1
|
Boselli E, Wu Z, Haynes EN, Papautsky I. Screen-Printed Sensors Modified with Nafion and Mesoporous Carbon for Electrochemical Detection of Lead in Blood. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2024; 171:027513. [PMID: 38357555 PMCID: PMC10862559 DOI: 10.1149/1945-7111/ad2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Lead (Pb) has long been acknowledged as a systemic toxicant, with pronounced health impacts observed even at low exposure levels, particularly in children. Adverse effects include diminished cognitive function, altered behavior, and developmental delays. Consequently, it is imperative to conduct regular monitoring of Blood Lead Levels (BLLs). In this work, we report on an electrochemical sensor based on screen-printed carbon electrode (SPCE) coated with Nafion and mesoporous carbon (MC). The sensor system uses simple sample preparation (acidification and dilution of whole blood), minimal sample volume (a few blood drops, 200 μl), and swift time-to-results (1 h). A limit of quantitation (LOQ) of 0.3 μg dL-1 Pb was achieved in whole blood. To demonstrate the practical utility of our sensor system, we evaluated its performance in the analysis of blood samples collected from children (n = 25). Comparative analysis with the laboratory-based gold standard method of inductively coupled plasma mass spectrometry (ICP-MS) demonstrated approximately 77% accuracy and 94% precision. We anticipate that our approach will serve as a valuable tool for more frequent BLL monitoring, particularly in communities where access to laboratory testing is impractical or expensive.
Collapse
Affiliation(s)
- Elena Boselli
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States of America
| | - Zhizhen Wu
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States of America
| | - Erin N. Haynes
- Departments of Epidemiology and Preventive Medicine and Environmental Health, University of Kentucky, Kentucky 40536, United States of America
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States of America
| |
Collapse
|
2
|
Rauscher MV, Seyffertitz M, Kohns R, Stock S, Amenitsch H, Huesing N, Paris O. Optimizing surfactant removal from a soft-templated ordered mesoporous carbon precursor: an in situ SAXS study. J Appl Crystallogr 2023; 56:801-809. [PMID: 37284273 PMCID: PMC10241053 DOI: 10.1107/s1600576723003886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
In situ small-angle X-ray scattering (SAXS) was employed to identify critical parameters during thermal treatment for template removal of an ordered mesoporous carbon precursor synthesized via a direct soft-templating route. The structural parameters obtained from the SAXS data as a function of time were the lattice parameter of the 2D hexagonal structure, the diameter of the cylindrical mesostructures and a power-law exponent characterizing the interface roughness. Moreover, detailed information on contrast changes and pore lattice order was obtained from analysis of the integrated SAXS intensity of the Bragg and diffuse scattering separately. Five characteristic regions during heat treatment were identified and discussed regarding the underlying dominant processes. The influence of temperature and O2/N2 ratio on the final structure was analyzed, and parameter ranges were identified for an optimized template removal without strongly affecting the matrix. The results indicate that the final structure and controllability of the process are optimum for temperatures between 260 and 300°C with a gas flow containing 2 mol% of O2.
Collapse
Affiliation(s)
- Max Valentin Rauscher
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| | - Malina Seyffertitz
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| | - Richard Kohns
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg, Salzburg, Austria
| | - Sebastian Stock
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Nicola Huesing
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg, Salzburg, Austria
| | - Oskar Paris
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| |
Collapse
|
3
|
Rajendrachari S, Basavegowda N, Adimule VM, Avar B, Somu P, R. M. SK, Baek KH. Assessing the Food Quality Using Carbon Nanomaterial Based Electrodes by Voltammetric Techniques. BIOSENSORS 2022; 12:1173. [PMID: 36551140 PMCID: PMC9775119 DOI: 10.3390/bios12121173] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The world is facing a global financial loss and health effects due to food quality adulteration and contamination, which are seriously affecting human health. Synthetic colors, flavors, and preservatives are added to make food more attractive to consumers. Therefore, food safety has become one of the fundamental needs of mankind. Due to the importance of food safety, the world is in great need of developing desirable and accurate methods for determining the quality of food. In recent years, the electrochemical methods have become more popular, due to their simplicity, ease in handling, economics, and specificity in determining food safety. Common food contaminants, such as pesticides, additives, and animal drug residues, cause foods that are most vulnerable to contamination to undergo evaluation frequently. The present review article discusses the electrochemical detection of the above food contaminants using different carbon nanomaterials, such as carbon nanotubes (CNTs), graphene, ordered mesoporous carbon (OMC), carbon dots, boron doped diamond (BDD), and fullerenes. The voltammetric methods, such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV), have been proven to be potential methods for determining food contaminants. The use of carbon-based electrodes has the added advantage of electrochemically sensing the food contaminants due to their excellent sensitivity, specificity, large surface area, high porosity, antifouling, and biocompatibility.
Collapse
Affiliation(s)
- Shashanka Rajendrachari
- Department of Metallurgical and Materials Engineering, Bartin University, 74100 Bartin, Turkey
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vinayak M Adimule
- Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi 5800321, Karnataka, India
| | - Baris Avar
- Department of Metallurgical and Materials Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey
| | - Prathap Somu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602105, Tamil Nadu, India
| | - Saravana Kumar R. M.
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602105, Tamil Nadu, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Trends in advanced materials for the fabrication of insulin electrochemical immunosensors. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Yang JY, Ko TH, Kuk YS, Seo MK, Kim BS. A Facile Fabrication of Ordered Mesoporous Carbons Derived from Phenolic Resin and Mesophase Pitch via a Self-Assembly Method. NANOMATERIALS 2022; 12:nano12152686. [PMID: 35957116 PMCID: PMC9370532 DOI: 10.3390/nano12152686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/10/2022]
Abstract
Ordered and disordered mesoporous structures were synthesized by a self-assembly method using a mixture of phenolic resin and petroleum-based mesophase pitch as the starting materials, amphiphilic triblock copolymer F127 as a soft template, hydrochloric acid as a catalyst, and distilled water as a solvent. Then, mesoporous carbons were obtained via autoclave method at low temperature (60 °C) and then carbonization at a relatively low temperature (600 °C), respectively. X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) analyses revealed that the porous carbons with a mesophase pitch content of approximately 10 wt% showed a highly ordered hexagonal mesostructure with a highly uniform pore size of ca. 5.0 nm. In addition, the mesoporous carbons prepared by self-assembly and low-temperature autoclave methods exhibited the amorphous or crystalline carbon structures with higher specific surface area (SSA) of 756 m2/s and pore volume of 0.63 cm3/g, depending on the synthesis method. As a result, mesoporous carbons having a high SSA were successfully prepared by changing the mixing ratio of mesophase pitch and phenolic resin. The electrochemical properties of as-obtained mesoporous carbon materials were investigated. Further, the OMC-meso-10 electrode delivered the maximum SC of about 241 F/g at an applied current density of 1 A/g, which was higher than those of the MC-10 (~104 F/g) and OMC-20 (~115 F/g).
