1
|
Han L, Zhai W. Mechanisms and preventive measures of ALDH2 in ischemia‑reperfusion injury: Ferroptosis as a novel target (Review). Mol Med Rep 2025; 31:105. [PMID: 40017132 DOI: 10.3892/mmr.2025.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Ischemia‑reperfusion injury (IRI) refers to tissue or organ damage that occurs following a period of inadequate blood supply (ischemia) followed by restoration of blood flow (reperfusion) within a short time frame. This phenomenon is prevalent in clinical conditions such as cardiovascular and cerebrovascular disease, organ transplantation and stroke. Despite its frequency, effective therapeutic strategies to mitigate IRI remain elusive in clinical practice, underscoring the need for a deeper understanding of its molecular mechanisms. Aldehyde dehydrogenase 2 (ALDH2), a key enzyme in alcohol metabolism, serves a role in alleviating oxidative stress and cell damage during IRI by modulating oxidative stress, decreasing apoptosis and inhibiting inflammatory responses. ALDH2 exerts protective effects by detoxifying reactive aldehydes, thereby preventing lipid peroxidation and maintaining cellular homeostasis. Furthermore, ferroptosis, a regulated form of cell death driven by iron accumulation and subsequent lipid peroxidation, is a key process in IRI. However, the precise role of ALDH2 in modulating ferroptosis during IRI remains incompletely understood. Although there is an interaction between ALDH2 activity and ferroptosis, the underlying mechanisms have yet to be clarified. The present review examines the role of ALDH2 and ferroptosis in IRI and the potential regulatory influence of ALDH2 on ferroptosis mechanisms, as well as potential targeting of ALDH2 and ferroptosis for IRI treatment and prevention. By elucidating the complex interplay between ALDH2 and ferroptosis, the present review aims to provide new insights for the development of innovative therapeutic strategies to mitigate ischemic tissue damage and improve clinical outcomes.
Collapse
Affiliation(s)
- Liang Han
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Wen Zhai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
2
|
Shen C, Zhang S, Di H, Wang S, Wang Y, Guan F. The Role of Triterpenoids in Gastric Ulcer: Mechanisms and Therapeutic Potentials. Int J Mol Sci 2025; 26:3237. [PMID: 40244034 PMCID: PMC11990034 DOI: 10.3390/ijms26073237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Gastric ulcer (GU) is a prevalent gastrointestinal disorder impacting millions worldwide, with complex pathogenic mechanisms that may progress to severe illnesses. Conventional therapies relying on anti-secretory agents and antibiotics are constrained by drug abuse and increased bacterial resistance, highlighting the urgent need for safer therapeutic alternatives. Natural medicinal compounds, particularly triterpenoids derived from plants and herbs, have gained significant attention in recent years due to their favorable efficacy and reduced toxicity profiles. Emerging evidence indicates that triterpenoids exhibit potent anti-ulcer properties across various experimental models, modulating key pathways involved in inflammation, oxidative stress, apoptosis, and mucosal protection. Integrating current knowledge of these bioactive compounds facilitates the development of natural triterpenoids, addresses challenges in their clinical translation, deepens mechanistic understanding of GU pathogenesis, and drives innovation of therapeutic strategies for GU. This review comprehensively evaluates the progress of research on triterpenoids in GU treatment since 2000, discussing their biological sources, structural characteristics, pharmacological activities, and mechanisms of action, the animal models employed in the studies, current limitations, and the challenges associated with their clinical application.
