogenic structures, limited permeability, which restricts its use as a probe for RNA and DNA. To enhance cellular delivery, we utilized a patented technology that employs solid, insoluble lipid nanoparticles. This method ensures the complete introduction of the dye into cells while minimizing activity outside the cells. In our study involving two human cell lines, we observed improved penetration through the cell membrane and distinctive selectivity in visualizing nucleic acids within the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Nikolay Ishkitiev
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria; (N.I.); (M.M.); (V.L.); (V.L.)
| | - Maria Micheva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.M.); (S.B.); (K.L.)
| | - Marina Miteva
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria; (N.I.); (M.M.); (V.L.); (V.L.)
| | - Stefaniya Gaydarova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
- Lead Biotherapeutics Ltd., 24 Shipka Str., 1504 Sofia, Bulgaria
| | - Christo Tzachev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
- Lead Biotherapeutics Ltd., 24 Shipka Str., 1504 Sofia, Bulgaria
| | - Vesela Lozanova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria; (N.I.); (M.M.); (V.L.); (V.L.)
| | - Valentin Lozanov
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria; (N.I.); (M.M.); (V.L.); (V.L.)
| | - Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
| | - Meglena Kandinska
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
| | - Sonia Ilieva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franqués 1-11, E-08028 Barcelona, Spain;
| | - Stanislav Baluschev
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.M.); (S.B.); (K.L.)
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Stoyno Stoynov
- Institute of Molecular Biology ‘‘Roumen Tsanev,’’ Bulgarian Academy of Sciences, ‘‘Acad. George Bonchev’’ Str. 21, 1113 Sofia, Bulgaria (T.D.-D.)
| | - Teodora Dyankova-Danovska
- Institute of Molecular Biology ‘‘Roumen Tsanev,’’ Bulgarian Academy of Sciences, ‘‘Acad. George Bonchev’’ Str. 21, 1113 Sofia, Bulgaria (T.D.-D.)
| | - Marina Nedelcheva-Veleva
- Institute of Molecular Biology ‘‘Roumen Tsanev,’’ Bulgarian Academy of Sciences, ‘‘Acad. George Bonchev’’ Str. 21, 1113 Sofia, Bulgaria (T.D.-D.)
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; (M.M.); (S.B.); (K.L.)
| | - Zornitsa Mihaylova
- Department of Oral and Maxillofacial Surgery, Medical University Sofia, 1 “G. Sofijski” Str., 1431 Sofia, Bulgaria;
| | - Aleksey Vasilev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (S.G.); (C.T.); (D.C.); (M.K.); (S.I.)
- Laboratory of Functional and Nanostructured Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl. 103A, 1113 Sofia, Bulgaria
| |
Collapse
|
20
|
Dutra JL, Honorato J, Graminha A, Moraes CAF, de Oliveira KT, Cominetti MR, Castellano EE, Batista AA. Pd(II)/diphosphine/curcumin complexes as potential anticancer agents. Dalton Trans 2024; 53:18902-18916. [PMID: 38938129 DOI: 10.1039/d4dt01045k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Palladium(II) complexes have stimulated research interest mainly due to their in vitro cytotoxicity against various cancer cell lines and their low cytotoxicity in healthy cells. Thus, in this work, we combined Pd(II)/phosphine systems with the natural product curcumin as a ligand, obtaining a series of complexes, [Pd(cur)(PPh3)2]PF6 (A1), [Pd(cur)(dppe)]PF6 (A2), [Pd(cur)(dppp)]PF6 (A3), [Pd(cur)(dppb)]PF6 (A4) and [Pd(cur)(dppf)]PF6 (A5), where dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, dppb = 1,4-bis(diphenylphosphino)butane, and dppf = 1,1'-bis(diphenylphosphino)ferrocene (P-P), which were characterized by elemental analysis, molar conductivity analysis, and mass, NMR (1H, 13C, 31P{1H}), UV-vis, and IR spectroscopies, and four of them (A1, A2, A4, and A5) by X-ray crystallography. The in vitro cell viability of the complexes A1-A5, cisplatin, and the free ligand curcumin against MDA-MB-231 (human triple-negative breast tumor cells), SK-BR-3 (human breast tumor cells), A549 (human lung tumor cells), MRC-5 (non-tumor human lung cells), A2780 (human ovarian carcinoma cells), and A2780cis (cisplatin-resistant human ovarian carcinoma cells), was evaluated by the MTT colorimetric assay. For the tumor cell lines tested, the complexes showed good anticancer activities. The results showed that in general the complexes had lower IC50 values than free curcumin and the precursors [PdCl2(P-P)]. IC50 results obtained for the A1-A5 complexes, in the MCF-7 cell line, are similar to those that had already been observed for some Pd/bipy/curcumin complexes. In the MDA-MB-231 cell line, complexes A1 and A5 stood out, with their lowest IC50 values, around 5 μmol L-1, and the complexes appeared to be more active (lower IC50 values) against the ovarian cell lines. Complex A1 was 23 and 22-fold more cytotoxic than cisplatin, against the A2780 and A2780cis cells, respectively. The complex A1 was studied on A2780cis cells and it was found that this complex inhibits colony formation and induces cell cycle arrest in the sub-G1 phase in a concentration-dependent manner and leads to cell death by apoptosis. The DCFDA assay revealed a potent ROS induction for complex A1.
Collapse
Affiliation(s)
- Jocely L Dutra
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
- Departamento de Química, Universidade Federal do Amazonas - UFAM, CEP 69077-000, Itacoatiara, AM, Brazil
| | - João Honorato
- Instituto de Química, Universidade de São Paulo - USP, CEP 05508-900, São Paulo, SP, Brazil
| | - Angélica Graminha
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| | - Carlos André F Moraes
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| | - Kleber T de Oliveira
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| | - Marcia R Cominetti
- Departamento de Gerontologia, Universidade Federal de São Carlos - UFSCar, CP 676, 13561-901, São Carlos, SP, Brazil
| | - Eduardo E Castellano
- Instituto de Física de São Carlos, Universidade de São Paulo - USP, CP 369, CEP 13560-970, São Carlos, SP, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, CP 676, CEP 13561-901, São Carlos, SP, Brazil.
| |
Collapse
|
21
|
Borhan G, Sahihi M. Unwinding DNA strands by single-walled carbon nanotubes: Molecular docking and MD simulation approach. J Mol Graph Model 2024; 133:108882. [PMID: 39405984 DOI: 10.1016/j.jmgm.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Despite the growing research into the use of carbon nano-tubes (CNTs) in science and medicine, concerns about their potential toxicity remain insufficiently studied. This study utilizes molecular docking calculations combined by molecular dynamics simulations to investigate the dynamic intricacies of the interaction between single-walled carbon nanotubes (swCNTs) and double-stranded DNA (dsDNA). By examining the influence of swCNT characteristics such as length, radius, and chirality, our findings shed light on the complex interplay that shapes the binding affinity and stability of the dsDNA-swCNT complex. Molecular docking results identify a zigzag swCNT, with a radius of 0.16 Å and a length of 38 Å, as exhibiting the highest binding affinity with dsDNA (-23.9 kcal/mol). Comprehensive analyses, spanning docking results, binding energies, RMSD, radius of gyration, and potential of mean force (PMF) profiles, provide a detailed understanding of the denaturation dynamics. The PMF profiles reveal the thermodynamic feasibility of the DNA-CNT interaction, outlining distinct energy landscapes and barriers: when the selected swCNT binds within the dsDNA groove, the system becomes trapped at the first and second local energy minima, occurring at 1.48 nm and 1.00 nm, respectively. Intramolecular hydrogen bond calculations show a significant reduction, affirming the denaturing effect of swCNTs on DNA. Furthermore, the study reveals a significant reduction in the binding affinity of Ethidium Bromide (EB) to dsDNA following its interaction with swCNT, with a decrease in EB binding to dsDNA of approximately 13.2 %. This research offers valuable insights into the toxic effects of swCNTs on dsDNA, contributing to a rationalization of the cancerous potential of swCNTs.
