1
|
Fu Y, Song Y, Yang Z, Ruan X, Lin Y, Du D. Rapid and sensitive detection of wood smoke exposure biomarkers using europium fluorescent nanoparticle label/lateral flow immunoassay. Talanta 2025; 291:127760. [PMID: 40024128 PMCID: PMC12011643 DOI: 10.1016/j.talanta.2025.127760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/01/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
Exposure to wood smoke is associated with various adverse health problems. Biomonitoring of smoke exposure-associated biomarkers provides accurate measurements of personally absorbed doses. As a specific metabolite of benzene, the quantitative measurement of S-phenylmercapturic acid (S-PMA) plays a vital role in evaluating human exposure to wood smoke. In this study, we developed an efficient lateral flow immunoassay (LFIA) approach for accurately and rapidly measuring S-PMA levels. Europium chelate nanoparticles (EuNPs) conjugated with purified polyclonal sheep anti-S-PMA antibodies were employed as the fluorescent detection probe. This work is based on a competitive immunoassay, where the target S-PMA competes with the immobilized antigen on the test lines for the limited antigen-binding sites on EuNP-conjugated antibodies. Due to this competition, the fluorescent intensity of the EuNPs is inversely proportional to the concentration of the target S-PMA in the sample, enabling quantitative measurement. Owing to the large Stokes shift, superior fluorescent brightness, and saturation of the EuNPs, S-PMA levels can be measured with a limit of detection of 0.32 ng/mL, a detectable range of 0.10-30 ng/mL, and a linear detection range of 0.25-30 ng/mL under optimized conditions. Stability testing revealed that the LFIA strips can be stored at room temperature for up to one year while maintaining excellent detection performance for S-PMA. These results demonstrate that the EuNP-based LFIA is a promising tool for accurate preclinical and point-of-care evaluation of wood smoke exposure. A major advantage of this approach is its ability to accurately analyze smoke biomarkers at anticipated low concentrations. The sensor system allows low-cost, rapid, and on-site data collection and quantification of wood smoke exposure.
Collapse
Affiliation(s)
- Yonghao Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yang Song
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Zhansen Yang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiaofan Ruan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Zhong F, Xu C, Deng F, Li J, Wei Y, Qin P, Peng R, Tan L. Association of urinary pesticide metabolites and iodine with thyroid volume in school-aged children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126469. [PMID: 40383473 DOI: 10.1016/j.envpol.2025.126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/18/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Monitoring thyroid volume in children allows for non-invasive, intuitive, and rapid assessment of potential thyroid disorders, facilitating early detection in large-scale screenings without blood draws. In this study, we investigated associations between urinary pesticide metabolites (organophosphate, pyrethroid, and phenoxy carboxylic acid), urinary iodine, and thyroid volume in children aged 8-11 years across Guangzhou districts, China. We compared the spatial distribution of urinary pesticide metabolites among districts and assessed health risks using probabilistic Monte Carlo simulation. We evaluated associations between thyroid volume and multiple factors: urinary iodine, demographic variables, anthropometric measures, environmental factors, and urinary creatinine. The associations between pesticide metabolites and thyroid volume were assessed using multivariable linear regression, trend tests, and restricted cubic splines. The joint effects of multiple pesticide metabolites on thyroid volume were evaluated by the Bayesian kernel machine regression. The role of urinary iodine was explored through mediation and moderation analyses. The result revealed that 0.89 % of children had risk levels of parathion exposure. Thyroid volume showed positive correlations with age and body surface area but negative correlation with urinary iodine. Two pyrethroid metabolites, cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-DCCA) and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (trans-DCCA), demonstrated negative associations with thyroid volume after covariate adjustment. While thyroid volume decreased with higher pesticide metabolite concentrations, this joint effect was not statistically significant. The associations between thyroid volume and cis-DCCA and trans-DCCA were fully mediated by urinary iodine, but the metabolites' effects on thyroid volume remained consistent across different urinary iodine concentrations. The results indicated that pesticide exposure may influence thyroid volume through an iodine-mediated pathway and highlighted the importance of iodine status in thyroid health assessment.
Collapse
Affiliation(s)
- Fuhai Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Conghui Xu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Juntao Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Yuehong Wei
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Pengzhe Qin
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Robbins ZG, Striley CA, Wugofski L. Quantification of 3‑chloro-7‑hydroxy-4-methylcoumarin (CHMC) in urine as a biomarker of coumaphos exposure by high-performance liquid chromatography-fluorescence detection (HPLC-FLD). MethodsX 2025; 14:103171. [PMID: 39906117 PMCID: PMC11791304 DOI: 10.1016/j.mex.2025.103171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
The organophosphate pesticide coumaphos is used to control Cattle Tick Fever carried by multiple species of ticks and is a known hazard for workers treating livestock. The USDA Cattle Fever Tick Eradication Program requires regular blood draws to measure depressed cholinesterase levels as biomarkers of effect of long-term coumaphos exposure, however, the gap between blood draws may miss intermittent high exposures. Urine biomonitoring can supplement blood draws, offering personnel a sensitive and cost-effective method to monitor short-term exposures. Our objective was to improve and validate a previously published method to analyze the coumaphos metabolite 3‑chloro-7‑hydroxy-4-methylcoumarin (CHMC). Urine samples were hydrolyzed with glucuronidase and then extracted prior to analysis with high-performance liquid chromatography-fluorescence detection. Calibration curves were linear over a wide CHMC range (0.49 - 250.07 ng/mL) with a method detection limit of 0.06 ng/mL. This research will help establish an accessible urine biomonitoring method for assessing coumaphos exposures.•The modified bioanalytical method maintained high sensitivity and specificity while reducing duration of the sample treatment steps and the chromatographic program.•Method validation tests followed the acceptance criteria guidelines in the NIOSH Manual of Analytical Methods.•CHMC levels were measured in workers exposed to coumaphos during livestock treatment.
Collapse
Affiliation(s)
- Zachary G. Robbins
- Chemical and Biological Monitoring Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - Cynthia A. Striley
- Chemical and Biological Monitoring Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1090 Tusculum Ave, Cincinnati, OH 45226, USA
| | - Lee Wugofski
- Federal Occupational Health, Program Support Center, Assistant Secretary for Administration, Office of the Secretary, U.S. Department of Health and Human Services
| |
Collapse
|
4
|
Jafari M, Gholami A, Akhgari M. A novel method for the determination of organophosphorus pesticides in urine samples using a combined gas diffusion microextraction (GDME) and gas chromatography-mass spectrometry (GC-MS) technique. MethodsX 2025; 14:103212. [PMID: 40124325 PMCID: PMC11927743 DOI: 10.1016/j.mex.2025.103212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025] Open
Abstract
This study introduces a novel and sensitive method for determining organophosphorus pesticides in urine using Gas Diffusion Microextraction (GDME) combined with Gas Chromatography-Mass Spectrometry (GC-MS). The goal is to offer an efficient, cost-effective method for extracting and analyzing these toxic compounds, which are widely used and harmful to human health and the environment. Organophosphorus pesticides, such as diazinon and chlorpyrifos, are among the most toxic and prevalent. The study aims to validate a specific, sensitive sample preparation and detection method for diazinon in urine. Urine samples from individuals not exposed to these pesticides were extracted with GDME, under optimal conditions of 60°C, 34 minutes, and 300 µL of receptor phase. Samples were analyzed using GC-MS. The method showed good linearity (0.01 to 100 µg/L) and excellent sensitivity with detection limits of 0.0058 µg/L for diazinon and 0.016 µg/L for chlorpyrifos.•Results indicate the higher sensitivity and selectivity of GDME compared to traditional methods like solid-phase microextraction.•GDME method for pesticide extraction demonstrated superior performance, with a much lower limit of detection for diazinon (0.0058 µg/L) than conventional methods (0.02 µg/L).•This study highlights GDME's potential for accurate and reliable pesticide detection.
Collapse
Affiliation(s)
- Mohammadreza Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ali Gholami
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Maryam Akhgari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| |
Collapse
|
5
|
Apú N, Rommes F, Alvarado-Arias M, Méndez-Rivera M, Lizano-Fallas V. Endocrine-disrupting pesticide exposure relevant to reproductive health: a case study from Costa Rica. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:559. [PMID: 40237939 PMCID: PMC12003610 DOI: 10.1007/s10661-025-14011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Global pesticide use has increased significantly over the past decade, leading to greater exposure to contaminants and associated health risks. Endocrine-disrupting pesticides have gained attention due to their strong association with human reproductive impairments and rising global infertility rates. In Costa Rica, studies have reported reduced fertility among agricultural workers and a higher prevalence of male infertility in regions with intensive pesticide use. However, the prioritization of pesticides detected in human fluids, based on their potential impact on reproductive health, has not been conducted. Here, analyzing human biomonitoring studies in the country over the last 25 years, 13 pesticides were identified and prioritized. Mancozeb ranked highest (14.8%), followed by dieldrin (12.1%) and chlorothalonil (12.0%). Eight criteria were used for prioritization, with non-carcinogenic risk, reported reproductive effects, and endocrine disruptor classification as key factors. This comprehensive approach highlights how multiple criteria collectively inform pesticide prioritization in relation to reproductive health risks. The findings indicated that while Costa Rica is a regional leader in pesticide biomonitoring, significant gaps remain, including limited data on unstudied pesticides and general population exposures. Establishing robust biomonitoring programs and public health surveillance systems to generate updated data and support evidence-based prevention policies is recommended. Additionally, the results of this study provide a valuable framework for guiding future research on the potential effects of pesticide mixtures.
Collapse
Affiliation(s)
- Navilla Apú
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José, 2060, Costa Rica
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - François Rommes
- Département Agronomique, Haute Ėcole Charlemagne Huy, Huy, 4500, Belgium
| | - Maricruz Alvarado-Arias
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
6
|
Kumar SN, Khan NH, Reda Y, Beigh HH, Bastia B, Vaibhav K, Jain AK, Raisuddin S. Pesticide Exposure in Agricultural Workplaces and Resultant Health Effects in Women. Birth Defects Res 2025; 117:e2460. [PMID: 40172329 DOI: 10.1002/bdr2.2460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Numerous occupational studies have highlighted the risk of cancer associated with agricultural practices and exposure to agrochemicals in males and females in the workplace. Women working in tea plantations/gardens often face educational, health, and socioeconomic challenges. They may be particularly vulnerable to the pesticide exposure owing to a lack of health awareness and education, other limitations and environmental and occupational factors. AIMS The objective of the review was to highlight the problem of pesticide exposure in women working in tea plantations/gardens through a comprehensive appraisal of published literature. MATERIALS AND METHODS Literature searches were performed using a range of keywords such as pesticide exposure to women, adverse birth outcomes, tea plantations/gardens, placental outcomes, cancer, and so forth using online search engines, including PubMed, Web of Science, Google Scholar, and so on. RESULTS This review reports that women are frequently exposed to pesticides during tea leaf plucking activities in tea plantations/gardens, which may lead to adverse pregnancy outcomes and may result in altered function of the placenta, fetal growth restrictions, low birth weight (LBW) of babies, and sex-specific differences in the fetal development. These adverse effects may pose a potential risk of poor health, type 2 diabetes mellitus, and congenital birth defects leading to neurobehavioral disorders in childhood, and even cancer later in life. DISCUSSION The adverse effects of pesticide exposure on pregnancy and the fetus in tea plantation workers were explained through the available epidemiological data and animal studies. The mechanism of toxicity due to pesticide exposure during pregnancy may involve the disruption of signaling pathway, leading to placental toxicity, and restricted fetal development. CONCLUSION Considering limited epidemiological, biomonitoring, and pathological data on pesticide exposure in women working in tea plantations/gardens, there is an urgent need for well-designed cohort studies to delineate its consequences on reproductive health, pregnancy outcomes, and adverse effects in offspring.