Collapse
Affiliation(s)
- Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Han Di
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
3
|
Li X, Wang J, Zhou J, Xiao H, Liu L, Zhang Z, Si J, Yang C, Wang M, Ye J, Sun G. Myristica fragrans water extract modulates multiple biological processes to pre-protect anhydrous ethanol-induced gastric ulcers via Akt/JNK/Nrf2 pathway activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119258. [PMID: 39708935 DOI: 10.1016/j.jep.2024.119258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myristica fragrans (Nutmeg) is a commonly used Chinese herbal medicine and edible spice. According to Pharmacopoeia of People's Republic of China, it has the effects of warming the middle and promoting qi, astringent intestines, and antidiarrheal. In the record of Compendium of Materia Medica, it is the myristica fragrans water extract (MFWE) that is utilized for therapeutic purposes of gastrointestinal disorders frequently. RESEARCH PURPOSE This study is to investigate the pharmacodynamic material foundation and molecular mechanism of myristica fragrans on gastric ulcers using UHPLC-Q-Orbitrap-MS/MS with network pharmacology and experimental verification. This may provide theoretical guidance for the clinical use of myristica fragrans, and support a theoretical foundation for its future advancement into natural functional products that can relieve acute gastric ulcers. MATERIALS AND METHODS Using UHPLC/MS technology and network pharmacology, we identified possible active chemicals molecules, screened out core targets and core pathways, and simulated drug target binding through molecular docking situations. Acute gastric ulcer was caused by intragastric administration of absolute ethanol (0.075 ml/10g). Myristica fragrans water extract (182 mg/kg and 364 mg/kg) was administered orally 14 days in advance. The same method was used to distribute 0.5% carboxymethyl cellulose solution into the Model and Control group. The mice were murdered on the 15th day. Following the sacrifice, the gastric tissue was removed for histological analysis. The tissue needs to detect levels of IL-1β, TNF-α, IL-10, and IL-6 as well as the activity of SOD, GSH-Px, MDA, and MPO. In addition, H&E staining and the TUNEL method were used to observe the effect on the gastric mucosa of mice. Western blot was used to detect apoptosis, ferroptosis, and antioxidation-related proteins. RESULTS A total of 10 chemical constituents were identified from MFWE using UHPLC-Q-Orbitrap MS/MS and TCMSP database. Through the network pharmacological analysis of these identified components, it was discovered that the protective effect is mainly carried out by six compounds, they are: Myristicin, Myrisligna, Ferulaldehyde, Dehydrodiisoeugenol, 7-Methoxy-4-methylcoumarin, 1,5-Bis(2,5-dimethoxyphenyl) pentane-1,5-dione. Furthermore, MFWE was found to significantly reduce TNF-α, IL-1β, and IL-6, increase IL-10, and alleviate the inflammation caused by alcoholic gastric ulcers. It can lower MDA and MPO, raise SOD and GSH-Px to relieve oxidative stress. Results from network pharmacology indicated that the Akt, JNK, and apoptosis signaling pathways were essential for the therapeutic effects of MFWE on gastric ulcers. Further literature research revealed that Nrf2 and ferroptosis signaling pathways may be related to the role of MFWE. Molecular biology studies confirmed that MFWE decreased the expression levels of p-Akt/Akt, p-JNK/JNK, Bax, and Keap-1, and increased the expression levels of Bcl-2, Nrf2, HO-1, SLC7A11, GPX4, FTH1. CONCLUSION This study demonstrates that MFWE can alleviate inflammatory responses and diminish both cellular apoptosis and ferroptosis. they confer a protective effect on gastric ulcers via the activation of the Akt/JNK-Keap1-Nrf2-HO-1 signaling pathway and offer a promising therapeutic strategy.
Collapse
Affiliation(s)
- Xinzhong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China; NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, China.
| | - Junchi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Jiahui Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China; NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, China.
| | - Haiyan Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China; NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, China.
| | - Lina Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China.
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Jianyong Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Chengmin Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Ming Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China; NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, China.
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China; NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, China; NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, China.
| |
Collapse
|
4
|
Hagen SJ. Gastroduodenal injury and repair mechanisms. Curr Opin Gastroenterol 2024; 40:477-483. [PMID: 38935320 DOI: 10.1097/mog.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Although the mucosal barrier serves as a primary interface between the environment and host, little is known about the repair of acute, superficial lesions or deeper, persistent lesions that if not healed, can be the site of increased permeability to luminal antigens, inflammation, and/or neoplasia development. RECENT FINDINGS Studies on acute superficial lesions have been sparse in the past year, with more focus given to novel mechanisms of mucosal protection, and the way in which mature epithelial cells or committed stem cells dedifferentiate, reprogram, proliferate, and then regenerate the gastroduodenal mucosa after injury. For this, adenoviral therapy showed organ specific targeting with mRNA and protein expression of effectors to protect against mucosal injury and ulceration. A large database of plant-based agents known to protect against injury and ulceration was published, along with studies using plant-based compounds delivered with alginates, polysaccharide/gel floating rafts, or incorporated into nanoparticles or green carbon dots to improve targeting and retention at the ulcerated lesion. With RNA technology developing rapidly, particularly single-cell RNA sequencing, important and novel data was forthcoming on mucosal regeneration. In particular, the role of interleukin-17 hub proteins in mucosal healing was highlighted. The presence and role of injury reserve cells was determined, as was the composition of ligand gradients for cell differentiation in both stomach and duodenum. The role of amphiregulin in parietal cell differentiation from lineage-restricted stem cells and the Yap1 gene signature in metaplasia vs. healing ulcers were of particular importance. Additionally, studies unveiled the important role of mesenchymal stromal cells in differentiation and repair mechanisms, in Muse cells as an exciting new therapy for mucosal repair after injury, and the role of sympathetic neurons in activating the immune system to regulate mucosal repair mechanisms. SUMMARY Recent studies highlight novel mechanisms that promote mucosal regeneration after injury of the gastroduodenal mucosa.
