1
|
Said TO, Ragab S, El Sikaily A, Arshad M, Hassaan MA, Yılmaz M, El Nemr A. Characterization and health risk assessment of n-alkanes and PAHs in sediments from Shalateen (Halayeb Triangle), Egyptian Red Sea Coast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125203. [PMID: 39481522 DOI: 10.1016/j.envpol.2024.125203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
In this paper, the concentrations, origins, and carcinogenic potential of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) collected from Shalateen sediments (Sh), Red Sea, Egypt were discussed. Individual n-alkanes has fluctuated from a minimum of 17.7 μg/g dw recorded for C-9 at Sh-54 to a maximum of 2.02 × 104 μg/g dw recorded for C-12 at Sh-B1. Total n-alkanes have fluctuated from 252-1.41 × 104 μg/g with a mean of 4.84 × 104 μg/g dw. C-12 had the highest average value, and C-19 had the lowest. The total ΣPAH concentrations in sediments from Shalateen as determined by gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) ranged from 43.2 to 270 ng/g dw (averaging 95.2 ng/g dw). Carbon preference index (CPI) values were <1, consistent with the prevalence of even-C alkanes vs. the odd-C homologues. High molecular weight (HMW) PAHs were the most abundant substances affecting the collected samples. The cancer risk ranged from 2.25 × 10-5 to 4.78 × 10-2, indicating a moderate cancer risk associated with PAHs. The primary sources of PAHs in sediments included emissions from burning gasoline and diesel, biomass, and natural gas. The current study is considered one of the most important and unique with regard to the amounts and distributions of n-alkanes and PAHs in sediments along the coasts of Shalateen. It is the first baseline data documentation (GC MS/MS approach) of n-alkanes and PAHs in the Shalateen region.
Collapse
Affiliation(s)
- Tarek O Said
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| | - Amany El Sikaily
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| | - Murat Yılmaz
- Osmaniye Korkut Ata University, Bahçe Vocational School, Department of Chemistry and Chemical Processing Technologies, Osmaniye, 80000, Turkiye.
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
2
|
Tsiodra I, Grivas G, Bougiatioti A, Tavernaraki K, Parinos C, Paraskevopoulou D, Papoutsidaki K, Tsagkaraki M, Kozonaki FA, Oikonomou K, Nenes A, Mihalopoulos N. Source apportionment of particle-bound polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and their associated long-term health risks in a major European city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175416. [PMID: 39142411 DOI: 10.1016/j.scitotenv.2024.175416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Many studies have drawn attention to the associations of oxygenated polycyclic aromatic hydrocarbons (OPAHs) with harmful health effects, advocating for their systematic monitoring alongside simple PAHs to better understand the aerosol carcinogenic potential in urban areas. To address this need, this study conducted an extensive PM2.5 sampling campaign in Athens, Greece, at the Thissio Supersite of the National Observatory of Athens, from December 2018 to July 2021, aiming to characterize the levels and variability of polycyclic aromatic compounds (PACs), perform source apportionment, and assess health risk. Cumulative OPAH concentrations (Σ-OPAHs) were in the same range as Σ-PAHs (annual average 4.2 and 5.6 ng m-3, respectively). They exhibited a common seasonal profile with enhanced levels during the heating seasons, primarily attributed to residential wood burning (RWB). The episodic impact of biomass burning was also observed during a peri-urban wildfire event in May 2021, when PAH and OPAH concentrations increased by a factor of three compared to the monthly average. The study period also included the winter 2020-2021 COVID-19 lockdown, during which PAH and OPAH levels decreased by >50 % compared to past winters. Positive matrix factorization (PMF) source apportionment, based on a carbonaceous aerosol speciation dataset, identified PAC sources related to RWB, local traffic (gasoline vehicles) and urban traffic (including diesel emissions), as well as an impact of regional organic aerosol. Despite its seasonal character, RWB accounted for nearly half of Σ-PAH and over two-thirds of Σ-OPAH concentrations. Using the estimated source profiles and contributions, the source-specific carcinogenic potency of the studied PACs was calculated, revealing that almost 50 % was related to RWB. These findings underscore the urgent need to regulate domestic biomass burning at a European level, which can provide concrete benefits for improving urban air quality, towards the new stricter EU standards, and reducing long-term health effects.
Collapse
Affiliation(s)
- Irini Tsiodra
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Georgios Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Aikaterini Bougiatioti
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece
| | - Kalliopi Tavernaraki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Constantine Parinos
- Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece
| | - Despina Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Kyriaki Papoutsidaki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Maria Tsagkaraki
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | - Faidra-Aikaterini Kozonaki
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece
| | | | - Athanasios Nenes
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece; Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Nikolaos Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Lofos Koufou, P. Penteli, Athens, 15236, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Heraklion, 71003, Greece.
| |
Collapse
|
3
|
Nsonwu-Anyanwu AC, Helal M, Khaked A, Eworo R, Usoro CAO, EL-Sikaily A. Polycyclic aromatic hydrocarbons content of food, water and vegetables and associated cancer risk assessment in Southern Nigeria. PLoS One 2024; 19:e0306418. [PMID: 39042616 PMCID: PMC11265677 DOI: 10.1371/journal.pone.0306418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
The polycyclic aromatic hydrocarbon content of water (four surface water, six underground water (borehole water), seven sachet water), barbecued food and their fresh equivalents (barbecued beef, fish, plantain, pork, yam, chicken, chevon, potato, corn), oil (three palm oil, nine vegetable oil), and fresh vegetable samples (water leaf, bitter leaf, cabbage, carrot, cucumber, pumpkin, garlic, ginger, green leaf, Gnetum Africana, onion, pepper) were determined by GC-MS analysis. The current study also determined the estimated lifetime cancer risk from ingesting polycyclic aromatic hydrocarbon-contaminated food. The polycyclic aromatic hydrocarbon content of water, oil, vegetable, and food samples were within the United States Environmental Protection Agency/World Health Organization safe limits. The naphthalene, benzo(b)fluoranthene, and benzo(k)fluoranthene levels in surface water were significantly higher than in borehole samples (P = 0.000, 0.047, 0.047). Vegetable oils had higher anthracene and chrysene compared to palm oil (P = 0.023 and 0.032). Significant variations were observed in levels of naphthalene, acenaphthylene, phenanthrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene among the barbecued and fresh food samples (P <0.05). Barbecued pork, potato, and corn had significantly higher naphthalene compared to their fresh equivalents (P = 0.002, 0.017, and <0.001). Consumption of barbecued food and surface water may be associated with higher exposure risk to polycyclic aromatic hydrocarbons which may predispose to increased cancer health risk. The current work explores in depth the concentration of polycyclic aromatic hydrocarbons in different dietary categories that pose direct risk to humans via direct consumption. These findings add knowledge to support future considerations for human health.
Collapse
Affiliation(s)
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries, Cairo, Egypt
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Azza Khaked
- National Institute of Oceanography and Fisheries, Cairo, Egypt
- Biochemistry Department, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Raymond Eworo
- Department of Clinical Chemistry and Immunology, University of Calabar, Calabar, Nigeria
| | | | | |
Collapse
|
4
|
Jeong J, Kim G, Lee JG. A review of food contamination with nitrated and oxygenated polycyclic aromatic hydrocarbons: toxicity, analysis, occurrence, and risk assessment. Food Sci Biotechnol 2024; 33:2261-2274. [PMID: 39145122 PMCID: PMC11319709 DOI: 10.1007/s10068-024-01653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) and their derivatives, particularly nitrated polycyclic aromatic hydrocarbons (NPAHs) and oxygenated polycyclic aromatic hydrocarbons (OPAHs), can result in adverse health effects and may carry higher toxicity risks compared to PAHs alone. Various extraction methods have been utilized for PAHs derivatives from food samples. The analytes are then analyzed using gas chromatography/mass spectrometry and high-performance liquid chromatography techniques. PAHs derivatives are increasingly being detected in the environment, prompting scrutiny from numerous researchers. Similarly, their presence in food is becoming a significant concern. The elevated levels of PAH derivatives found in smoked food may result in detrimental dietary exposure and pose potential health hazards. Furthermore, investigating the level of exposure to these contaminants in food is imperative, as their consumption by humans carries inherent risks. Consequently, this review concentrates on the toxicity, analysis, occurrence, and risk evaluation of NPAHs and OPAHs present in food sources.
Collapse
Affiliation(s)
- Jihun Jeong
- Department of Food and Biotechnology, National Seoul University of Science and Technology, Seoul, 01811 South Korea
| | - Geehyeon Kim
- Department of Food and Biotechnology, National Seoul University of Science and Technology, Seoul, 01811 South Korea
| | - Joon-Goo Lee
- Department of Food and Biotechnology, National Seoul University of Science and Technology, Seoul, 01811 South Korea
| |
Collapse
|
5
|
Tang L, Sun Y, Lu W, Chen X, Mosa A, Minkina T, Gao Y, Ling W. A novel remediation strategy of mixed calcium peroxide and degrading bacteria for polycyclic aromatic hydrocarbon contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134122. [PMID: 38552397 DOI: 10.1016/j.jhazmat.2024.134122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of toxic organic pollutants commonly detected in the aqueous phase. Traditional biodegradation is inefficient and advanced oxidation technologies are expensive. In the current study, a novel strategy was developed using calcium peroxide (CP) and PAH-degrading bacteria (PDB) to effectively augment PAH degradation by 28.62-59.22%. The PDB consisted of the genera Acinetobacter, Stenotrophomonas, and Comamonas. Applying the response surface model (RSM), the most appropriate parameters were identified, and the predictive degradation rates of phenanthrene (Phe), pyrene (Pyr), and ΣPAHs were 98%, 76%, and 84%, respectively. The constructed mixed system could reduce 90% of Phe and more than 60% of ΣPAHs and will perform better at pH 5-7 and lower salinity. Because PAHs tend to bind to dissolved organic matter (DOM) with larger molecular weights, humic acid (HA) had a larger negative effect on the PAH-degradation efficiency of the CP-PDB mixed system than fulvic acid (FA). The proposed PAH-degradation pathways in the mixed system were based on the detection of intermediates at different times. The investigation constructed and optimized a novel environmental PAH-degradation strategy. The synergistic application of PDB and oxidation was extended for organic contaminant degradation in aqueous environments.