Collapse
Affiliation(s)
- Jae-Yeon Yang
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Banryong-ro, Deokjin-gu, Jeonju-si 54853, Jeollabuk-do, Korea
| | - Tae Hoon Ko
- Department of Nano Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Korea
| | - Yun-Su Kuk
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Banryong-ro, Deokjin-gu, Jeonju-si 54853, Jeollabuk-do, Korea
| | - Min-Kang Seo
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Banryong-ro, Deokjin-gu, Jeonju-si 54853, Jeollabuk-do, Korea
- Correspondence: (M.-K.S.); (B.-S.K.); Tel.: +82-063-270-2352 (M.K.S. & B.S.K.)
| | - Byoung-Suhk Kim
- Department of Organic Materials & Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Korea
- Correspondence: (M.-K.S.); (B.-S.K.); Tel.: +82-063-270-2352 (M.K.S. & B.S.K.)
| |
Collapse
|
6
|
Li Y, Peng D, Guo S, Yang B, Zhou J, Zhou J, Zhang Q, Bai L. Aptasensor for Mycobacterium tuberculosis antigen MPT64 detection using anthraquinone derivative confined in ordered mesoporous carbon as a new redox nanoprobe. Bioelectrochemistry 2022; 147:108209. [PMID: 35850057 DOI: 10.1016/j.bioelechem.2022.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022]
Abstract
Rapid and sensitive tuberculosis (TB) diagnoses remain big challenges to current detection tools. In this work, a sensitive electrochemical aptasensor was constructed for the determination of Mycobacterium tuberculosis antigen MPT64 using a new redox nanoprobe. We found that anthraquinone derivative, anthraquinone-2-carboxylic acid (AQCA), a redox mediator, could be confined in ordered mesoporous carbon material of CMK-3. Due to the large loading amount of AQCA, as well as the confined space and electron transfer promotion effect of CMK-3, the obtained AQCA/CMK-3 nanohybrid with mass ratio of 2:1 showed excellent electroactivity and was employed as a new redox nanoprobe for signal amplification for the first time. Additionally, urchin-like Ce-MOFs were used to load a large amount of deposited gold nanocrystals (dep-Au), leading to dense immobilization of capture probe. The proposed electrochemical aptasensor for MPT64 detection showed a good linear relationship in the range from 100 fg/mL to 10 ng/mL with a low detection limit of 67.6 fg/mL. Besides, the aptasensor was utilized to detect MTP64 in human serum samples for TB diagnosis and presented satisfactory results.
Collapse
Affiliation(s)
- Yishi Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Dengyong Peng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bijun Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jiaxu Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Qifan Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
7
|
Habibi MM, Ghasemi JB, Badiei A, Norouzi P. Simultaneous electrochemical determination of morphine and methadone by using CMK-5 mesoporous carbon and multivariate calibration. Sci Rep 2022; 12:8270. [PMID: 35585173 PMCID: PMC9117690 DOI: 10.1038/s41598-022-12506-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
For the first time, a sensitive electrochemical sensor using a glassy carbon electrode modified with CMK-5 Ordered mesoporous carbon was fabricated for simultaneous analysis of morphine and methadone. Modern electrochemical FFT-SWV techniques and partial least-squares as a multivariable analysis were used in this method. CMK-5 nanostructures were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. Variables such as accumulation time and pH for the proposed sensor were optimized before quantitative analysis. To train the proposed sensor, standard mixtures of morphine (MOR), and methadone (MET) were prepared in the established linear ranges of the analyzes. The results obtained from training samples were used for PLS modeling. The efficiency of the model was determined using test and real matrix samples. The root mean square error of prediction and the squared correlation coefficients (R2p) for MET and MOR were estimated to be 0.00772 and 0.00892 and 0.948 to 0.990, respectively. The recoveries in urine samples were reported to be 97.0 and 105.6% for both MOR and MET, respectively.
Collapse
Affiliation(s)
| | - Jahan B Ghasemi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Department of Chemistry, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Robertson M, Zagho MM, Nazarenko S, Qiang Z. Mesoporous carbons from self‐assembled polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Moustafa M. Zagho
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Sergei Nazarenko
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Zhe Qiang
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
9
|
Research on Adsorption and Desorption Performance of Gas-Phase Naphthalene on Hydrophobic Modified FDU-15. Processes (Basel) 2022. [DOI: 10.3390/pr10030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Naphthalene (NAP) is a typical gaseous polycyclic aromatic hydrocarbons (PAHs) pollutant that displays toxicological effects on biosystems. Ordered mesoporous carbon has relatively adequate adsorption capacity; however, the attached hydrophilic functional groups were proven to affect the adsorption performance in the presence of moisture. In this paper, trimethylchlorosilane (TMCS) is used to carry out the hydrophobic modification of ordered mesoporous carbon FDU-15, and the adsorption and desorption properties of FDU-15 were studied. Furthermore, the adsorption isotherms of naphthalene on FDU-15 and modified FDU-15 were fitted by L-F equation, and the kinetic parameters of desorption of naphthalene on modified FDU-15 were analyzed based on the method of temperature programming desorption (TPD). The results showed that the micropore volume and specific surface area of FDU-15 were significantly increased after hydrophobically modified by TMCS, and the polar functional groups of the hydrophobically modified FDU-15 were significantly reduced. Furthermore, the adsorption of naphthalene by FDU-15 before and after modification conformed to the L-F equation (R2 > 99%), and the adsorption of naphthalene by modified FDU-5 at low concentration was significantly improved due to the increase of micropores. Based on desorption kinetic performance study of modified FDU-15, it can be seen that the adsorption kinetic characteristics of naphthalene on the modified FDU-15 conform to the mechanical function of the JMA equation. When the mass ratio of TMCs to FDU-15 is 1:10 in the modification process, the pore structure and surface hydrophobicity of the modified FDU-15 reach an excellent balance. At this time, the adsorbent had the optimum desorption performance under experimental conditions, and the desorption activation energy was decreased from 60.98 kJ/mol of FDU-15 to 50.28 kJ/mol.
Collapse
|
10
|
Balaji R, Maheshwaran S, Chen SM, Tamilalagan E, Chandrasekar N, Ethiraj S, Samuel MS. Fabricating BiOI nanostructures armed catalytic strips for selective electrochemical and SERS detection of pesticide in polluted water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118754. [PMID: 34973381 DOI: 10.1016/j.envpol.2021.118754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
We have constructed a dual mode catalytic strip equipped with 2D BiOI nanostructures and deployed for dual mode detection sensing of hazardous trichlorophenol (TCP). Synthesized BiOI nanostructures are investigated for its crystal architecture, morphology and chemical composition. The BiOI are loaded onto the catalytic strips with the assistance of gravity offered drying process. The BiOI nanostructures offers a very less charge transfer resistance indicating its superior catalytic properties upon the electrochemical impedance studies. It reflected on providing an excellent limit of detection (LOD) and linear sensing range for TCP in electrochemical mode. For SERS, a thin plasmonic Au layer is sputter coated on BiOI equipped catalytic strips (Au@BiOI) for the TCP detection. An impressive enhancement factor of 107 is obtained for SERS detection of TCP with good LOD of 10-10 M. Fabricated dual mode BiOI based strips are thoroughly examined for operational stability and performance in real time conditions. The fabricated high performance dual mode platform for the detection of hazardous pesticides appears to be a promising prospect for the on-the-spot investigation.