Collapse
Affiliation(s)
- Susan J Hagen
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Hu Q, Chen Y, Zhang W, Li Y, Deng X, Chen L, Zhou Z, Ma X, Zeng J, Zhao Y. Dehydroevodiamine targeting IKKβ to alleviate acute gastric injury via inhibiting the p65/NLRP3 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155963. [PMID: 39241388 DOI: 10.1016/j.phymed.2024.155963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Acute gastric injury, a common and recurring global digestive disorder, significantly impairs patient quality of life and overall health. Dehydroevodiamine (DHE), a bioactive natural product derived from Tetradium ruticarpum (A. Juss.) Hartley, shows potential therapeutic effects on acute gastric injury. This study investigates the underlying mechanisms of DHE's alleviating effects on acute gastric injury. METHODS The gastric mucosal protective effect of DHE was confirmed through in vivo and in vitro acute gastric injury models. Biotin pulldown MS and molecular dynamics simulations identified DHE's target. CETSA and SPR assays validated DHE's affinity for IKKβ. Protein site mutation validation and MST pinpointed the direct binding sites of DHE on IKKβ. Additionally, the potential mechanism by which DHE ameliorates acute gastric injury was elucidated using WB, IHC, and IF methods, and further confirmed by rescue experiments. RESULTS DHE effectively ameliorated IDO-induced gastric injury in GES-1 cells and rat gastric mucosa, both in vitro and in vivo. Biotin pulldown MS identified IKKβ as the target of DHE in alleviating gastric injury. CETSA and SPR assays confirmed DHE's direct binding to IKKβ. Molecular dynamics simulations, protein mutation experiments, and MST results pinpointed GLU-149, GLU-49, and ASP-103 in the ATP-binding pocket as the binding sites of DHE on IKKβ. Notably, DHE was found to competitively bind to IKKβ with ATP. Mechanistically, DHE attenuated IDO-induced gastric injury by inhibiting the IKKβ-p65/NLRP3 signaling pathway. Importantly, exogenous activation of IKKβ reversed the therapeutic effect of DHE, indicating that DHE's efficacy depends on IKKβ. CONCLUSION DHE attenuated IDO-induced gastric injury by inhibiting the IKKβ-p65/NLRP3 signaling pathway. Notably, DHE is a novel ATP-competitive IKKβ inhibitor that prevents phosphorylation by targeting GLU-149, GLU-49, and ASP-103 in the ATP-binding pocket. This study reveals new targets of action for DHE, providing a new molecular basis for using DHE in treating inflammation-related diseases.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lisheng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| | - Zongyuan Zhou
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu , China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Zhang W, Yu W, Zhu Y, Gu J, Gu X. Alda-1 Ameliorates Oxidative Stress-Induced Cardiomyocyte Damage by Inhibiting the Mitochondrial ROS/TXNIP/NLRP3 Pathway. J Biochem Mol Toxicol 2024; 38:e70032. [PMID: 39467157 DOI: 10.1002/jbt.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Alda-1 functions as an agonist of aldehyde dehydrogenase (ALDH2) within the mitochondria, contributing to the preservation of mitochondrial structure and function. This study aimed to determine whether Alda-1 inhibited the accumulation of mitochondrial reactive oxygen species (mtROS) and improved cardiomyocyte damage under oxidative stress. Cardiomyocytes derived from human induced pluripotent embryonic stem cells (iPSC-CMs) and human AC16 cardiomyocytes were chosen for the experiments. Oxidative stress was induced in both cardiomyocyte types using hydrogen peroxide (H2O2), a commonly employed agent. The mtROS accumulation and mitochondrial functional status were assessed by measuring the ROS content, mitochondrial membrane potential, and mitochondrial respiratory chain function. Co-IP experiments were used to analyze whether mtROS promoted protein interactions between TXNIP and NLRP3 and induced NLRP3 inflammasome activation. The results showed that Alda-1 mitigated damage to mitochondrial structure and function under oxidative stress, concurrently reducing the accumulation of mtROS. Co-IP experiments revealed that elevated mtROS levels attenuated the protein interaction between TXNIP and TRX while intensifying the interaction between TXNIP and NLRP3. Consequently, this triggers activation of the NLRP3 inflammasome, leading to cardiomyocyte damage. In contrast, TXNIP knockdown inhibited H2O2-induced myocardial injury and enhanced the therapeutic effects of Alda-1. Collectively, the results show that, in an H2O2 environment, Alda-1 increased the production of ALDH2 activity in cardiomyocytes, hindered the production of mtROS, disrupted the interaction between TXNIP and NLRP3, and alleviated myocardial damage during oxidative stress.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Medicine College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Yu