Collapse
Affiliation(s)
- Shashi Nandar Kumar
- Department of Occupation and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | | | - Yousra Reda
- Department of Occupation and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Haroon Habib Beigh
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyzstan
| | - Banajit Bastia
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Arun Kumar Jain
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Hossain MZ, Feuerstein ML, Warth B. The role of residual (veterinary) antibiotics in chemical exposome analysis: Current progress and future perspectives. Compr Rev Food Sci Food Saf 2025; 24:e70105. [PMID: 39902944 PMCID: PMC11792780 DOI: 10.1111/1541-4337.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025]
Abstract
Humans are exposed to a complex mixture of environmental and food-related chemicals throughout their lifetime. Exposome research intends to explore the nongenetic, that is, environmental causes of chronic disease and their interactions comprehensively. Residual antibiotics can enter the human body through therapeutics, foods of animal origin, aquatic products, or drinking water. In the last decade, significant levels of residual antibiotics in human urine have been described, demonstrating frequent exposure throughout populations. To which extent they contribute to human health risks is debated. Human biomonitoring (HBM) aims to determine and quantify concentrations of xenobiotics in human specimens and provides the toolbox to monitor exposure to diverse chemical exposures. Due to their public health implications, priority-listed xenobiotics are routinely monitored in the European Union and other countries. However, antibiotics, an important class of (food-derived) xenobiotics, are still not systematically investigated for a better and more holistic understanding in the context of exposomics. This review provides a comprehensive summary of HBM research related to antibiotics, existing liquid chromatography-mass spectrometry (LC-MS)-based analytical methods, and potential health risks caused by unintended exposure. Incorporating antibiotics into the chemical exposome framework through routine HBM using multiclass analytical methods will provide a better understanding of the toxicological or pharmacological mixture effects and, ultimately, the chemical exposome.
Collapse
Affiliation(s)
- Md Zakir Hossain
- Faculty of Chemistry, Department of Food Chemistry and ToxicologyUniversity of ViennaViennaAustria
| | - Max L. Feuerstein
- Faculty of Chemistry, Department of Food Chemistry and ToxicologyUniversity of ViennaViennaAustria
- Exposome Austria, Research Infrastructure and National EIRENE NodeViennaAustria
| | - Benedikt Warth
- Faculty of Chemistry, Department of Food Chemistry and ToxicologyUniversity of ViennaViennaAustria
- Exposome Austria, Research Infrastructure and National EIRENE NodeViennaAustria
| |
Collapse
|
8
|
Santos-Lobato BL. New Insights into the Association of Pesticide Exposure and Parkinson's Disease. Mov Disord 2025; 40:579-580. [PMID: 39910845 DOI: 10.1002/mds.30135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025] Open
|
9
|
Tassin de Montaigu C, Glauser G, Guinchard S, Goulson D. High prevalence of veterinary drugs in bird's nests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178439. [PMID: 39875313 DOI: 10.1016/j.scitotenv.2025.178439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
The environmental impact of insecticides used as ectoparasitic treatments for companion animals is not well understood, since they are not subject to detailed environmental risk assessment. Many of these treatments include active ingredients such as fipronil and imidacloprid that are banned from agricultural use in the EU. These treatments are applied topically and can remain on the animal's fur for an extended period of time. Birds (adults, eggs, and nestlings) using fur as an inner layer for their nests have the potential of being exposed dermally to these chemicals. In this study, we collected 103 nests from blue and great tits, which were lined with fur. Using UHPLC-MS/MS, we detected 17 out of the 20 insecticides we screened for, with the number of insecticides detected per nest ranging from 2 to 11. Fipronil, imidacloprid, and permethrin were detected in 100 %, 89.1 %, and 89.1 % of samples, respectively. The average concentration of fipronil, imidacloprid and permethrin were respectively 115.5 ppb, 376.3 ppb, and 231.1 ppb. Dinotefuran was found at the highest concentration of 7198 ppb in a single sample. Overall, a higher number of either dead offspring or unhatched eggs was found in nests containing a higher number of insecticides, higher total concentration of insecticides or a higher concentration of fipronil, imidacloprid or permethrin, suggesting that contact exposure of eggs to insecticides in nest lining may lead to mortality and lower reproductive success. This highlights the need for a re-evaluation of the environmental risks associated with use of these potent and persistent insecticides on companion animals.
Collapse
Affiliation(s)
- Cannelle Tassin de Montaigu
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom.
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sylvie Guinchard
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - Dave Goulson
- School of Life Sciences, Department of Evolution, Behaviour & Environment, University of Sussex, Falmer, East Sussex, United Kingdom
| |
Collapse
|
10
|
Ben Khadda Z, Bungau SG, El Balkhi S, Ezrari S, Radu AF, Houssaini TS, Achour S. Urinary biomonitoring of exposure to glyphosate and its metabolite amino-methyl phosphonic acid among farmers and non-farmers in Morocco. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104620. [PMID: 39716525 DOI: 10.1016/j.etap.2024.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Glyphosate, a widely used herbicide in global agriculture, poses potential health risks due to environmental and dietary exposure. This study evaluated urinary concentrations of glyphosate and its metabolite, amino-methyl phosphonic acid (AMPA), among farmers and non-farmers in Morocco's Fez-Meknes region, using liquid chromatography-tandem mass spectrometry. Glyphosate was detected in 57.14 % of farmers, 35.41 % of indirectly exposed residents, and 24 % of controls, while AMPA was present in 5.35 % of farmers only. Average glyphosate levels were 0.176 μg/L in farmers, 0.098 μg/L in indirectly exposed individuals, and 0.069 μg/L in controls, with AMPA averaging 0.253 μg/L in farmers. Sociodemographic factors, such as education level, farm residence, and herbicide storage, significantly influenced glyphosate levels, while reusing pesticide containers strongly correlated with elevated glyphosate and AMPA concentrations. Estimated daily intakes (EDIs), hazard quotients (HQs), and a hazard index (HI) were calculated to analyze the obtained data from a health risk perspective. Farmers had higher EDIGM values for AMPA (0.303 µg/d/kg) and Glyphosate (0.140 µg/d/kg) compared to the control group, which had significantly lower values of 0.110 µg/d/kg for AMPA and 0.080 µg/d/kg for Glyphosate. The HQs were calculated considering 0.5 mg/kg BW/day as an acceptable daily intake (ADI), which EFSA has established as a health-based reference value for both analytes. The values obtained were lower than 1, indicating that the health risk from Glyphosate and AMPA exposure was considered acceptable for the studied population.
Collapse
Affiliation(s)
- Zineb Ben Khadda
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez 30070, Morocco.
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania; Department of Pharmacy, University of Oradea, Oradea 410028, Romania.
| | - Souleiman El Balkhi
- Department of Pharmacology, toxicology and pharmacovigilance, CHU Limoges, France.
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, University Mohammed Premier, Oujda 60000, Morocco.
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania; Department of Preclinical Disciplines, University of Oradea, Oradea 410073, Romania.
| | - Tarik Sqalli Houssaini
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez 30070, Morocco; Department of Nephrology, University of Hospital Hassan II, Fez, Morocco.
| | - Sanae Achour
- Laboratory of Pharmacology and Toxicology, University Hospital Hassan II, Fez, Morocco; Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez, Morocco.
| |
Collapse
|
11
|
Bustamante CM, Bravo N, Ruiz P, Grimalt JO, Garí M. Method optimization for a simultaneous determination of neonicotinoid, carbamate/thiocarbamate, triazole, organophosphate and pyrethroid pesticides and their metabolites in urine using UPLC-MS/MS. J Chromatogr A 2024; 1730:465054. [PMID: 38901297 DOI: 10.1016/j.chroma.2024.465054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
An accurate and sensitive method for the determination of a total of 23 pesticides and their metabolites in human urine has been optimised. The methodology is based on a previously published method based on solid-phase extraction with methanol and acetone followed by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) in the selected reaction mode (SRM) with both positive and negative electrospray ionization (ESI+/-). The detection settings of the previous method, which allowed to determine the metabolites from 6 organophosphate and 2 pyrethroid pesticides, were optimised in order to include further pesticide groups, such as 11 neonicotinoids, 3 carbamates/thiocarbamates and 2 triazoles. The 5-windows method enduring 22 min was optimized with acceptable results in relation to accuracy (recoveries >75 %), precision (coefficients of variation <26 %) and linearity (R2> 0.9915). The limits of detection ranged between 0.012 ng/mL and 0.058 ng/mL. Samples from the German External Quality Assessment Scheme (G-EQUAS) encompassing 2 pyrethroids, 2 organophosphate and one neonicotinoid (6-chloronicotinic acid, a common metabolite of imidacloprid and acetamiprid) were analysed, and the latter, included in this newest optimization, provided good reference results. The method is optimal as a human biomonitoring tool for health risk assessment in large population surveys.
Collapse
Affiliation(s)
- Carolina M Bustamante
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain; Faculty of Chemistry, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Natalia Bravo
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Paula Ruiz
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Mercè Garí
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
12
|
Hossain MZ, Feuerstein ML, Gu Y, Warth B. Scaling up a targeted exposome LC-MS/MS biomonitoring method by incorporating veterinary drugs and pesticides. Anal Bioanal Chem 2024; 416:4369-4382. [PMID: 38937289 PMCID: PMC11271401 DOI: 10.1007/s00216-024-05374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Humans are exposed to a cocktail of food-related and environmental contaminants, potentially contributing to the etiology of chronic diseases. Better characterizing the "exposome" is a challenging task and requires broad human biomonitoring (HBM). Veterinary drugs (VDs)/antibiotics, widely used and regulated in food and animal production, however, are typically not yet included in exposomics workflows. Therefore, in this work, a previously established multianalyte liquid chromatography-tandem mass spectrometry (LC-MS/MS) method covering >80 diverse xenobiotics was expanded by >40 VDs/antibiotics and pesticides. It was investigated if the generic workflow allowed for the successful integration of a high number of new analytes in a proof-of-principle study. The expanded method was successfully in-house validated and specificity, matrix effects, linearity, intra- and inter-day precision, accuracy, limits of quantification, and detection were evaluated. The optimized method demonstrated satisfactory recovery (81-120%) for most of the added analytes with acceptable RSDs (<20%) at three spiking levels. The majority of VDs/antibiotics and pesticides (69%) showed matrix effects within a range of 50-140%. Moreover, sensitivity was excellent with median LODs and LOQs of 0.10 ng/mL and 0.31 ng/mL, respectively. In total, the expanded method can be used to detect and quantify more than 120 highly diverse analytes in a single analytical run. To the best of the authors' knowledge, this work represents the first targeted biomonitoring method integrating VDs with various other classes of pollutants including plasticizers, PFAS, bisphenols, mycotoxins, and personal care products. It demonstrates the potential to expand targeted multianalyte methods towards additional groups of potentially toxic chemicals.
