1
|
Leclerc CA, Ty CGD, Worthington SS, Richardson MB, AlSawalhi AK, Wood L, Moomand K, Collier CM. Surfactant-Based Polymer Microchip Electrophoresis of Ciprofloxacin Hydrochloride Monohydrate in Unfiltered Milk With Fluorescence Detection. Electrophoresis 2025; 46:143-151. [PMID: 39945425 DOI: 10.1002/elps.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/15/2025] [Indexed: 02/28/2025]
Abstract
This work describes a cross-shaped PMMA ME system capable of detecting ciprofloxacin hydrochloride monohydrate (CPFH) in unfiltered milk samples. The cross-shaped PMMA ME system utilizes a BGE consisting primarily of the surface-active agent SDS to solubilize milk fat and improve the zeta potential of the PMMA microchannel surface. A theoretical lumped-element circuit model for cross-shaped ME is introduced in this work to calculate the migration time of CPFH. This manuscript improves the capabilities of PMMA-based ME for CPFH in milk using an SDS-based BGE. The presented ME system has a faster migration time, higher mean output voltage, and thinner full-width at half-maximum than previously reported dairy-based biosensor systems. Most notably, the migration time of the new system is under 10 min, being the time associated with the milking of cattle. The system is also found to be able to detect the presence of milk fat. Discussion is included of potential future integration with existing high-sensitivity methodologies to place the overall ME system's limit of detection below an established target. To the authors' knowledge, this is the first reported account of a PMMA ME system capable of detecting CPFH in unfiltered milk.
Collapse
Affiliation(s)
- Camille A Leclerc
- Collier Research Group, School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Christopher G D Ty
- Collier Research Group, School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Sean S Worthington
- Collier Research Group, School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Malley B Richardson
- Collier Research Group, School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Abdulla K AlSawalhi
- Collier Research Group, School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | | | - Khalid Moomand
- Agrisan Specialty Chemical and Pharmaceutical, Arthur, Ontario, Canada
| | - Christopher M Collier
- Collier Research Group, School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Samchenko YM, Samoylenko OA, Verbinenko AV, Ganusevich II, Kernosenko LO, Poltoratska TP, Pasmurtseva NO, Solovieva OO, Volobayev II. Synthesis and application of polyacrylamide hydrogels with incorporated acid-activated Laponite® for diagnosis of oncological diseases. HIMIA, FIZIKA TA TEHNOLOGIA POVERHNI 2024; 15:514-523. [DOI: 10.15407/hftp15.04.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Hydrogels with incorporated acid-activated Laponite® (LapA) platelets represent a new generation of biomaterials with promising biomedical application (e.g., diagnostics and therapy). The LapA nanomaterial have high specific surface area and demonstrate rather attractive hydrophilic properties. The physical cross-linking of hydrogels using the LapA allowed a significant improvement the systems homogeneity, transparency, and drug transport in these systems. In general incorporation of LapA may also affect the equilibrium degree of swelling at phase-transition from the swollen to the shrunken phase. In this work the effectiveness of using of polyacrylamide hydrogels (PAAG) with incorporated LapA for diagnosis of oncological diseases was studied. The synthesis procedure was performed using ultrasonication of aqueous dispersion of mixtures of monomer, crosslinking agent and initiators. The PAAG+LapA samples were characterized using SEM and PAAG swelling techniques. SEM images evidenced the presence of integration of LapA platelets into the hydrogel structure and formation of the shells of aggregated LapA particles. It can be explained by the formation of more active forms of LapA with stronger internal bonds. Effects of Lap, LapA concentration on the swelling kinetics and the maximal swelling degree were also evaluated. The the maximal equilibrium degree of swelling Qmax was reached within the first 5 hours. The concentration of platelets affected the value of Qmax, initially it decreased up to the minimum Qmax » 7.6 g/g at CLap » 0.04 % and then increased at higher concentrations. For these samples the protein separation spectrum of peripheral blood plasma was studied using the sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Peripheral blood plasma samples obtained from the donors, and colorectal cancer patients without distant metastases and with distant metastases were studied. The better separation of human plasma proteins was observed in hydrogels with incorporated LapA platelets. In future studies it is desirable to test these new SDS-PAGE materials for diagnostics of different forms of cancer diseases.