- Department of Cardiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Ye Zhu
- Medicine College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Gu
- Department of Cardiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang Gu
- Department of Cardiology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
- Medicine College of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Chen J, Hu C, Lu X, Yang X, Zhu M, Ma X, Yang Y. ALDH2 alleviates inflammation and facilitates osteogenic differentiation of periodontal ligament stem cells in periodontitis by blocking ferroptosis via activating Nrf2. Funct Integr Genomics 2024; 24:184. [PMID: 39370484 DOI: 10.1007/s10142-024-01465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
This paper elucidated the effects and mechanisms of aldehyde dehydrogenase 2 (ALDH2) on periodontitis. Rat model of periodontitis and periodontal ligament stem cell (PDLSC) model of periodontitis were constructed. PDLSC were transfected by ALDH2 overexpression vectors, and then treated by ML385 (Nrf2 inhibitor), ferrostatin-1 (ferroptosis inhibitor) and FIN56 (ferroptosis inducer), respectively. ALDH2, nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4) proteins was evaluated by immunohistochemistry and Western blot. Ferroptosis-related factors, including Fe2+ and glutathione (GSH), were assessed by commercial kits. Pro-inflammatory factors (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) and osteogenic differentiation-related proteins (osteocalcin [OCN] and runt-related transcription factor 2 [RUNX2]) were scrutinized by commercial kits and Western blot. In both periodontal tissues of periodontitis rats and PDLSC model of periodontitis, down-regulated ALDH2, Nrf2, GPX4 and GSH, but elevated Fe2+ level was discovered. ALDH2 overexpression in PDLSC resulted in an increase in Nrf2 expression. In PDLSC model of periodontitis, ALDH2 increased GPX4 and GSH levels, decreased Fe2+, IL-6 and TNF-α levels, and elevated OCN and RUNX2 expression. However, these effects of ALDH2 were counteracted by ML385. Additionally, the suppression of ALDH2 on IL-6 and TNF-α levels and promotion of it on OCN and RUNX2 expression in PDLSC model of periodontitis was further intensified by ferrostatin-1, but reversed by FIN56. ALDH2 may alleviate inflammation and facilitate osteogenic differentiation of PDLSC in periodontitis by hindering ferroptosis via activating Nrf2, suggesting it to be a promising candidate for treating periodontitis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Chen Hu
- Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaoqin Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Meng Zhu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaozhou Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
8
|
Meng X, Liu J, Kang J, Wang M, Guan Z, Tian D, Chen X. Lamivudine protects mice from gastric ulcer by activating PGK1 to suppress ferroptosis. Biochem Pharmacol 2024; 227:116440. [PMID: 39029631 DOI: 10.1016/j.bcp.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Gastric ulcer is a highly prevalent digestive tract disease across the world, which is recurrent and hard to cure, sometimes transforming into gastric cancer if left untreated, posing great threat to human health. To develop new medicines for gastric ulcer, we ran a series of screens with ethanol stress model in GES-1 cells, and we uncovered that lamivudine rescued cells from ethanol toxicity. Then, we confirmed this discovery using the well-established ethanol-induced gastric ulcer model in mice and our findings suggest that lamivudine can directly activate phosphoglycerate kinase 1 (PGK1, EC 2.7.2.3), which binds and stimulates superoxide dismutase 1 (SOD1, EC 1.15.1.1) to inhibit ferroptosis and ultimately improve gastric ulcer. Moreover, AAV-PGK1 exhibited comparable gastroprotective effects to lamivudine. The findings are expected to offer novel therapeutic strategies for gastric ulcer, encompassing both lamivudine and AAV-PGK1.