Collapse
Affiliation(s)
- Ghazal Borhan
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Mehdi Sahihi
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
22
|
Choroba K, Zowiślok B, Kula S, Machura B, Maroń AM, Erfurt K, Marques C, Cordeiro S, Baptista PV, Fernandes AR. Optimization of Antiproliferative Properties of Triimine Copper(II) Complexes. J Med Chem 2024; 67:19475-19502. [PMID: 39496093 PMCID: PMC11571215 DOI: 10.1021/acs.jmedchem.4c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
Cu(II) complexes with 2,2':6',2″-terpyridines (terpy) and 2,6-bis(thiazol-2-yl)pyridines (dtpy) with 1- or 2-naphtyl and methoxy-naphtyl were synthesized to elucidate the impact of the triimine core, naphtyl linking mode, and presence of methoxy groups on the antiproliferative activity of [CuCl2(Ln)]. Their antiproliferative effect was analyzed in ovarian (A2780) and colorectal (HCT116) carcinomas and colorectal carcinoma resistant to doxorubicin (HCT116-DoxR) cell lines and in normal human fibroblasts. Among all complexes, the 1- and 2-naphtyl substituted terpy Cu(II) complexes (Cu1a and Cu1b) showed the strongest cytotoxicity, namely, in HCT116-DoxR 2Dcells and were also capable of inducing the loss of cell viability in 3D HCT116-DoxR spheroids. Their intracellular localization, capability to increase reactive oxygen species (ROS), and interaction with DNA (nonintercalative mode) trigger oxidative DNA cleavage leading to cell death by apoptosis and autophagy. Cu1a and Cu1b do not show in vivo toxicity in a chicken embryo and can interact with bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Bartosz Zowiślok
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Sławomir Kula
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Anna M. Maroń
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Cristiana Marques
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- Departamento
de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- Departamento
de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- Departamento
de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- Departamento
de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
23
|
He L, She L, Wang L, Mi C, Ma K, Yu M, Long X, Zhang C. The electric regulation mechanism of drug molecules intercalating with DNA. Arch Biochem Biophys 2024; 762:110203. [PMID: 39489204 DOI: 10.1016/j.abb.2024.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/09/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The insertion of small drug molecules into DNA can change its electrical properties, thereby controlling the probability of its electrical transmission. This characteristic has enabled its widespread application in molecular electronics. However, the current understanding of the intercalation properties and electronic transmission mechanisms is still not deep enough, which severely restricts its practical application. In this paper, the density functional theory and the non-equilibrium Green's function formula are combined to bind three different small drug molecules to the same sequence of DNA through intercalation, in order to discuss the impact of intercalation and molecular structure on the electrical properties of DNA. After inserting two MAR70 molecules, the conductivity decreased from 2.38×10-5 G0 to 3.37×10-7 G0 . Upon the insertion of Nogalamycin, the conductivity dropped to 2.01×10-5 G0, only slightly lower than that of bare B-DNA. However, when cyanomorpholinodoxorubicin was inserted, the conductivity was 2.65×10-6 G0. In our study, we observed some common characteristics. After intercalating with drug molecules, new energy levels were induced, altering the positions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels, resulting in a narrowed bandgap and consequently reduced conductivity of the complex. Furthermore, the conductivity was also related to the number of inserted drug molecules, fewer inserted molecules led to a decrease in conductivity. The results of this study indicate that embedding drug molecules can reduce or regulate the conductivity of DNA, providing new insights for its application in the field of nanoelectronics.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China.
| | - Liang She
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Liyan Wang
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Cheng Mi
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Kang Ma
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Mi Yu
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Xing Long
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Chaopeng Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| |
Collapse
|
24
|
Arjmand F, Khursheed S, Akhter S, Ansari MF, Tabassum S. De novo design and preparation, structural details, and cytotoxic response of a new water soluble (2,2′–bipy)–(phenylalaninato)–μ–chlorido–copper(II) drug candidate against resistant cancer cells. J Mol Struct 2024; 1316:138846. [DOI: 10.1016/j.molstruc.2024.138846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
25
|
Fernández CY, Alvarez N, Rocha A, Mendes LFS, Costa-Filho AJ, Ellena J, Batista AA, Facchin G. Phenanthroline and phenyl carboxylate mixed ligand copper complexes in developing drugs to treat cancer. J Inorg Biochem 2024; 260:112700. [PMID: 39163715 DOI: 10.1016/j.jinorgbio.2024.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
The success of a classic inorganic coordination compound, Cisplatin, cis-[Pt(NH3)2Cl2], as the first anticancer metallodrug started a field of research dedicated to discovering coordination compounds with antitumor activity, encompassing various metals. Among these, copper complexes have emerged as interesting candidates to develop drugs to treat cancer. In this work, mixed ligand complexes of Cu(II) with diimines (phenanthroline or 4-methylphenanthroline) and 3-(4-hydroxyphenyl)propanoate, phenylcarboxylate or phenylacetate were synthesized. They were characterized in the solid state, including a new crystal structure of [Cu2(3-(4-hydroxyphenyl)propanoate)3(phenanthroline)2]Cl·H2O. The obtained complexes presented a variety of stoichiometries. In solution, complexes were partially dissociated in the corresponding Cu-diimine complex. The complexes bound to the DNA by partial intercalation and groove binding, as assessed by Circular Dichroism, relative viscosity change and UV-Vis titration. The cytotoxicity of the complexes was determined in vitro on MDA-MB-231, MCF-7 (human metastatic breast adenocarcinomas, the first triple negative), MCF-10A (breast nontumoral), A549 (human lung epithelial carcinoma), and MRC-5 (human nontumoral lung epithelial cells), finding an activity higher than that of Cisplatin, although with less selectivity.