Collapse
Affiliation(s)
- Md Zakir Hossain
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
| | - Max L Feuerstein
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria
| | - Yunyun Gu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria
- Vienna Doctoral School of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
- Vienna Doctoral School of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Deng F, He J, Dai Y, Peng R, Pan X, Yuan J, Tan L. Biomonitoring urinary pesticide metabolites in preschool children by supported liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry and their association with oxidative stress. J Chromatogr A 2024; 1725:464944. [PMID: 38703459 DOI: 10.1016/j.chroma.2024.464944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Investigating pesticide exposure and oxidative stress in preschool children is essential for elucidating the determinants of environmental health in early life, with human biomonitoring of urinary pesticide metabolites serving as a critical strategy for achieving this objective. This study demonstrated biomonitoring of 2 phenoxyacetic acid herbicides, 2 organophosphorus pesticide metabolites, and 4 pyrethroid pesticide metabolites in 159 preschool children and evaluated their association with oxidative stress biomarker 8-hydroxydeoxyguanosine. An enzymatic deconjugation process was used to release urinary pesticide metabolites, which were then extracted and enriched by supported liquid extraction, and quantified by ultra-high performance liquid chromatography-tandem mass spectrometry with internal standard calibration. Dichloromethane: methyl tert‑butyl ether (1:1, v/v) was optimized as the solvent for supported liquid extraction, and we validated the method for linear range, recovery, matrix effect and method detection limit. Method detection limit of the pesticide metabolites ranged from 0.01 μg/L to 0.04 μg/L, with satisfactory recoveries ranging from 70.5 % to 95.5 %. 2,4,5-Trichlorophenoxyacetic acid was not detected, whereas the other seven pesticide metabolites were detected with frequencies ranging from 10.1 % to 100 %. The concentration of urinary pesticide metabolites did not significantly differ between boys and girls, with the median concentrations being 9.39 μg/L for boys and 4.90 μg/L for girls, respectively. Spearman correlation analysis indicated that significant positive correlations among urinary metabolites. Bayesian kernel machine regression revealed a significant positive association between urinary pesticide metabolites and 8-hydroxydeoxyguanosine. Para-nitrophenol was the pesticide metabolite that contributed significantly to the elevated level of oxidative stress.
Collapse
Affiliation(s)
- Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jia He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Goutelle A, Viseur J, Boudjeltia KZ, Nuyens V, Cavatorta E, Van Antwerpen P, Maréchal Y. Mass spectrometry analysis of environmental pollutants in breast and artificial milk for newborns. Heliyon 2024; 10:e32350. [PMID: 38947466 PMCID: PMC11214495 DOI: 10.1016/j.heliyon.2024.e32350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Environmental toxins, particularly liposoluble compounds that accumulate in adipose tissues, present a risk for newborns, not only through breastfeeding but also through artificial milks. These compounds pass into breast milk, potentially exposing infants to harmful substances. In a monocentric observational study carried out in the Charleroi region, we employed liquid chromatography coupled with mass spectrometry to analyze the presence of environmental toxins in milk for newborns. Out of 39 breast milk and 12 artificial milk samples analyzed, 15 and six contained at least one pesticide, respectively, with nine different pesticides identified from a panel of 54 substances tested. The study found an association between the consumption of fresh produce and a higher presence of pesticides in breast milk. This. highlights the broader issue of environmental toxin exposure for infants, regardless of the feeding method. The results underline the need for a comprehensive approach when considering the establishment of breast milk banks and the safety of artificial milk, especially in the context of potential risks to premature newborns. Our findings not only validate the analysis technique for detecting toxins in breast milk but also suggest the necessity for a larger prospective study to explore these risks in the future.
Collapse
Affiliation(s)
- Alicia Goutelle
- Neonatal Intensive Care Unit, Marie Curie Hospital, CHU Charleroi-Chimay, Belgium
| | - Julian Viseur
- Laboratory of Biotechnology and Applied Biology, Haute Ecole Provinciale du Hainaut, Condorcet, Ath, Belgium
- RD3 – Pharmacognosy, Bioanalysis and Drug discovery & Analytical platform of the Faculty of Pharmacy, ULB, Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222), CHU Charleroi-Chimay, Faculty of Medicine, ULB, Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB 222), CHU Charleroi-Chimay, Faculty of Medicine, ULB, Belgium
| | - Eric Cavatorta
- Neonatal Intensive Care Unit, Marie Curie Hospital, CHU Charleroi-Chimay, Belgium
| | - Pierre Van Antwerpen
- RD3 – Pharmacognosy, Bioanalysis and Drug discovery & Analytical platform of the Faculty of Pharmacy, ULB, Brussels, Belgium
| | - Yoann Maréchal
- Neonatal Intensive Care Unit, Marie Curie Hospital, CHU Charleroi-Chimay, Belgium
| |
Collapse
|
15
|
Robin J, Lefeuvre S, Guihenneuc J, Cambien G, Dupuis A, Venisse N. Analytical methods and biomonitoring results in hair for the assessment of exposure to endocrine-disrupting chemicals: A literature review. CHEMOSPHERE 2024; 353:141523. [PMID: 38417485 DOI: 10.1016/j.chemosphere.2024.141523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Endocrine-disrupting chemicals (EDC) are compounds that alter functions of the endocrine system due to their ability to mimic or antagonize endogenous hormones, or that alter their synthesis and metabolism, causing adverse health effects. Human biomonitoring (HBM) is a reliable method to assess human exposure to chemicals through measurement in human body fluids and tissues. It identifies new sources of exposure and determines their distribution, thereby enabling detection of the most exposed populations. Blood and urine are commonly used for HBM of EDC, but their interest is limited for compounds presenting short half-lives. Hair appears as an interesting alternative insofar as it provides a large exposure window. For the present study, we evaluated the relevance of hair in determining EDC exposure. With this in mind, we undertook a literature review focusing on the bioanalytical aspects and performances of methods developed to determine EDC in hair. The literature review was performed through methodical bibliographical research. Relevant articles were identified using two scientific databases: PubMed and Web of Science, with search equations built from a combination of keywords, MeSH terms and Boolean operators. The search strategy identified 2949 articles. After duplicates were removed, and following title, abstract, and full-text screenings, only 31 were included for qualitative synthesis. Hair collection was mainly performed in the back of the head and preparation involved two processes: cutting into small pieces or grounding to powder. The off-line LC-MS/MS method remains the main technique used to assess EDC through hair. Differences regarding the validation of analytical methods and interpretation of HBM results were highlighted, suggesting a need for international harmonisation to obtain reliable and comparable results. External contamination of hair was identified as a main limitation in the interpretation of results, highlighting the need to better understand EDC transfers through hair and to develop relevant hair decontamination processes.
Collapse
Affiliation(s)
- Julien Robin
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Sandrine Lefeuvre
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Jérémy Guihenneuc
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Guillaume Cambien
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Antoine Dupuis
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France
| | - Nicolas Venisse
- Université de Poitiers, CNRS, Laboratoire EBI, Équipe IHES, F-86000 Poitiers, France; CHU de Poitiers, CIC-Inserm, Axe EATHER, F-86000 Poitiers, France.
| |
Collapse
|
16
|
Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, Wang J, Appenzeller BMR. A meta-analysis highlighting the increasing relevance of the hair matrix in exposure assessment to organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170535. [PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p < 0.05) for hair and blood concentrations were observed in majority of studies featuring pesticides and flame retardants. While among sociodemographic factors, gender and age significantly affected the hair concentrations in females and children in general exposure settings, whereas adult workers in occupational settings. Furthermore, the assessment of the hair burden of persistent organic pollutants in domestic and wild animals showed high concentrations for pesticides such as HCHs and DDTs whereas the laboratory-based studies using animals demonstrated strong correlations between exposure dose, exposure duration, and measured organic pollutant levels, mainly for chlorpyrifos, diazinon, terbuthylazine, aldrin, dieldrin and pyrethroid metabolites. Considering the critical analysis of the results obtained from literature review, hair is regarded as a reliable matrix for organic pollutant assessment; however, some limitations, as discussed in this review, need to be overcome to reinforce the status of hair as a suitable matrix for exposure assessment.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
17
|
Motteau S, Deborde M, Gombert B, Karpel Vel Leitner N. Non-target analysis for water characterization: wastewater treatment impact and selection of relevant features. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4154-4173. [PMID: 38097837 DOI: 10.1007/s11356-023-30972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/05/2023] [Indexed: 01/19/2024]
Abstract
Non-target analyses were conducted to characterize and compare the molecular profiles (UHPLC-HRMS fingerprint) of water samples from a wastewater treatment plant (WWTP). Inlet and outlet samples were collected from three campaigns spaced 6 months apart in order to highlight common trends. A significant impact of the treatment on the sample fingerprints was shown, with a 65-70% abatement of the number of features detected in the effluent, and more polar, smaller and less intense molecules found overall compared to those in WWTP influent waters. Multivariate analysis (PCA) associated with variations of the features between inlets and outlets showed that features appearing or increasing were correlated with effluents while those disappearing or decreasing were correlated with influents. Finally, effluent features considered as relevant to a potentially adverse effect on aqueous media (i.e. those which appeared or increased or slightly varied from the influent) were highlighted. Three hundred seventy-five features common with the 3 campaigns were thus selected and further characterized. For most of them, elementary composition was found to be C, H, N, O (42%) and C, H, N, O, P (18%). Considering the MS2 spectra and several reference MS2 databases, annotations were proposed for 35 of these relevant features. They include synthetic products, pharmaceuticals and metabolites.
Collapse
Affiliation(s)
- Solène Motteau
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Marie Deborde
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France.
- University of Poitiers, UFR Médecine Et de Pharmacie, 6 Rue de La Milétrie, Bâtiment D1, TSA 51115, 86073, Cedex 9, Poitiers, France.
| | - Bertrand Gombert
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Nathalie Karpel Vel Leitner
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| |
Collapse
|
18
|
Braun G, Krauss M, Escher BI. Recovery of 400 Chemicals with Three Extraction Methods for Low Volumes of Human Plasma Quantified by Instrumental Analysis and In Vitro Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19363-19373. [PMID: 37987701 DOI: 10.1021/acs.est.3c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Human biomonitoring studies are important for understanding adverse health outcomes caused by exposure to chemicals. Complex mixtures of chemicals detected in blood - the blood exposome - may serve as proxies for systemic exposure. Ideally, several analytical methods are combined with in vitro bioassays to capture chemical mixtures as diverse as possible. How many and which (bio)analyses can be performed is limited by the sample volume and compatibility of extraction and (bio)analytical methods. We compared the extraction efficacy of three extraction methods using pooled human plasma spiked with >400 organic chemicals. Passive equilibrium sampling (PES) with polydimethylsiloxane (PDMS) followed by solid phase extraction (PES + SPE), SPE alone (SPE), and solvent precipitation (SolvPrec) were compared for chemical recovery in LC-HRMS and GC-HRMS as well as effect recovery in four mammalian cell lines (AhR-CALUX, SH-SY5Y, AREc32, PPARγ-BLA). The mean chemical recoveries were 38% for PES + SPE, 27% for SPE, and 61% for SolvPrec. PES + SPE enhanced the mean chemical recovery compared to SPE, especially for neutral hydrophobic chemicals. PES + SPE and SolvPrec had effect recoveries of 100-200% in all four cell lines, outperforming SPE, which had 30-100% effect recovery. Although SolvPrec has the best chemical recoveries, it does not remove matrix like inorganics or lipids, which might pose problems for some (bio)analytical methods. PES + SPE is the most promising method for sample preparation in human biomonitoring as it combines good recoveries with cleanup, enrichment, and potential for high throughput.