Collapse
Affiliation(s)
- Lei Tang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyi Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuwen Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Tatiana Minkina
- Academy of Biology and Biotechnology named after D I Ivanovsky, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Hassaan MA, Ragab S, Sikaily AE, Nemr AE. Sources of hydrocarbons and their risk assessment in seawater and sediment samples collected from the Nile Delta coast of the Mediterranean Sea. Sci Rep 2024; 14:5082. [PMID: 38429376 PMCID: PMC10907701 DOI: 10.1038/s41598-024-55339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
The aim of this work is to examine the levels, distribution, bases, and hazards of n-alkanes (n-C9 to n-C20) and PAHs in the seawater and sediments around oil production locations in the whole delta region. The variations in the levels of PAHs and n-alkanes in seawater and sediment of the Nile delta coast of the Mediterranean were investigated using GC-MS/MS. The Σn-alkanes residues ranged between 12.05 and 93.51 mg/L (mean: 50.45 ± 17.49 mg/L) and 4.70 to 84.03 µg/g (mean: 31.02 ± 27.995 µg/g) in seawater and sediments, respectively. Total PAHs concentrations ranged between 4.485 and 16.337 μg/L (average: 9.47 ± 3.69 μg/L) and 1.32 to 28.38 ng/g (average 8.61 ± 7.57 ng/g) in seawater and sediment samples, respectively. The CPI (carbon preference index) values fluctuated between 0.62 and 1.72 (seawater) and from 0.234 to 2.175 (sediment), proposing the variation sources of n-alkane in the studied area. PAHs concentrations were lower than the Effective Range Low (ERL) and Effective Range Median (ERM) levels. The Toxic Equivalent Quotient (TEQ) values oscillated between 0.002 and 6.84 ng/L and from 3.72 to 13.48 ng/g for the seawater and sediment samples, respectively. The Ant/(Ant + Phe) ratio in sediment and seawater samples indicated a pyrolytic source while the BaA/(BaA + Chry) ratio indicates petrogenic sources in most of the studied stations.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, P.O. 21556, Elanfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, P.O. 21556, Elanfoushy, Alexandria, Egypt
| | - Amany El Sikaily
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, P.O. 21556, Elanfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, P.O. 21556, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
7
|
Said TO, Ragab S, El Sikaily A, Hassaan MA, El Nemr A. Distribution, composition and risk assessment of hydrocarbon residue in surficial sediments of El-Dakhla, El-Kharga and El-Farafra oases, Egypt. Sci Rep 2023; 13:18871. [PMID: 37914771 PMCID: PMC10620400 DOI: 10.1038/s41598-023-46133-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
This work examined the polycyclic aromatic hydrocarbons (PAHs) and n-alkanes quantities, sources, and hazards in sediments collected from the Egyptian Western Desert Oases namely: Dakhla, Kharga and Farafra oases. The n-alkane (C9-C20) residue concentrations have ranged from 0.66 to 2417.91 µg/g recorded for the three Oases. On the other hand, the total n-alkane ranged from 448.54 µg/g to 8442.60 µg/g. Higher carbon preference index (CPI) values (> 1.0) proposed that the natural sources could be the main contributor to n-alkanes in the Oases sediment. GC-MS/MS (selected reaction monitoring (SRM) method) was used for the determination of the ΣPAHs concentrations in the studied sediments. The ΣPAHs concentrations (ng/g, dry weight) in the studied three Oases varied from 10.18 to 790.14, 10.55 to 667.72, and from 38.27 to 362.77 for the Kharga, Dakhla and Farafra Oases, respectively. The higher molecular weight PAHs were the most abundant compounds in the collected samples. Assessing potential ecological and human health issues highlighted serious dangers for living things and people. All the investigated PAHs had cancer risk values between 1.43 × 10-4 and 1.64 × 10-1, this finding suggests that PAHs in the samples under study pose a moderate risk of cancer. The main sources of PAHs in this study are biomass, natural gas, and gasoline/diesel burning emissions.
Collapse
Affiliation(s)
- Tarek O Said
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Amany El Sikaily
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
8
|
Hassaan MA, El Nemr A, El Sikaily A, Ragab S. n-Alkanes and PAHs baseline distributions and sources in the sediments of the Nile Delta coast of the southeastern Mediterranean. MARINE POLLUTION BULLETIN 2023; 194:115262. [PMID: 37467685 DOI: 10.1016/j.marpolbul.2023.115262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
The variations in the levels of n-alkanes and Polycyclic Aromatic Hydrocarbons (PAHs) in the sediment of the Nile Delta coast and extended to Bardaweel Lagoon along the Mediterranean were investigated during September 2021. The total n-alkane concentrations in the sediment samples ranged from 18.85 to 164.37 μg/g with an average value of 51.98 ± 17.49 μg/g. Similarly, the ΣPAHs concentrations ranged between 4.55 and 207.48 ng/g with an average of 27.89 ± 49.82 ng/g. The carbon preference index (CPI) values were in the 0.21 to 1.39 range, indicating variations in the sources of n-alkane at the analyzed locations. The mean carbon number (MCN) values ranged from 7.41 to 15.47, with an average of 13.34 ± 1.69. The levels of both low and high molecular weight PAHs were lower than the median and low effective range values (ERM and ERL). The computed total TEQ value varied from 0.102 to 4.129 ng/g in the sediment samples under investigation.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556 Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556 Alexandria, Egypt.
| | - Amany El Sikaily
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556 Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, P.O. 21556 Alexandria, Egypt
| |
Collapse
|
9
|
Guo Y, Dai Y, Wang Y, Zuo G, Long T, Li S, Li H, Sun C, Zhao W. Boosted visible-light-driven degradation over stable ternary heterojunction as a plasmonic photocatalyst: Mechanism exploration, pathway and toxicity evaluation. J Colloid Interface Sci 2023; 641:758-781. [PMID: 36965346 DOI: 10.1016/j.jcis.2023.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
The incorporation of plasmonic metals into semiconductors forming heterojunction photocatalysts is a promising route to enhance the photocatalytic performance in visible light. In this work, we reported the visible-light-driven one-dimensional (1D) nanostick silver/silver sulfide (Ag/Ag2S) photocatalyst combining with two-dimensional (2D) nanosheet reduced graphene oxide intersected by hollow structure (h-RGO) was prepared via a feasible approach at room temperature. The density of Ag depositing on the surface of Ag2S was easily tuned by the concentration of sodium borohydride and the silicon dioxide nanospheres were employed as templates in the preparation of h-RGO by the layer-by-layer (LBL) assembly. The ternary plasmonic Ag/Ag2S/h-RGO photocatalysts exhibited better photocatalytic performance for degradation of naphthalene (95.95%) and 1-naphthol (98.65%) under visible light than the pure Ag2S, composite Ag/Ag2S and composite Ag/Ag2S/RGO. Localized surface plasmon resonance of Ag, heterojunction formed between Ag/Ag2S and RGO and the unique characteristics of h-RGO, which included higher specific surface areas, more efficient reflections of light and more active sites than RGO for boosting separation efficiency of charge carriers, were all responsible for such enhancement. By combining the characterization results with various computations, the mechanism, potential degradation pathways and the toxicity of the generated intermediates for photodegradation were examined. In addition to offering profound insight into the expansion of effective plasmonic photocatalysts with novel structures, the current study is beneficial to ease the environmental crisis to a certain extent.
Collapse
Affiliation(s)
- Yang Guo
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210000, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Department of Plant, Soil and Microbial Sciences, Plant and Soil Science Building 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, United States
| | - Yuxuan Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Gancheng Zuo
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210000, China
| | - Shijie Li
- Institute of Innovation & Application, Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Plant and Soil Science Building 1066 Bogue Street, Michigan State University, East Lansing, MI 48824, United States
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Wei Zhao
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong; School of Materials Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
10
|
Pietrogrande MC, Demaria G, Russo M. Determination of particulate polycyclic aromatic hydrocarbons in ambient air by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction. J Environ Sci (China) 2023; 124:644-654. [PMID: 36182170 DOI: 10.1016/j.jes.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 06/16/2023]
Abstract
A solid phase extraction procedure (SPE) is described for the quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate matter (PM), as ubiquitous environmental pollutants routinely measured in air quality monitoring. A SPE cartridge was used based on a molecular imprinted polymer (MIP-SPE) properly tailored for selective retention of PAHs with 4 and more benzene fused rings. The performance of the clean-up procedure was evaluated with the specific concern of selective purification towards saturated hydrocarbons, which are the PM components mostly interfering GC analysis of target PAHs. Under optimized operative conditions, the MIP-SPE provided analyte recovery close to 95% for heavier PAHs, from benzo(α)pyrene to benzo(ghi)perylene, and close to 90% for four benzene rings PAHs, with good reproducibility (RSDs: 2.5%-5.9%). Otherwise, C17-C32n-alkanes were nearly completely removed. The proposed method was critically compared with Solid Phase Micro Extraction (SPME) using a polyacrylate fiber. Both methods were successfully applied to the analysis of ambient PM2.5 samples collected at an urban polluted site. Between the two procedures, the MIP-SPE provided the highest recovery (R% ≥ 93%) for PAHs with 5 and more benzene rings, but lower for lighter PAHs. In contrast, SPME showed a mean acceptable R% value (∼ 80%) for all the investigated PAHs, except for the heaviest PAHs in the most polluted samples (R%: 110%-138%), suggesting an incomplete purification from the interfering n-hydrocarbons.