Collapse
Affiliation(s)
- Carlos Y Fernández
- Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, Uruguay; Programa de Posgrados de la Facultad de Química, Facultad de Química, Universidad de la República, Gral. Flores 2124, Montevideo 11800, Uruguay
| | - Natalia Alvarez
- Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, Uruguay
| | - Analu Rocha
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos (SP), Brazil; Instituto de Física de São Carlos, Universidade de São Paulo, Av. do Trabalhador São-carlense 400, 143566-590, São Carlos (SP), Brazil
| | - Luis Felipe S Mendes
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. do Trabalhador São-carlense 400, 143566-590, São Carlos (SP), Brazil
| | - Antonio J Costa-Filho
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 14040-901, Ribeirão Preto (SP), Brazil
| | - Javier Ellena
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. do Trabalhador São-carlense 400, 143566-590, São Carlos (SP), Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos (SP), Brazil
| | - Gianella Facchin
- Facultad de Química, Universidad de la República, Av. General Flores 2124, Montevideo, Uruguay.
| |
Collapse
|
26
|
Li X, Chen K, Lai J, Wang S, Chen Y, Mo X, Chen Z. Synthesis and antitumor activity of copper(II) complexes of imidazole derivatives. J Inorg Biochem 2024; 260:112690. [PMID: 39126756 DOI: 10.1016/j.jinorgbio.2024.112690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/18/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Complexes [Cu(PI)2(H2O)](NO3)2 (1), [Cu(PBI)2(NO3)]NO3 (2), [Cu(TBI)2(NO3)]NO3 (3), [Cu(BBIP)2](ClO4)2 (4) and [Cu(BBIP)(CH3OH)(ClO4)2] (5) were synthesized from the reactions of Cu(II) salts with 2-(2'-pyridyl)imidazole (PI), (2-(2'-pyridyl)benzimidazole (PBI), 2-(4'-thiazolyl)-benzimidazole (TBI), 2,6-bis(benzimidazol-2-yl)-pyridine (BBIP), respectively. Their compositions and crystal structures were determined. Their in-vitro antitumor activities were screened on four cancer cell lines and one normal cell line (HL-7702) using cisplatin as the positive control. Complexes 2 and 4 show higher cytotoxicity than the other three complexes. The cytotoxicity of complex 2 are comparable to those for cisplatin, and the cytotoxicity for 4 are much higher than those for cisplatin. From a viewpoint of antitumor, 2 might be a nice choice on the tumor cell line of T24 because its IC50 values on T24 and HL-7702 are 15.03 ± 1.10 and 21.34 ± 0.35, respectively. Thus, a mechanistic study for complexes 2 and 4 on T24 cells was conducted. It revealed that they can reduce mitochondrial membrane potential and increase mitochondrial membrane permeability, resulting in increased intracellular ROS levels, Ca2+ inward flow, dysfunctional mitochondria and the eventual cell apoptosis. In conclusion, they can induce cell apoptosis through mitochondrial dysfunction. These findings could be useful in the development of new antitumor agents.
Collapse
Affiliation(s)
- Xiaofang Li
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Kaiyong Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Jilei Lai
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Shanshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Yihan Chen
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xiyu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
27
|
Dey S, Nagpal I, Sow P, Dey R, Chakrovorty A, Bhattacharjee B, Saha S, Majumder A, Bera M, Subbarao N, Nandi S, Hossen Molla S, Guptaroy P, Abraham SK, Khuda-Bukhsh AR, Samadder A. Morroniside interaction with poly (ADP-ribose) polymerase accentuates metabolic mitigation of alloxan-induced genotoxicity and hyperglycaemia: a molecular docking based in vitro and in vivo experimental therapeutic insight. J Biomol Struct Dyn 2024; 42:8541-8558. [PMID: 37587909 DOI: 10.1080/07391102.2023.2246585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The present study tends to evaluate the possible potential of bio-active Morroniside (MOR), against alloxan (ALX)-induced genotoxicity and hyperglycaemia. In silico prediction revealed the interaction of MOR with Poly (ADP-ribose) polymerase (PARP) protein which corroborated well with experimental in vitro L6 cell line and in vivo mice models. Data revealed the efficacy of MOR in the selective activation of PARP protein and modulating other stress proteins NF-κB, and TNF-α to initiate protective potential against ALX-induced genotoxicity and hyperglycaemia. Further, the strong interaction of MOR with CT-DNA (calf thymus DNA) analyzed through CD spectroscopy, UV-Vis study and ITC data revealed the concerted action of bio-factors involved in inhibiting chromosomal aberration and micronucleus formation associated with DNA damage. Finally, MOR does not play any role in microbial growth inhibition which often occurs due to hyperglycemic dysbiosis. Thus, from the overall findings, we may conclude that MOR could be a potential drug candidate for the therapeutic management of induced-hyperglycaemia and genotoxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sudatta Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Dum Dum Motijheel College, Kolkata, India
| | - Isha Nagpal
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Priyanka Sow
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Rishita Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Saikat Saha
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | | | - Suresh K Abraham
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anisur Rahman Khuda-Bukhsh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| |
Collapse
|
28
|
Kumar A, Saha M, Saraswat J, Behera K, Trivedi S. Interaction between antidepressant drug trazodone with double-stranded DNA: Multi-spectroscopic and computational analysis. Int J Biol Macromol 2024; 277:134113. [PMID: 39048004 DOI: 10.1016/j.ijbiomac.2024.134113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Trazodone (TZD) is an antidepressant drug used to treat major depressive and sleeping disorders. Elevated doses of trazodone are associated with central nervous system depression, which manifests as nausea, drowsiness, confusion, vertigo, exhaustion, etc. To develop a clinically viable active pharmaceutical compound with minimal adverse effects, it is imperative to possess a comprehensive knowledge of the drug's action mechanism on DNA. Hence, we investigate the mode of interaction between trazodone and DNA utilizing various spectroscopic and computational techniques. Studies using UV-vis titration showed that the DNA and trazodone have an effective interaction. The magnitude of the Stern-Volmer constant (KSV) has been calculated to be 5.84 × 106 M-1 by the Lehrer equation from a steady-state fluorescence study. UV-vis absorption, DNA melting, dye displacement, and circular dichroism studies suggested that trazodone binds with DNA in minor grooves. Molecular docking and molecular dynamic simulation demonstrated that the TZD-DNA system was stable, and the mode of binding was minor groove. Furthermore, ionic strength investigation demonstrates that DNA and trazodone do not have a substantial electrostatic binding interaction.
Collapse
Affiliation(s)
- Ambrish Kumar
- Centre of Advanced Studies, Department of Chemistry, Banaras Hindu University, Varanasi 221005, India
| | - Moumita Saha
- Centre of Advanced Studies, Department of Chemistry, Banaras Hindu University, Varanasi 221005, India
| | - Juhi Saraswat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Kamalakanta Behera
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India.