Collapse
|
3
|
Lu Y, Xie Q, Chen J, Chu Z, Zhang F, Wang Q. Aptamer-mediated double strand displacement amplification with microchip electrophoresis for ultrasensitive detection of Salmonella typhimurium. Talanta 2024; 273:125875. [PMID: 38452591 DOI: 10.1016/j.talanta.2024.125875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Rapid and quantitative detection of foodborne bacteria is of great significance to public health. In this work, an aptamer-mediated double strand displacement amplification (SDA) strategy was first explored to couple with microchip electrophoresis (MCE) for rapid and ultrasensitive detection of Salmonella typhimurium (S. Typhimurium). In double-SDA, a bacteria-identified probe consisting of the aptamer (Apt) and trigger sequence (Tr) was ingeniously designed. The aptamer showed high affinity to the S. Typhimurium, releasing the Tr sequence from the probe. The released Tr hybridized with template C1 chain, initiating the first SDA to produce numerous output strands (OS). The second SDA process was induced with the hybridization of the liberated OS and template C2 sequence, generating a large number of reporter strands (RS), which were separated and quantified through MCE. Cascade signal amplification and rapid separation of nucleic acids could be realized by the proposed double-SDA method with MCE, achieving the limit of detection for S. typhimurium down to 6 CFU/mL under the optimal conditions. Based on the elaborate design of the probes, the double-SDA assisted MCE strategy achieved better amplification performance, showing high separation efficiency and simple operation, which has satisfactory expectation for bacterial disease diagnosis.
Collapse
Affiliation(s)
- Yuqi Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Qihui Xie
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Jingyi Chen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
4
|
Nasir Ahamed NN, Mendiola-Escobedo CA, Perez-Gonzalez VH, Lapizco-Encinas BH. Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells. BIOSENSORS 2024; 14:237. [PMID: 38785711 PMCID: PMC11117482 DOI: 10.3390/bios14050237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated by DC-biased AC potentials. The separations had an increasing order of difficulty. First, a separation between cells of two distinct domains (Escherichia coli and Saccharomyces cerevisiae) was demonstrated. The second separation was for cells from the same domain but different species (Bacillus subtilis and Bacillus cereus). The last separation included cells from two closely related microbial strains of the same domain and the same species (two distinct S. cerevisiae strains). For each separation, a novel computational model, employing a continuous spatial and temporal function for predicting the particle velocity, was used to predict the retention time (tR,p) of each cell type, which aided the experimentation. All three cases resulted in separation resolution values Rs>1.5, indicating complete separation between the two cell species, with good reproducibility between the experimental repetitions (deviations < 6%) and good agreement (deviations < 18%) between the predicted tR,p and experimental (tR,e) retention time values. This study demonstrated the potential of DC-biased AC iEK systems for performing challenging microbial separations.
Collapse
Affiliation(s)
- Nuzhet Nihaar Nasir Ahamed
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
| | - Carlos A. Mendiola-Escobedo
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64700, Nuevo Leon, Mexico
| | - Victor H. Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64700, Nuevo Leon, Mexico
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
| |
Collapse
|
5
|
Santos HI, Pinheiro KMP, Richter EM, Coltro WKT. Determination of scopolamine and butylscopolamine in beverages, urine and Buscopan® tablets samples using electrophoresis microchip with integrated contactless conductivity detection. Talanta 2024; 266:124960. [PMID: 37487267 DOI: 10.1016/j.talanta.2023.124960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/16/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
The number of cases in which scopolamine (SCO) was used for both recreational and predatory purposes has increased dramatically in recent decades. Linked to this, there is a concern about obtaining SCO through thermal degradation of butylscopolamine (BSCO) - an active ingredient of Buscopan® - a drug sold without a medical prescription. In this study, mixtures containing SCO and BSCO were separated and detected on a microchip electrophoresis (ME) device with integrated capacitively coupled contactless conductivity detection (C4D) using a running buffer composed of 40 mmol L-1 of butyric acid and 25 mmol L-1 of sodium hydroxide (pH 5.0). The separation was performed within ca. 115 s with a resolution of 1.3 and separation efficiency ranging from 1.4 × 105 to 1.5 × 105 theoretical plates m-1. A detection limit of 1.1 μmol L-1 was achieved for both species and the developed method revealed satisfactory repeatability with relative standard deviation (RSD) values for forty-eight injections between 4.8 and 9.4% for peak areas and lower than 3.3% for migration times. Furthermore, inter-day precision was evaluated for sixteen injections (a sequence of four injections performed over four days), and RSD values were less than 6.6% for peak areas and 2.2% for migration times. Satisfactory recovery values (95-114%) were obtained for all evaluated beverage samples (cachaça, vodka, whiskey, beer, Coca-Cola, and grape juice) as well as for artificial urine samples (95-107%). Finally, the conversion of BSCO into SCO was observed after simple heating procedure of Buscopan® sample (not subject to medical prescription), which was successfully confirmed through analysis by capillary electrophoresis coupled to the mass spectrometry (CE-MS). Based on the reported results, the use of ME-C4D devices has demonstrated a huge potential for applications in the forensic chemistry field.