Collapse
Affiliation(s)
- Xinrui Meng
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Jingjing Liu
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Jia Kang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Menghan Wang
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Zhanghui Guan
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Dong Tian
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China
| | - Xinping Chen
- Department of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Putian 351152, PR China.
| |
Collapse
|
9
|
El-Kerdasy HI, Faruk EM, Hassan DAA, Nafea OE, Ibrahim F, Bagabir RA, Anwer HM, Allam AM. Rosuvastatin repurposing for prophylaxis against ethanol-induced acute gastric ulceration in rats: a biochemical, histological, and ultrastructural perspective. Inflammopharmacology 2024:10.1007/s10787-024-01513-z. [PMID: 39044068 DOI: 10.1007/s10787-024-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024]
Abstract
Ethanol (EtOH) consumption is frequently associated with acute and chronic gastrointestinal disorders. Rosuvastatin (RSV), a third-generation statin, has demonstrated certain biological functions beyond its lipid-lowering properties. This study is designed to explore the gastroprotective impact of RSV in a rat model of EtOH-induced gastric ulceration in a dose-dependent manner through the evaluation of oxidant/antioxidant biomarkers, inflammatory myeloperoxidase (MPO) enzyme activity, and prostaglandin E2 (PGE2) levels in gastric tissues, along with histopathological examination of the gastric tissues. Therefore, 40 adult male rats were randomly divided into five equal groups as control, EtOH (gastric ulcer), RSV-low dose plus EtOH and RSV-high dose plus EtOH. The EtOH rat model of gastric ulceration was achieved by intragastric administration of a single dose of EtOH. Seven days before EtOH administration, rats were orally administered either omeprazole (20 mg/kg/day) or RSV (10 mg/kg/day or 20 mg/kg/day). RSV administration enhanced the antioxidant glutathione reduced, countered oxidative malondialdehyde, augmented cytoprotective PGE2, suppressed inflammatory MPO enzyme activity in gastric tissues, decreased ulcer index scoring, increased the percentage of ulcer inhibition, and reversed the associated histological and ultrastructural abnormalities, additionally, RSV treatment resulted in weak positive nuclear staining for the inflammatory nuclear factor kappa B in a dose-dependent manner. It is concluded that RSV demonstrates gastroprotective potential, attributable at least in part, to its antioxidant and anti-inflammatory properties, as well as its ability to promote ulcer protection through the maintenance of mucosal content and PGE2 levels. Thus, RSV therapy emerges as a safe option for patients with gastric ulcers.
Collapse
Affiliation(s)
- Hanan I El-Kerdasy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Eman Mohamed Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, 24230, Makkah, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Dina Allam Abdelmaksoud Hassan
- Department of Histology and Cell Biology, Faculty of Medicine for Girls (AFMG), Al-Azhar University, Nasr CityCairo, 11884, Egypt
| | - Ola Elsayed Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Fatma Ibrahim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rania Abubaker Bagabir
- Hematology and Immunology Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hala Magdy Anwer
- Physiology Department, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Amany M Allam
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| |
Collapse
|
10
|
Arabacı Tamer S, Eskiler GG, Ercan F. Gastroprotective effect of vanillic acid against ethanol-induced gastric injury in rats: involvement of the NF-κB signalling and anti-apoptosis role. Mol Biol Rep 2024; 51:744. [PMID: 38874632 DOI: 10.1007/s11033-024-09672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Vanillic acid (VA; 4-hydroxy-3-methoxybenzoic acid) is a flavouring agent found in various natural sources such as olives, fruits, and green tea. While VA exhibits numerous pharmacological effects, its potential protective effects against gastric injury warrants further investigation. Therefore, the primary objective of this study is to elucidate investigate the gastroprotective properties of VA against ethanol-induced gastric injury. METHODS AND RESULTS Rats were orally administered either saline or VA at different doses (50, 100, and 200 mg/kg/day), with omeprazole (20 mg/kg) serving as a positive control, for fourteen consecutive days before ethanol administration. Blood and gastric tissue samples were collected one hour after ethanol administration for biochemical, molecular, and histological analyses. Pre-treatment with VA before ulcer induction alleviated both macroscopic and microscopic damage. It also increased antioxidant glutathione levels and decreased malondialdehyde and myeloperoxidase activity, along with reducing inflammatory markers such as tumour necrosis factor (TNF)-α, interleukin (IL)-6, and nuclear factor kappa B (NF-κB). Additionally, VA pre-treatment reversed the elevation of Bax mRNA expression and gastric caspase-3 levels induced by gastric damage. It also mitigated the reduction in Bcl-2 mRNA expression. CONCLUSION These findings suggest that VA exerts protective effects against ethanol-induced gastric injury in rats. It achieves this by augmenting gastric antioxidant capacity and mitigating oxidative, inflammatory, and apoptotic damage.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- School of Medicine, Department of Physiology, Sakarya University, Korucuk Mah. Konuralp Bulvarı No: 81/1 Korucuk Kampüsü, Adapazarı Sakarya, 54100, Türkiye.