| | - Shruti Trivedi
- Centre of Advanced Studies, Department of Chemistry, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
29
|
Jamgohari N, Mansouri-Torshizi H, Dehghanian E, Shahraki S, Dusek M, Kucerakova M. Synthesis, crystal structure, cytotoxicity, in-detail experimental and computational CT-DNA interaction studies of 2-picolinate Pd(II) and Pt(II) complexes. J Biomol Struct Dyn 2024; 42:8937-8957. [PMID: 37615408 DOI: 10.1080/07391102.2023.2249106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
A new Pd(II) complex of formula [Pd(en)(2-pyc)]+ (where, en is ethylenediamine and 2-pyc is 2-pyridinecarboxylate anion) and its reported Pt(II) analogue, i.e. [Pt(en)(2-pyc)]+ have been made by an improved synthetic procedure, yielding above 80%. They have been characterized by FT-IR, UV-Vis, 1H NMR, 13C NMR, conductivity and elemental analysis. Single crystal structural determination of [Pt(en)(2-pyc)]+ displayed that the Pt(II) cation in this complex coordinated by 2-pyc and en each as five member chelate resulting in slightly distorted square-planar array. The time-dependent spectroscopic analysis of these compounds in aqueous medium demonstrated their structural stabilities. The cytotoxic activities of Pd(II) and Pt(II) complexes, free 2-pyc and carboplatin (as standard drug) were assayed in-vitro against the HCT-116 and MCF-7 as cancerous and MCF 10 A and CCD-841 as normal cell lines. They showed the IC50 order of: carboplatin > 2-pyc > Pt(II) > Pd(II) and lower activities against non-cancerous cells. CT-DNA binding of the Pd(II), Pt(II) and 2-pyc free ligand were explored individually. In this relation, UV-Vis and fluorescence titrations disclosed quenching of CT-DNA absorption and emissions by the compounds via dynamic mechanism and formation of H-bonds and van der Waals forces between them. The interaction was further validated and verified by viscosity measurements and gel electrophoresis. Partition coefficient determination showed that all three compounds have more lipophilicity than cisplatin. Furthermore, docking analysis and molecular dynamics simulation were done to evaluate the nature of interaction between aforementioned compounds and CT-DNA. The finding results demonstrated that these agents interact with CT-DNA via groove binding and were in agreement with experimental results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nasimeh Jamgohari
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
30
|
Akhter S, Kaur G, Arjmand F, Tabassum S. De novo design and preparation of Copper(II)–based chemotherapeutic anticancer drug candidates with Boc–glycine and N,N–donor ligands: DNA binding, cleavage profile, and cytotoxic therapeutic response against MCF–7, PC–3, and HCT–116 cells. Polyhedron 2024; 259:117064. [DOI: 10.1016/j.poly.2024.117064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
31
|
Bal M, Köse A, Güngör SA. Investigation of photoluminescence and DNA binding properties of benzimidazole compounds containing benzophenone group. J Biomol Struct Dyn 2024; 42:7847-7859. [PMID: 37526238 DOI: 10.1080/07391102.2023.2242496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
The synthesis of benzimidazole compounds containing benzophenone group in accordance with the literature and the investigation of DNA binding properties of these compounds by using UV-vis and photoluminescence spectroscopy methods constitute the basis of this research. The structures of the compounds were determined by methods such as FT-IR, 1H, 13C NMR, UV-vis, Photoluminescence spectroscopy, and X-ray crystallography. By using methods such as UV-vis, Photoluminescence spectroscopy, and viscosity tests, information were collected about the binding types, binding mode, and binding energies of the compounds with DNA. In addition, the binding interactions of the compounds with DNA were investigated using the molecular docking technique. Using this information, calibration equations, correlation coefficients (r2), and DNA binding constants (Kb) were calculated for their compounds. The binding constants (Kb) calculated for substances A, B, and C were found to be 3.0 × 104, 7.0 × 104, and 3.0 × 104 M-1, respectively. UV-vis, EB competitive binding, and viscosity tests showed that the compounds tended to bind to the DNA structure via the groove binding mode. At the end of molecular docking studies, it was determined that compound B showed the best DNA binding activity in in vitro studies. Compared with the studies in the literature, it is thought that the synthesized compounds can take place in cancer drug research as DNA binding agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustafa Bal
- Department of Materials Science and Engineering, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| | - Ayşegül Köse
- Department of Property Protection and Safety, Elbistan Vocational School, Kahramanmaras Istiklal University, Kahramanmaraş, Turkey
| | - Seyit Ali Güngör
- Department of Chemistry, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaraş, Turkey
| |
Collapse
|
32
|
de Lavor TS, Teixeira MHS, de Matos PA, Lino RC, Silva CMF, do Carmo MEG, Beletti ME, Patrocinio AOT, de Oliveira Júnior RJ, Tsubone TM. The impact of biomolecule interactions on the cytotoxic effects of rhenium(I) tricarbonyl complexes. J Inorg Biochem 2024; 257:112600. [PMID: 38759261 DOI: 10.1016/j.jinorgbio.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Rhenium complexes show great promise as anticancer drug candidates. Specifically, compounds with a Re(CO)3(NN)(py)+ core in their architecture have shown cytotoxicity equal to or greater than that of well-established anticancer drugs based on platinum or organic molecules. This study aimed to evaluate how the strength of the interaction between rhenium(I) tricarbonyl complexes fac-[Re(CO)3(NN)(py)]+, NN = 1,10-phenanthroline (phen), dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) or dipyrido[3,2-a:2'3'-c]phenazine (dppz) and biomolecules (protein, lipid and DNA) impacted the corresponding cytotoxic effect in cells. Results showed that fac-[Re(CO)3(dppz)(py)]+ has higher Log Po/w and binding constant (Kb) with biomolecules (protein, lipid and DNA) compared to complexes of fac-[Re(CO)3(phen)(py)]+ and fac-[Re(CO)3(dpq)(py)]+. As consequence, fac-[Re(CO)3(dppz)(py)]+ exhibited the highest cytotoxicity (IC50 = 8.5 μM for HeLa cells) for fac-[Re(CO)3(dppz)(py)]+ among the studied compounds (IC50 > 15 μM). This highest cytotoxicity of fac-[Re(CO)3(dppz)(py)]+ are probably related to its lipophilicity, higher permeation of the lipid bilayers of cells, and a more potent interaction of the dppz ligand with biomolecules (protein and DNA). Our findings open novel avenues for rational drug design and highlight the importance of considering the chemical structures of rhenium complexes that strongly interact with biomolecules (proteins, lipids, and DNA).