Collapse
Affiliation(s)
- Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC
| | - Selvarasu Maheshwaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC.
| | - Elayappan Tamilalagan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 106, Taiwan, ROC
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Melvin S Samuel
- Department of Material Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
11
|
Casanova A, Iniesta J, Gomis-Berenguer A. Recent progress in the development of porous carbon-based electrodes for sensing applications. Analyst 2022; 147:767-783. [PMID: 35107446 DOI: 10.1039/d1an01978c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrochemical (bio)sensors are considered clean and powerful analytical tools capable of converting an electrochemical reaction between analytes and electrodes into a quantitative signal. They are an important part of our daily lives integrated in various fields such as healthcare, food and environmental monitoring. Several strategies including the incorporation of porous carbon materials in its configuration have been applied to improve their sensitivity and selectivity in the last decade. The porosity, surface area, graphitic structure as well as chemical composition of materials greatly influence the electrochemical performance of the sensors. In this review, activated carbons, ordered mesoporous carbons, graphene-based materials, and MOF-derived carbons, which are used to date as crucial elements of electrochemical devices, are described, starting from their textural and chemical compositions to their role in the outcome of electrochemical sensors. Several relevant and meaningful examples about material synthesis, sensor fabrication and applications are illustrated and described. The closer perspectives of these fascinating materials forecast a promising future for the electrochemical sensing field.
Collapse
Affiliation(s)
- Ana Casanova
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, SE-100 44 Stockholm, Sweden
| | - Jesus Iniesta
- Department of Physical Chemistry, University of Alicante, 03080 Alicante, Spain
- Institute of Electrochemistry, University of Alicante, 03080 Alicante, Spain.
| | | |
Collapse
|
12
|
Yuan B, Sun P, Fernandez C, Wang H, Guan P, Xu H, Niu Y. Molecular fluorinated cobalt phthalocyanine immobilized on ordered mesoporous carbon as an electrochemical sensing platform for sensitive detection of hydrogen peroxide and hydrazine in alkaline medium. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Ullah W, Herzog G, Vilà N, Walcarius A. Polyaniline nanowire arrays generated through oriented mesoporous silica films: effect of pore size and spectroelectrochemical response. Faraday Discuss 2021; 233:77-99. [PMID: 34889333 DOI: 10.1039/d1fd00034a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Indium-tin oxide electrodes modified with vertically aligned silica nanochannel membranes have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica precursors (tetraethoxysilane). They exhibited pore diameters in the 2-3 nm range depending on the surfactant used. After surfactant removal, the bottom of mesopores was derivatized with aminophenyl groups via electrografting (i.e., electrochemical reduction of in situ generated aminophenyl monodiazonium salt). These species covalently bonded to the ITO substrate were then exploited to grow polyaniline nanofilaments by electropolymerization of aniline through the nanochannels. Under potentiostatic conditions, the length of polyaniline wires is controllable by tuning the electropolymerization time. From cyclic voltammetry characterization performed either before or after dissolution of the silica template, it appeared that both the polyaniline/silica composite and the free polyaniline nanowire arrays were electroactive, yet with much larger peak currents in the latter case as a result of larger effective surface area offered to the electrolyte solution. At identical electropolymerization time, the amount of deposited polyaniline was larger when using the silica membrane with larger pore diameter. All polyaniline deposits exhibited electrochromic properties. However, the spectroelectrochemical data indicated more complete interconversion between the coloured oxidized form and colourless reduced polyaniline for the arrays of nanofilaments in comparison to bulky films. In addition, the template-free nanowire arrays (i.e., after silica dissolution) were characterized by faster electrochromic behaviour than the polyaniline/silica hybrid, confirming the potential interest of such polyaniline nano-brushes for practical applications.
Collapse
Affiliation(s)
- Wahid Ullah
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS - Université de Lorraine, 405 Rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.
| |
Collapse
|
14
|
Zhang J, Zhang N, Tack FMG, Sato S, Alessi DS, Oleszczuk P, Wang H, Wang X, Wang S. Modification of ordered mesoporous carbon for removal of environmental contaminants from aqueous phase: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126266. [PMID: 34130163 DOI: 10.1016/j.jhazmat.2021.126266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Contamination of water bodies by potentially toxic elements and organic pollutants has aroused extensive concerns worldwide. Thus it is significant to develop effective adsorbents for removing these contaminants. As a new member of carbonaceous material families (activated carbon, biochar, and graphene), ordered mesoporous carbon (OMC) with larger specific surface area, ordered pore structure, and higher pore volume are being evaluated for their use in contaminant removal. In this paper, modification techniques of OMC were systematically reviewed for the first time. These include nonmetallic doping modification (nitrogen, sulfur, and boron) and the impregnation of nano-metals and metal oxides (iron, copper, cobalt, nickel, magnesium, and rare earth element). Reaction conditions (solution pH, reaction temperature, sorbent dosage, and contact time) are of critical importance for the removal performance of contaminants onto OMC. In addition, the pristine and modified OMC have been investigated for the removal of a range of contaminants, including cationic/anionic toxic elements and organic contaminants (synthetic dye, phenol, and others), and involving different and specific mechanisms of interaction with contaminants. The future research directions of the application of pristine and modified OMC were proposed. Overall, this review can provide sights into the modification techniques of OMC for removal of environmental contaminants.
Collapse
Affiliation(s)
- Jian Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ni Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Shinjiro Sato
- Department of Science & Engineering for Sustainable Innovation, Soka University, Hachiojishi, Tokyo 192-8577, Japan
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| |
Collapse
|
15
|
Doustkhah E, Tahawy R, Simon U, Tsunoji N, Ide Y, Hanaor DAH, Assadi MHN. Bispropylurea bridged polysilsesquioxane: A microporous MOF-like material for molecular recognition. CHEMOSPHERE 2021; 276:130181. [PMID: 33735650 DOI: 10.1016/j.chemosphere.2021.130181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Microporous organosilicas assembled from polysilsesquioxane (POSS) building blocks are promising materials that are yet to be explored in-depth. Here, we investigate the processing and molecular structure of bispropylurea bridged POSS (POSS-urea), synthesised through the acidic condensation of 1,3-bis(3-(triethoxysilyl)propyl)urea (BTPU). Experimentally, we show that POSS-urea has excellent functionality for molecular recognition toward acetonitrile with an adsorption level of 74 mmol/g, which compares favourably to MOFs and zeolites, with applications in volatile organic compounds (VOC). The acetonitrile adsorption capacity was 132-fold higher relative to adsorption capacity for toluene, which shows the pores are highly selective towards acetonitrile adsorption due to their size and arrangement. Theoretically, our tight-binding density functional and molecular dynamics calculations demonstrated that this BTPU based POSS is microporous with an irregular placement of the pores. Structural studies confirm maximal pore sizes of ∼1 nm, with POSS cages possessing an approximate edge length of ∼3.16 Å.