Collapse
Affiliation(s)
- Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agraricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy.
| | - Giorgia Demaria
- Department of Chemical, Pharmaceutical and Agraricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Mara Russo
- Department of Chemical, Pharmaceutical and Agraricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Ge L, Cao S, Halsall C, Niu J, Bai D, He G, Zhang P, Ma H. Photodegradation of hydroxyfluorenes in ice and water: A comparison of kinetics, effects of water constituents, and phototransformation by-products. J Environ Sci (China) 2023; 124:139-145. [PMID: 36182124 DOI: 10.1016/j.jes.2021.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 06/16/2023]
Abstract
The photochemical behavior of organic pollutants in ice is poorly studied in comparison to aqueous photochemistry. Here we report a detailed comparison of ice and aqueous photodegradation of two representative OH-PAHs, 2-hydroxyfluorene (2-OHFL) and 9-hydroxyfluorene (9-OHFL), which are newly recognized contaminants in the wider environment including colder regions. Interestingly, their photodegradation kinetics were clearly influenced by whether they reside in ice or water. Under the same simulated solar irradiation (λ > 290 nm), OHFLs photodegraded faster in ice than in equivalent aqueous solutions and this was attributed to the specific concentration effect caused by freezing. Furthermore, the presence of dissolved constituents in ice also influenced photodegradation with 2-OHFL phototransforming the fastest in 'seawater' ice (k = (11.4 ± 1.0) × 10-2 min-1) followed by 'pure-water' ice ((8.7 ± 0.4) × 10-2 min-1) and 'freshwater' ice ((8.0 ± 0.7) × 10-2 min-1). The presence of dissolved constituents (specifically Cl-, NO3-, Fe(III) and humic acid) influences the phototransformation kinetics, either enhancing or suppressing phototransformation, but this is based on the quantity of the constituent present in the matrixes, the specific OHFL isomer and the matrix type (e.g., ice or aqueous solution). Careful derivation of key photointermediates was undertaken in both ice and water samples using tandem mass spectrometry. Ice phototransformation exhibited fewer by-products and 'simpler' pathways giving rise to a range of hydroxylated fluorenes and hydroxylated fluorenones in ice. These results are of importance when considering the fate of PAHs and OH-PAHs in cold regions and their persistence in sunlit ice.
Collapse
Affiliation(s)
- Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shengkai Cao
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Junfeng Niu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dongxiao Bai
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Guangkai He
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
12
|
Jin R, Liu G, Zhou X, Zhang Z, Lin B, Liu Y, Qi Z, Zheng M. Analysis of polycyclic aromatic hydrocarbon derivatives in environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Galmiche M, Sonnette A, Wolf M, Sutter C, Delhomme O, François YN, Millet M. Simultaneous Determination of 79 Polar and Non-Polar Polycyclic Aromatic Compounds in Airborne Particulate Matter by Gas Chromatography – Tandem Mass Spectrometry. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mathieu Galmiche
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
- Laboratoire de Spectrométrie de Masse Des Interactions et Des Systèmes (LSMIS), Université de Strasbourg – CNRS, UMR 7140, Strasbourg, France
| | - Alexandre Sonnette
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
| | - Michel Wolf
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
| | - Christophe Sutter
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
| | - Olivier Delhomme
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
- UFR Sciences Fondamentales et Appliquées, Université de Lorraine, Metz, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse Des Interactions et Des Systèmes (LSMIS), Université de Strasbourg – CNRS, UMR 7140, Strasbourg, France
| | - Maurice Millet
- Institut de Chimie et Procédés Pour L'Énergie, L'Environnement et la Santé (ICPEES) – Physico-Chimie de L’Atmosphère, Université de Strasbourg – CNRS, UMR 7515, Strasbourg, France
| |
Collapse
|
14
|
Galmiche M, Rodrigues A, Motsch E, Delhomme O, François YN, Millet M. The use of pseudo-MRM for a sensitive and selective detection and quantification of polycyclic aromatic compounds by tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9307. [PMID: 35355348 DOI: 10.1002/rcm.9307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Multiple Reaction Monitoring (MRM) is a sensitive and selective detection mode for target trace-level analysis. However, it requires the fragmentation of labile bonds which are not present in molecules such as Polycyclic Aromatic Hydrocarbons (PAHs) and their heterocyclic derivatives (PANHs, PASHs). METHODS We present the application of an alternative tandem mass spectrometry (MS/MS) mode called "pseudo-MRM" for the GCMS/MS analysis of Polycyclic Aromatic Compounds (PACs). This mode is based on the monitoring of transitions with no mass loss between the precursor and the product ion. Pseudo-MRM peak areas were compared with those of classic MRM on three different mass spectrometers: two triple quadrupoles and an ion trap. RESULTS For all non-polar PACs studied here (PAHs, PANHs and PASHs), the pseudo-MRM transition was always the most intense. The classic MRM transitions exhibited peak areas 2 to 5 times lower. On the contrary, for the functionalized PACs (oxygenated and nitrated PAHs), classic MRM was favored over pseudo-MRM. These observations were confirmed on two triple quadrupoles (QqQs), and the real-world applicability of pseudo-MRM on QqQs was validated by the successful analysis of Diesel PM. However, a comparison with an ion trap showed that pseudo-MRM was never favored on that instrument, which caused fragmentation of non-polar PACs in MS/MS. CONCLUSIONS The results of this study show an important gain in sensitivity when using pseudo-MRM instead of MRM for non-polar PACs on QqQ instruments. The selectivity of MRM is preserved in pseudo-MRM by applying non-zero collision energies to which only these non-polar PACs are resistant, not the isobaric interferences. No interference issue was observed when analyzing Diesel PM, a complex matrix, with our pseudo-MRM method. Therefore, we advise for a broader use of this MS/MS mode for trace-level determination of non-polar PAHs.
Collapse
Affiliation(s)
- Mathieu Galmiche
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES) - Physico-Chimie de l'Atmosphère, Université de Strasbourg, Strasbourg, France
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), Université de Strasbourg, Strasbourg, France
| | - Anaïs Rodrigues
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES) - Physico-Chimie de l'Atmosphère, Université de Strasbourg, Strasbourg, France
| | - Estelle Motsch
- Institut de Chimie de Strasbourg - Biogéochimie moléculaire, Université de Strasbourg, Strasbourg, France
| | - Olivier Delhomme
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES) - Physico-Chimie de l'Atmosphère, Université de Strasbourg, Strasbourg, France
- UFR Sciences fondamentales et appliquées, Université de Lorraine, Metz, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), Université de Strasbourg, Strasbourg, France
| | - Maurice Millet
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES) - Physico-Chimie de l'Atmosphère, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Tan S, Wang J, Li M, Yin X, Gao X, Li C, Jiang Y, Dai X, Gong X, Fang X. Direct analysis of hydroxylated polycyclic aromatic hydrocarbons in biological samples with complex matrices using polarity-reversed nanoelectrospray ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9237. [PMID: 34904282 DOI: 10.1002/rcm.9237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/18/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental contaminants with carcinogenic effect drawing worldwide attention. PAHs can be converted into hydroxylated PAHs (OH-PAHs) through metabolic processes. Thus, they are commonly considered as an important class of biomarkers of PAH exposure. However, direct analysis of related metabolites of these environmental pollutants in biological samples using mass spectrometry is still challenging because of matrix effect and ion suppression during nanoelectrospray ionization (nano-ESI). METHODS In our previous work, a polarity-reversed nanoelectrospray ionization (PR-nESI) technique was developed for the analysis of biomolecules in complex matrices. In this work, we further optimized PR-nESI for direct and sensitive analysis of OH-PAHs in different samples under severe salt interference in negative polarity. RESULTS Compared with conventional nano-ESI, the optimized PR-nESI method realized sensitive detection of 1-naphthol in samples with a concentration of salt up to millimolar level. The signal-to-noise ratio (S/N) of OH-PAHs was increased by 1-2 orders of magnitude compared with conventional nano-ESI. Six different OH-PAHs were successfully detected with high S/N ratio using PR-nESI. PR-nESI was further successfully applied in the analysis of OH-PAHs in spiked fetal blood serum, human urine, and single-cell samples. For environmentally exposed subjects, the detections of OH-PAHs in single-cell samples and urines from human smokers were successfully conducted. CONCLUSION The optimized PR-nESI method was successfully applied for the sensitive analysis of OH-PAHs in complex biological samples with severe salt effects. Based on the present study, PR-nESI can have a promising prospect for the sensitive analysis of other metabolites of environmental pollutants in negative polarity.