Collapse
Affiliation(s)
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| |
Collapse
|
19
|
La Serra L, Salathiel AM, Lanaro R, Martinis BD, Roselino AM. Measurement of pesticides in hair samples from pemphigus foliaceus and pemphigus vulgaris patients in Southeastern Brazil. An Bras Dermatol 2023; 98:644-650. [PMID: 37208226 PMCID: PMC10404494 DOI: 10.1016/j.abd.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Pesticides, mainly organophosphates (OP), have been related to increased risk of pemphigus vulgaris (PV) and pemphigus foliaceus (PF), nevertheless, their measurement has not been determined in pemphigus patients. OBJECTIVE To evaluate pesticide exposure and pesticide measurement, comparing PV, PF and control groups in Southeastern Brazil. METHODS Information about urban or rural residency and exposure to pesticides at the onset of pemphigus was assessed by questionnaire interview; hair samples from the scalp of PV, PF, and controls were tested for OP and organochlorines (OC) by gas-phase chromatography coupled to mass spectrometry. RESULTS The minority of PV (2 [7.1%] of 28) and PF (7 [18%] of 39), but none of the 48 controls, informed living in rural areas at the onset of pemphigus (p = 0.2853). PV (33.3%), PF (38.5%), and controls (20%) informed exposure to pesticides (p = 0.186). Twenty-one (14.8%) of 142 individuals tested positive for OP and/or OC: PV (2 [6.3%] of 32) and PF (11 [25.6%] of 43) had similar pesticides contamination as controls (8 [11.9%] of 67) (p = 0.4928; p = 0.0753, respectively), but PF presented higher contamination than PV (p = 0.034). PV did not present any positivity for OP. Three (7%) PF tested positive for both OP and OC. Some PF tested positive for three or four OP, mainly diazinon and dichlorvos. STUDY LIMITATION Lack of data for some controls. CONCLUSION Although the frequency of PV and PF patients exposed to pesticides was similar, pesticides were more frequently detected in hair samples from PF compared to PV. The cause-effect relationship still needs to be determined.
Collapse
Affiliation(s)
- Leonardo La Serra
- Department of Internal Medicine, Division of Dermatology, University Hospital, Faculty of Medicine of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Adriana Martinelli Salathiel
- Department of Internal Medicine, Division of Dermatology, University Hospital, Faculty of Medicine of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Rafael Lanaro
- Poison Control Center, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil; Faculty of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Bruno de Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Maria Roselino
- Department of Internal Medicine, Division of Dermatology, University Hospital, Faculty of Medicine of Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
Tu H, Wei X, Pan Y, Tang Z, Yin R, Qin J, Li H, Li AJ, Qiu R. Neonicotinoid insecticides and their metabolites: Specimens tested, analytical methods and exposure characteristics in humans. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131728. [PMID: 37302191 DOI: 10.1016/j.jhazmat.2023.131728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
The use of neonicotinoid insecticides (NEOs) has been rising globally due to their broad-spectrum insecticidal activity, unique mode of neurotoxic action and presumed low mammalian toxicity. Given their growing ubiquity in the environment and neurological toxicity to non-target mammals, human exposure to NEOs is flourishing and now becomes a big issue. In the present work, we demonstrated that 20 NEOs and their metabolites have been reported in different human specimens with urine, blood and hair as the dominance. Sample pretreatment techniques of solid-phase and liquid-liquid extractions coupled with high performance liquid chromatography-tandem mass spectrometry have successfully achieved matrix elimination and accurate analysis. We also discussed and compared exposure characteristics of these compounds among types of specimens and different regions. A number of important knowledge gaps were also identified in order to further facilitate the understanding of health effects of NEO insecticides, which include, but are not limited to, identification and use of neuro-related human biological samples for better elucidating neurotoxic action of NEO insecticides, adoption of advanced non-target screening analysis for a whole picture in human exposure, and expanding investigations to cover non-explored but NEO-used regions and vulnerable populations.
Collapse
Affiliation(s)
- Haixin Tu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zixiong Tang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
21
|
Treviño MJS, Pereira-Coelho M, López AGR, Zarazúa S, Dos Santos Madureira LA, Majchrzak T, Płotka-Wasylka J. How pesticides affect neonates? - Exposure, health implications and determination of metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158859. [PMID: 36126706 DOI: 10.1016/j.scitotenv.2022.158859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
This review covers key information related to the effects of pesticides on fetal and child health. All humans are exposed to environmental toxicants, however child's health, due to their high vulnerability, should be of special concern. They are continuously exposed to environmental xenobiotics including a wide variety of pesticides, and other pollutants. These compounds can enter the child's body through various routes, both during fetal life, in the first days of life with breast milk, as well as during environmental exposure in later years of life. Consequently, in the body, some of them are metabolized and excreted with urine or faces, while others accumulate in tissues causing toxic effects. This review will provide information on the types of pesticides, their pathways of uptake and metabolism in children's bodies. Determination of the impact of them on children's organism performance is possible through effective identification of these compounds and their metabolites in children's tissues and biofluids. Therefore, the main procedures for the determination of pesticides are reviewed and future trends in this field are indicated. We believe that this comprehensive review can be a good starting place for the future readers interested in the impact of environmental xenobiotics on the health of children as well as the aspects relates with the analytical methods that can be used for analysis and monitoring of these pollutants in children's tissues and biofluids.
Collapse
Affiliation(s)
- María José Santoyo Treviño
- Coordinación para la innovación y aplicación para la Ciencia y la Tecnología, Mexico; Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - Marina Pereira-Coelho
- Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | - Sergio Zarazúa
- Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | | | - Tomasz Majchrzak
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland.
| |
Collapse
|
22
|
Biomonitoring of pesticides in urine by using isoamyl acetate as a sustainable extraction solvent. J Pharm Biomed Anal 2022; 223:115150. [DOI: 10.1016/j.jpba.2022.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
|
23
|
Long L, Tang Y. Urinary pyrethroid metabolite and hearing threshold shifts of adults in the United States: A cross-sectional study. PLoS One 2022; 17:e0275775. [PMID: 36251636 PMCID: PMC9576071 DOI: 10.1371/journal.pone.0275775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/25/2022] [Indexed: 11/14/2022] Open
Abstract
Hearing loss (HL) is a global health problem with a high prevalence and profound socioeconomic impact. Pyrethroids are one of the most commonly used insecticides. Although previous studies have reported the relationship between pyrethroids and neurotoxicity, little is known about the effect of pyrethroid exposure on the auditory system among the general population. This study is aimed to investigate the association of pyrethroid exposure with hearing threshold shifts of adults in the United States. A total of 726 adults, aged from 20 to 69 years from the 2011-2012 National Health and Nutrition Examination Survey (NHANES) data were included in the study. Urinary 3-phenoxybenzoic acid (3-PBA), a general pyrethroid metabolite, was used as a biomarker for pyrethroid exposure. HL was defined as a pure-tone average (PTA) at 0.5, 1, 2, 4 kHz ≥ 20 dB in the better ear. Analyses by using multivariate linear regressions were conducted to explore the associations of urinary 3-PBA with PTA hearing threshold shifts. There were no statistically significant correlations between Ln-transformed 3-PBA and either low-frequency or high-frequency hearing thresholds after adjusting for age, gender, race/ethnicity, education level, firearm noise exposure, occupational noise exposure, recreational noise exposure, serum cotinine, BMI, hypertension, and diabetes. However, associations of 3-PBA with both low-frequency and high-frequency hearing thresholds depended on age (P interaction < 0.0396 and 0.0017, respectively). Positive associations between Ln-transformed 3-PBA and both low-frequency and high-frequency hearing thresholds were observed in participants aged 20-39 years after adjusting confounders (β = 1.53, 95% CI: 0.04-3.01, and β = 3.14, 95% CI: 0.99-5.29, respectively) with the highest tertile (≥ 0.884 μg/g creatinine) of 3-PBA compared with the lowest tertile (< 0.407 μg/g creatinine). The possibility of interaction between 3-PBA and age on the hearing threshold shifts indicated that pyrethroid insecticides were prone to be more toxic to auditory system in younger adults than in older ones. Further studies will be required to confirm these findings.
Collapse
Affiliation(s)
- Lili Long
- Department of Otorhinolaryngology, Sichuan University Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuedi Tang
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
24
|
Saraji M, Talebi K, Balali-Mood M, Imani S. Urinary metabolites of diazinon and chlorpyrifos in sprayer operators and farm workers of a potato farm. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:745-755. [PMID: 36048024 DOI: 10.1080/03601234.2022.2111152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to investigate the effect of diazinon and chlorpyrifos on agricultural workers exposed to pesticides, urinary metabolites 2-Isopropyl-6-methyl-4-pyrimidinol (IMPy) and 3,5,6-Trichloro-2-pyridinol (TPCy) in farm workers, sprayer operators, and non-exposed people as a control group were measured. The modified QuEChERS method was applied to extract samples and was measured using a gas chromatograph/nitrogen-phosphorus detector. The obtained results showed that the median concentrations of TCPy were 36.92-547.7 and 7.7-49.58 ng/mL for sprayer operators and farm workers, respectively. Moreover, the median concentrations of IMPy were 81.66-593.1 ng/mL for sprayer operators and 40.6-66.1 ng/mL for farm workers. The control group had no measurable metabolites. The IMPy level of 60% of sprayer operators was significantly higher (P ˂ 0.05) than the TCPy level. The analysis of variance highlighted the significant relationship (P ˂ 0.05) between the levels of each metabolite and the use of safety gloves, respiratory masks, safety goggles, working time per week, and type of insecticide exposure. Our findings revealed the need to measure the urinary metabolites of these insecticides in other exposed workers. Also, workers should be taught the impact of using personal protective equipment.
Collapse
Affiliation(s)
- Mahdiyar Saraji
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khalil Talebi
- Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sohrab Imani
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Giffin A, Hoppin JA, Córdoba L, Solano-Díaz K, Ruepert C, Peñaloza-Castañeda J, Lindh C, Reich BJ, van Wendel de Joode B. Pyrimethanil and chlorpyrifos air concentrations and pregnant women's urinary metabolites in the Infants' Environmental Health Study (ISA), Costa Rica. ENVIRONMENT INTERNATIONAL 2022; 166:107328. [PMID: 35728412 PMCID: PMC9708932 DOI: 10.1016/j.envint.2022.107328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Only few studies have compared environmental pesticide air concentrations with specific urinary metabolites to evaluate pathways of exposure. Therefore, we compared pyrimethanil and chlorpyrifos concentrations in air with urinary 4-hydroxypyrimethanil (OHP, metabolite of pyrimethanil) and 3,5,6-trichloro-2-pyridinol (TCPy, metabolite of chlorpyrifos) among pregnant women from the Infant's Environmental Health Study (ISA) in Matina County, Costa Rica. METHODS During pregnancy, we obtained repeat urinary samples from 448 women enrolled in the ISA study. We extrapolated pyrimethanil and chlorpyrifos concentrations measured with passive air samplers (PAS) (n = 48, from 12 schools), across space and time using a Bayesian spatiotemporal model. We subsequently compared these concentrationswith urinary OHP and TCPy in 915 samples from 448 women, usingseparatemixed models andconsidering several covariables. RESULTS A 10% increase in air pyrimethanil (ng/m3) was associated with a 5.7% (95% confidence interval (CI 4.6, 6.8) increase in OHP (μg/L). Women living further from banana plantations had lower OHP: -0.7% (95% CI -1.2, -0.3) for each 10% increase in distance (meters) as well as women who ate rice and beans ≥15 times a week -23% (95% CI -38, -4). In addition, each 1 ng/m3 increase in chlorpyrifos in air was associated with a 1.5% (95% CI 0.2, 2.8) increase in TCPy (μg/L), and women working in agriculture tended to have increased TCPy (21%, 95% CI -2, 49). CONCLUSION The Bayesian spatiotemporal models were useful to estimate pyrimethanil and chlorpyrifos air concentrations across space and time. Our results suggest inhalation of pyrimethanil and chlorpyrifos is a pathway of environmental exposure. PAS seems a useful technique to monitor environmental current-use pesticide exposures. For future studies, we recommend increasing the number of locations of environmental air measurements, obtaining all air and urine measurements during the same month, and, ideally, including dermal exposure estimates as well.