Collapse
Affiliation(s)
- Esmail Doustkhah
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Rafat Tahawy
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ulla Simon
- Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, 10623 Berlin, Germany
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Applied Chemistry Program, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Yusuke Ide
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Dorian A H Hanaor
- Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, 10623 Berlin, Germany
| | - M Hussein N Assadi
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Zhang N, Eric M, Zhang C, Zhang J, Feng K, Li Y, Wang S. ZVI impregnation altered arsenic sorption by ordered mesoporous carbon in presence of Cr(Ⅵ): A mechanistic investigation. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125507. [PMID: 34030402 DOI: 10.1016/j.jhazmat.2021.125507] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
It is challenging to efficiently remove arsenate (As(Ⅴ)) and chromate (Cr(Ⅵ)) simultaneously. Herein, ordered mesoporous carbon (OMC) was fabricated with averaged pore diameter of 6.5 nm and surface area of 997 m2 g-1. Zerovalent iron (ZVI) impregnation reduced surface area of ZVI/OMC (432 m2 g-1) and increased ID/IG ratio by 13%. Maximal Cr(Ⅵ) and As(Ⅴ) sorption capacities at pH 3 were 0.66 and 0.019 mmol g-1 by OMC, and 0.71 and 0.39 mmol g-1 by ZVI/OMC, respectively. Reduction accounted for over 55% for Cr(Ⅵ) and As(Ⅴ) removal followed by complexation and precipitation. Better ZVI/OMC performance was ascribed to higher electron transfer rate and lower electrical resistance than OMC as per electrochemical analysis. Upon Cr(Ⅵ) introduction, As(Ⅴ) removal increased to 0.28 mmol g-1 by OMC, but decreased to 0.16 mmol g-1 by ZVI/OMC. OMC could preferably reduce CrO42- to Cr3+ by hydroxyl group, which enhanced its zeta potential facilitating As(Ⅴ) sorption. Regarding ZVI/OMC, Fe0 and Fe oxide in ZVI/OMC exhibited better affinity to As(Ⅴ), but the competition for the similar active sites resulted in compromised As(Ⅴ) and Cr(Ⅵ) removal. Thus, the novel OMC is advantageous for removal of binary As(Ⅴ) and Cr(Ⅵ), but ZVI/OMC is robust to detoxify single heavy metal.
Collapse
Affiliation(s)
- Ni Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China
| | - Munyabugingo Eric
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Changai Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, PR China
| | - Jian Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Ke Feng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China
| | - Yuncong Li
- Soil and Water Sciences Department, Tropical Research and Education Center, IFAS, University of Florida, Homestead FL 33031, USA
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, PR China.
| |
Collapse
|
17
|
Efficient batch and Fixed-Bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103186] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
18
|
Roik NV, Belyakova LA, Dziazko MO. Solubilization of azo dyes by cetyltrimethylammonium bromide micelles as structure control factor at synthesis of ordered mesoporous silicas. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Bukhari SAB, Nasir H, Pan L, Tasawar M, Sohail M, Shahbaz M, Gul F, Sitara E. Supramolecular assemblies of carbon nanocoils and tetraphenylporphyrin derivatives for sensing of catechol and hydroquinone in aqueous solution. Sci Rep 2021; 11:5044. [PMID: 33658569 PMCID: PMC7930085 DOI: 10.1038/s41598-021-84294-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Non-enzymatic electrochemical detection of catechol (CC) and hydroquinone (HQ), the xenobiotic pollutants, was carried out at the surface of novel carbon nanocoils/zinc-tetraphenylporphyrin (CNCs/Zn-TPP) nanocomposite supported on glassy carbon electrode. The synergistic effect of chemoresponsive activity of Zn-TPP and a large surface area and electron transfer ability of CNCs lead to efficient detection of CC and HQ. The nanocomposite was characterized by using FT-IR, UV/vis. spectrophotometer, SEM and energy dispersive X-ray spectroscopy (EDS). Cyclic voltammetry, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy were used for the electrochemical studies. CNCs/Zn-TPP/GCE nanosensor displayed a limit of detection (LOD), limit of quantification (LOQ) and sensitivity for catechol as 0.9 µM, 3.1 µM and 0.48 µA µM-1 cm-2, respectively in a concentration range of 25-1500 µM. Similarly, a linear trend in the concentration of hydroquinone detection was observed between 25 and 1500 µM with an LOD, LOQ and sensitivity of 1.5 µM, 5.1 µM and 0.35 µA µM-1 cm-2, respectively. DPV of binary mixture pictured well resolved peaks with anodic peak potential difference, ∆Epa(CC-HQ), of 110 mV showing efficient sensing of CC and HQ. The developed nanosensor exhibits stability for up to 30 days, better selectivity and good repeatability for eight measurements (4.5% for CC and 5.4% for HQ).
Collapse
Affiliation(s)
- Syeda Aqsa Batool Bukhari
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Habib Nasir
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan.
| | - Lujun Pan
- School of Physics, Dalian University of Technology, Dalian, China
| | - Mehroz Tasawar
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Muhammad Shahbaz
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Fareha Gul
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Effat Sitara
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| |
Collapse
|
20
|
Yang X, Qiu P, Yang J, Fan Y, Wang L, Jiang W, Cheng X, Deng Y, Luo W. Mesoporous Materials-Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904022. [PMID: 31643131 DOI: 10.1002/smll.201904022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/07/2019] [Indexed: 05/04/2023]
Abstract
Mesoporous materials have drawn more and more attention in the field of biosensors due to their high surface areas, large pore volumes, tunable pore sizes, as well as abundant frameworks. In this review, the progress on mesoporous materials-based biosensors from enzymatic to nonenzymatic are highlighted. First, recent advances on the application of mesoporous materials as supports to stabilize enzymes in enzymatic biosensing technology are summarized. Special emphasis is placed on the effect of pore size, pore structure, and surface functional groups of the support on the immobilization efficiency of enzymes and the biosensing performance. Then, the development of a nonenzymatic strategy that uses the intrinsic property of mesoporous materials (carbon, silica, metals, and composites) to mimic the behavior of enzymes for electrochemical sensing of some biomolecules is discussed. Finally, the challenges and perspective on the future development of biosensors based on mesoporous materials are proposed.