| | - Gamze Güney Eskiler
- School of Medicine, Department of Medical Biology, Sakarya University, Sakarya, Türkiye
| | - Feriha Ercan
- School of Medicine, Department of Histology and Embryology, Marmara University, İstanbul, Türkiye
| |
Collapse
|
11
|
Zhang W, Song Q, Bi X, Cui W, Fang C, Gao J, Li J, Wang X, Qu K, Qin X, An X, Zhang C, Zhang X, Yan F, Wu G. Preparation of Pueraria lobata Root-Derived Exosome-Like Nanovesicles and Evaluation of Their Effects on Mitigating Alcoholic Intoxication and Promoting Alcohol Metabolism in Mice. Int J Nanomedicine 2024; 19:4907-4921. [PMID: 38828197 PMCID: PMC11141763 DOI: 10.2147/ijn.s462602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Pueraria lobata (P. lobata), a dual-purpose food and medicine, displays limited efficacy in alcohol detoxification and liver protection, with previous research primarily focused on puerarin in its dried roots. In this study, we investigated the potential effects and mechanisms of fresh P. lobata root-derived exosome-like nanovesicles (P-ELNs) for mitigating alcoholic intoxication, promoting alcohol metabolism effects and protecting the liver in C57BL/6J mice. Methods We isolated P-ELNs from fresh P. lobata root using differential centrifugation and characterized them via transmission electron microscopy, nanoscale particle sizing, ζ potential analysis, and biochemical assays. In Acute Alcoholism (AAI) mice pre-treated with P-ELNs, we evaluated their effects on the timing and duration of the loss of the righting reflex (LORR), liver alcohol metabolism enzymes activity, liver and serum alcohol content, and ferroptosis-related markers. Results P-ELNs, enriched in proteins, lipids, and small RNAs, exhibited an ideal size (150.7 ± 82.8 nm) and negative surface charge (-31 mV). Pre-treatment with 10 mg/(kg.bw) P-ELNs in both male and female mice significantly prolonged ebriety time, shortened sobriety time, enhanced acetaldehyde dehydrogenase (ALDH) activity while concurrently inhibited alcohol dehydrogenase (ADH) activity, and reduced alcohol content in the liver and serum. Notably, P-ELNs demonstrated more efficacy compared to P-ELNs supernatant fluid (abundant puerarin content), suggesting alternative active components beyond puerarin. Additionally, P-ELNs prevented ferroptosis by inhibiting the reduction of glutathione peroxidase 4 (GPX4) and reduced glutathione (GSH), and suppressing acyl-CoA synthetase long-chain family member 4 (ACSL4) elevation, thereby mitigating pathological liver lipid accumulation. Conclusion P-ELNs exhibit distinct exosomal characteristics and effectively alleviate alcoholic intoxication, improve alcohol metabolism, suppress ferroptosis, and protect the liver from alcoholic injury. Consequently, P-ELNs hold promise as a therapeutic agent for detoxification, sobriety promotion, and prevention of alcoholic liver injury.