Collapse
Affiliation(s)
- Hellen I Santos
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Kemilly M P Pinheiro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Eduardo M Richter
- Instituto de Química, Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
6
|
Sena-Torralba A, Banguera-Ordoñez YD, Mira-Pascual L, Maquieira Á, Morais S. Exploring the potential of paper-based electrokinetic phenomena in PoC biosensing. Trends Biotechnol 2023; 41:1299-1313. [PMID: 37150668 DOI: 10.1016/j.tibtech.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023]
Abstract
In order to decentralize health care, the development of point-of-care (PoC) assays has gained significant attention in recent decades. The lateral flow immunoassay (LFIA) has emerged as a promising bioanalytical method due to its low cost and single-step detection process. However, its limited sensitivity and inability to detect disease biomarkers at clinically relevant levels have hindered its application for early diagnosis. This review explores the potential of merging different electrokinetic phenomena into paper-based assays to enhance their analytical performance, offering a versatile and affordable approach for PoC testing. The review exposes the challenges faced in integrating electrokinetic phenomena with paper-based biosensing and concludes by discussing the issues that need to be improved to maximize the potential of this technology for early diagnosis.
Collapse
Affiliation(s)
- Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Yulieth D Banguera-Ordoñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Laia Mira-Pascual
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
7
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
8
|
Khan JU, Pathan MA, Sayyar S, Paull B, Innis PC. Tuning the electrophoretic separations on a surface-accessible and flexible fibre-based microfluidic devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1506-1516. [PMID: 36847496 DOI: 10.1039/d2ay01714h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrophoresis on textile fiber substrates provides a unique surface-accessible platform for the movement, separation and concentration of charged analytes. The method employs the inherently inbuilt capillary channels existing within textile structures, which can support electroosmotic and electrophoretic transport processes upon applying an electric field. Unlike confined microchannels in classical chip-based electrofluidic devices, the capillaries formed by the roughly oriented fibers within textile substrates can impact the reproducibility of the separation process. Here, we report an approach for precise experimental conditions affecting the electrophoretic separation of two tracer solutes, fluorescein (FL) and rhodamine B (Rh-B) on textile-based substrates. A Box-Behnken response surface design methodology has been used to optimise the experimental conditions and predict the separation resolution of a solute mixture using polyester braided structures. The magnitude of the electric field, sample concentration and sample volume are of primary importance to the separation performance of the electrophoretic devices. Here, we use a statistical approach to optimise these parameters to achieve rapid and efficient separation. While a higher potential was shown to be required to separate solute mixtures of increasing concentration and sample volume, this was counteracted by a reduced separation efficiency due to joule heating, which caused electrolyte evaporation on the unenclosed textile structure at electric fields above 175 V cm-1. Using the approach presented here, optimal experimental conditions can be predicted to limit joule heating and attain effective separation resolution without compromising the analysis time on simple and low-cost textile substrates.
Collapse
Affiliation(s)
- Jawairia Umar Khan
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia.
- Department of Fibre and Textile Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Institute for Biomedical Materials & Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Mirbaz Ali Pathan
- Electrical, Computer and Telecommunication Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, New South Wales 2500, Australia
| | - Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia.
- Australian National Fabrication Facility - Materials Node, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials. Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Peter C Innis
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia.