Collapse
Affiliation(s)
- Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Xiaowei Cheng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
21
|
Crude black pepper phytochemical 3D printed cell based miniaturized hydrazine electrochemical sensing platform. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Zhang B, Jaouhari AE, Wu X, Liu W, Zhu J, Liu X. Synthesis and characterization of PEDOT-MC decorated AgNPs for voltammetric detection of rutin in real samples. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Veerakumar P, Lin KC. An overview of palladium supported on carbon-based materials: Synthesis, characterization, and its catalytic activity for reduction of hexavalent chromium. CHEMOSPHERE 2020; 253:126750. [PMID: 32302912 DOI: 10.1016/j.chemosphere.2020.126750] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Palladium plays a pivotal role in most of the industrial heterogeneous catalysts, because of its unique properties such as well-defined structure, great intrinsic carrier, outstanding electronic, mechanical and thermal stability. The combination of palladium and various porous carbons (PCs) can widen the use of heterogeneous catalysts. This review highlights the advantages and limitations of carbon supported palladium-based heterogeneous catalyst in reduction of toxic hexavalent chromium (Cr(VI)). In addition, we address recent progress on synthesis routes for mono and bimetallic palladium nanoparticles supported by various carbon composites including graphene-based materials, carbon nanotubes, mesoporous carbons, and activated carbons. The related reaction mechanisms for the Cr(VI) reduction are also suggested. Finally, the challenge and perspective are proposed.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC; Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC.
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC; Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1, Roosevelt Road, Section 4, Taipei, 10617, Taiwan, ROC.
| |
Collapse
|
24
|
Review on applications of carbon nanomaterials for simultaneous electrochemical sensing of environmental contaminant dihydroxybenzene isomers. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Lv C, Li S, Liu L, Zhu X, Yang X. Enhanced Electrochemical Characteristics of the Glucose Oxidase Bioelectrode Constructed by Carboxyl-Functionalized Mesoporous Carbon. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3365. [PMID: 32545838 PMCID: PMC7349592 DOI: 10.3390/s20123365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023]
Abstract
This research revealed the effect of carboxyl-functionalization on the mesoporous carbon (MC)-fixed glucose oxidase (GOx) for promoting the properties of bioelectrodes. It showed that the oxidation time, temperature and concentration, can significantly affect MC carboxylation. The condition of 2 M ammonium persulfate, 50 °C and 24 h was applied in the study for the successful addition of carboxyl groups to MC, analyzed by FTIR. The nitrogen adsorption isotherms, and X-ray diffraction analysis showed that the carboxylation process slightly changed the physical properties of MC and that the specific surface area and pore size were all well-maintained in MC-COOH. Electrochemical characteristics analysis showed that Nafion/GOx/MC-COOH presented better electrocatalytic activity with greater peak current intensity (1.13-fold of oxidation peak current and 4.98-fold of reduction peak current) compared to Nafion/GOx/MC. Anodic charge-transfer coefficients (α) of GOx/MC-COOH increased to 0.77, implying the favored anodic reaction. Furthermore, the GOx immobilization and enzyme activity in MC-COOH increased 140.72% and 252.74%, leading to the enhanced electroactive GOx surface coverage of Nafion/GOx/MC-COOH electrode (22.92% higher, 1.29 × 10-8 mol cm-2) than the control electrode. Results showed that carboxyl functionalization could increase the amount and activity of immobilized GOx, thereby improving the electrode properties.
Collapse
Affiliation(s)
- Chuhan Lv
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Liangxu Liu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xingyu Zhu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (C.L.); (S.L.); (L.L.); (X.Z.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
26
|
Srinidhi G, Sudalaimani S, Giribabu K, Basha SJS, Suresh C. Amperometric determination of hydrazine using a CuS-ordered mesoporous carbon electrode. Mikrochim Acta 2020; 187:359. [PMID: 32468290 DOI: 10.1007/s00604-020-04325-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
An electrocatalytic sensor for hydrazine using copper sulfide-ordered mesoporous carbon (CuS-OMC) is described. A facile solvothermal synthetic strategy was adopted for CuS-OMC and the ordered mesoporous carbon was obtained through nanocasting method. The synthesized CuS-OMC was characterized using microscopic and spectrochemical techniques. CuS-OMC was immobilized on GCE and evaluated for its electrochemical sensing of hydrazine using cyclic voltammetry and amperometry. CuS-OMC modified GCE exhibited better hydrazine sensing at an optimized pH 7.4 in terms of oxidation potential and current compared with that of GCE, CuS, and OMC. The observed sensing performance of CuS-OMC was attributed to the presence of Cu (I/II) in CuS dispersed in OMC which acts as an electrocatalytic center for the sensing of hydrazine. Amperometry under optimized experimental condition with an applied potential of 270 mV was employed to obtain a linear calibration plot in the range 0.25 to 40 μM (R2 = 0.9908) with a detection limit of 0.10 μM with a sensitivity of 0.915 (± 0.02) μA cm-2 μM-1. Real sample analyses were carried out by spiking of hydrazine in different water samples and the recoveries were in the range of 97 ± 2.1% (n = 3). Graphical abstract.
Collapse
Affiliation(s)
- G Srinidhi
- Department of Nanoscience and Nanotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, 641 046, India
| | - S Sudalaimani
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India
| | - K Giribabu
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| | - S J Sardhar Basha
- Department of Nanoscience and Nanotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, 641 046, India
| | - C Suresh
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
27
|
Zhang Y, Jiang J, Zhang Z, Yu H, Rong S, Gao H, Pan H, Chang D. Electrochemical strategy with zeolitic imidazolate framework-8 and ordered mesoporous carbon for detection of xanthine. IET Nanobiotechnol 2020; 14:120-125. [PMID: 32433028 DOI: 10.1049/iet-nbt.2018.5342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An accurate, safe, environmentally friendly, fast and sensitive electrochemical biosensors were developed to detect xanthine in serum. The metal-organic framework ZIF-8 was synthesised and elemental gold was supported on the surface of ZIF-8 by reduction method to synthesise Ag-ZIF-8. The mesoporous carbon material and the synthesised Ag-ZIF-8 were, respectively, applied to a glassy carbon electrode to construct biosensors. The constructed biosensor has a good linear relation in the range of 1-280 μmol l-1 of xanthine and the detection limit is 0.167 μmol l-1. The relative standard deviation value in serum samples was <5%, and the recoveries were 96-106%, indicating the good selectivity, stability and reproducibility of this electrochemical biosensor.
Collapse
Affiliation(s)
- Yingcong Zhang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Jinghui Jiang
- The First Affiliated Hospital of the Harbin Medical University, Heilongjiang Province 150001, People's Republic of China
| | - Ze Zhang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Hongwei Yu
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, People's Republic of China
| | - Hongmin Gao
- School of Public Health, Wuhan University of Science and Technology, HuBei Province 430065, People's Republic of China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai 201399, People's Republic of China
| | - Dong Chang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China.
| |
Collapse
|
28
|
Wang H, Liu Y, Hu G, Ye Y, Pan L, Zhu P, Yao S. Ultrasensitive electrochemical sensor for determination of trace carbadox with ordered mesoporous carbon/GCE. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Yan Y, Ma J, Bo X, Guo L. Rod-like Co based metal-organic framework embedded into mesoporous carbon composite modified glassy carbon electrode for effective detection of pyrazinamide and isonicotinyl hydrazide in biological samples. Talanta 2019; 205:120138. [PMID: 31450409 DOI: 10.1016/j.talanta.2019.120138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Herein, we report a novel composite fabricated via embedding rod-like Co based metal-organic framework (Co-MOF-74) crystals into MC matrix for the first time. The introduction of MC astricts the size of Co-MOF-74 crystals, enlarges the pore size and improves the electrical conductivity, which lead to the good electrochemical properties of the composite. The fabricated sensor based on Co-MOF-74@MC exhibits superior electrocatalytic activity toward the reduction of pyrazinamide (PZA) and the oxidation of isonicotinyl hydrazide (INZ). Under optimized conditions, the sensor shows two linear ranges from 0.3 to 46.5 μM and 46.5-166.5 μM with a high sensitivity of 7.2 μA μM-1 cm-2 and a detection limit of 0.21 μM for the determination of PZA. The electroanalytical sensing of INZ also gives two linear ranges of 0.15-1.55 μM and 1.55-592.55 μM with a detection limit of 0.094 μM. The mechanism involved was also discussed, briefly. The sensor is assessed toward the detection of PZA and INZ in human serum and urine samples. Recovery values varied from 97.08 to 103.20% for PZA sensing and 96.67-102.90% for INZ sensing, revealing the promising practicality of sensor for PZA and INZ detection.