Collapse
Affiliation(s)
- Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Juduo Wang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Manli Li
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xiaomei Gao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Chang Li
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People's Republic of China
| |
Collapse
|
16
|
Liu J, Liu Y, Cao Y, Sang S, Guan L, Wang Y, Wang J. Preparation of Fe3O4@PDA@Au@GO Composite as SERS Substrate and Its Application in the Enrichment and Detection for Phenanthrene. MICROMACHINES 2022; 13:mi13010128. [PMID: 35056293 PMCID: PMC8778011 DOI: 10.3390/mi13010128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/15/2023]
Abstract
In this study, highly active Fe3O4@PDA@Au@GO surface-enhanced Raman spectroscopy (SERS) active substrate was synthesized for application in the enrichment and detection of trace polycyclic aromatic hydrocarbons (PAHs) in the environment. The morphology and structure were characterized by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and UV–visible absorption spectrum (UV–vis spectra). The effect of each component of Fe3O4@PDA@Au@GO nanocomposites on SERS was explored, and it was found that gold nanoparticles (Au NPs) are crucial to enhance the Raman signal based on the electromagnetic enhancement mechanism, and apart from enriching the PAHs through π–π interaction, graphene oxide (GO) also generates strong chemical enhancement of Raman signals, and polydopamine (PDA) can prevent Au from shedding and agglomeration. The existence of Fe3O4 aided the quick separation of substrate from the solutions, which greatly simplified the detection procedure and facilitated the reuse of the substrate. The SERS active substrate was used to detect phenanthrene in aqueous solution with a detection limit of 10−7 g/L (5.6 × 10−10 mol/L), which is much lower than that of ordinary Raman, it is promising for application in the enrichment and detection of trace PAHs.
Collapse
Affiliation(s)
- Junyu Liu
- College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China;
- Department of Petroleum, Oil and Lubricants, Army Logistics Academy of PLA, Chongqing 401331, China; (Y.C.); (Y.W.); (J.W.)
| | - Yiwei Liu
- Department of Basic Courses, Army Logistics Academy of PLA, Chongqing 401331, China;
| | - Yida Cao
- Department of Petroleum, Oil and Lubricants, Army Logistics Academy of PLA, Chongqing 401331, China; (Y.C.); (Y.W.); (J.W.)
| | - Shihua Sang
- College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China;
- Correspondence: (S.S.); (L.G.)
| | - Liang Guan
- Department of Petroleum, Oil and Lubricants, Army Logistics Academy of PLA, Chongqing 401331, China; (Y.C.); (Y.W.); (J.W.)
- Correspondence: (S.S.); (L.G.)
| | - Yinyin Wang
- Department of Petroleum, Oil and Lubricants, Army Logistics Academy of PLA, Chongqing 401331, China; (Y.C.); (Y.W.); (J.W.)
| | - Jian Wang
- Department of Petroleum, Oil and Lubricants, Army Logistics Academy of PLA, Chongqing 401331, China; (Y.C.); (Y.W.); (J.W.)
| |
Collapse
|
17
|
Méndez García M, García de Llasera MP. A review on the enzymes and metabolites identified by mass spectrometry from bacteria and microalgae involved in the degradation of high molecular weight PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149035. [PMID: 34303250 DOI: 10.1016/j.scitotenv.2021.149035] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
High molecular weight PAHs (HMW PAHs) are dangerous pollutants widely distributed in the environment. The use of microorganisms represents an important tool for HMW PAHs bioremediation, so, the understanding of their biochemical pathways facilitates the development of biodegradation strategies. For this reason, the potential role of species of microalgae, bacteria, and microalga-bacteria consortia in the degradation of HMW PAHs is discussed. The identification of their metabolites, mostly by GC-MS and LC-MS, allows a better approach to the enzymes involved in the key steps of the metabolic pathways of HMW PAHs biodegradation. So, this review intends to address the proteomic research on enzyme activities and their involvement in regulating essential biochemical functions that help bacteria and microalgae in the biodegradation processes of HMW PAHs. It is noteworthy that, given that to the best of our knowledge, this is the first review focused on the mass spectrometry identification of the HMW PAHs metabolites; whereby and due to the great concern of the presence of HMW PAHs in the environment, this material could help the urgency of developing new bioremediation methods. The elucidation of the metabolic pathways of persistent pollutant degrading microorganisms should lead to a better knowledge of the enzymes involved, which could contribute to a very ecological route to the control of environmental contamination in the future.
Collapse
Affiliation(s)
- Manuel Méndez García
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F. 04510, Mexico
| | - Martha Patricia García de Llasera
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D. F. 04510, Mexico.
| |
Collapse
|
18
|
Famiyeh L, Chen K, Xu J, Sun Y, Guo Q, Wang C, Lv J, Tang YT, Yu H, Snape C, He J. A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147741. [PMID: 34058584 DOI: 10.1016/j.scitotenv.2021.147741] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have gained attention because of their environmental persistence and effects on ecosystems, animals, and human health. They are mutagenic, carcinogenic, and teratogenic. The review provides background knowledge about their sources, metabolism, temporal variations, and size distribution in atmospheric particulate matter. The review article briefly discusses the analytical methods suitable for the extraction, characterization, and quantification of nonpolar and polar PAHs, addressing the challenges. Herein, we discussed the molecular diagnostic ratios (DRs), stable carbon isotopic analysis (SCIA), and receptor models, with much emphasis on the positive matrix factorization (PMF) model, for apportioning PAH sources. Among which, DRs and PCA identified as the most widely employed method, but their accuracy for PAH source identification has received global criticism. Therefore, the review recommends compound-specific isotopic analysis (CSIA) and PMF as the best alternative methods to provide detailed qualitative and quantitative source analysis. The compound-specific isotopic signatures are not affected by environmental degradation and are considered promising for apportioning PAH sources. However, isotopic fractions of co-eluted compounds like polar PAHs and aliphatic hydrocarbons make the PAHs isotopic fractions interpretation difficult. The interference of unresolved complex mixtures is a limitation to the application of CSIA for PAH source apportionment. Hence, for CSIA to further support PAH source apportionment, fast and cost-effective purification techniques with no isotopic fractionation effects are highly desirable. The present review explains the concept of stable carbon isotopic analysis (SCIA) relevant to PAH source analysis, identifying the techniques suitable for sample extract purification. We demonstrate how the source apportioned PAHs can be applied in assessing the health risk of PAHs using the incremental lifetime cancer risk (ILCR) model, and in doing so, we identify the key factors that could undermine the accuracy of the ILCR and research gaps that need further investigation.
Collapse
Affiliation(s)
- Lord Famiyeh
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Ke Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Jingsha Xu
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Yong Sun
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chengjun Wang
- College of Resources and Environmental Science, South-Central University of Nationalities, Wuhan 430074, China
| | - Jungang Lv
- Procuratoral Technology and Information Research Center, Supreme People's Procuratorate, Beijing 100144, China
| | - Yu-Ting Tang
- Department of Geographical Sciences, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China
| | - Huan Yu
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Collin Snape
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang E Rd, Ningbo 315100, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province. University of Nottingham Ningbo China, Ningbo 315100, China.
| |
Collapse
|
19
|
Krzyszczak A, Czech B. Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147738. [PMID: 34023603 DOI: 10.1016/j.scitotenv.2021.147738] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
In the last years, there is great attention paid to the determination of polycyclic aromatic hydrocarbons (PAHs) in different environmental matrices. Extensive reviews on PAHs presence and toxicity were published recently. However, PAHs formation and transformation in the environment lead to the production of PAHs derivatives containing oxygen (O-PAHs), nitrogen (N-PAHs and aazarenes AZA) or sulfur (PASHs) in the aromatic ring. The development of new analytical methods enabled the determination of these novel contaminants. The presence of oxygen, nitrogen, or sulfur in PAHs aromatic rings increased their toxicity. The most common primary sources of PAHs derivatives are biological processes such as microbial activity (in soil, water, and wastewater treatment plants (O-PAHs)) and all processes involving combustion of fuel, coal, and biomass (O-PAHs, N-PAHs, AZA, PASHs). The secondary resources involved i) photochemical (UV light), ii) radical-mediated (OH, NO3), and iii) reactions with oxidants (O3, NOx) (O-PAHs, N-PAHs, AZA). Furthermore, N-PAHs were able to transform to their corresponding O-PAHs, while other derivatives were not. It indicated that N-PAHs are more vulnerable to photooxidation in the environment. 85% of O- and N-PAHs were detected with particle matter below 2.5 μm suggesting their easier bioaccessibility. More than 90% of compounds with four and more aromatic cycles were present in the particle phase in the air. Although the concentrations of N-PAHs or O-PAHs may be similar to PAHs concentration or even 1000 times lower than parent PAHs, PAHs derivatives accounted for a significant portion of the total mutagenicity. The present review is describing the results of the studies on the determination of PAHs derivatives in different environmental matrices including airborne particles, sediments, soil, and organisms. The mechanisms of their formation and toxicity were assessed.