Collapse
Affiliation(s)
- Tayná Saraiva de Lavor
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Patrícia Alves de Matos
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Ricardo Campos Lino
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Clara Maria Faria Silva
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Marcos Eduardo Gomes do Carmo
- Laboratory of Photochemistry and Materials Science, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcelo Emílio Beletti
- Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Antonio Otavio T Patrocinio
- Laboratory of Photochemistry and Materials Science, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Robson José de Oliveira Júnior
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| | - Tayana Mazin Tsubone
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Elias MG, Aputen AD, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Chemotherapeutic Potential of Chlorambucil-Platinum(IV) Prodrugs against Cisplatin-Resistant Colorectal Cancer Cells. Int J Mol Sci 2024; 25:8252. [PMID: 39125821 PMCID: PMC11312340 DOI: 10.3390/ijms25158252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Chlorambucil-platinum(IV) prodrugs exhibit multi-mechanistic chemotherapeutic activity with promising anticancer potential. The platinum(II) precursors of the prodrugs have been previously found to induce changes in the microtubule cytoskeleton, specifically actin and tubulin of HT29 colon cells, while chlorambucil alkylates the DNA. These prodrugs demonstrate significant anticancer activity in 2D cell and 3D spheroid viability assays. A notable production of reactive oxygen species has been observed in HT29 cells 72 h post treatment with prodrugs of this type, while the mitochondrial membrane potential was substantially reduced. The cellular uptake of the chlorambucil-platinum(IV) prodrugs, assessed by ICP-MS, confirmed that active transport was the primary uptake mechanism, with platinum localisation identified primarily in the cytoskeletal fraction. Apoptosis and necrosis were observed at 72 h of treatment as demonstrated by Annexin V-FITC/PI assay using flow cytometry. Immunofluorescence measured via confocal microscopy showed significant changes in actin and tubulin intensity and in architecture. Western blot analysis of intrinsic and extrinsic pathway apoptotic markers, microtubule cytoskeleton markers, cell proliferation markers, as well as autophagy markers were studied post 72 h of treatment. The proteomic profile was also studied with a total of 1859 HT29 proteins quantified by mass spectroscopy, with several dysregulated proteins. Network analysis revealed dysregulation in transcription, MAPK markers, microtubule-associated proteins and mitochondrial transport dysfunction. This study confirms that chlorambucil-platinum(IV) prodrugs are candidates with promising anticancer potential that act as multi-mechanistic chemotherapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| | - Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Meena Mikhael
- Mass Spectrometry Facility, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| |
Collapse
|
34
|
Rijwan, Arjmand F, Tabassum S. Repurposing the antihistamine drug bilastine as an anti-cancer metallic drug entity: synthesis and single-crystal X-ray structure analysis of metal-based bilastine and phen [Co(II), Cu(II) and Zn(II)] tailored anticancer chemotherapeutic agents against resistant cancer cells. Dalton Trans 2024; 53:10126-10141. [PMID: 38817206 DOI: 10.1039/d4dt00426d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bilastine (BLA), 2-(4-(2-(4-(1-(2-ethoxyethyl)-1H-benzo[d]imidazole-2-yl)-piperidin-1-yl)-ethyl)-phenyl)-2-methylpropanoic acid, is an active antihistamine drug. With the idea of repurposing drugs from the existing pool of 'active' pharmaceutical ingredients, the therapeutic potency of bilastine as an anticancer agent was investigated via the tailored synthesis of a metal-based anticancer drug formulation of the type [BLA(phen)2M(II)]+·X-, where M = Co, Cu, and Zn and X- = NO3 and ClO4. The synthesized metal-based chemotherapeutics derived from the bilastine drug that acts as a ligand were thoroughly characterized using spectroscopic techniques, namely, UV-vis, FT-IR, and EPR (in the case of 1 and 2); 1H-NMR and 13C-NMR (in the case of 3); ESI-MS and single-crystal X-ray diffraction studies. Comprehensive biological studies (DNA binding, cleavage, and cytotoxic activity) using various biophysical and gel electrophoretic methods were carried out to validate their potential as anticancer agents. The cytotoxic activity of 'therapeutically promising' copper(II)-based drug candidate 2 was evaluated against MCF-7, MBA-MD-231, HeLa, HepG2, and Mia-PaCa-2 cancer cells via an SRB assay, and the results demonstrated 2 as a potent anticancer agent at low nanomolar concentrations against all tested cancer cells, preferably with a much superior anticancer efficacy against human pancreatic cancer cells.
Collapse
Affiliation(s)
- Rijwan
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India.
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India.
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India.
| |
Collapse
|
35
|
Wei Y, Zhang D, Pan J, Gong D, Zhang G. Elucidating the Interaction of Indole-3-Propionic Acid and Calf Thymus DNA: Multispectroscopic and Computational Modeling Approaches. Foods 2024; 13:1878. [PMID: 38928819 PMCID: PMC11202999 DOI: 10.3390/foods13121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Indole-3-propionic acid (IPA) is a plant growth regulator with good specificity and long action. IPA may be harmful to human health because of its accumulation in vegetables and fruits. Therefore, in this study, the properties of the interaction between calf thymus DNA (ctDNA) and IPA were systematically explored using multispectroscopic and computational modeling approaches. Analysis of fluorescence spectra showed that IPA binding to ctDNA to spontaneously form a complex was mainly driven by hydrogen bonds and hydrophobic interaction. DNA melting analysis, viscosity analysis, DNA cleavage study, and circular dichroism measurement revealed the groove binding of IPA to ctDNA and showed that the binding did not significantly change ctDNA confirmation. Furthermore, molecular docking found that IPA attached in the A-T rich minor groove region of the DNA. Molecular dynamics simulation showed that DNA and IPA formed a stable complex and IPA caused slight fluctuations for the residues at the binding site. Gel electrophoresis experiments showed that IPA did not significantly disrupt the DNA structure. These findings may provide useful information on the potential toxicological effects and environmental risk assessments of IPA residue in food at the molecular level.
Collapse
Affiliation(s)
| | | | | | | | - Guowen Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.W.); (D.Z.); (J.P.); (D.G.)
| |
Collapse
|
36
|
He X, Yu J, Yin R, Huang Y, Zhang P, Xiao C, Chen X. An AIEgen and Iodine Double-Ornamented Platinum(II) Complex for Bimodal Imaging-Guided Chemo-Photodynamic Combination Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309894. [PMID: 38308168 DOI: 10.1002/smll.202309894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 02/04/2024]
Abstract
Real-time biodistribution monitoring and enhancing the therapeutic efficacy of platinum(II)-based anticancer drugs are urgently required to elevate their clinical performance. Herein, a tetraphenylethene derivative (TP) with aggregation-induced emission (AIE) properties and an iodine atom are selected as ligands to endow platinum (II) complex TP-Pt-I with real-time in vivo self-tracking ability by fluorescence (FL) and computerized tomography (CT) imaging, and improved anticancer efficacy by the combination of chemotherapy and photodynamic therapy. Especially, benefiting from the formation of a donor-acceptor-donor structure between the AIE photosensitizer TP and Pt-I moiety, the heavy atom effects of Pt and I, and the presence of I, TP-Pt-I displayed red-shifted absorption and emission wavelengths, enhanced ROS generation efficiency, and improved CT imaging capacity compared with the pristine TP and the control agent TP-Pt-Cl. As a result, the enhanced intratumoral accumulation of TP-Pt-I loaded nanoparticles is readily revealed by dual-modal FL and CT imaging with high contrast. Meanwhile, the TP-Pt-I nanoparticles show significantly improved tumor growth-inhibiting effects on an MCF-7 xenograft murine model by combining the chemotherapeutic effects of platinum(II) and the photodynamic effects of TP. This self-tracking therapeutic complex thus provides a new strategy for improving the therapeutic outcomes of platinum(II)-based anticancer drugs.
Collapse
Affiliation(s)
- Xidong He
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
37
|
Martins FM, Iglesias BA, Chaves OA, Gutknecht da Silva JL, Leal DBR, Back DF. Vanadium(V) complexes derived from triphenylphosphonium and hydrazides: cytotoxicity evaluation and interaction with biomolecules. Dalton Trans 2024; 53:8315-8327. [PMID: 38666341 DOI: 10.1039/d4dt00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.