- Australian National Fabrication Facility - Materials Node, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
| |
Collapse
|
9
|
Li Z, Xu X, Wang D, Jiang X. Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics. Trends Analyt Chem 2023; 158:116871. [PMID: 36506265 PMCID: PMC9721164 DOI: 10.1016/j.trac.2022.116871] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) has extensively promoted the application of nucleic acid testing technology in the field of clinical testing. The most widely used polymerase chain reaction (PCR)-based nucleic acid testing technology has problems such as complex operation, high requirements of personnel and laboratories, and contamination. The highly miniaturized microfluidic chip provides an essential tool for integrating the complex nucleic acid detection process. Various microfluidic chips have been developed for the rapid detection of nucleic acid, such as amplification-free microfluidics in combination with clustered regularly interspaced short palindromic repeats (CRISPR). In this review, we first summarized the routine process of nucleic acid testing, including sample processing and nucleic acid detection. Then the typical microfluidic chip technologies and new research advances are summarized. We also discuss the main problems of nucleic acid detection and the future developing trend of the microfluidic chip.
Collapse
|
10
|
Zeid AM, Abdussalam A, Hanif S, Anjum S, Lou B, Xu G. Recent advances in microchip electrophoresis for analysis of pathogenic bacteria and viruses. Electrophoresis 2023; 44:15-34. [PMID: 35689426 DOI: 10.1002/elps.202200082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
Life-threatening diseases, such as hepatitis B, pneumonia, tuberculosis, and COVID-19, are widespread due to pathogenic bacteria and viruses. Therefore, the development of highly sensitive, rapid, portable, cost-effective, and selective methods for the analysis of such microorganisms is a great challenge. Microchip electrophoresis (ME) has been widely used in recent years for the analysis of bacterial and viral pathogens in biological and environmental samples owing to its portability, simplicity, cost-effectiveness, and rapid analysis. However, microbial enrichment and purification are critical steps for accurate and sensitive analysis of pathogenic bacteria and viruses in complex matrices. Therefore, we first discussed the advances in the sample preparation technologies associated with the accurate analysis of such microorganisms, especially the on-chip microfluidic-based sample preparations such as dielectrophoresis and microfluidic membrane filtration. Thereafter, we focused on the recent advances in the lab-on-a-chip electrophoretic analysis of pathogenic bacteria and viruses in different complex matrices. As the microbial analysis is mainly based on the analysis of nucleic acid of the microorganism, the integration of nucleic acid-based amplification techniques such as polymerase chain reaction (PCR), quantitative PCR, and multiplex PCR with ME will result in an accurate and sensitive analysis of microbial pathogens. Such analyses are very important for the point-of-care diagnosis of various infectious diseases.
Collapse
Affiliation(s)
- Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,College of Natural and Pharmaceutical Sciences, Department of Chemistry, Bayero University, Kano, Nigeria.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Saima Hanif
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Punjab, Pakistan
| | - Saima Anjum
- Department of Chemistry, Govt. Sadiq College Women University, Bahawalpur, Pakistan
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
11
|
Naghdi E, Moran GE, Reinau ME, De Malsche W, Neusüß C. Concepts and recent advances in microchip electrophoresis coupled to mass spectrometry: Technologies and applications. Electrophoresis 2023; 44:246-267. [PMID: 35977423 DOI: 10.1002/elps.202200179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
The online coupling of microchip electrophoresis (ME) as a fast, highly efficient, and low-cost miniaturized separation technique to mass spectrometry (MS) as an information-rich and sensitive characterization technique results in ME-MS an attractive tool for various applications. In this paper, we review the basic concepts and latest advances in technology for ME coupled to MS during the period of 2016-2021, covering microchip materials, structures, fabrication techniques, and interfacing to electrospray ionization (ESI)-MS and matrix-assisted laser desorption/ionization-MS. Two critical issues in coupling ME and ESI-MS include the electrical connection used to define the electrophoretic field strength along the separation channel and the generation of the electrospray for MS detection, as well as, a miniaturized ESI-tip. The recent commercialization of ME-MS in zone electrophoresis and isoelectric focusing modes has led to the widespread application of these techniques in academia and industry. Here we summarize recent applications of ME-MS for the separation and detection of antibodies, proteins, peptides, carbohydrates, metabolites, and so on. Throughout the paper these applications are discussed in the context of benefits and limitations of ME-MS in comparison to alternative techniques.