Collapse
Affiliation(s)
- Andrew Giffin
- Department of Statistics, North Carolina State University, NC, USA
| | - Jane A Hoppin
- Center for Human Health and the Environment, North Carolina State University, NC, USA; Department of Biological Sciences, North Carolina State University, NC, USA
| | - Leonel Córdoba
- Infants' Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Karla Solano-Díaz
- Infants' Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Clemens Ruepert
- Infants' Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Jorge Peñaloza-Castañeda
- Infants' Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Sweden
| | - Brian J Reich
- Department of Statistics, North Carolina State University, NC, USA; Center for Human Health and the Environment, North Carolina State University, NC, USA
| | - Berna van Wendel de Joode
- Infants' Environmental Health (ISA) Program, Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica.
| |
Collapse
|
26
|
Maheshwaran S, Renganathan V, Chen SM, Balaji R, Kao CR, Chandrasekar N, Ethiraj S, Samuel MS, Govarthanan M. Hydrothermally constructed AgWO 4-rGO nanocomposites as an electrode enhancer for ultrasensitive electrochemical detection of hazardous herbicide crisquat. CHEMOSPHERE 2022; 299:134434. [PMID: 35351476 DOI: 10.1016/j.chemosphere.2022.134434] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The advancements in electrode materials with high efficiency has been prioritized to effectively monitor the presence of harmful pesticides concerning the environment. In such a way, we hydrothermally constructed a hybrid AgWO4-rGO nanocomposites for the rapid electrochemical detection of crisquat (CQT). The structural, compositional, morphological and topographical characterization for AgWO4-rGO nanocomposites is thoroughly performed to understand its electrocatalytic properties. The AgWO4-rGO nanocomposites are used as an electrode enhancer (rGO@AgWO4/GCE) for the electrochemical investigations towards CQT detection. The results indicated that the rGO@AgWO4/GCE possessed an excellent catalytic activity with a wide linear detection range 1-1108 μM coupled with an ultrasensitive limit of detection (LOD) 0.0661 μM for electrochemical CQT detection. The rGO@AgWO4/GCE CQT sensor also expressed remarkable sensitivity of 0.6306 μAμM-1cm-2 in addition to good selectivity and reproducibility. Furthermore, the commercial CQT, river water, tap water and washed vegetable water are used as a representative for real world analysis using rGO@AgWO4/GCE and results are highly appreciable for the real time CQT detection. Our work proposes a novel hybrid rGO@AgWO4 nanocomposites reinforced electrodes for ultra-trace level CQT detection with good reliability and can be advocated for real time detection of pesticides.
Collapse
Affiliation(s)
- Selvarasu Maheshwaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | | | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - C R Kao
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Narendhar Chandrasekar
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Melvin S Samuel
- Department of Material Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| |
Collapse
|
27
|
Jamnik T, Flasch M, Braun D, Fareed Y, Wasinger D, Seki D, Berry D, Berger A, Wisgrill L, Warth B. Next-generation biomonitoring of the early-life chemical exposome in neonatal and infant development. Nat Commun 2022; 13:2653. [PMID: 35550507 PMCID: PMC9098442 DOI: 10.1038/s41467-022-30204-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 04/13/2022] [Indexed: 12/19/2022] Open
Abstract
Exposure to synthetic and natural chemicals is a major environmental risk factor in the etiology of many chronic diseases. Investigating complex co-exposures is necessary for a holistic assessment in exposome-wide association studies. In this work, a sensitive liquid chromatography-tandem mass spectrometry approach was developed and validated. The assay enables the analysis of more than 80 highly-diverse xenobiotics in urine, serum/plasma, and breast milk; with detection limits generally in the pg-ng mL-1 range. In plasma of extremely-premature infants, 27 xenobiotics are identified; including contamination with plasticizers, perfluorinated alkylated substances and parabens. In breast milk samples collected longitudinally over the first 211 days post-partum, 29 analytes are detected, including pyrrolizidine- and tropane alkaloids which have not been identified in this matrix before. A preliminary estimation of daily toxicant intake via breast milk is conducted. In conclusion, we observe significant early-life co-exposure to multiple toxicants, and demonstrate the method's applicability for large-scale exposomics-type cohort studies.
Collapse
Affiliation(s)
- Thomas Jamnik
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Yasmin Fareed
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Daniel Wasinger
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - David Seki
- Medical University of Vienna, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090, Vienna, Austria
| | - Angelika Berger
- Medical University of Vienna, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lukas Wisgrill
- Medical University of Vienna, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria.
| |
Collapse
|
28
|
LI X, WANG L, SONG L, WAN Z, KOU J, ZHANG M, LÜ Y, WANG Y, MEI S. Simultaneous determination of 35 organochlorine pesticides and polychlorinated biphenyls in the serum of the general population in Wuhan by solid phase extraction-gas chromatography-tandem mass spectrometry. Se Pu 2022; 40:461-468. [PMID: 35478005 PMCID: PMC9404153 DOI: 10.3724/sp.j.1123.2021.12013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
有机氯农药(OCPs)和多氯联苯(PCBs)是两类重要的持久性有机污染物,可在环境介质中长期存在,并通过多种途径进入人体,导致人体的高暴露风险。OCPs和PCBs对人体存在诸多健康危害,精准定量人体内OCPs和PCBs的暴露水平是健康效应评价的关键。该研究基于固相萃取-气相色谱-串联质谱联用技术(SPE-GC-MS/MS)建立了同时检测100 μL血清中35种OCPs和PCBs的分析方法。血清样品经尿素沉淀蛋白后,采用Oasis® HLB小柱净化,正己烷-二氯甲烷混合溶液(1∶1, v/v)洗脱,氮吹近干,正己烷定容,多反应监测(MRM)模式检测,内标法定量分析。结果表明,OCPs和PCBs在0.05~50.0 ng/mL范围内线性关系良好,检出限在1.2~71.4 ng/L之间。35种目标分析物的加标回收率在72.6%~142%之间,相对标准偏差小于25%。利用所建立的方法检测了武汉市普通人群血清样本中OCPs和PCBs的浓度水平,结果表明武汉市普通人群广泛暴露于OCPs和PCBs,且以OCPs为主。有8种OCPs和7种PCBs检出率高于50%,其中p,p'-滴滴伊、p,p'-滴滴滴和甲氧滴滴涕检出率达100%,非类二噁英PCBs是PCBs的主要成分。血清中OCPs浓度随年龄增长呈升高趋势,在60岁以上存在性别差异;不同性别、年龄人群血清中PCBs浓度无统计学差异。该方法样本用量少,操作简便,具有较高的准确度和精密度,适用于环境健康研究中大量人群血清样本中痕量OCPs和PCBs的生物监测。
Collapse
|
29
|
Simultaneous determination of selected pesticides and/or their metabolites in urine by off-line solid phase extraction and ultra high performance liquid chromatography / hybrid quadrupole time-of-flight mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Zoratto Romoli JC, Palma Scanferla DT, Gomes Aguera R, Lini RS, Pante GC, Bueno Junior CR, Castro JC, Mossini SAG, Marchioni C, Junior MM. Analytical and toxicological aspects of dithiocarbamates: an overview of the last 10 years. Toxicol Mech Methods 2022; 32:637-649. [PMID: 35387549 DOI: 10.1080/15376516.2022.2063096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Compilation studies related to toxicological aspects and also biological monitoring and analysis methods for specific fungicides and, mainly, those that belong to the class of the dithiocarbamates (DTCs) have not been carried out at least in the last ten years. DTCs - dimethyldithiocarbamates, ethylenebisditiocarbamates, propylenebisditiocarbamates - are organosulfur compounds that form complexes due to the presence of different chemical elements, which bind strongly and inhibit enzymes that are essential to the functioning of the organism, causing a serious proven adverse effect on biological systems, such as alteration of thyroid hormones, teratogenesis and neurotoxicity. It is still evident, as shown by world data, that the growing consumption of fungicides has increasingly exposed the population in general and, in particular, workers who deal with these substances. There is a scarcity of studies in the literature discussing the toxicological and analytical aspects that are important for understanding the real effects of DTCs and monitoring human exposure to them. Therefore, the aim of this work was to expose, in a comprehensive way and through a narrative review, the negligence of research related to the fungicides of the DTCs class, their metabolites, as well as the toxicological and analytical aspects involved. The review is divided into two parts: (1) Toxicological aspects, including toxicokinetics, toxicodynamics and toxidromes; and (2) Analytical Toxicology, which comprises biomarkers, sample preparation and identification/quantification methods.
Collapse
Affiliation(s)
- Jéssica Cristina Zoratto Romoli
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Deborah Thais Palma Scanferla
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Raul Gomes Aguera
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Renata Sano Lini
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Giseli Cristina Pante
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Carlos Roberto Bueno Junior
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | - Juliana Cristina Castro
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| | | | - Camila Marchioni
- Department of Pathology, Federal University of Santa Catarina, Rua Delfino Conti S/N, Florianopolis, SC, CEP 88040-370, Brazil
| | - Miguel Machinski Junior
- Department of Basic Health Science, State University of Maringa, Avenida Colombo N° 5790, Maringa, PR, CEP 87020-900, Brazil
| |
Collapse
|
31
|
Sweeney CL, Smith NK, Sweeney E, Cohen AM, Kim JS. Analysis of human serum and urine for tentative identification of potentially carcinogenic pesticide-associated N-nitroso compounds using high-resolution mass spectrometry. ENVIRONMENTAL RESEARCH 2022; 205:112493. [PMID: 34896088 DOI: 10.1016/j.envres.2021.112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Human serum and urine samples were analyzed for a suite of nitrosatable pesticides and potentially carcinogenic pesticide-associated N-nitroso (PANN) compounds. Formation of PANN compounds may occur in vivo after consumption of food or water containing trace amounts of nitrosatable pesticide residues and nitrate. Using a modified version of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method, nine nitrosatable pesticides and byproducts were extracted from serum and urine from 64 individuals from two different sample populations in Atlantic Canada: (i) Prince Edward Island, a region where nitrate and trace amounts of nitrosatable pesticides have been detected in groundwater; and (ii) Halifax, Nova Scotia, a non-agricultural urban area. Samples were then analyzed using ultra-high pressure liquid chromatography (UHPLC) coupled with high-resolution accurate mass (HRAM) single-stage orbitrap mass spectrometry (MS), which allows for semi-targeted analysis and tentative identification of a virtually limitless number of exposure biomarkers. Two nitrosatable target analytes, ethylenethiourea (ETU) and 3,5,6-trichloro-2-pyridinol (TCPy) were found in serum, while atrazine (ATR) and ETU were detected in urine. Five and six PANN compounds were tentatively identified in serum and urine, respectively. The two PANN compounds that were most frequently tentatively identified in serum were N-nitroso dimethoate (N-DIM) and N-nitroso omethoate (N-OME) with detection frequencies of 78% and 95%, respectively. This is the first biomonitoring study of its kind to investigate PANN compounds in human serum and urine.