Collapse
Affiliation(s)
- Agnieszka Krzyszczak
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
20
|
Fu L, Zhao H, Xiang Y, Xiang HX, Hu B, Tan ZX, Lu X, Gao L, Wang B, Wang H, Zhang C, Xu DX. Reactive oxygen species-evoked endoplasmic reticulum stress mediates 1-nitropyrene-induced epithelial-mesenchymal transition and pulmonary fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117134. [PMID: 33866216 DOI: 10.1016/j.envpol.2021.117134] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
1-Nitropyrene (1-NP) is one component of atmospheric fine particles. Previous report revealed that acute 1-NP exposure induced respiratory inflammation. This study aimed to investigate whether chronic 1-NP exposure induces pulmonary fibrosis. Male C57BL6/J mice were intratracheally instilled to 1-NP (20 μg/mouse/week) for 6 weeks. Diffuse interstitial inflammation, a-smooth muscle actin (a-SMA)-positive cells, a marker of epithelial-mesenchymal transition (EMT), and an extensive collagen deposition, measured by Masson staining, were observed in 1-NP-exposed mouse lungs. Pulmonary function showed that lung dynamic compliance (Cydn-min) was reduced in 1-NP-exposed mice. Conversely, inspiratory resistance (Ri) and expiratory resistance (Re) were elevated in 1-NP-exposed mice. Mechanistically, cell migration and invasion were accelerated in 1-NP-exposed pulmonary epithelial cells. In addition, E-cadherin, an epithelial marker, was downregulated, and vimentin, a-SMA and N-cadherin, three mesenchymal markers, were upregulated in 1-NP-exposed pulmonary epithelial cells. Although TGF-β wasn't altered, phosphorylated Smad2/3 were enhanced in 1-NP-exposed pulmonary epithelial cells. Moreover, reactive oxygen species (ROS) were increased and endoplasmic reticulum (ER) stress was activated in 1-NP-exposed pulmonary epithelial cells. N-Acetylcysteine (NAC), an antioxidant, attenuated 1-NP-evoked excess ROS, ER stress and EMT in pulmonary epithelial cells. Similarly, pretreatment with NAC alleviated 1-NP-caused pulmonary EMT and lung fibrosis in mice. These results demonstrate that ROS-evoked ER stress contributes, at least partially, to 1-NP-induced EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lin Fu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhao
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Ying Xiang
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hui-Xian Xiang
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Biao Hu
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhu-Xia Tan
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
21
|
Chen X, Cheng X, Meng H, Selvaraj KK, Li H, He H, Du W, Yang S, Li S, Zhang L. Past, present, and future perspectives on the assessment of bioavailability/bioaccessibility of polycyclic aromatic hydrocarbons: A 20-year systemic review based on scientific econometrics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145585. [PMID: 33607432 DOI: 10.1016/j.scitotenv.2021.145585] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Bioaccessibility/bioavailability (bioac-bioav) is an important criterion in the risk assessment of polycyclic aromatic hydrocarbons (PAHs), especially in the restoration of contaminated sites. Although, the bioac-bioav concept is widely employed in PAH risk assessment for both humans and wildlife, their growth and integration in risk assessment models are seldom discussed. Consequently, the relevant literature listed on Web of Science (WOS)™ was retrieved and analyzed using the bibliometric software Citespace in order to gain a comprehensive understanding of this issue. Due to the limitations of the literature search software, we manually searched the articles about PAHs bioac-bioav that were published before 2000. This stage focuses on research on the distribution coefficient of PAHs between different environmental phases and laid the foundation for the adsorption-desorption of PAHs in subsequent studies of the bioac-bioav of PAHs. The research progress on PAH bioac-bioav from 2000 to the present was evaluated using the Citespace software based on country- and discipline-wise publication volumes and research hotspots. The development stages of PAH bioac-bioav after 2000 were divided into four time segments. The first three segments (2000-2005, 2006-2010, and 2011-2015) focused on the degradation of PAHs and their in vivo (bioavailability)-in vitro (bioaccessibility) evaluation method and risk assessment. Meanwhile, the current (2016-present) research focuses on the establishment of analytical methods for assessing PAH derivatives at environmental concentrations and the optimization of various in vitro digestion methods, including chemical optimization (sorptive sink) and biological optimization (Caco-2 cell). The contents are aimed at supplying researchers with a deeper understanding of the development of PAH bioac-bioav.
Collapse
Affiliation(s)
- Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Han Meng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Kumar Krishna Selvaraj
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China.
| | - Huiming Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, PR China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| |
Collapse
|
22
|
Gioda A, Beringui K, Justo EPS, Ventura LMB, Massone CG, Costa SSL, Oliveira SS, Araujo RGO, Nascimento NDM, Severino HGS, Duyck CB, de Souza JR, Saint Pierre TD. A Review on Atmospheric Analysis Focusing on Public Health, Environmental Legislation and Chemical Characterization. Crit Rev Anal Chem 2021; 52:1772-1794. [PMID: 34092145 DOI: 10.1080/10408347.2021.1919985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Atmospheric pollution has been considered one of the most important topics in environmental science once it can be related to the incidence of respiratory diseases, climate change, and others. Knowing the composition of this complex and variable mixture of gases and particulate matter is crucial to understand the damages it causes, help establish limit levels, reduce emissions, and mitigate risks. In this work, the current scenario of the legislation and guideline values for indoor and outdoor atmospheric parameters will be reviewed, focusing on the inorganic and organic compositions of particulate matter and on biomonitoring. Considering the concentration level of the contaminants in air and the physical aspects (meteorological conditions) involved in the dispersion of these contaminants, different approaches for air sampling and analysis have been developed in recent years. Finally, this review presents the importance of data analysis, whose main objective is to transform analytical results into reliable information about the significance of anthropic activities in air pollution and its possible sources. This information is a useful tool to help the government implement actions against atmospheric air pollution.
Collapse
Affiliation(s)
- Adriana Gioda
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Karmel Beringui
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Elizanne P S Justo
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Luciana M B Ventura
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.,Instituto Estadual do Ambiente (INEA), Rio de Janeiro, RJ, Brazil
| | - Carlos G Massone
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Silvânio Silvério Lopes Costa
- Núcleo de Petróleo e Gás, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.,Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Sidimar Santos Oliveira
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Rennan Geovanny Oliveira Araujo
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Nivia de M Nascimento
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil.,Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hemmely Guilhermond S Severino
- Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Christiane B Duyck
- Departamento de Geoquímica e Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Jefferson Rodrigues de Souza
- Laboratório de Ciências Químicas, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Tatiana D Saint Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Davin M, Colinet G, Fauconnier ML. Targeting the right parameters in PAH remediation studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116857. [PMID: 33711627 DOI: 10.1016/j.envpol.2021.116857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Contaminated land burdens the economy of many countries and must be dealt with. Researchers have published thousands of documents studying and developing soil and sediment remediation treatments. Amongst the targeted pollutants are the polycyclic aromatic hydrocarbons (PAHs), described as a class of persistent organic compounds, potentially harmful to ecosystems and living organisms. The present paper reviews and discusses three scientific trends that are leading current PAH-contaminated soil/sediment remediation studies and management. First, the choice of compounds that are being studied and targeted in the scientific literature is discussed, and we suggest that the classical 16 US-EPA PAH compounds might no longer be sufficient to meet current environmental challenges. Second, we discuss the choice of experimental material in remediation studies. Using bibliometric measures, we show the lack of PAH remediation trials based on co-contaminated or aged-contaminated material. Finally, the systematic use of the recently validated bioavailability measurement protocol (ISO/TS 16751) in remediation trials is discussed, and we suggest it should be implemented as a tool to improve remediation processes and management strategies.
Collapse
Affiliation(s)
- Marie Davin
- Soil-Water-Plant Exchanges, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium; Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium.
| | - Gilles Colinet
- Soil-Water-Plant Exchanges, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, University of Liège, Gembloux Agro-Bio Tech, 2 Passage des Déportés, 5030, Gembloux, Belgium.
| |
Collapse
|
24
|
Fernández-López C, Posada-Baquero R, García JL, Castilla-Alcantara JC, Cantos M, Ortega-Calvo JJ. Root-mediated bacterial accessibility and cometabolism of pyrene in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143408. [PMID: 33243519 DOI: 10.1016/j.scitotenv.2020.143408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Partial transformation of pollutants and mobilization of the produced metabolites may contribute significantly to the risks resulting from biological treatment of soils polluted by hydrophobic chemicals such as polycyclic aromatic hydrocarbons (PAHs). Pyrene, a four-ringed PAH, was selected here as a model pollutant to study the effects of sunflower plants on the bacterial accessibility and cometabolism of this pollutant when located at a spatially distant source within soil. We compared the transformation of passively dosed 14C-labeled pyrene in soil slurries and planted pots that were inoculated with the bacterium Pseudomonas putida G7. This bacterium combines flagellar cell motility with the ability to cometabolically transform pyrene. Cometabolism of this PAH occurred immediately in the inoculated and shaken soil slurries, where the bacteria had full access to the passive dosing devices (silicone O-rings). Root exudates did not enhance the survival of P. putida G7 cells in soil slurries, but doubled their transport in column tests. In greenhouse-incubated soil pots with the same pyrene sources instead located centimeters from the soil surface, the inoculated bacteria transformed 14C-labeled pyrene only when the pots were planted with sunflowers. Bacterial inoculation caused mobilization of 14C-labeled pyrene metabolites into the leachates of the planted pots at concentrations of approximately 1 mg L-1, ten times greater than the water solubility of the parent compound. This mobilization resulted in a doubled specific root uptake rate of 14C-labeled pyrene equivalents and a significantly decreased root-to-fruit transfer rate. Our results show that the plants facilitated bacterial access to the distant pollutant source, possibly by increasing bacterial dispersal in the soil; this increased bacterial access was associated with cometabolism, which contributed to the risks of biodegradation.