Collapse
Affiliation(s)
- Elahe Naghdi
- Department of Chemistry, Aalen University, Aalen, Germany
| | - Griffin E Moran
- Novo Nordisk A/S, Global Research Technologies, Maaloev, Denmark
| | | | - Wim De Malsche
- µFlow group, Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
12
|
Pinheiro KMP, Duarte LM, Rodrigues MF, Vaz BG, Junior IM, Carvalho RM, Coltro WKT. Determination of naphthenic acids in produced water by using microchip electrophoresis with integrated contactless conductivity detection. J Chromatogr A 2022; 1677:463307. [PMID: 35834889 DOI: 10.1016/j.chroma.2022.463307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
This study reports for the first time the use of a microchip electrophoresis (ME) device with integrated capacitively coupled contactless conductivity detection (C4D) to analyze naphthenic acids in produced water. A mixture containing 9-anthracenecarboxylic, 1-naphthoic, and benzoic acids was separated and detected using a running buffer composed of 10 mmol L-1 carbonate buffer (pH = 10.2). The separation was achieved within ca. 140 s with baseline resolution greater than 2 and efficiency values ranging from 1.9 × 105 to 2.4 × 105 plates m-1. The developed methodology provided linear correlation with determination coefficients greater than 0.992 for the concentration ranges between 50 and 250 µmol L-1 for benzoic and 9-anthracenecarboxylic acids, and between 50 and 200 µmol L-1 for 1-naphthoic acid. The achieved limit of detection values varied between 4.7 and 7.7 µmol L-1. The proposed methodology revealed satisfactory repeatability with RSD values for a sequence of eight injections between 5.5 and 7.7% for peak areas and lower than 1% for migration times. In addition, inter-day precision was evaluated for sixteen injections (a sequence of four injections performed during four days), and the RSD values were lower than 11.5 and 4.9% for peak areas and migration time, respectively. Five produced water samples were analyzed, and it was possible to detect and quantify 9-anthracenecarboxylic acid. The concentrations ranged from 1.05 to 2.24 mmol L-1 with recovery values between 90.8 and 96.0%. ME-C4D demonstrated satisfactory analytical performance for determining naphthenic acids in produced water for the first time, which is useful for petroleum or oil industry investigation.
Collapse
Affiliation(s)
- Kemilly M P Pinheiro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Lucas M Duarte
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil; Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
| | - Marcella F Rodrigues
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Iris Medeiros Junior
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES), Rio de Janeiro, RJ 21040-000, Brazil
| | - Rogerio M Carvalho
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES), Rio de Janeiro, RJ 21040-000, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP 13084-971, Brazil.
| |
Collapse
|
13
|
Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers—An Overview on the Construction of Biosensors with Different Transductions. BIOSENSORS 2022; 12:bios12080581. [PMID: 36004978 PMCID: PMC9406156 DOI: 10.3390/bios12080581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Currently, several biosensors are reported to confirm the absence/presence of an abnormal level of specific human biomarkers in research laboratories. Unfortunately, public marketing and/or pharmacy accessibility are not yet possible for many bodily fluid biomarkers. The questions are numerous, starting from the preparation of the substrates, the wet/dry form of recognizing the (bio)ligands, the exposure time, and the choice of the running buffers. In this context, for the first time, the present overview summarizes the pre-functionalization of standard and nanostructured solid/flexible supports with cysteamine (Cys) and glutaraldehyde (GA) chemicals for robust protein immobilization and detection of biomarkers in body fluids (serum, saliva, and urine) using three transductions: piezoelectrical, electrochemical, and optical, respectively. Thus, the reader can easily access and compare step-by-step conjugate protocols published over the past 10 years. In conclusion, Cys/GA chemistry seems widely used for electrochemical sensing applications with different types of recorded signals, either current, potential, or impedance. On the other hand, piezoelectric detection via quartz crystal microbalance (QCM) and optical detection by surface plasmon resonance (LSPR)/surface-enhanced Raman spectroscopy (SERS) are ultrasensitive platforms and very good candidates for the miniaturization of medical devices in the near future.