Collapse
Affiliation(s)
- Wenjin Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Qiang Song
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xiaofei Bi
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Wei Cui
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Chengmei Fang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Jianya Gao
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Jinan Li
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xiang Wang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Kai Qu
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xian Qin
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xuan An
- Department of Hepatology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Cheng Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Xianxiang Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People’s Hospital, Chengdu, People’s Republic of China
| | - Guicheng Wu
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- Department of Hepatology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
- School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
12
|
Chen J, Luo J, Su D, Lu N, Zhao J, Luo Z. A Rapid Self-Assembling Peptide Hydrogel for Delivery of TFF3 to Promote Gastric Mucosal Injury Repair. Molecules 2024; 29:1944. [PMID: 38731435 PMCID: PMC11085398 DOI: 10.3390/molecules29091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Self-assembled peptide-based nanobiomaterials exhibit promising prospects for drug delivery applications owing to their commendable biocompatibility and biodegradability, facile tissue uptake and utilization, and minimal or negligible unexpected toxicity. TFF3 is an active peptide autonomously secreted by gastric mucosal cells, possessing multiple biological functions. It acts on the surface of the gastric mucosa, facilitating the repair process of gastric mucosal damage. However, when used as a drug, TFF3 faces significant challenges, including short retention time in the gastric mucosal cavity and deactivation due to degradation by stomach acid. In response to this challenge, we developed a self-assembled short peptide hydrogel, Rqdl10, designed as a delivery vehicle for TFF3. Our investigation encompasses an assessment of its properties, biocompatibility, controlled release of TFF3, and the mechanism underlying the promotion of gastric mucosal injury repair. Congo red/aniline blue staining revealed that Rqdl10 promptly self-assembled in PBS, forming hydrogels. Circular dichroism spectra indicated the presence of a stable β-sheet secondary structure in the Rqdl10 hydrogel. Cryo-scanning electron microscopy and atomic force microscopy observations demonstrated that the Rqdl10 formed vesicle-like structures in the PBS, which were interconnected to construct a three-dimensional nanostructure. Moreover, the Rqdl10 hydrogel exhibited outstanding biocompatibility and could sustainably and slowly release TFF3. The utilization of the Rqdl10 hydrogel as a carrier for TFF3 substantially augmented its proliferative and migratory capabilities, while concurrently bolstering its anti-inflammatory and anti-apoptotic attributes following gastric mucosal injury. Our findings underscore the immense potential of the self-assembled peptide hydrogel Rqdl10 for biomedical applications, promising significant contributions to healthcare science.
Collapse
Affiliation(s)
- Jialei Chen
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Jing Luo
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing 400016, China;
| | - Di Su
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Na Lu
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Jiawei Zhao
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| | - Zhongli Luo
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (J.C.); (D.S.); (N.L.); (J.Z.)
| |
Collapse
|
13
|
Mohamed AO, Abd-Elghaffar SK, Mousa RA, Kamel AA. Aloe vera gel confers therapeutic effect by reducing pyroptosis in ethanol-induced gastric ulcer rat model: Role of NLRP3/GSDMD signaling pathway. Mol Biol Rep 2024; 51:401. [PMID: 38457071 PMCID: PMC10923956 DOI: 10.1007/s11033-024-09329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Gastric ulcer (GU) is a common gastrointestinal tract illness. Aloe vera has anti-inflammatory, antioxidant, and healing characteristics. This research sought to explore the therapeutic impact of Aloe vera gel on ethanol-provoked GU in rats and to elucidate the underlying mechanisms involved. METHODS An ethanol-induced GU rat model was constructed using forty male Wistar rats distributed at random into four groups: control, ulcer, pantoprazole, and Aloe vera. Gross evaluation of the stomach, ulcer index (UI), inhibition index, and gastric pH estimation were analyzed. Gastric malondialdehyde (MDA) and reduced glutathione (GSH) were determined using the spectrophotometric method, and serum gastrin level was measured by an enzyme-linked immunosorbent assay. Gastric nucleotide-binding domain, leucine-rich repeat, and pyrin domain PYD containing protein 3 (NLRP3) and gasdermin D (GSDMD) mRNA expression levels were estimated by quantitative real-time PCR. Finally, the histopathological examination of the glandular part of stomach tissue was done. RESULTS The ulcer group revealed a significant increase in MDA, gastrin, NLRP3, and GSDMD and a decrease in gastric pH and GSH compared to the control group. Gross investigations of the ulcer group revealed a hemorrhagic lesion in the stomach and an increase in UI. Also, histopathological results for this group showed severe epithelial loss, haemorrhage, inflammatory cell infiltration, and blood vessel congestion. However, Aloe vera treatment improved the gross, biochemical, molecular, and histopathological alterations induced by ethanol when compared to the ulcer group. CONCLUSIONS Aloe vera exerted antiulcer activities through modulation of oxidant/antioxidant status, anti-secretory properties, and mitigation of pyroptosis.