Collapse
Affiliation(s)
- Carmen Fernández-López
- University Centre of Defense at the Spanish Air Force Academy, Santiago de la Ribera, Spain
| | - Rosa Posada-Baquero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - José Luis García
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | | | - Manuel Cantos
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | | |
Collapse
|
25
|
Galmiche M, Delhomme O, François YN, Millet M. Environmental analysis of polar and non-polar Polycyclic Aromatic Compounds in airborne particulate matter, settled dust and soot: Part II: Instrumental analysis and occurrence. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Galmiche M, Delhomme O, François YN, Millet M. Environmental analysis of polar and non-polar Polycyclic Aromatic Compounds in airborne particulate matter, settled dust and soot: Part I: Sampling and sample preparation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Wang S, Sun B, Feng J, An F, Li N, Wang H, Tian M. Development of affinity between target analytes and substrates in surface enhanced Raman spectroscopy for environmental pollutant detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5657-5670. [PMID: 33226038 DOI: 10.1039/d0ay01760d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Environmental pollution has long been a social concern due to the variety of pollutants and their wide distribution, persistence and being detrimental to health. It is therefore necessary to develop rapid and sensitive strategies to trace and detect these compounds. Among various detection methodologies, surface enhanced Raman spectroscopy (SERS) has become an attractive option as it enables accurate analyte identification, simple sample preparation, rapid detection and ultra-high sensitivity without any interference from water. For SERS detection, an essential yet challenging step is the effective capture of target analytes onto the surface of metal nanostructures with a high intensity of enhanced electromagnetic field. This review has systematically summarized recent advances in developing affinity between targets and the surface of SERS substrates via direct adsorption, hydrophobic functional groups, boronate affinity, metal organic frameworks (MOFs), DNA aptamers and molecularly imprinted polymers (MIPs). At the end of this review, technical limitations and outlook have been provided, with suggestions on optimizing SERS techniques for real-world applications in environmental pollutant detection.
Collapse
Affiliation(s)
- Shiqiang Wang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Junjie Feng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Fei An
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Na Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Haozhi Wang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
28
|
Pulleyblank C, Kelleher B, Campo P, Coulon F. Recovery of polycyclic aromatic hydrocarbons and their oxygenated derivatives in contaminated soils using aminopropyl silica solid phase extraction. CHEMOSPHERE 2020; 258:127314. [PMID: 32540543 DOI: 10.1016/j.chemosphere.2020.127314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The formation, fate, and toxicology of oxy-, hydroxy-, and carboxy- substituted PAH (OPAH, OHPAH, COOHPAH, respectively) alongside PAH in contaminated soils have received increasing attention over the past two decades; however, there are still to date no standardized methods available for their identification and quantitation in soil. Here we investigated and developed the first method using aminopropylsilica solid phase extraction (SPE) for these compounds. We further investigated the efficacy of the developed method for three soils representing a range of contamination levels and soil textural characteristics and evaluated the impact of different sample preparation steps on the recovery of targeted compounds. Average recovery of PAH, OPAH, and OHPAH standards were 99%, 84%, and 86%, respectively for the SPE method. In contrast, COOHPAH exhibited the lowest recovery (0-82%) and poor inter-batch reproducibility. Soil texture and contamination levels influenced full method efficiency. Specifically, soils with higher proportion of clay contributed to the loss of the higher molecular weight OHPAH prior to SPE. Soil with the highest contamination showed enhanced recovery of some lower-concentration mid weight PAH and OPAH, while the least contaminated soil showed greater sensitivity to evaporative losses during sample preparation. Recommendations for reducing matrix effects as well as the practice of using deuterated PAH surrogate standards for OPAH analysis are further discussed. Quantitation of recovered PAH and oxygenated PAH across the three soils showed high reproducibility (<10% relative standard deviation for a majority of compounds), supporting the use of this method for PAH, OPAH, and OHPAH at contaminated sites.
Collapse
Affiliation(s)
- Coren Pulleyblank
- Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9, Ireland; Cranfield University, School of Water, Energy and Environment, Cranfield, UK
| | - Brian Kelleher
- Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9, Ireland
| | - Pablo Campo
- Cranfield University, School of Water, Energy and Environment, Cranfield, UK
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield, UK.
| |
Collapse
|
29
|
Qi Z, Zhang Y, Chen ZF, Yang C, Song Y, Liao X, Li W, Tsang SY, Liu G, Cai Z. Chemical identity and cardiovascular toxicity of hydrophobic organic components in PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110827. [PMID: 32535366 DOI: 10.1016/j.ecoenv.2020.110827] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Numerous experimental and epidemiological studies have demonstrated that exposure to PM2.5 may result in pathogenesis of several major cardiovascular diseases (CVDs), which can be attributed to the combined adverse effects induced by the complicated components of PM2.5. Organic materials, which are major components of PM2.5, contain thousands of chemicals, and most of them are environmental hazards. However, the contamination profile and contribution to overall toxicity of PM2.5-bound organic components (OCs) have not been thoroughly evaluated yet. Herein, we aim to provide an overview of the literature on PM2.5-bound hydrophobic OCs, with an emphasis on the chemical identity and reported impairments on the cardiovascular system, including the potential exposure routes and mechanisms. We first provide an update on the worldwide mass concentration and composition data of PM2.5, and then, review the contamination profile of PM2.5-bound hydrophobic OCs, including constitution, concentration, distribution, formation, source, and identification. In particular, the link between exposure to PM2.5-bound hydrophobic OCs and CVDs and its possible underlying mechanisms are discussed to evaluate the possible risks of PM2.5-bound hydrophobic OCs on the cardiovascular system and to provide suggestions for future studies.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weiquan Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
30
|
Optimized simultaneous pressurized fluid extraction and in-cell clean-up, and analysis of polycyclic aromatic hydrocarbons (PAHs), and nitro-, carbonyl-, hydroxy -PAHs in solid particles. Anal Chim Acta 2020; 1125:19-28. [DOI: 10.1016/j.aca.2020.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/02/2020] [Accepted: 05/08/2020] [Indexed: 11/24/2022]
|
31
|
Sun C, Qu L, Wu L, Wu X, Sun R, Li Y. Advances in analysis of nitrated polycyclic aromatic hydrocarbons in various matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Rolando L, Vila J, Baquero RP, Castilla-Alcantara JC, Barra Caracciolo A, Ortega-Calvo JJ. Impact of bacterial motility on biosorption and cometabolism of pyrene in a porous medium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137210. [PMID: 32062235 DOI: 10.1016/j.scitotenv.2020.137210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
The risks of pollution by polycyclic aromatic hydrocarbons (PAHs) may increase in bioremediated soils as a result of the formation of toxic byproducts and the mobilization of pollutants associated to suspended colloids. In this study, we used the motile and chemotactic bacterium Pseudomonas putida G7 as an experimental model for examining the potential role of bacterial motility in the cometabolism and biosorption of pyrene in a porous medium. For this purpose, we conducted batch and column transport experiments with 14C-labelled pyrene loaded on silicone O-rings, which acted as a passive dosing system. In the batch experiments, we observed concentrations of the 14C-pyrene equivalents well above the equilibrium concentration observed in abiotic controls. This mobilization was attributed to biosorption and cometabolism processes occurring in parallel. HPLC quantification revealed pyrene concentrations well below the 14C-based quantifications by liquid scintillation, indicating pyrene transformation into water-soluble polar metabolites. The results from transport experiments in sand columns revealed that cometabolic-active, motile cells were capable of accessing a distant source of sorbed pyrene. Using the same experimental system, we also determined that salicylate-mobilized cells, inhibited for pyrene cometabolism, but mobilized due to their tactic behavior, were able to sorb the compound and mobilize it by biosorption. Our results indicate that motile bacteria active in bioremediation may contribute, through cometabolism and biosorption, to the risk associated to pollutant mobilization in soils. This research could be the starting point for the development of more efficient, low-risk bioremediation strategies of poorly bioavailable contaminants in soils.