Collapse
Affiliation(s)
- Francisco Mainardi Martins
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrin Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Otávio Augusto Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga s/n, Coimbra, 3004-535, Portugal
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, 21040-361, Brazil
| | | | | | - Davi Fernando Back
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
38
|
Qais FA, Furkan M, Altaf M, Ahmad I, Khan RH. Exploring the mechanism of interaction of glipizide with DNA: Combined in vitro and bioinformatics approach. Int J Biol Macromol 2024; 267:131573. [PMID: 38614188 DOI: 10.1016/j.ijbiomac.2024.131573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
DNA, vital for biological processes, encodes hereditary data for protein synthesis, shaping cell structure and function. Since revealing its structure, DNA has become a target for various therapeutically vital molecules, spanning antidiabetic to anticancer drugs. These agents engage with DNA-associated proteins, DNA-RNA hybrids, or bind directly to the DNA helix, triggering diverse downstream effects. These interactions disrupt vital enzymes and proteins essential for maintaining cell structure and function. Analysing drug-DNA interactions has significantly advanced our understanding of drug mechanisms. Glipizide, an antidiabetic drug, is known to cause DNA damage in adipocytes. However, its extract mechanism of DNA interaction is unknown. This study delves into the interaction between glipizide and DNA utilizing various biophysical tools and computational technique to gain insights into the interaction mechanism. Analysis of UV-visible and fluorescence data reveals the formation of complex between DNA and glipizide. The binding affinity of glipizide to DNA was of moderate strength. Examination of thermodynamic parameters at different temperatures suggests that the binding was entropically spontaneous and energetically favourable. Various experiments such as thermal melting assays, viscosity measurement, and dye displacement assays confirmed the minor grove nature of binding of glipizide with DNA. Molecular dynamics studies confirmed the glipizide forms stable complex with DNA when simulated by mimicking the physiological conditions. The binding was mainly favoured by hydrogen bonds and glipizide slightly reduced nucleotide fluctuations of DNA. The study deciphers the mechanism of interaction of glipizide with DNA at molecular levels.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Furkan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Mohammad Altaf
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
39
|
Zhao Y, Ma W, Tian K, Wang Z, Fu X, Zuo Q, Qi Y, Zhang S. Sucrose ester embedded lipid carrier for DNA delivery. Eur J Pharm Biopharm 2024; 198:114269. [PMID: 38527635 DOI: 10.1016/j.ejpb.2024.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 03/27/2024]
Abstract
Sucrose esters (SEs) have great potential in the field of nucleic acid delivery due to their unique physical and chemical properties and good biosafety. However, the mechanism of the effect of SEs structure on delivery efficiency has not been studied. The liposomes containing peptide lipids and SEs were constructed, and the effects of SEs on the interaction between the liposomes and DNA were studied. The addition of SEs affects the binding rate of liposomes to DNA, and the binding rate gradually decreases with the increase of SEs' carbon chain length. SEs also affect the binding site and affinity of liposomes to DNA, promoting the aggregation of lipids to form liposomes, where DNA wraps around or compresses inside the liposomes, allowing it to compress DNA without damaging the DNA structure. COL-6, which is composed of sucrose laurate, exhibits the optimal affinity for DNA, and SE promotes the formation of ordered membrane structure and enhances membrane stability, so that COL-6 exhibits a balance between rigidity and flexibility, and thus exhibits the highest delivery efficiency of DNA among these formulations. This work provides theoretical foundations for the application of SE in gene delivery and guides for the rational design of delivery systems.
Collapse
Affiliation(s)
- Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Kexin Tian
- College of Chemical Engineering, Dalian University of Technology, Dalian 116600, China
| | - Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qi Zuo
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney 2050, Australia.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
40
|
He X, Yu J, Yin R, Zhang P, Xiao C, Chen X. A Nanoscale Trans-Platinum(II)-Based Supramolecular Coordination Self-Assembly with a Distinct Anticancer Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312488. [PMID: 38301714 DOI: 10.1002/adma.202312488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Drug resistance significantly hampers the clinical application of existing platinum-based anticancer drugs. New platinum medications that possess distinct mechanisms of action are highly desired for the treatment of Pt-resistant cancers. Herein, a nanoscale trans-platinum(II)-based supramolecular coordination self-assembly (Pt-TCPP-BA) is prepared via using trans-[PtCl2(pyridine)(NH3)] (transpyroplatin), tetracarboxylporphyrin (TCPP), and benzoic acid (BA) as building blocks to combat drug resistance in platinum-based chemotherapy. Mechanistic studies indicate that Pt-TCPP-BA shows a hydrogen-peroxide-responsive dissociation behavior along with the generation of bioactive trans-Pt(II) and TCPP-Pt species. Different from cisplatin, these degradation products interact with DNA via interstrand cross-links and small groove binding, and induce significant upregulation of cell-death-related proteins such as p53, cleaved caspase 3, p21, and phosphorylated H2A histone family member X in cisplatin-resistant cancer cells. As a result, Pt-TCPP-BA exhibits potent killing effects against Pt-resistant tumors both in vitro and in vivo. Overall, this work not only provides a new platinum drug for combating drug-resistant cancer but also offers a new paradigm for the development of platinum-based supramolecular anticancer drugs.
Collapse
Affiliation(s)
- Xidong He
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
41
|
Siddiqui S, Ahmad R, Ahmad Y, Faizy AF, Moin S. Biophysical insight into the binding mechanism of epigallocatechin-3-gallate and cholecalciferol to albumin and its preventive effect against AGEs formation: An in vitro and in silico approach. Int J Biol Macromol 2024; 267:131474. [PMID: 38599429 DOI: 10.1016/j.ijbiomac.2024.131474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.
Collapse
Affiliation(s)
- Sana Siddiqui
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Rizwan Ahmad
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Yusra Ahmad
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Abul Faiz Faizy
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Shagufta Moin
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
42
|
Thanigachalam S, Pathak M. Bioactive O^N^O^ Schiff base appended homoleptic titanium(iv) complexes: DFT, BSA/CT-DNA interactions, molecular docking and antitumor activity against HeLa and A549 cell lines. RSC Adv 2024; 14:13062-13082. [PMID: 38655487 PMCID: PMC11034360 DOI: 10.1039/d3ra08574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
Five new homoleptic derivatives of titanium(iv) have been developed and characterized by physicochemical techniques. Metal complexes, TiH2L1 [(C38H26N6O4)Ti], TiH2L2 [(C38H24F2N6O4)Ti], TiH2L3 [(C38H24Cl2N6O4)Ti], TiH2L4 [(C38H24Br2N6O4)Ti] and TiH2L5 [(C38H24N8O8)Ti], were obtained by treating Ti(OPri)4 with appropriate ONO ligands (H2L1-H2L5) in anhydrous THF as solvent. The electronic structures and properties of titanium(iv) complexes (TiH2L1-TiH2L5) and ligands (H2L1-H2L5) were examined by DFT studies. The stability of all synthesized derivatives was assessed by a UV-visible technique using 10% DMSO, GSH medium and n-octanol/water systems. The binding interactions of BSA and CT-DNA with respective titanium(iv) complexes were successfully evaluated by employing UV-visible absorption, fluorescence, circular dichroism (CD) techniques and docking studies. The in vitro cytotoxicity of TiH2L2, TiH2L3 and TiH2L4 complexes was assessed against HeLa (human epithelioid cervical cancer cells) and A549 (lung carcinoma) cell lines. The IC50 values of TiH2L2, TiH2L3 and TiH2L4 were observed to be 28.8, 14.7 and 31.2 μg mL-1 for the HeLa cell line and 38.2, 32.9 and 67.78 μg mL-1 for A549 cells, respectively. Complex TiH2L3 exhibited remarkably induced cell cycle arrest in the G1 phase and 77.99% ROS production selectivity in the HeLa cell line.