Collapse
Affiliation(s)
- Crystal L Sweeney
- Interdisciplinary PhD Program, Faculty of Graduate Studies, Dalhousie University, Halifax, NS, Canada; Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Nathan K Smith
- Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ellen Sweeney
- Atlantic PATH, Dalhousie University, Halifax, NS, Canada
| | - Alejandro M Cohen
- Proteomics and Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jong Sung Kim
- Health and Environments Research Centre (HERC) Laboratory, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
32
|
Yusà V, F Fernández S, Dualde P, López A, Lacomba I, Coscollà C. Exposure to non-persistent pesticides in the Spanish population using biomonitoring: A review. ENVIRONMENTAL RESEARCH 2022; 205:112437. [PMID: 34838757 DOI: 10.1016/j.envres.2021.112437] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Although Spain does not have a regular national human biomonitoring program yet, different research groups are active in evaluating the exposure of children and adults to chemicals. In the last seven years, several studies in Spain have evaluated the internal exposure of the population to currently used pesticides. The present review analyzes the scope of these studies, the employed analytical methods and the main results of the exposure and risk, mainly for children and mothers. The frequency of exposure to biomarkers of exposure to organophosphate pesticides is high. Some non-specific dialkyl phosphate metabolites (DAPs), such as the diethyl phosphate (DEP), present Detection Frequencies (DFs) in the range of 65-92% in various studies. Also, the specific biomarker of the chlorpyrifos (3,5,6-trichloro-2-pyridinol, TCPy), achieves Detection Frequencies between 74% and 100% in many studies. For pyrethroids, the metabolite 3-phenoxybenzoic acid (PBA) is present, in general, in more than the 65% of the studied samples. Highly polar herbicides were only assessed in one study and both glyphosate and its metabolite aminomethylphosphonic acid showed Detection Frequencies around 60%. However, putting the biomonitoring data in a risk assessment context, the mean Hazard Quotient (HQ), used as a metric for the individual risk, ranges from 0.0006 (glyphosate) to 0.93 in farm workers (parathion), which means that is unlike that the exposure poses a health concern (HQ < 1).
Collapse
Affiliation(s)
- Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain.
| | - Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Pablo Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Iñaki Lacomba
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100, Burjassot, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| |
Collapse
|
33
|
Silva TLR, de Queiroz MELR, de Oliveira AF, Rodrigues AAZ, Neves AA, Vieira PAF, de Queiroz JH, Barbosa VODP. Microextraction technique associated with gas chromatography-mass spectrometry for determining pesticide residues in urine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:165-175. [PMID: 35175180 DOI: 10.1080/03601234.2022.2038505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Urine is one of the biological matrices most used for detecting human contamination, as it is representative and easily obtained via noninvasive sampling. This study proposes a fast, accurate, and ecological method based on liquid-liquid microextraction with low-temperature partition (μLLE/LTP). It was validated to determine nine pesticides (lindane, alachlor, aldrin, chlorpyrifos, dieldrin, endrin, DDT, bifenthrin, and permethrin) in human urine, in association with gas chromatography coupled with mass spectrometry (GC-MS). The technique was optimized through a factorial design. The best conditions for the simultaneous extraction of the analytes comprised the addition of 600 µL of water and 600 µL of acetonitrile (extracting solvent) to a 500-µL urine sample, followed by vortexing for 60 s. By freezing the samples for 4 h, it was possible to extract the pesticides and perform the extract clean-up simultaneously. The parameters selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy were used to appraise the performance of the method. Good values of selectivity and linearity (R2 > 0.990), LOQ (0.39-1.02 μg L-1), accuracy (88-119% recovery), and precision (%CV ≤ 15%) were obtained. The μLLE/LTP-GC-MS method was applied to authentic urine samples collected from volunteers in Southeast Brazil.
Collapse
Affiliation(s)
- Thaís L R Silva
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Alessandra A Z Rodrigues
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Antônio Augusto Neves
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Patrícia A F Vieira
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Humberto de Queiroz
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
34
|
Critical review of analytical methods for the determination of flame retardants in human matrices. Anal Chim Acta 2022; 1193:338828. [PMID: 35058002 DOI: 10.1016/j.aca.2021.338828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Human biomonitoring is a powerful approach in assessing exposure to environmental pollutants. Flame retardants (FRs) are of particular concern due to their wide distribution in the environment and adverse health effects. This article reviews studies published in 2009-2020 on the chemical analysis of FRs in a variety of human samples and discusses the characteristics of the analytical methods applied to different FR biomarkers of exposure, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), novel halogenated flame retardants (NHFRs), bromophenols, incl. tetrabromobisphenol A (TBBPA), and organophosphorous flame retardants (PFRs). Among the extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE) were used most frequently due to the good efficiencies in the isolation of the majority of the FR biomarkers, but with challenges for highly lipophilic FRs. Gas chromatography-mass spectrometry (GC-MS) is mainly applied in the instrumental analysis of PBDEs and most NHFRs, with recent inclusions of GC-MS/MS and high resolution MS techniques. Liquid chromatography-MS/MS is mainly applied to HBCD, bromophenols, incl. TBBPA, and PFRs (including metabolites), however, GC-based analysis following derivatization has also been used for phenolic compounds and PFR metabolites. Developments are noticed towards more universal analytical methods, which enable widening method scopes in the human biomonitoring of FRs. Challenges exist with regard to sensitivity required for the low concentrations of FRs in the general population and limited sample material for some human matrices. A strong focus on quality assurance/quality control (QA/QC) measures is required in the analysis of FR biomarkers in human samples, related to their variety of physical-chemical properties, low levels in most human samples and the risk of contamination.
Collapse
|
35
|
Filippi I, Bravo N, Grimalt JO, Butinof M, Lerda D, Fernández RA, Muñoz SE, Amé MV. Pilot study of exposure of the male population to organophosphate and pyrethroid pesticides in a region of high agricultural activity (Córdoba, Argentina). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53908-53916. [PMID: 34037936 DOI: 10.1007/s11356-021-14397-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Urinary metabolites of organophosphate (OP) and pyrethroid (PYR) pesticides and biomarkers of effects were studied in a population (n=40) residing in an important agricultural area of the province of Córdoba (Argentina). Detection frequencies (DF) higher than 85% were observed for the metabolites of pirimiphos (2-diethylamino-6-methylpyrimidin-4-ol -DEAMPY-, median 7.5 μg/g creatinine, DF: 100%), parathion (p-nitrophenol, 0.99 μg/g creatinine, 100%), and chlorpyrifos (3,5,6-trichloro-2-pyridinol, 0.25 μg/g creatinine, 85%). The DEAMPY concentrations doubled the levels found in other studies and were negatively associated with Er-AChE activity, suggesting the appearance of health effects already in environmental exposure levels below established acceptable daily intakes (ADIs). 3-Phenoxybenzoic acid, the metabolite of several PYR pesticides, was also found in all samples. This metabolite was also significantly negatively correlated with Er-AChE, indicating effects of pyrethroid pesticides on the acetylcholine system even at concentrations below the ADI.
Collapse
Affiliation(s)
- Iohanna Filippi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Natalia Bravo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034, Barcelona, Catalonia, Spain
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034, Barcelona, Catalonia, Spain.
| | - Mariana Butinof
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Daniel Lerda
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, 5000, Córdoba, Argentina
| | - Ricardo A Fernández
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, 5000, Córdoba, Argentina
| | - Sonia E Muñoz
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Facultad de Ciencias Médicas, CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - María V Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| |
Collapse
|
36
|
Human Biomonitoring of Environmental and Occupational Exposures by GC-MS and Gas Sensor Systems: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910236. [PMID: 34639537 PMCID: PMC8508139 DOI: 10.3390/ijerph181910236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Environmental chemicals and contaminants coming from multiple external sources enter the human body, determining a potential risk for human health. Human biomonitoring (HBM), measuring the concentrations of biomarkers in human specimens, has become an emerging approach for assessing population-wide exposure to hazardous chemicals and health risk through large-scale studies in many countries. However, systematic mapping of HBM studies, including their characteristics, targeted hazardous pollutants, analytical techniques, and sample population (general population and occupationally exposed workers), has not been done so far. We conducted a systematic review of the literature related to airborne hazardous pollutants in biofluids to answer the following questions: Which main chemicals have been included in the literature, which bodily fluids have been used, and what are the main findings? Following PRISMA protocol, we summarized the publications published up to 4 February 2021 of studies based on two methods: gas-chromatography/mass spectrometry (GC/MS) and electronic noses (e-noses). We screened 2606 records and 117 publications were included in the analysis, the most based on GC/MS analysis. The selected HBM studies include measurements of biomarkers in different bodily fluids, such as blood, urine, breast milk, and human semen as well as exhaled air. The papers cover numerous airborne hazardous pollutants that we grouped in chemical classes; a lot of hazardous and noxious compounds, mainly persistent organic pollutants (POPs) and volatile organic compounds (VOCs), have been detected in biological fluids at alarming levels. The scenario that emerged from this survey demonstrates the importance of HBM in human exposure to hazardous pollutants and the need to use it as valid tool in health surveillance. This systematic review represents a starting point for researchers who focus on the world of pollutant biomonitoring in the human body and gives them important insights into how to improve the methods based on GC/MS. Moreover, it makes a first overview of the use of gas sensor array and e-noses in HBM studies.
Collapse
|
37
|
Urinary levels of dimethoate, bisphenol A and benzo[a]pyrene in first-year students of Hohai University from different geographical regions. BMC Public Health 2021; 21:1692. [PMID: 34530795 PMCID: PMC8447509 DOI: 10.1186/s12889-021-11726-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The objective of this study was to detect the urinary levels of dimethoate, benzo(a) pyrene (BaP), and bisphenol A (BPA) in first-year Hohai University students with different geographic origins. METHODS First-morning urine samples were collected from 540 healthy freshmen aged 17 to 19 years. Chemical levels were measured using β-glucuronidase hydrolysis followed by a high-performance liquid chromatography-tandem mass spectrometry-based method. Geometric means (GMs) of these three chemicals are presented by body mass index (BMI) and location in a volume-based and creatinine-standardized way. RESULTS GM concentrations of omethoate, BPA and 3-OHBaP were 9.47 μg/L (10.80 μg/g creatinine), 3.54 μg/L (4.04 μg/g creatinine) and 0.34 ng/L (0.39 ng/g creatinine), respectively. The GM concentration of omethoate in males was significantly higher than that in females. The individuals with a BMI higher than 23.9 had higher GM concentrations of omethoate, BPA, and 3-OHBaP. The inhabitants of Southwest China had significantly lower GM concentrations of omethoate, BPA, and 3-OHBaP than those who lived in other locations in China. CONCLUSION The average level of environmental chemical accumulation in freshmen is lower in Southwest China and differs in youth who live in different regions. In addition, obesity is correlated with higher toxin levels in youth.
Collapse
|
38
|
Guo F, Yin S, Wang H, Zhang J, Liu Y, Aamir M, Liu W. Polychlorinated biphenyls (PCBs) in the colostrum samples from the Yangtze River Region: Exposure profile and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117253. [PMID: 33957509 DOI: 10.1016/j.envpol.2021.117253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) may transfer into the neonates through the placental transfer and via breastfeeding after the delivery, thus might be harmful to the infant. Sixty colostrum samples in the Yangtze River Region were collected to investigate the concentration, distribution pattern, and enantiomer characteristic of the PCB exposure. Among all samples, over 90% of pollutants were tetra-to hepta-chlorinated PCBs. The sum concentration of the PCB was 512 (IQR: 322-856) ng g-1 lipid weight. Enantiomer fraction (EF) of PCB 95 and PCB 149 was found lower than the racemic value, while EFs of PCB 45 and PCB 136 were found higher and near-racemic state, respectively. The concentration pattern and enantiomeric properties of the PCBs indicated that the mothers from Mianyang had a recent exposure to PCBs. Among all samples, similar exposure and metabolic pathways of the PCB congeners were observed. PCB exposure showed no significant correlation with the birth outcome of the infants, but 43.3% of the infants have potential health risks via breastfeeding.