Collapse
Affiliation(s)
- Yu Yan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Jicheng Ma
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| |
Collapse
|
30
|
Fumarate-based metal-organic framework/mesoporous carbon as a novel electrochemical sensor for the detection of gallic acid and luteolin. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Novel Electrochemical Sensor Fabricated for Individual and Simultaneous Ultrasensitive Determination of Olaquindox and Carbadox Based on MWCNT-OH/CMK-8 Hybrid Nanocomposite Film. Molecules 2019; 24:molecules24173041. [PMID: 31443345 PMCID: PMC6749216 DOI: 10.3390/molecules24173041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
A hybrid nanocomposite consisting of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) and cube mesoporous carbon (CMK-8) was applied in this study to construct an MWCNT-OH/CMK-8/gold electrode (GE) electrochemical sensor and simultaneously perform the electro-reduction of olaquindox (OLA) and carbadox (CBX). The respective peak currents of CBX and OLA on the modified electrode increased by 720- and 595-fold relative to the peak current of GE. The performances of the modified electrode were investigated with electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Then, the modified electrodes were used for the individual and simultaneous determination of OLA and CBX. The fabricated sensor demonstrated a linear response at 0.2-500 nmol/L in optimum experimental conditions, and the detection limits were 104.1 and 62.9 pmol/L for the simultaneous determination of OLA and CBX, respectively. As for individual determination, wide linear relationships were obtained for the detected OLA with levels of 0.05-500 nmol/L with LOD of 20.7 pmol/L and the detected CBX with levels of 0.10-500 nmol/L with LOD of 50.2 pmol/L. The fabricated sensor was successfully used in the independent and simultaneous determination of OLA and CBX in spiked pork samples.
Collapse
|
32
|
Liu H, Ding W, Zhou F, Yang G, Du Y. An overview and outlook on gas adsorption: for the enrichment of low concentration coalbed methane. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1585454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hong Liu
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space (China University of Mining and Technology), Xuzhou P.R. China
- Faculty of Safety Engineering, China University of Mining and Technology (CUMT), Xuzhou, P.R. China
| | - Wei Ding
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space (China University of Mining and Technology), Xuzhou P.R. China
- Faculty of Safety Engineering, China University of Mining and Technology (CUMT), Xuzhou, P.R. China
| | - Fubao Zhou
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space (China University of Mining and Technology), Xuzhou P.R. China
- Faculty of Safety Engineering, China University of Mining and Technology (CUMT), Xuzhou, P.R. China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Yang Du
- Jiangsu Key Laboratory of Fire Safety in Urban Underground Space (China University of Mining and Technology), Xuzhou P.R. China
- Faculty of Safety Engineering, China University of Mining and Technology (CUMT), Xuzhou, P.R. China
| |
Collapse
|
33
|
Tkachenko V, Matei Ghimbeu C, Vaulot C, Vidal L, Poly J, Chemtob A. RAFT-photomediated PISA in dispersion: mechanism, optical properties and application in templated synthesis. Polym Chem 2019. [DOI: 10.1039/c9py00209j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diblock copolymer nanoparticles were prepared by photomediated polymerization-induced self-assembly (“photo-PISA”) in dispersion.
Collapse
Affiliation(s)
| | | | - Cyril Vaulot
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Loïc Vidal
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Julien Poly
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Abraham Chemtob
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| |
Collapse
|
34
|
Liu X, Xi X, Chen C, Liu F, Wu D, Wang L, Ji W, Su Y, Liu R. Ordered mesoporous carbon-covered carbonized silk fabrics for flexible electrochemical dopamine detection. J Mater Chem B 2019; 7:2145-2150. [DOI: 10.1039/c8tb03242d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Flexible dopamine sensors were fabricated with ordered mesoporous carbon-covered carbonized silk fabrics (OMC/CSFs) as the working electrodes, which exhibited high sensitivity, good selectivity, a large linear detection range of 0.2–80 μM, and a low limit detection of 0.11 μM.
Collapse
Affiliation(s)
- Xiongyu Liu
- National Engineering Lab for TFT-LCD Materials and Technologies
- Department of Electronic Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Xin Xi
- National Engineering Lab for TFT-LCD Materials and Technologies
- Department of Electronic Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behavior of Materials
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behavior of Materials
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Laiyu Wang
- National Engineering Lab for TFT-LCD Materials and Technologies
- Department of Electronic Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Wei Ji
- National Engineering Lab for TFT-LCD Materials and Technologies
- Department of Electronic Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Yuezeng Su
- National Engineering Lab for TFT-LCD Materials and Technologies
- Department of Electronic Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Ruili Liu
- National Engineering Lab for TFT-LCD Materials and Technologies
- Department of Electronic Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
35
|
Wang Z, Perera WA, Perananthan S, Ferraris JP, Balkus KJ. Lanthanum Hydroxide Nanorod-Templated Graphitic Hollow Carbon Nanorods for Supercapacitors. ACS OMEGA 2018; 3:13913-13918. [PMID: 31458087 PMCID: PMC6644425 DOI: 10.1021/acsomega.8b01714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/11/2018] [Indexed: 05/14/2023]
Abstract
Lanthanum hydroxide nanorods were employed as both a template and catalyst for carbon synthesis by chemical vapor deposition. The resulting carbon possesses hollow nanorod shapes with graphitic walls. The hollow carbon nanorods were interconnected at some junctions forming a mazelike network, and the broken ends of the tubular carbon provide accessibility to the inner surface of the carbon, resulting in a surface area of 771 m2/g. The hollow carbon was tested as an electrode material for supercapacitors. A specific capacitance of 128 F/g, an energy density of 55 Wh/kg, and a power density of 1700 W/kg at 1 A/g were obtained using the ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as the electrolyte.