Collapse
Affiliation(s)
- Ludovica Rolando
- Istituto di Ricerca Sulle Acque (IRSA), CNR, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM, Italy; Dipartimento di Science Ecologiche e Biologiche (DEB), Universita degli studi della Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy; Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain
| | - Joaquim Vila
- Departament de Microbiologia, Universitat de Barcelona, Avenida Diagonal 643, 08028 Barcelona, Spain; Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain
| | - Rosa Posada Baquero
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain
| | - Jose Carlos Castilla-Alcantara
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain
| | - Anna Barra Caracciolo
- Istituto di Ricerca Sulle Acque (IRSA), CNR, Via Salaria km 29.300, 00015 Monterotondo Scalo, RM, Italy
| | - Jose-Julio Ortega-Calvo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes, 10, E-41012 Seville, Spain.
| |
Collapse
|
33
|
Song Y, Zhang Y, Li R, Chen W, Chung CKA, Cai Z. The cellular effects of PM 2.5 collected in Chinese Taiyuan and Guangzhou and their associations with polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and hydroxy-PAHs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110225. [PMID: 32001423 DOI: 10.1016/j.ecoenv.2020.110225] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Numerous studies have demonstrated adverse effects on human health after exposure to fine particulate matter (PM2.5). However, it is still not clear how the toxicological effects and the health risks vary among PM samples of different compositions and concentrations. In this study, we examined effects of region- and season-dependent differences of PM2.5 on cytotoxicity, and the contributions of PAHs, nitro-PAHs (N-PAHs) and hydroxy-PAHs (OH-PAHs) to PM2.5 toxicity by determining different toxicological indicators in three lung cell lines. The results illustrated significant differences in components concentrations and biological responses elicited by PM2.5 collected in different cities and seasons. The concentrations of most PAHs, N-PAHs and OH-PAHs were much higher in Taiyuan than in Guangzhou. PM2.5 from Taiyuan exhibited lower cell viability and higher reactive oxygen species (ROS) and interleukin-6 (IL-6) release on lung cells than those from Guangzhou. Specifically, PM2.5 collected in summer from Taiyuan caused higher levels of pro-inflammatory responses and oxidative potential than those collected in winter. The correlation analysis between 19 PAHs, 17 N-PAHs and 12 OH-PAHs and the measured indicators demonstrated that PAHs were more related to PM2.5-induced CCK-8 cytotoxicity and IL-6 release in Taiyuan while N-PAHs and OH-PAHs were more related to PM2.5-induced CCK-8 cytotoxicity and dithiothreitol (DTT)-based redox activity in Guangzhou, suggesting that the toxicity of PM2.5 from Taiyuan was mostly correlated with PAHs while the toxicity of PM2.5 from Guangzhou was closely associated with N-PAHs and OH-PAHs. These results revealed that composition differences in PM2.5 from different regions and seasons significantly accounted for the differences of their toxicological effects.
Collapse
Affiliation(s)
- Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ruijin Li
- Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan, China
| | - Wei Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chi Kong Arthur Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
34
|
Gbeddy G, Egodawatta P, Goonetilleke A, Ayoko G, Chen L. Application of quantitative structure-activity relationship (QSAR) model in comprehensive human health risk assessment of PAHs, and alkyl-, nitro-, carbonyl-, and hydroxyl-PAHs laden in urban road dust. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121154. [PMID: 31525685 DOI: 10.1016/j.jhazmat.2019.121154] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 05/22/2023]
Abstract
The carcinogenic human health risks (CHHR) posed by the exposure to PAHs and transformed PAH products (TPPs) are currently inconclusive due to the lack of toxicity equivalency factors (TEFs) for most TPPs although some of these pollutants are more potent carcinogens. The applicability of quantitative structure-activity relationship (QSAR) model in predicting TEF of PAHs and TPPs to holistically evaluate the CHHR posed by the exposure to these pollutants in road dust from Gold Coast, Australia was examined. Statistical evaluation via ten metrics shows that partial least-squares regression (PLSR1) model has more statistical power in predicting TEF than multiple linear regression (MLR) within relevant applicability domain. For instance, the predicted residual sum of squares (PRESS) and standard deviation of error of prediction (SDEP) for PLSR is closer to zero than that of MLR. The total cancer risk estimated using the QSAR model derived TEFs and original TEFs for outliers gives a more holistic incremental lifetime cancer risk in relation to children and adults. Potential cancer risk exists for adults with this approach whereas reliance on only the originally available TEFs lead to a negligible risk diagnosis. The application of QSAR model in assessing CHHR due to PAHs and TPPs exposures is very viable.
Collapse
Affiliation(s)
- Gustav Gbeddy
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.
| | - Prasanna Egodawatta
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| | - Ashantha Goonetilleke
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| | - Godwin Ayoko
- Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| | - Lan Chen
- Institute for Future Environments, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia
| |
Collapse
|
35
|
Naydenova S, Veli A, Mustafa Z, Gonsalvesh L. Qualitative and quantitative determination of polycyclic aromatic hydrocarbons in fine particulate matter. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:498-509. [PMID: 31847692 DOI: 10.1080/10934529.2019.1701896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
A GC-MS method in SIM mode is proposed for routine analysis of nineteen polycyclic aromatic hydrocarbons (PAHs) in particulate matter with an aerodynamic diameter of 10 µm. The latter is collected on Whatman® QM-A quartz filters via OPSIS SM200 sampler during autumn and spring periods at two different points, i.e. the one affected from communal and industry sectors and the other affected mainly from the transportation sector. In order to recover PAHs of interest ultrasonic assisted extraction is employed by utilization of various solvents. Accuracy data of the developed analytical method are within acceptable limits for the studied concentration range, i.e. trueness 60.0-120.0% and precision < 20.0%. The elaborated methodology is characterized by advantages such as short extraction time, low solvent and reagent consumption and simplified cleaning and is successfully applied to airborne PM10, collected in the urban area of Burgas, Bulgaria.
Collapse
Affiliation(s)
- St Naydenova
- Department of Ecology and Environmental Protection, Assen Zlatarov University, Burgas, Bulgaria
| | - A Veli
- Central Scientific Research Laboratory, Assen Zlatarov University, Burgas, Bulgaria
| | - Z Mustafa
- Central Scientific Research Laboratory, Assen Zlatarov University, Burgas, Bulgaria
| | - L Gonsalvesh
- Central Scientific Research Laboratory, Assen Zlatarov University, Burgas, Bulgaria
| |
Collapse
|
36
|
Mueller A, Ulrich N, Hollmann J, Zapata Sanchez CE, Rolle-Kampczyk UE, von Bergen M. Characterization of a multianalyte GC-MS/MS procedure for detecting and quantifying polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives from air particulate matter for an improved risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:112967. [PMID: 31610516 DOI: 10.1016/j.envpol.2019.112967] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
A correct description of the concentration and distribution of particle bound polycyclic aromatic hydrocarbons is important for risk assessment of atmospheric particulate matter. A new targeted GC-MS/MS method was developed for analyzing 64 PAHs including compounds with a molecular weight >300, as well as nitro-, methyl-, oxy- and hydroxyl derivatives in a single analysis. The instrumental LOD ranged between 0.03 and 0.7 pg/μL for PAHs, 0.2-7.9 pg/μL for hydroxyl and oxy PAHs, 0.1-7.4 pg/μL for nitro PAHs and 0.06-0.3 pg/μL for methyl-PAHs. As an example for the relevance of this method samples of PM10 were collected at six sampling sites in Medellin, Colombia, extracted and the concentration of 64 compounds was determined. The 16 PAHs from the EPA priority list contributed only from 54% to 69% to the sum of all analyzed compounds, PAH with high molecular weight accounted for 8.8%-18.9%. Benzo(a)pyrene equivalents (BaPeq) were calculated for the estimation of the life time cancer (LCR). The LCR according to the samples ranged from 2.75 × 10-5 to 1.4 × 10-4 by a calculation with toxic equivalent factors (TEF) and 5.7 × 10-5 to 3.8 × 10-4 with potency equivalent factor (PEF). By using the new relative potency factors (RPF) recommended by US Environmental Protection Agency (U.S.EPA) the LCR ranged from 1.3 × 10-4 to 7.2 × 10-4. Hence, it was around six times higher than the well-known TEF. The novel method enables the reliable quantification of a more comprehensive set of PAHs bound on PM and thus will facilitate and improve the risk assessment of them.
Collapse
Affiliation(s)
- Andrea Mueller
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Nadin Ulrich
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Analytical Environmental Chemistry, Permoserstr. 15, 04318 Leipzig, Germany
| | - Josef Hollmann
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Carmen E Zapata Sanchez
- Universidad Nacional de Colombia, Sede Medellin, Facultad de Minas, Departamento de Geociencias y Medioambiente, Carrera 80 Nr 65-223, Bl M3, Calaire, 050041 Medellin, Colombia
| | - Ulrike E Rolle-Kampczyk
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology, Permoserstr. 15, 04318 Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Talstr. 33, 04103 Leipzig, Germany
| |
Collapse
|
37
|
Schemeth D, Nielsen NJ, Andersson JT, Christensen JH. A tiered analytical approach for target, non-target and suspect screening analysis of polar transformation products of polycyclic aromatic compounds. CHEMOSPHERE 2019; 235:175-184. [PMID: 31255758 DOI: 10.1016/j.chemosphere.2019.06.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic compounds (PACs) possess toxicity towards humans, and their presence in the environment is unwanted. Polar transformation products (TPs) are more mobile, and can be considered emerging contaminants, as they represent a more bioavailable carrier of the same toxic properties. Acidic TPs has been proposed as an important class of polar TPs. This study presents a tiered analytical approach to investigate acidic and polar PAC TPs in environmental conditions. The tiered approach exploits target analysis for quantification of acids; suspect screening for tentative identification based on retention time and spectral matching using databases; and finally non-target analysis based on chromatography and data independent broadband MS to highlight potentially unknown analyte peaks. The approach includes a mixed-mode anion exchange solid phase extraction (MAX-SPE) to fractionate neutral and acidic compounds, and is applied to three cases: I) Photo-oxidation of six PACs generated suspected hydroxylated-, carbonylated- and carboxylated PACs but also proposed the presence of mono- and dicarboxylic acids, which have not been reported elsewhere. For a subset of four acids, conversion rates were determined. II) Recovery of spiked acids from diesel spilled harbor water was 80% by LC-MS, and diesel spill weathering was evaluated from the neutral fraction by GC-MS. III) By non-target analysis sulfonated PACs, presumable derived from photo-oxidation, were detected in run-off basins of an arctic landfarm, alongside hypothesized naturally occuring fatty acids. The tiered approach is a sensitive and versatile tool to extract information on PACs and their polar TPs from polluted environmental sites.