Collapse
Affiliation(s)
- Sathish Thanigachalam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Madhvesh Pathak
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
| |
Collapse
|
43
|
Tulsiyan KD, Panda SK, Rana MK, Biswal HS. Critical assessment of interactions between ct-DNA and choline-based magnetic ionic liquids: evidences of compaction. Chem Sci 2024; 15:5507-5515. [PMID: 38638223 PMCID: PMC11023040 DOI: 10.1039/d4sc00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Ionic liquids (ILs) have become an alternative green solvent for storage and for stability of DNA. However, an in-depth understanding of binding and molecular interactions between ILs and DNA is needed. In this respect, magnetic ILs (MILs) are promising due to their tunable physicochemical properties. Various spectroscopic techniques and molecular simulations have been employed to unravel the critical factors of the strength and binding mechanism of MILs with DNA. UV-vis spectra unravel the multimodal binding of MILs with DNA, and the intrusion of IL molecules into the minor groove of DNA has been observed from dye displacement studies. Fluorescence correlation spectroscopic studies and scanning electron microscopy confirm the compaction of the DNA. ITC and molecular docking studies estimate the binding affinity of DNA with MILs, of ∼7 kcal mol-1. The 1 μs long-MD simulations give insight into the structural changes in the DNA in the MIL environment. Due to strong interaction with choline ions in the close vicinity, DNA helixes bend or squeeze in length and dilate in diameter (elliptical → spherical), leading to compaction. The post-MD parameters suggest a stronger interaction with [Ch]2[Mn] IL than with [Ch][Fe] IL; hence, the former induces DNA compaction to a more significant extent. Furthermore, decompaction is observed with the addition of sodium salts and is characterized using spectroscopic methods.
Collapse
Affiliation(s)
- Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur Odisha-760010 India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur Odisha-760010 India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
44
|
Choroba K, Machura B, Erfurt K, Casimiro AR, Cordeiro S, Baptista PV, Fernandes AR. Copper(II) Complexes with 2,2':6',2″-Terpyridine Derivatives Displaying Dimeric Dichloro-μ-Bridged Crystal Structure: Biological Activities from 2D and 3D Tumor Spheroids to In Vivo Models. J Med Chem 2024; 67:5813-5836. [PMID: 38518246 PMCID: PMC11017252 DOI: 10.1021/acs.jmedchem.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Eight 2,2':6',2″-terpyridines, substituted at the 4'-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Ana Rita Casimiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
45
|
Shumyantseva VV, Bulko TV, Chistov AA, Kolesanova EF, Agafonova LE. Pharmacogenomic Studies of Antiviral Drug Favipiravir. Pharmaceutics 2024; 16:503. [PMID: 38675164 PMCID: PMC11053860 DOI: 10.3390/pharmaceutics16040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
In this work, we conducted a study of the interaction between DNA and favipiravir (FAV). This chemotherapeutic compound is an antiviral drug for the treatment of COVID-19 and other infections caused by RNA viruses. This paper examines the electroanalytical characteristics of FAV. The determined concentrations correspond to therapeutically significant ones in the range of 50-500 µM (R2 = 0.943). We have shown that FAV can be electro-oxidized around the potential of +0.96 V ÷ +0.98 V (vs. Ag/AgCl). A mechanism for electrochemical oxidation of FAV was proposed. The effect of the drug on DNA was recorded as changes in the intensity of electrochemical oxidation of heterocyclic nucleobases (guanine, adenine and thymine) using screen-printed graphite electrodes modified with single-walled carbon nanotubes and titanium oxide nanoparticles. In this work, the binding constants (Kb) of FAV/dsDNA complexes for guanine, adenine and thymine were calculated. The values of the DNA-mediated electrochemical decline coefficient were calculated as the ratio of the intensity of signals for the electrochemical oxidation of guanine, adenine and thymine in the presence of FAV to the intensity of signals for the electro-oxidation of these bases without drug (S, %). Based on the analysis of electrochemical parameters, values of binding constants and spectral data, intercalation was proposed as the principal mechanism of the antiviral drug FAV interaction with DNA. The interaction with calf thymus DNA also confirmed the intercalation mechanism. However, an additional mode of interaction, such as a damage effect together with electrostatic interactions, was revealed in a prolonged exposure of DNA to FAV.
Collapse
Affiliation(s)
- Victoria V. Shumyantseva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
- Department of Biochemistry, Pirogov Russian National Research Medical University, Ostrovitianov Street, 1, Moscow 117997, Russia
| | - Tatiana V. Bulko
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
| | - Alexey A. Chistov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
| | - Ekaterina F. Kolesanova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
| | - Lyubov E. Agafonova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Build 8, Moscow 119121, Russia; (T.V.B.); (A.A.C.); (E.F.K.); (L.E.A.)
| |
Collapse
|
46
|
Ragheb MA, Mohamed FG, Diab HM, Ragab MS, Emara M, Elwahy AHM, Abdelhamid IA, Soliman MH. Novel Bis(2-cyanoacrylamide) Linked to Sulphamethoxazole: Synthesis, DNA Interaction, Anticancer, ADMET, Molecular Docking, and DFT Studies. Chem Biodivers 2024; 21:e202301341. [PMID: 38314957 DOI: 10.1002/cbdv.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In the light of advancement and potential extensive use of medication design and therapy, new bis(cyanoacrylamides) incorporating sulphamethoxazole derivatives (7 a-7 f) were synthesized and confirmed by different spectral tools. In vitro anticancer activity towards different human cancer cells (HCT116, MDA-MB-231 and A549) was assessed using MTT assay. Among all derivatives, 4C- and 6C-spacer derivatives (7 e and 7 f) had the most potent growth inhibitory activities against HCT116 cells with IC50 values of 39.7 and 28.5 μM, respectively. 7 e and 7 f induced apoptosis and suppressed migration of HCT116 cells. These compounds also induced a significant increase in caspase-3 and CDH1 activities, and a downregulation of Bcl2 using ELISA. pBR322 DNA cleavage activities of cyanoacrylamides were determined using agarose gel electrophoresis. Furthermore, 7 e and 7 f showed good DNA and BSA binding affinities using different spectroscopic techniques. Furthermore, molecular docking for 7 e and 7 f was performed to anticipate their binding capabilities toward various proteins (Bcl2, CDH1 and BSA). The docking results were well correlated with those of experimental results. Additionally, density functional theory and ADMET study were performed to evaluate the molecular and pharmacokinetic features of 7 e and 7 f, respectively. Thus, this work reveals promising antitumor lead compounds that merit future research and activity enhancement.
Collapse
Affiliation(s)
- Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Fatma G Mohamed
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hadeer M Diab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science, Technology and innovation, 12578-, Giza, Egypt
| | - Ahmed H M Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Marwa H Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
47
|
Doğan K, Ünal Taş D, Persil Çetinkol Ö, Forough M. Fluorometric and colorimetric platforms for rapid and sensitive hydroxychloroquine detection in aqueous samples. Talanta 2024; 270:125523. [PMID: 38101033 DOI: 10.1016/j.talanta.2023.125523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The detection of pharmaceuticals has been an active area of research with numerous application areas ranging from therapeutic and environmental monitoring to pharmaceutical manufacturing and diagnostics. And, the emergence of COVID-19 pandemic has increased the demand for detection of certain active pharmaceutical ingredients such as Hydroxychloroquine (HCQ) mainly due to their increased manufacturing and usage. In this study, we present two optical, fluorometric and colorimetric, detection platforms for the rapid and sensitive detection of HCQ. These platforms take advantage of the interactions between the highly fluorescent dye Thioflavin T (ThT) and Tel24 G-quadruplex (G4) DNA structure, as well as the salt-induced aggregation behavior of negatively charged citrate-capped silver nanoparticles (Cit-AgNPs) in the presence of HCQ. In the fluorometric method, the addition of HCQ led to a significant and rapid decrease in the fluorescence signal of the ThT + Tel24 probe. In the colorimetric method, HCQ induced the aggregation of Cit-AgNPs in the presence of NaCl, resulting in a noticeable color change from yellowish-gray to colorless. Under the optimized conditions, the colorimetric platform exhibited a linear range of 18.0-240.0 nM and a detection limit of 9.2 nM, while the fluorometric platform showed a linear range of 0.24-5.17 μM and a detection limit of 120 nM. The selectivity of the proposed optical methods towards the target analyte was demonstrated by evaluating the response to other structurally similar small molecules. Finally, the practical applicability of both detection systems was confirmed by analyzing HCQ-spiked human urine samples that yielded average recoveries ranging from 75.4 to 110.2 % for the fluorometric platform and 86.9-98.2 % for the colorimetric platform. These results indicate the potential of the developed methods for HCQ detection in complex matrices.