Collapse
|
36
|
Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 2018; 47:8766-8803. [PMID: 30306180 DOI: 10.1039/c8cs00658j] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesoporous materials are ideal carriers for guest molecules and they have been widely used in analytical science. The unique mesoporous structure provides special properties including large specific surface area, tunable pore size, and excellent pore connectivity. The structural properties of mesoporous materials have been largely made use of to improve the performance of analytical methods. For instance, the large specific surface area of mesoporous materials can provide abundant active sites and increase the probability of contact between analytes and active sites to produce stronger signals, thus leading to the improvement of detection sensitivity. The connections between analytical performances and the structural properties of mesoporous materials have not been discussed previously. Understanding the "structure-performance relationship" is highly important for the development of analytical methods with excellent performance based on mesoporous materials. In this review, we discuss the structural properties of mesoporous materials that can be optimized to improve the analytical performance. The discussion is divided into five sections according to the analytical performances: (i) selectivity-related structural properties, (ii) sensitivity-related structural properties, (iii) response time-related structural properties, (iv) stability-related structural properties, and (v) recovery time-related structural properties.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
37
|
In-situ growth of iron-based metal-organic framework crystal on ordered mesoporous carbon for efficient electrocatalysis of p -nitrotoluene and hydrazine. Anal Chim Acta 2018; 1024:73-83. [DOI: 10.1016/j.aca.2018.03.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022]
|
38
|
Khoshsafar H, Rofouei MK, Bagheri H, Kalbasi RJ. Ordered Mesoporous Carbon/Poly (2-Hydroxyethyl Methacrylate/Ag Nanoparticle Composite Modified Glassy Carbon Electrode; an Amplified Sensor for Simultaneous Determination of Acetaminophen and Domperidone. ELECTROANAL 2018. [DOI: 10.1002/elan.201800068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute; Baqiyatallah University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
39
|
A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Anal Chim Acta 2018; 1033:185-192. [PMID: 30172325 DOI: 10.1016/j.aca.2018.05.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 01/21/2023]
Abstract
An ultrasensitive electrochemical aptasensor for kanamycin (KAN) detection was constructed with a dual-signal amplification strategy. The aptasensor achieved greatly amplified sensitivity due to the excellent electrical conductivity of the ordered mesoporous carbon-chitosan (OMC-CS)/gold nanoparticles-streptavidin (AuNPs-SA) and DNA2 labelled with ferrocene (Fc-DNA2). The AuNPs-SA was used to immobilize the DNA strand (biotin labelled) with the biotin-streptavidin system. The DNA2 strand containing the KAN aptamer was labelled with ferrocene to increase the current signal on the electrode surface when bound to KAN. Some factors that affect the performance of the aptasensor were optimized, and the proposed aptasensor provided a wide linear range from 1 × 10-10 M to 4 × 10-6 M, with a detection limit as low as 35.69 pM for KAN under the optimized conditions. This aptasensor had satisfactory electrochemical performance with good stability, sensitivity and reproducibility. Additionally, it also displayed a good specificity for KAN without interference from competitive analogues. Furthermore, the constructed aptasensor was successfully used to detect KAN in a real milk sample. The proposed method for KAN detection has great potential for the detection of other antibiotics.
Collapse
|
40
|
Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev 2018; 47:2680-2721. [PMID: 29577123 DOI: 10.1039/c7cs00787f] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functionalized nanoporous carbon materials have attracted the colossal interest of the materials science fraternity owing to their intriguing physical and chemical properties including a well-ordered porous structure, exemplary high specific surface areas, electronic and ionic conductivity, excellent accessibility to active sites, and enhanced mass transport and diffusion. These properties make them a special and unique choice for various applications in divergent fields such as energy storage batteries, supercapacitors, energy conversion fuel cells, adsorption/separation of bulky molecules, heterogeneous catalysts, catalyst supports, photocatalysis, carbon capture, gas storage, biomolecule detection, vapour sensing and drug delivery. Because of the anisotropic and synergistic effects arising from the heteroatom doping at the nanoscale, these novel materials show high potential especially in electrochemical applications such as batteries, supercapacitors and electrocatalysts for fuel cell applications and water electrolysis. In order to gain the optimal benefit, it is necessary to implement tailor made functionalities in the porous carbon surfaces as well as in the carbon skeleton through the comprehensive experimentation. These most appealing nanoporous carbon materials can be synthesized through the carbonization of high carbon containing molecular precursors by using soft or hard templating or non-templating pathways. This review encompasses the approaches and the wide range of methodologies that have been employed over the last five years in the preparation and functionalisation of nanoporous carbon materials via incorporation of metals, non-metal heteroatoms, multiple heteroatoms, and various surface functional groups that mostly dictate their place in a wide range of practical applications.
Collapse
Affiliation(s)
- Mercy R Benzigar
- Future Industries Institute, Division of Information Technology Energy and Environment, University of South Australia, Adelaide, SA 5095, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stabilization of 4-phenylurazole by electrografting on a nano-fibrillated mesoporous carbon modified electrode. Reactivity of anchored triazolinedione groups against Michael-type addition at electrode/electrolyte interface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Eco-Friendly Synthesis of Nitrogen-Doped Mesoporous Carbon for Supercapacitor Application. C — JOURNAL OF CARBON RESEARCH 2018. [DOI: 10.3390/c4020020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
43
|
Liu Y, Turner AP, Zhao M, Mak WC. Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing. Biosens Bioelectron 2018; 100:374-381. [DOI: 10.1016/j.bios.2017.09.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023]
|
44
|
Li X, Forouzandeh F, Kakanat AJ, Feng F, Banham DWH, Ye S, Kwok DY, Birss V. Surface Characteristics of Microporous and Mesoporous Carbons Functionalized with Pentafluorophenyl Groups. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2130-2142. [PMID: 29236474 DOI: 10.1021/acsami.7b13880] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The in situ diazonium reduction reaction is a reliable and well-known approach for the surface modification of carbon materials for use in a range of applications, including in energy conversion, as chromatography supports, in sensors, etc. Here, this approach was used for the first time with mesoporous colloid-imprinted carbons (CICs), materials that contain ordered monodisperse pores (10-100 nm in diameter) and are inherently highly hydrophilic, using a common microporous carbon (Vulcan carbon (VC)), which is relatively more hydrophobic, for a comparison. The ultimate goal of this work was to modify the CIC wettability without altering its nanostructure and also to lower its susceptibility to oxidation, as required in fuel cell and battery electrodes, by the attachment of pentafluorophenyl (-PhF5) groups onto their surfaces. This was shown to be successful for the CIC, with the -PhF5 groups uniformly coating the inner pore walls at a surface coverage of ca. 90% and allowing full solution access to the mesopores, while the -PhF5 groups deposited only on the outer VC surface, likely blocking its micropores. Contact angle kinetics measurements showed enhanced hydrophobicity, as anticipated, for both the -PhF5 modified CIC and VC materials, even revealing superhydrophobicity at times for the CIC materials. In contrast, water vapor sorption and cyclic voltammetry suggested that the micropores remained hydrophilic, arising from the deposition of smaller N- and O-containing surface groups, caused by a side reaction during the in situ diazonium functionalization process.