Collapse
Affiliation(s)
- Dieter Schemeth
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Nikoline J Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jan T Andersson
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| |
Collapse
|
38
|
Clergé A, Le Goff J, Lopez C, Ledauphin J, Delépée R. Oxy-PAHs: occurrence in the environment and potential genotoxic/mutagenic risk assessment for human health. Crit Rev Toxicol 2019; 49:302-328. [DOI: 10.1080/10408444.2019.1605333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Adeline Clergé
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen Cedex, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen Cedex, France
| | | | - Claire Lopez
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen Cedex, France
| | | | - Raphaël Delépée
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen Cedex, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen Cedex, France
- Normandie Univ, UNICAEN, PRISMM core facility, SF4206 ICORE, CCC F. Baclesse, Caen, France
| |
Collapse
|
39
|
Han M, Kong J, Yuan J, He H, Hu J, Yang S, Li S, Zhang L, Sun C. Method development for simultaneous analyses of polycyclic aromatic hydrocarbons and their nitro-, oxy-, hydroxy- derivatives in sediments. Talanta 2019; 205:120128. [PMID: 31450405 DOI: 10.1016/j.talanta.2019.120128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/25/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
Abstract
It is important to establish an available analytical method for polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs (nitro-PAHs), oxygenated forms of PAHs (oxy-PAHs), and hydroxy-PAHs (OH-PAHs) in sediment samples due to the fact that they co-exist in various environmental mediates, particularly in sediment. In this study, an analytical method has been developed and validated for the quantification of PAHs, nitro-PAHs, oxy-PAHs, and OH-PAHs in sediment samples. The sediment samples were extracted by accelerated solvent extraction and cleaned up with SPE alumina-n combining with aminopropyl cartridges. The extracts were further fractionated by using different solvents. The fractionated extracts were analyzed via gas chromatography of single and triple quadrupole mass spectrometry in the electron ionization and negative ion chemical ionization with selective ion monitoring and selective reaction monitoring mode and liquid chromatography-triple quadrupole mass spectrometry. Each group of analytes was determined by different instrument modes such as GC-EI-SIM for PAHs, GC-NICI-SRM for nitro-PAHs, GC-EI-SRM for the oxy-PAHs and LC-ESI-MS/MS for OH-PAHs. A total of 44 analytes (16 PAHs, 14 nitro-PAHs, 9 oxy-PAHs, and 5 OH-PAHs) and 6 deuterated surrogates were performed. Most of recovery percentage varied from 52.8% up to 114.1% for the targeted analytes verified at three concentration levels (100 ng/g, 400 ng/g and 1000 ng/g for PAHs and 10 ng/g, 50 ng/g and 400 ng/g for their derivatives). The repeatability determined by the relative standard deviation percentage of triplicate trials was less than 10% for most analytes. The limit of detection ranged from 0.01 to 0.02 ng/g for PAHs, 0.002-0.067 ng/g for nitro-PAHs, 0.01-0.1 ng/g for oxy-PAHs, and 0.003-0.006 ng/g for OH-PAHs. Most of the compounds were detectable in the sediments collected from a local River, which illustrates the developed method could be a practical and suitable technique for detection of PAHs and their derivatives in real sediment samples.
Collapse
Affiliation(s)
- Mengshu Han
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, 550001, China
| | - Jijie Kong
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Julong Yuan
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, China.
| | - Jiapeng Hu
- College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
40
|
Song D, Yang R, Long F, Zhu A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J Environ Sci (China) 2019; 80:14-34. [PMID: 30952332 DOI: 10.1016/j.jes.2018.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering (SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles (MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPs-basedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.
Collapse
Affiliation(s)
- Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
41
|
Determination of PM2.5-bound polyaromatic hydrocarbons and their hydroxylated derivatives by atmospheric pressure gas chromatography-tandem mass spectrometry. Talanta 2019; 195:757-763. [DOI: 10.1016/j.talanta.2018.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 01/29/2023]
|
42
|
David V, Galaon T, Bacalum E. Sample Enrichment by Solid-Phase Extraction for Reaching Parts per Quadrillion Levels in Environmental Analysis. Chromatographia 2019. [DOI: 10.1007/s10337-019-03696-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Schemeth D, Nielsen NJ, Christensen JH. SPE-LC-MS investigations for the isolation and fractionation of acidic oil degradation products. Anal Chim Acta 2018; 1038:182-190. [DOI: 10.1016/j.aca.2018.06.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/25/2023]
|
44
|
UETA I, SEKIGUCHI N, FUJIMURA K, YOSHIMURA T, NARUKAMI S, MOCHIZUKI S, SASAKI T, KUWABARA T, MAEDA T. Determination of Airborne Polycyclic Aromatic Hydrocarbons by HPLC Using SPE-Type Collection Device. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ikuo UETA
- Department of Applied Chemistry, University of Yamanashi
| | - Naho SEKIGUCHI
- Department of Applied Chemistry, University of Yamanashi
| | | | | | | | | | | | | | - Tsuneaki MAEDA
- Professionals' Network in Advanced Instrumentation Society
| |
Collapse
|
45
|
Experimental Designs for Optimizing Multi-residual Microwave-assisted Extraction and Chromatographic Analysis of Oxygenated (Hydroxylated, Quinones) Metabolites of PAHs in Sediments. Chromatographia 2018. [DOI: 10.1007/s10337-018-3584-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Borges B, Melo A, Ferreira IM, Mansilha C. Dispersive liquid–liquid microextraction for the simultaneous determination of parent and nitrated polycyclic aromatic hydrocarbons in water samples. ACTA CHROMATOGR 2018. [DOI: 10.1556/1326.2017.00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bárbara Borges
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Armindo Melo
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Portugal
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Isabel M.P.L.V.O. Ferreira
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Catarina Mansilha
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- LAQV/REQUIMTE, Universidade do Porto, Porto, Portugal
| |
Collapse
|
47
|
Marquès M, Cervelló D, Mari M, Sierra J, Schuhmacher M, Domingo JL, Nadal M. The Role of Iron Oxide on the Photodegradation of Polycyclic Aromatic Hydrocarbons: Characterization and Toxicity. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1458743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Catalonia, Spain
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Catalonia, Spain
| | - Daniel Cervelló
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Catalonia, Spain
| | - Montse Mari
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Catalonia, Spain
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Catalonia, Spain
| | - Jordi Sierra
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Catalonia, Spain
- wLaboratory of Soil Science, Faculty of Pharmacy, Universitat de Barcelona, Catalonia, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Catalonia, Spain
| | - José L. Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Catalonia, Spain
| |
Collapse
|
48
|
Li C, Tang H, Chen D, Ye C, Li L. An Integrated Ultrasonic Extraction and Cleanup Procedure for Determining PAHs and NPAHs in Ambient Air Particulates. Chromatographia 2017. [DOI: 10.1007/s10337-017-3360-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Bandowe BAM, Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:237-257. [PMID: 28069306 DOI: 10.1016/j.scitotenv.2016.12.115] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 05/07/2023]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are derivatives of PAHs with at least one nitro-functional group (-NO2) on the aromatic ring. The toxic effects of several nitro-PAHs are more pronounced than those of PAHs. Some nitro-PAHs are classified as possible or probable human carcinogens by the International Agency for Research on Cancer. Nitro-PAHs are released into the environment from combustion of carbonaceous materials (e.g. fossil fuels, biomass, waste) and post-emission transformation of PAHs. Most studies on nitro-PAHs are about air (gas-phase and particulate matter), therefore less is known about the occurrence, concentrations, transport and fate of nitro-PAHs in soils, aquatic environment and biota. Studies on partition and exchange of nitro-PAHs between adjacent environmental compartments are also sparse. The concentrations of nitro-PAHs cannot easily be predicted from the intensity of anthropogenic activity or easily related to those of PAHs. This is because anthropogenic source strengths of nitro-PAHs are different from those of PAHs, and also nitro-PAHs have additional sources (formed by photochemical conversion of PAHs). The fate and transport of nitro-PAHs could be considerably different from their related PAHs because of their higher molecular weights and considerably different sorption mechanisms. Hence, specific knowledge on nitro-PAHs is required. Regulations on nitro-PAHs are also lacking. We present an extensive review of published literature on the sources, formation, physico-chemical properties, methods of determination, occurrence, concentration, transport, fate, (eco)toxicological and adverse health effects of nitro-PAHs. We also make suggestions and recommendations about data needs, and future research directions on nitro-PAHs. It is expected that this review will stimulate scientific discussion and provide the basis for further research and regulations on nitro-PAHs.
Collapse
Affiliation(s)
- Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland.
| | - Hannah Meusel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| |
Collapse
|
50
|
UETA I, ONIKATA M, FUJIMURA K, YOSHIMURA T, NARUKAMI S, MOCHIZUKI S, SASAKI T, MAEDA T. A Newly Designed Solid-Phase Extraction-type Collection Device for Precise Determination of Polycyclic Aromatic Hydrocarbons in Air. ANAL SCI 2017; 33:1175-1180. [DOI: 10.2116/analsci.33.1175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ikuo UETA
- Department of Applied Chemistry, University of Yamanashi
| | - Moe ONIKATA
- Department of Applied Chemistry, University of Yamanashi
| | | | | | | | | | | | - Tsuneaki MAEDA
- National Institute of Advanced Industrial Science and Technology
| |
Collapse
|