Collapse
Affiliation(s)
- Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Haiyan Wang
- Quality and Safety Engineering Institute of Food and Drug, School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Faculty of Medicine, Hangzhou Normal University, 311121, China
| | - Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Aamir
- Water-Energy Resilience Research Laboratory, Environmental Science and Engineering, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Weiping Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| |
Collapse
|
39
|
Filippi I, Lucero P, Bonansea RI, Lerda D, Butinof M, Fernandez RA, Wunderlin DA, Amé MV, Muñoz SE. Validation of exposure indexes to pesticides through the analysis of exposure and effect biomarkers in ground pesticide applicators from Argentina. Heliyon 2021; 7:e07921. [PMID: 34522813 PMCID: PMC8427256 DOI: 10.1016/j.heliyon.2021.e07921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 11/01/2022] Open
Abstract
The characterization of the population exposed to pesticides and the use of effective biomarkers to evaluate potential health effects are determinant to identify vulnerable groups, understanding the causality of diverse pathologies and propose prevention policies. This is particularly important in countries where intensive agricultural practices had an explosive expansion in last decades. The aim of this study was assessing the usefulness of two exposure indexes questionnaire-based: Intensity Level of the pesticide Exposure (ILE) and Cumulative Exposure Index (CEI) and their scales, in terrestrial applicators of pesticide from the Province of Córdoba (Argentina). The analysis was performed contrasting ILE and CEI results with perceived symptomatology, in addition to effect and exposure biomarkers. A cross-sectional study was designed to compare pesticides body burdens and effect biomarkers between subjects occupationally (OE) and non-occupationally exposed (NOE) to pesticides. Prevalence of perceived symptomatology and genotoxicity damage was higher in the OE group. The exposure condition was the only variable explaining these differences. Significant associations were found between CEI and neurologic symptomatology (p < 0.05) and between ILE and plasmatic cholinesterase (p < 0.1). However, residues of HCB, β-HCH, α-endosulfan, pp'DDE, endrin, β-endosulfan, pp'DDT, endosulfan sulfate and mirex were found in blood samples from both groups. To our knowledge, this is the first report on pesticides body burdens in occupational exposure settings in Argentina. So far, our current results indicate that the occupational condition affects the health of the workers. Significant associations found between symptomatology and biomarkers with scales of CEI and ILE suggest their usefulness to verify different levels of exposure. Further research is necessary to propose these indexes as an affordable tool for occupational health surveillance in areas with difficult access to health care centres.
Collapse
Affiliation(s)
- Iohanna Filippi
- CIBICI: Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Ciudad Universitaria, Medina Allende esq. Haya de La Torre, 5000, Córdoba, Argentina
| | - Patricia Lucero
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), X5164, Córdoba, Argentina
| | - Rocio I. Bonansea
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Química Orgánica, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel Lerda
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, 5000, Córdoba, Argentina
| | - Mariana Butinof
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Ricardo A. Fernandez
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, 5000, Córdoba, Argentina
| | - Daniel A. Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Química Orgánica, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María V. Amé
- CIBICI: Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Ciudad Universitaria, Medina Allende esq. Haya de La Torre, 5000, Córdoba, Argentina
| | - Sonia E. Muñoz
- INICSA: Instituto de Investigaciones en Ciencias de la Salud, CONICET and Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Ciudad Universitaria, 5000, Córdoba, Argentina
| |
Collapse
|
40
|
Peng FJ, Emond C, Hardy EM, Sauvageot N, Alkerwi A, Lair ML, Appenzeller BMR. Population-based biomonitoring of exposure to persistent and non-persistent organic pollutants in the Grand Duchy of Luxembourg: Results from hair analysis. ENVIRONMENT INTERNATIONAL 2021; 153:106526. [PMID: 33839549 DOI: 10.1016/j.envint.2021.106526] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Environmental exposure of humans to pollutants has been associated with adverse health outcomes, but few studies have evaluated the multiple exposure of general populations. In the present study, we used hair analysis to assess the exposure of a general adult population (n = 497) in Luxembourg to 34 persistent and 33 non-persistent organic pollutants from 11 chemical families, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), and pyrethroid pesticides (PYRs). We detected 24 persistent and 29 non-persistent organic pollutants, with 17 pollutants being detected in more than 50% of hair samples. The median concentrations for pollutants detected in 100% of the samples were 0.37 pg/mg for lindane (γ-HCH), 0.15 pg/mg for hexachlorobenzene (HCB), 14.1 pg/mg for p-nitrophenyl (PNP), and 0.10 pg/mg for trifluralin. Each participant in this study had detectable levels of at least 10 of the pollutants analyzed, and 50% of participants had 19 or more, suggesting the simultaneous exposure to numerous different pollutants among our study population. Significant correlations were often found between pollutants from the same family, with the strongest being found between two PYR metabolites, trans/cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-carboxylic acid (Cl2CA) and 3-phenoxybenzoic acid (3-PBA). Results from multiple linear regression analyses showed that sex, age and/or body mass index were significantly associated with 15 out of the 17 frequently detected pollutants. The current study is the first nationwide biomonitoring investigating organic contaminants in the Luxembourg population using hair analysis.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Claude Emond
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg; PhysioKinetic Simulations to Human Inc. (PKSH Inc), Mascouche, QC, J7K 0M6, Canada
| | - Emilie M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Nicolas Sauvageot
- Competence Center for Methodology and Statistics, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Ala'a Alkerwi
- Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Marie-Lise Lair
- Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| |
Collapse
|
41
|
Lum JTS, Chan YN, Leung KSY. Current applications and future perspectives on elemental analysis of non-invasive samples for human biomonitoring. Talanta 2021; 234:122683. [PMID: 34364482 DOI: 10.1016/j.talanta.2021.122683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/09/2022]
Abstract
Humans are continuously exposed to numerous environmental pollutants including potentially toxic elements. Essential elements play an important role in human health. Abnormal elemental levels in the body, in different forms that existed, have been reported to be correlated with different diseases and environmental exposure. Blood is the conventional biological sample used in human biomonitoring. However, blood samples can only reflect short-term exposure and require invasive sampling, which poses infection risk to individuals. In recent years, the number of research evaluating the effectiveness of non-invasive samples (hair, nails, urine, meconium, breast milk, placenta, cord blood, saliva and teeth) for human biomonitoring is increasing. These samples can be collected easily and provide extra information in addition to blood analysis. Yet, the correlation between the elemental concentration in non-invasive samples and in blood is not well established, which hinders the application of those samples in routine human biomonitoring. This review aims at providing a fundamental overview of analytical methods of non-invasive samples in human biomonitoring. The content covers the sample collection and pretreatment, sample preparation and instrumental analysis. The technical discussions are separated into solution analysis and solid analysis. In the last section, the authors highlight some of the perspectives on the future of elemental analysis in human biomonitoring.
Collapse
Affiliation(s)
- Judy Tsz-Shan Lum
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Yun-Nam Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
42
|
Pedersen TL, Smilowitz JT, Winter CK, Emami S, Schmidt RJ, Bennett DH, Hertz-Picciotto I, Taha AY. Quantification of Nonpersistent Pesticides in Small Volumes of Human Breast Milk with Ultrahigh Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6676-6689. [PMID: 34098718 PMCID: PMC8422964 DOI: 10.1021/acs.jafc.0c05950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Existing methods for the analysis of pesticides in human breast milk involve multiple extraction steps requiring large sample and solvent volumes, which can be a major obstacle in large epidemiologic studies. Here, we developed a simple, low-volume method for extracting organophosphates, pyrethroids, carbamates, atrazine, and imidacloprid from 100 to 200 μL of human breast milk. Multiple extraction protocols were tested including microwave-assisted acid/base digestion and double-solvent extraction with 2 or 20 mL of 2:1 (v/v) dichloromethane/hexane, with or without subsequent solid-phase extraction (SPE) cleanup. Samples were analyzed by liquid chromatography tandem mass spectrometry. Analyte recoveries and reproducibility were highest when 100-200 μL of milk were extracted with 2 mL of dichloromethane/hexane without subsequent SPE steps. Analysis of 79 breast milk samples using this method revealed the presence of carbamates, organophosphates, pyrethroids, and imidacloprid at detection frequencies of 79-96, 53-90, 1-7, and 61%, respectively. This study demonstrates the feasibility of a simple low-volume extraction method for measuring pesticides in human breast milk.
Collapse
Affiliation(s)
- Theresa L Pedersen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California-Davis, Davis 95616, California, United States
| | - Jennifer T Smilowitz
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California-Davis, Davis 95616, California, United States
- Foods for Health Institute, University of California-Davis, Davis 95616, California, United States
| | - Carl K Winter
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California-Davis, Davis 95616, California, United States
| | - Shiva Emami
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California-Davis, Davis 95616, California, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California-Davis, Davis 95616, California, United States
- University of California-Davis, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento 95817, California, United States
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California-Davis, Davis 95616, California, United States
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California-Davis, Davis 95616, California, United States
- University of California-Davis, MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento 95817, California, United States
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California-Davis, Davis 95616, California, United States
- NIH-West Coast Metabolomics Center, Genome Center, University of California-Davis, Davis 95616, California, United States
| |
Collapse
|
43
|
Mouskeftara T, Virgiliou C, Iakovakis A, Raikos N, Gika HG. Liquid chromatography tandem mass spectrometry for the determination of nine insecticides and fungicides in human postmortem blood and urine. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122824. [PMID: 34218092 DOI: 10.1016/j.jchromb.2021.122824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
Pesticide poisoning is a common occurrence due to their widespread use, easy access and high toxicity even in small concentrations. The most common poisoning fatalities have been observed due to exposure to organophosphates, carbamates and neonicotinoids, thus development of a method for the rapid determination of these compounds in blood and urine is of great importance for clinical and toxicology laboratories. A simple, fast and reliable method was developed for the determination of 9 pesticides in blood and urine using HPLC-MS/MS instrumentation. In order to find the most suitable sample pretreatment technique, three different sample preparation procedures: SPE, protein precipitation and QuEChERS were compared. The final optimized analytical method was fully validated with the values of parameters such as calibration linearity, accuracy, precision, recovery, matrix effect and stability being acceptable. The method proved reliable, accurate, robust and sensitive and was successfully applied for the quantitation of pesticides in three postmortem cases of pesticides poisoning.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece
| | - Christina Virgiliou
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Department of Chemistry, Aristotle University of Thessaloniki, 54124, Greece.
| | - Achilleas Iakovakis
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Raikos
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece
| | - Helen G Gika
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece
| |
Collapse
|
44
|
Stefanelli P, Barbini DA, Girolimetti S. Pesticides and their metabolites in human urine: development of multi-analyte method by LC-MS/MS and GC-MS/MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:431-438. [PMID: 33760695 DOI: 10.1080/03601234.2021.1894887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The objective of this study consists of being able to develop a precise, reliable, easy, cheap and quick method to identify and quantify the presence of pesticide metabolites and their parents in human urine. In order to reach our purpose we selected the pesticides and their metabolites with intended uses on permanent crops such as orchards and vineyard. The activity planning started with the identification of the target list carried out by UHPLC-MS/MS and GC-MS/MS, succeeded by several tests oriented to determine the best sample treatment having recourse to instrumental analysis in the range 5-100 ng/mL. Several purifications were also investigated combining different adsorbents (PSA, EMR-lipid and final polish pouch). The use of formic acid during the extraction step has no impact on the recoveries, whereas the PSA adsorbent in the cleanup step negatively affects the results for all investigated metabolites. Any substantial differences were not observed in urine matrix for parent compounds achieving recoveries higher than 80% and RSD less than 20%. The final polish in combination or not with Enhanced Matrix Removal EMR-lipid did not show statistically significant difference in term of trueness and precision for both metabolites and parents, as evaluated by one-way ANOVA. The 3-OH THPI was the most critical compound with not acceptable results for linearity, trueness and precision.