Collapse
Affiliation(s)
- Kübra Doğan
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Dilek Ünal Taş
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Özgül Persil Çetinkol
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey.
| |
Collapse
|
48
|
Li Y, Li Z, Yun P, Sun D, Niu Y, Yao B, Wang K. Studying the Effects and Competitive Mechanisms of YOYO-1 on the Binding Characteristics of DOX and DNA Molecules Based on Surface-Enhanced Raman Spectroscopy and Molecular Docking Techniques. Int J Mol Sci 2024; 25:3804. [PMID: 38612614 PMCID: PMC11011392 DOI: 10.3390/ijms25073804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Revealing the interaction mechanisms between anticancer drugs and target DNA molecules at the single-molecule level is a hot research topic in the interdisciplinary fields of biophysical chemistry and pharmaceutical engineering. When fluorescence imaging technology is employed to carry out this kind of research, a knotty problem due to fluorescent dye molecules and drug molecules acting on a DNA molecule simultaneously is encountered. In this paper, based on self-made novel solid active substrates NpAA/(ZnO-ZnCl2)/AuNPs, we use a surface-enhanced Raman spectroscopy method, inverted fluorescence microscope technology, and a molecular docking method to investigate the action of the fluorescent dye YOYO-1 and the drug DOX on calf thymus DNA (ctDNA) molecules and the influencing effects and competitive relationships of YOYO-1 on the binding properties of the ctDNA-DOX complex. The interaction sites and modes of action between the YOYO-1 and the ctDNA-DOX complex are systematically examined, and the DOX with the ctDNA-YOYO-1 are compared, and the impact of YOYO-1 on the stability of the ctDNA-DOX complex and the competitive mechanism between DOX and YOYO-1 acting with DNA molecules are elucidated. This study has helpful experimental guidance and a theoretical foundation to expound the mechanism of interaction between drugs and biomolecules at the single-molecule level.
Collapse
Affiliation(s)
- Yanjie Li
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China (D.S.)
| | - Zhiwei Li
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China (D.S.)
| | - Penglun Yun
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China (D.S.)
| | - Dan Sun
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China (D.S.)
| | - Yong Niu
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China (D.S.)
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
| | - Kaige Wang
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710127, China (D.S.)
| |
Collapse
|
49
|
Coşkun F, Yalçın E, Çavuşoğlu K. Metronidazole promotes oxidative stress and DNA fragmentation-mediated myocardial injury in albino mice. CHEMOSPHERE 2024; 352:141382. [PMID: 38331262 DOI: 10.1016/j.chemosphere.2024.141382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
The purpose of the present study was to investigate the cardiotoxic effects of Metronidazole (Mtz) in albino mice. The mice were divided into four experimental groups: Gp.I (control group): saline, Gp.II:125 mg/kg b.w Mtz, Gp.III:250 mg/kg b.w, Gp.IV:500 mg/kg b.w Mtz. Heart weight ratio, markers of cardiac injury, markers of oxidative stress, histopathological examinations, DNA fragmentation and spectral analysis were used to determine cardiotoxicity. Administration of 125-500 mg/kg Mtz caused an increase in heart weight and a decrease in body weight. Administration of 500 mg/kg Mtz increased heart weight by 35.5% and decreased body weight by 21.9% compared with control. Mtz-treated mice showed a significant increase in cardiac injury biomarkers and serious alterations in cardiac oxidative stress markers. Histopathological changes of cardiac tissues observed in mice treated with Mtz include myocardial hypertrophy, fibrosis, myocarditis, separation of the muscle fibers, congestion-narrowing in vessels, necrosis, myocardium-vacuolation, myocytolysis, myocyte degeneration, nuclear aggregation, cytoplasmic fragmentation and prevalent nuclei. Mtz treatment already resulted in a significant decrease in the percentage of head DNA and an increase in the percentage of tail DNA. The most striking tail formation among the Mtz-treated groups was observed in the group receiving 500 mg/kg Mtz. In the presence of Mtz, there was a hypochromic shift in the absorption spectrum of DNA, and the potential DNA-Mtz interaction was found to occur in the intercalation mode. These results show that Mtz used against anaerobic bacteria and protozoa in gastrointestinal infections can cause severe cardiotoxic findings in albino mice and cause fragmentation in DNA.
Collapse
Affiliation(s)
- Fatmanur Coşkun
- Department of Biology, Institute of Science, Giresun University, Giresun, Turkiye.
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkiye.
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkiye.
| |
Collapse
|
50
|
Navarro-Peñaloza R, Anacleto-Santos J, Rivera-Fernández N, Sánchez-Bartez F, Gracia-Mora I, Caballero AB, Gamez P, Barba-Behrens N. Anti-toxoplasma activity and DNA-binding of copper(II) and zinc(II) coordination compounds with 5-nitroimidazole-based ligands. J Biol Inorg Chem 2024; 29:33-49. [PMID: 38099935 PMCID: PMC11001709 DOI: 10.1007/s00775-023-02029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/14/2023] [Indexed: 04/10/2024]
Abstract
Tetrahedral copper(II) and zinc(II) coordination compounds from 5-nitroimidazole derivatives, viz. 1-(2-chloroethyl)-2-methyl-5-nitroimidazole (cenz) and ornidazole 1-(3-chloro-2-hydroxypropyl)-2-methyl-5-nitroimidazole (onz), were synthesized and spectroscopically characterized. Their molecular structures were determined by X-ray diffraction studies. The complexes [Cu(onz)2X2], [Zn(onz)2X2], [Cu(cenz)2X2] and [Zn(cenz)2X2] (X- = Cl, Br), are stable in solution and exhibit positive LogD7.4 values that are in the range for molecules capable of crossing the cell membrane via passive difussion. Their biological activity against Toxoplasma gondi was investigated, and IC50 and lethal dose (LD50) values were determined. The ornidazole copper(II) compounds showed very good antiparasitic activity in its tachyzoite morphology. The interaction of the coordination compounds with DNA was examined by circular dichroism, fluorescence (using intercalating ethidium bromide and minor groove binding Hoechst 33258) and UV-Vis spectroscopy. The copper(II) compounds interact with the minor groove of the biomolecule, whereas weaker electrostatic interactions take place with the zinc(II) compounds. The spectroscopic data achieved for the two series of complexes (namely with copper(II) and zinc(II) as metal center) agree with the respective DNA-damage features observed by gel electrophoresis.
Collapse
Affiliation(s)
- Rubí Navarro-Peñaloza
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Francisco Sánchez-Bartez
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Isabel Gracia-Mora
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica,, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica,, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Norah Barba-Behrens
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|