Collapse
|
14
|
Nix C, Ghassemi M, Crommen J, Fillet M. Overview on microfluidics devices for monitoring brain disorder biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Selemani M, Castiaux AD, Martin RS. PolyJet-Based 3D Printing against Micromolds to Produce Channel Structures for Microchip Electrophoresis. ACS OMEGA 2022; 7:13362-13370. [PMID: 35474767 PMCID: PMC9026087 DOI: 10.1021/acsomega.2c01265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In this work, we demonstrate the ability to use micromolds along with a stacked three-dimensional (3D) printing process on a commercially available PolyJet printer to fabricate microchip electrophoresis devices that have a T-intersection, with channel cross sections as small as 48 × 12 μm2 being possible. The fabrication process involves embedding removable materials or molds during the printing process, with various molds being possible (wires, brass molds, PDMS molds, or sacrificial materials). When the molds are delaminated/removed, recessed features complementary to the molds are left in the 3D prints. A thermal lab press is used to bond the microchannel layer that also contains printed reservoirs against another solid 3D-printed part to completely seal the microchannels. The devices exhibited cathodic electroosmotic flow (EOF), and mixtures of fluorescein isothiocyanate isomer I (FITC)-labeled amino acids were successfully separated on these 3D-printed devices using both gated and pinched electrokinetic injections. While this application is focused on microchip electrophoresis, the ability to 3D-print against molds that can subsequently be removed is a general methodology to decrease the channel size for other applications as well as to possibly integrate 3D printing with other production processes.
Collapse
Affiliation(s)
- Major
A. Selemani
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Andre D. Castiaux
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| | - R. Scott Martin
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| |
Collapse
|
16
|
Wang M, Gong Q, Liu W, Tan S, Xiao J, Chen C. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical and food analysis (2019-2021). J Sep Sci 2022; 45:1918-1941. [PMID: 35325510 DOI: 10.1002/jssc.202100727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
So far, the potential of capillary electrophoresis (CE) in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption and low cost. This review examines the implementations and advancements of CE in different application fields (environmental, pharmaceutical, clinical and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used UV-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review is focused on the development of CE in the fields of environmental, pharmaceutical, clinical and food analysis, the new sample pretreatment techniques of microextraction and enrichment which fit excellently to CE in recent three years are also described briefly. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyao Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/ The Affiliated Cancer Hospital of School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
17
|
Perdigones F, Quero JM. Printed Circuit Boards: The Layers' Functions for Electronic and Biomedical Engineering. MICROMACHINES 2022; 13:460. [PMID: 35334752 PMCID: PMC8952574 DOI: 10.3390/mi13030460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 01/25/2023]
Abstract
This paper describes the fabrication opportunities that Printed Circuit Boards (PCBs) offer for electronic and biomedical engineering. Historically, PCB substrates have been used to support the components of the electronic devices, linking them using copper lines, and providing input and output pads to connect the rest of the system. In addition, this kind of substrate is an emerging material for biomedical engineering thanks to its many interesting characteristics, such as its commercial availability at a low cost with very good tolerance and versatility, due to its multilayer characteristics; that is, the possibility of using several metals and substrate layers. The alternative uses of copper, gold, Flame Retardant 4 (FR4) and silver layers, together with the use of vias, solder masks and a rigid and flexible substrate, are noted. Among other uses, these characteristics have been using to develop many sensors, biosensors and actuators, and PCB-based lab-on chips; for example, deoxyribonucleic acid (DNA) amplification devices for Polymerase Chain Reaction (PCR). In addition, several applications of these devices are going to be noted in this paper, and two tables summarizing the layers' functions are included in the discussion: the first one for metallic layers, and the second one for the vias, solder mask, flexible and rigid substrate functions.
Collapse
|
18
|
Badiye A, Kapoor N, Shukla RK. Detection and separation of proteins using micro/nanofluidics devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:59-84. [PMID: 35033290 DOI: 10.1016/bs.pmbts.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microfluidics is the technology or system wherein the behavior of fluids' is studied onto a miniaturized device composed of chambers and tunnels. In biological and biomedical sciences, microfluidic technology/system or device serves as an ultra-high-output approach capable of detecting and separating the biomolecules present even in trace quantities. Given the essential role of protein, the identification and quantification of proteins help understand the various living systems' biological function regulation. Microfluidics has enormous potential to enable biological investigation at the cellular and molecular level and maybe a fair substitution of the sophisticated instruments/equipment used for proteomics, genomics, and metabolomics analysis. The current advancement in microfluidic systems' development is achieving momentum and opening new avenues in developing innovative and hybrid methodologies/technologies. This chapter attempts to expound the micro/nanofluidic systems/devices for their wide-ranging application to detect and separate protein. It covers microfluidic chip electrophoresis, microchip gel electrophoresis, and nanofluidic systems as protein separation systems, while methods such as spectrophotometric, mass spectrometry, electrochemical detection, magneto-resistive sensors and dynamic light scattering (DLS) are discussed as proteins' detection system.