Collapse
Affiliation(s)
- Patrizia Stefanelli
- Department Environment and Health, Istituto Superiore di Sanità (National Institute of Health), Rome, Italy
| | - Danilo Attard Barbini
- Department Environment and Health, Istituto Superiore di Sanità (National Institute of Health), Rome, Italy
| | - Silvana Girolimetti
- Department Environment and Health, Istituto Superiore di Sanità (National Institute of Health), Rome, Italy
| |
Collapse
|
45
|
A proof‐of‐concept of parallel single‐drop microextraction for the rapid and sensitive biomonitoring of pesticides in urine. J Sep Sci 2021; 44:1961-1968. [DOI: 10.1002/jssc.202001157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 02/11/2021] [Indexed: 01/03/2023]
|
46
|
Wren M, Liu M, Vetrano A, Richardson JR, Shalat SL, Buckley B. Analysis of six pyrethroid insecticide metabolites in cord serum using a novel gas chromatography-ion trap mass spectrometry method. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122656. [PMID: 33819796 DOI: 10.1016/j.jchromb.2021.122656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/15/2022]
Abstract
Pyrethroid insecticides are commonly used for residential and commercial pest control in the US. Pregnant women and their fetuses are vulnerable to pesticide exposures during critical windows of neurodevelopment. Biomonitoring for exposure requires accurate and sensitive methods to assess exposures during pregnancy. The objective of this study was to develop a sensitive analytical method to measure pyrethroid metabolite concentrations in cord serum. Six pyrethroid metabolites, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylic acid (c/t-DCCA), trans-chrysanthemum dicarboxylic acid (t-CDCA), cis-3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane carboxylic acid (c-DBCA), 4-fluoro-3-phenoxybenzoic acid (FPBA), and 3-phenoxybenzoic acid (3PBA) were extracted from cord serum by a dichloromethane liquid-liquid extraction, derivatized by 1,1,1,3,3,3-hexafluoro-2-propanol carboxylic acid esterification, and then measured by gas chromatography/ion trap mass spectrometry. Limits of detection ranged from 0.02 to 0.6 ng/mL. Sixty-three cord serum samples were collected from maternal-fetal dyads in central New Jersey to test for pyrethroid metabolites. Non-specific metabolites, 3PBA, t-DCCA, and t-CDCA, were detected most frequently, present in 29%, 6.3% and 6.3% of samples, respectively. Sensitivities were comparable or greater than other published studies assessing pyrethroid metabolites in cord blood. Comparisons with other literature-reported studies emphasize the importance of method sensitivity when assessing exposures at biologically relevant concentrations.
Collapse
Affiliation(s)
- Melody Wren
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Min Liu
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Anna Vetrano
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jason R Richardson
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Stuart L Shalat
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
47
|
Gallo V, Tomai P, Gherardi M, Fanali C, De Gara L, D'Orazio G, Gentili A. Dispersive liquid-liquid microextraction using a low transition temperature mixture and liquid chromatography-mass spectrometry analysis of pesticides in urine samples. J Chromatogr A 2021; 1642:462036. [PMID: 33714770 DOI: 10.1016/j.chroma.2021.462036] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/31/2022]
Abstract
Biomonitoring is a potent tool to control the health risk of people occupationally and non-occupationally exposed. The latest trend in bioanalytical chemistry is to develop quick, cheap, easy, safe and reliable green analytical procedures to analyse a large number of chemicals in easily accessible biomatrices such as urine. In this paper, a new dispersive liquid-liquid microextraction (DLLME) procedure, conceived to treat urine samples and based on the use of a low transition temperature mixture (LTTM), was developed and validated to analyse twenty pesticides commonly used in farm practises. The LTTM was composed of choline chloride and sesamol in molar ratio 1:3 (ChCl:Ses 1:3); its characterization via differential scanning calorimetry identified it as an LTTM and not as a deep eutectic solvent due to the occurrence of a glass transition at -71 °C. The prepared mixture was used as the extraction solvent in the DLLME procedure, while ethyl acetate as the dispersing solvent. The salting out effect (50 mg mL-1 of NaCl in a diluted urine sample) improved the separation phase and the analyte transfer to the extractant. Due to the high ionic strength and despite the density of ChCl:Ses 1:3 (1.25 g mL-1), the LTTM layer floated on the top of the sample solution after centrifugation. All extracts were analysed by high-performance liquid chromatography coupled to mass spectrometry. After optimization and validation of the whole method, lower limits of quantitation were in the range of 0.02 - 0.76 µg L-1. Extraction recoveries spanned from 50 to 101 % depending on the spike level and analytes. Precision and accuracy ranges were 3-18% and 5-20%, respectively. The extraction procedure was also compared with other methods, showing to be advantageous for rapidity, simplicity, efficiency, and low cost. Finally, urine samples from ten volunteers were effectively analysed using the developed method.
Collapse
Affiliation(s)
- Valeria Gallo
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome Italy
| | - Pierpaolo Tomai
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome Italy
| | - Monica Gherardi
- INAIL- DiMEILA, Chemical Risk Laboratory, Monte Porzio Catone Research Center, Rome
| | - Chiara Fanali
- Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Giovanni D'Orazio
- Institute for the Biological Systems, National Research Council, Via Salaria km 29,300 00015 Monterotondo (RM)
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome Italy.
| |
Collapse
|
48
|
Abstract
The development of suspect or non-target screening methods to detect xenobiotics in biological fluids is essential to properly understand the exposome and assess its adverse health effects on humans. In order to fulfil that aim, the biomonitorization of human fluids is compulsory. However, these methods are not yet extensively developed, especially for polar organic xenobiotics in biofluids such as milk, as most works are only focused on certain analytes of interest. In this work, a multi-target analysis method to determine 245 diverse xenobiotics in milk by means of Ultra High Performance Liquid Chromatography (UHPLC)-qOrbitrap was developed. Under optimal conditions, liquid milk samples were extracted with acetonitrile in the presence of anhydrous Na2SO4 and NaCl, and the extracts were cleaned-up by protein precipitation at low temperature and Captiva Non-Drip (ND)—Lipids filters. The optimized method was validated at two concentration-levels (10 ng/g and 40 ng/g) obtaining satisfactory figures of merit for more than 200 compounds. The validated multi-target method was applied to several milk samples, including commercial and breast milk, provided by 4 healthy volunteers. Moreover, the method was extended to perform suspect analysis of more than 17,000 xenobiotics. All in all, several diverse xenobiotics were detected, highlighting food additives (benzothiazole) or phytoestrogens (genistein and genistin) in commercial milk samples, and stimulants (caffeine), plasticizers (phthalates), UV filters (benzophenone), or pharmaceuticals (orlistat) in breast milk samples.
Collapse
|
49
|
F Fernández S, Pardo O, Corpas-Burgos F, Yusà V. Exposure and cumulative risk assessment to non-persistent pesticides in Spanish children using biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140983. [PMID: 32750575 DOI: 10.1016/j.scitotenv.2020.140983] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The main objective of the present research is to evaluate the exposure to pesticides in children (n = 568) from the Valencian Region (Spain). Six non-specific and 20 specific metabolites of organophosphate pesticides (OPs), herbicides (Herb), and pyrethroids (Pyr) were analyzed in urine samples. The biomarkers with the highest detection frequencies (>70%) were diethyl phosphate, p-nitrophenol, 3-phenoxybenzoic acid, and 3,5,6-trichloro-2-pyridinol, whose geometric mean concentrations (ng·ml-n1) were 1.53, 1.03, 1.51 and 1.19, respectively. Robust regression models showed that the province of residence and the recent consumption of vegetables, legumes and cereals were some of the most important predictors of pesticide exposure. Pesticide risk assessment is estimated using two different strategies: one based on the pesticides' mode of action (MoA); and the other based on cumulative assessment groups (CAGs), proposed by EFSA. The estimated daily intakes (EDIs) ranged from 0.08 (chlorpyrifos) to 1.62 μg·kg bw-1 (λ-cyhalothrin). The MoA approach resulted in hazard quotients ranging from 0.01 (chlorpyrifos) to 0.65 (λ-cyhalothrin), and a hazard index for OPs lower than 1. Similarly, the risk assessment based on CAGs led to total margins of exposure (MOETs) far from 100. In conclusion, both risk assessment strategies does not reveal any evidence of a potential health risk due to pesticide exposure in Spanish children.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, University of Valencia, Doctor Moliner 50, 46100 Burjassot, Spain.
| | - Francisca Corpas-Burgos
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain; Public Health Laboratory of Valencia, Av. Cataluña, 21, 46020, Valencia, Spain.
| |
Collapse
|
50
|
Sousa S, Pestana D, Faria G, Vasconcelos F, Delerue-Matos C, Calhau C, Domingues VF. Method development for the determination of Synthetic Musks and Organophosphorus Pesticides in Human Adipose Tissue. J Pharm Biomed Anal 2020; 191:113598. [PMID: 32947168 DOI: 10.1016/j.jpba.2020.113598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 11/18/2022]
Abstract
Synthetic musks and organophosphorus pesticides represent a potential risk to the human health since exposure can lead to distinct types of carcinogenesis and endocrine disorders. These are lipophilic compounds as such, prone to deposit and persist in fat tissues, mainly in adipose tissue. Very few studies have reported on the occurrence and accumulation profile of these contaminants in human adipose tissue. Analytical methods for the detection and quantification of synthetic musks and organophosphorus pesticides in adipose tissue are lacking. In this study, the efficacy of different extraction with ultrasonic homogenizer and dispersive solid-phase extraction (d-SPE) clean-up methods were evaluated in human adipose tissue. The relative sample clean-up was assessed by measurement of total lipid content. The quantification of four synthetic musks and six organophosphorus pesticides were performed by gas chromatography (GC) mass spectrometry (MS) and flame photometric detection (FPD), respectively. The d-SPE clean-up with 50 mg PSA, 150 mg MgSO4, 100 mg C18EC and 50 mg Z-Sep provided the most effective clean-up, removing the greatest amount of interfering substances including lipids and simultaneously ensuring good chromatographic separation and recoveries. Method detection limits were between 4 to 9 ng/g for synthetic musk and 1 to 7 ng/g for organophosphorus pesticides in adipose tissue. The proposed method was applied to adipose tissue of obese patients and positive samples were confirmed with GC tandem mass spectrometry. Galaxolide was found in all the samples tested with concentrations ranging from 0.08 to 0.5 μg/g of adipose tissue. No other synthetic musk studied was detected. Organophosphorus pesticides were not found in the analysed samples. The developed analytical procedures were successful and can easily be applied to biomonitoring these compounds in human adipose tissue.
Collapse
Affiliation(s)
- Sara Sousa
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal
| | - Diogo Pestana
- Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal; Nutrição e Metabolismo NOVA Medical School Faculdade de Ciências Médicas Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Gil Faria
- Nutrição e Metabolismo NOVA Medical School Faculdade de Ciências Médicas Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; General Surgery Department, S. João Hospital, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Fernando Vasconcelos
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, CEP 65700-000 Areal, Bacabal/Maranhão, Brasil
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Conceição Calhau
- Center for Research in Health Technologies and Information Systems, 4200-450 Porto, Portugal; Nutrição e Metabolismo NOVA Medical School Faculdade de Ciências Médicas Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Valentina Fernandes Domingues
- REQUIMTE/LAQV-GRAQ, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4200-072 Porto, Portugal.
| |
Collapse
|