Collapse
Affiliation(s)
- Amany O Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sary Kh Abd-Elghaffar
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- School of Veterinary Medicine, Badr University, Assiut, Egypt
| | - Rehab A Mousa
- Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
14
|
Hagen SJ. Pathophysiology updates: gastroduodenal injury and repair mechanisms. Curr Opin Gastroenterol 2023; 39:512-516. [PMID: 37678191 PMCID: PMC10592096 DOI: 10.1097/mog.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW Although the mucosal barrier serves as a primary interface between the environment and host, little is known about the repair of acute, superficial lesions or deeper, persistent lesions that if not healed, can be the site of increased permeability to luminal antigens, inflammation, and/or neoplasia development. RECENT FINDINGS Recent studies on acute superficial lesions have focused on calcium signaling and focal adhesion kinase, which regulate cell migration and controlled matrix adhesion during restitution. Microfluidic organ-on-a-chip and gut-on-a-chip models continued in development to support reductionist studies of epithelial-bacterial and/or epithelial-immune cell interactions during mucosal barrier disruption. In fact, these models may allow personalized medicine studies in the future using patient-derived cells to evaluate injury and repair mechanisms. Work done in the past year evaluated the safety and efficacy of acid blocking drugs on ulcer healing, with new animal studies providing evidence that each drug affects the microbiome in a different way that can be correlated with its efficacy in ulcer healing. Lastly, work to understand the way in which mature epithelial cells or committed stem cells dedifferentiate, reprogram, proliferate, and then regenerate the gastroduodenal mucosa after injury was a major focus of studies in the past year. SUMMARY Recent studies highlight novel mechanisms that promote restitution and mucosal regeneration after injury of the gastroduodenal mucosa.
Collapse
Affiliation(s)
- Susan J Hagen
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Yang Y, Liang Q, Chen Y, Cao Y, Zhuo Q, Liu B, Wang S. Aldehyde dehydrogenase 2 gene rs671 G>A polymorphism is associated with an increased risk of digestive tract cancer. J Int Med Res 2023; 51:3000605231206257. [PMID: 37871625 PMCID: PMC10594971 DOI: 10.1177/03000605231206257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE Acetaldehyde can accumulate in cells and form acetaldehyde-DNA adducts that result in digestive tract cancer development. Acetaldehyde dehydrogenase 2 (ALDH2) enzymatic activity is involved in this process. Here, we aimed to analyze the relationship between an ALDH2 gene polymorphism and the digestive tract cancer risk in the Hakka population in China. METHODS This was a retrospective study, with the ALDH2 rs671 genotype and medical record information collected from all subjects. The relationships between these factors, including various blood cell parameters, and digestive tract cancer susceptibility were analyzed. RESULTS Overall, 307 cancer patients and 317 controls were included. The cancer patients had significantly higher percentages with a history of smoking and drinking alcohol, as well as an increased platelet to lymphocyte ratio and lower lymphocyte to monocyte ratio, compared with the controls. The ALDH2 rs671 genotype and allele distributions were significantly different between the cancer patients and controls. Logistic regression analysis showed that the ALDH2 G/A genotype (G/A vs. G/G) and A/A genotype (A/A vs. G/G) in the co-dominant mode were risk factors for digestive tract cancer susceptibility. CONCLUSIONS ALDH2 rs671 G/A or A/A genotype carriers may have an increased risk of developing digestive tract cancers among the Hakka people.
Collapse
Affiliation(s)
- Yang Yang
- Department of Gastroenterology, Meizhou People's Hospital, Meizhou, China
| | - Qun Liang
- Department of Gastroenterology, Meizhou People's Hospital, Meizhou, China
| | - Yijin Chen
- Department of Gastroenterology, Meizhou People's Hospital, Meizhou, China
| | - Yu Cao
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Meizhou, China
| | - Qingqing Zhuo
- Department of Gastroenterology, Meizhou People's Hospital, Meizhou, China
| | - Boying Liu
- Department of Gastroenterology, Meizhou People's Hospital, Meizhou, China
| | - Shengbing Wang
- Department of Gastroenterology, Meizhou People's Hospital, Meizhou, China
| |
Collapse
|