Collapse
Affiliation(s)
- Xiaoan Li
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Farisa Forouzandeh
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Abraham Joseph Kakanat
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Fangxia Feng
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Dustin William H Banham
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Ballard Power Systems , 9000 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Siyu Ye
- Ballard Power Systems , 9000 Glenlyon Parkway, Burnaby, British Columbia V5J 5J8, Canada
| | - Daniel Y Kwok
- Department of Mechanical and Manufacturing Engineering, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Viola Birss
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
45
|
Lipskikh O, Korotkova E, Khristunova Y, Barek J, Kratochvil B. Sensors for voltammetric determination of food azo dyes - A critical review. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Zhan X, Hu G, Wagberg T, Zhang D, Zhou P. A Label-Free Electrochemical Aptasensor for the Rapid Detection of Tetracycline Based on Ordered Mesoporous Carbon–Fe3O4. Aust J Chem 2018. [DOI: 10.1071/ch17503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel aptasensor based on a tetracycline (TET) aptamer immobilized by physical adsorption on an ordered mesoporous carbon–Fe3O4 (OMC-Fe3O4)-modified screen-printed electrode surface was successfully fabricated. OMC-Fe3O4 was characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The modification procedure of the aptasensor was characterized by cyclic voltammetry. Interaction between the TET aptamer and target was determined by differential pulse voltammetry. Under optimal conditions, the proposed aptasensor exhibited good electrochemical sensitivity to TET in a concentration range of 5 nM to 10 μM, with a detection limit of 0.8 nM (S/N = 3). This aptasensor exhibited satisfactory specificity, reproducibility, and stability.
Collapse
|
47
|
Kamysbayev D, Serikbayev B, Arbuz G, Badavamova G, Tasibekov K. Synthesis and Electrochemical Behavior of the Molybdenum- Modified Electrode Based on Rice Husk. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2017. [DOI: 10.18321/ectj679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The article presents the results of electrochemical studies made on carbon paste electrode based on bisorbents powder modified by molybdenum. Bisorbent consists of carbon and SiO2. It was synthesized as a support structure obtained from rice husk thermal decomposition products. The obtained sorption material has surface with high specific area – 200 m2/g. Bisorbent was further modified by (NH4)6Mo7O24 · 4H2O (10 wt.%). The elemental composition of used RH was also determined. The surface morphology of plain and modified BS samples was studied. Recording of voltammetric curves was carried out at рН = 3.80, рН = 6.40 in 0.2 М electrolyte solution of Li2SO4. Cathodic and anodic waves were obtained which related to oxidation and reduction processes of molebdenium compounds in the entire range of the potentials (0.8 ÷ -1.2 V). The range of changing molybdate ions concentrations in solution was 2·10‒4 ÷ 10‒2 M. The dependencies of kinetic and electrochemical parameters on paramolybdate ions concentration were studied for modified electrode. Nature of changes in molybdenum reduction currents and oxidation currents indicates that Mo+6 reduction may occur by different mechanisms depending on the composite electrode properties. Results showed the possibility of further the synthesized composite system use for voltammetric determination of low (10‒4–10‒2) concentrations of ions in a solution.
Collapse
|
48
|
Chen D, Zhou H, Li H, Chen J, Li S, Zheng F. Self-template synthesis of biomass-derived 3D hierarchical N-doped porous carbon for simultaneous determination of dihydroxybenzene isomers. Sci Rep 2017; 7:14985. [PMID: 29101387 PMCID: PMC5670168 DOI: 10.1038/s41598-017-15129-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/20/2017] [Indexed: 11/08/2022] Open
Abstract
Nitrogen doped hierarchical porous carbon materials (HPCs) was achieved by the successful carbonization, using pig lung as biomass precursor. Three-dimensional HPCs constituted with sheets and lines were synergistically inherited from original pig lung. Such structure provided a large specific surface area (958.5 g-1 m2) and rich porous, effectively supported a large number of electro-active species, and greatly enhanced the mass and electron transfer. High graphitization degree of HPCs resulted in good electrical conductivity. Furthermore, the different electronegativity between nitrogen and carbon atoms in HPCs could affect the electron cloud distribution, polarity and then the electrochemical oxidation kinetics of dihydroxybenzene isomers. Based on these characteristics of HPCs, the electrochemical sensor for dihydroxybenzene isomers exhibited high sensitivity, excellent specificity and stability. Quantitative analysis assays by differential pulse voltammetry (DPV) technology showed that the sensor has wide linear ranges (0.5-320, 0.5-340 and 1-360 μmol L-1) and low detection limits (0.078, 0.057 and 0.371 μmol L-1) for the catechol, resorcinol and hydroquinone, respectively. This proposed method was successfully applied for simultaneous detection of dihydroxybenzene isomers in river water.
Collapse
Affiliation(s)
- Dejian Chen
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Haifeng Zhou
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Hao Li
- School of Information and Technology, Northwest University, Xian, Shaanxi, 710069, China
| | - Jie Chen
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China
| | - Shunxing Li
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China.
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology Minnan Normal University, Zhangzhou, Fujian, 363000, China.
| | - Fengying Zheng
- College of Chemistry and Environment, Minnan Normal University, Zhangzhou, Fujian, 363000, China
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology Minnan Normal University, Zhangzhou, Fujian, 363000, China
| |
Collapse
|
49
|
Gao S, Wang B, Liu Z. Enhanced hydrogen production of PbTe-PbS/TNAs electrodes modified with ordered mesoporous carbon. J Colloid Interface Sci 2017; 504:652-659. [DOI: 10.1016/j.jcis.2017.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 01/21/2023]
|
50
|
Wannapob R, Vagin MY, Liu Y, Thavarungkul P, Kanatharana P, Turner APF, Mak WC. Printable Heterostructured Bioelectronic Interfaces with Enhanced Electrode Reaction Kinetics by Intermicroparticle Network. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33368-33376. [PMID: 28846378 DOI: 10.1021/acsami.7b12559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Printable organic bioelectronics provide a fast and cost-effective approach for the fabrication of novel biodevices, while the general challenge is to achieve optimized reaction kinetics at multiphase boundaries between biomolecules and electrodes. Here, we present an entirely new concept based on a modular approach for the construction of heterostructured bioelectronic interfaces by using tailored functional "biological microparticles" combined with "transducer microparticles" as modular building blocks. This approach offers high versatility for the design and fabrication of bioelectrodes with a variety of forms of interparticle spatial organization, from layered-structures to more advance bulk heterostructured architectures. The heterostructured biocatalytic electrodes delivered twice the reaction rate and a six-fold increase in the effective diffusion kinetics in response to a catalytic model using glucose as the substrate, together with the advantage of shortened diffusion paths for reactants between multiple interparticle junctions and large active particle surface. The consequent benefits of this improved performance combined with the simple means of mass production are of major significance for the emerging printed electronics industry.
Collapse
Affiliation(s)
- Rodtichoti Wannapob
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | - Mikhail Yu Vagin
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 602 21 Norrköping, Sweden
| | - Yu Liu
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
- College of Life and Science, Sichuan Agricultural University , Yaan 625014, People's Republic of China
| | | | | | - Anthony P F Turner
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| |
Collapse
|