Collapse
Affiliation(s)
- Ashish Badiye
- Department of Forensic Science, Government Institute of Forensic Sciences, Nagpur, Maharashtra, India
| | - Neeti Kapoor
- Department of Forensic Science, Government Institute of Forensic Sciences, Nagpur, Maharashtra, India
| | - Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.
| |
Collapse
|
19
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
20
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
21
|
Takao J, Endo T, Hisamoto H, Sueyoshi K. Direct Measurement of Initial Rate of Enzyme Reaction by Electrokinetic Filtration Using a Hydrogel-plugged Capillary Device. ANAL SCI 2021; 37:1439-1446. [PMID: 33840683 DOI: 10.2116/analsci.21p067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel electrokinetic filtration device using a plugged hydrogel was developed to directly measure the initial rate of enzyme reactions. In the proposed method, the enzyme reaction proceeded only for a short time when the substrate was passed through a thin layer of enzyme trapped by the hydrogel without any lag times for mixing and detection. In experimental conditions, alkaline phosphatase (enzyme) was filtrated at a cathodic-side interface of the plugged hydrogel by molecular sieving effect, providing the thin enzyme zone whose thickness was approximately 100 μm. When 4-methylumberiferyl phosphate (substrate) was electrokinetically introduced into the device after trapping the enzyme, 4-methylumberiferone (product) was generated by the enzyme reaction for only 1.26 s as the substrate passed through the trapped enzyme zone. As a result, the initial rate of the enzyme reaction could be directly calculated to 31.0 μM/s by simply dividing the concentration of the product by the tunable reaction time. Compared to the initial rate obtained by mixing the enzyme and substrate solutions, the value of the maximum velocity of the enzyme reaction was 30-fold larger than that in the mixing method due to the preconcentration of the enzyme by trapping. The Michaelis-Menten constant in the proposed method was 2.7-fold larger than that in the mixing method, suggesting the variation of changes in the equilibrium of complex formation under the experimental conditions.
Collapse
Affiliation(s)
- Junku Takao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO)
| |
Collapse
|
22
|
Graf HG, Rudisch BM, Manegold J, Huhn C. Advancements in capacitance-to-digital converter-based C 4 D technology for detection in capillary electrophoresis using amplified excitation voltages and comparison to classical and open-source C 4 Ds. Electrophoresis 2021; 42:1306-1316. [PMID: 33710630 DOI: 10.1002/elps.202000394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/05/2022]
Abstract
This work introduces new hardware configurations for a capacitively coupled contactless conductivity detector (C4 D) based on capacitance-to-digital conversion (CDC) technology for CE. The aim was to improve sensitivity, handling, price, and portability of CDC-based C4 D detectors (CDCD) to reach LODs similar to classic C4 Ds with more sophisticated electric circuits. To achieve this, a systematic study on the CDCDs was carried out including a direct comparison to already established C4 D setups. Instrumental setups differing in electrode lengths, measurement modes, and amplification of excitation voltages were investigated to achieve LODs for alkali metal ions of 4 to 12 μM, similar to LODs obtained by classic C4 D setups. Lowest LODs were achieved for a setup with two 10 mm electrodes at a distance of 0.2 mm and an excitation voltage of 24 V. The detection head was exceptionally lightweight with only 2.6 g and covered only 20 mm of the capillary on total. This allowed the use of multiple detectors along the separation path to enable spatial tracking of analytes during separation. The entirely battery-powered detector assembly weighs less than 200 g, and the data are transmitted wirelessly for possible portable applications. The freely accessible hardware and software were optimized for fully automated measurements with real time data plotting and allowed handling multidetector setups. The new developments were applied to quantify the potassium salt of glyphosate in its herbicide formulation.
Collapse
Affiliation(s)
- Hannes Georg Graf
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | - Johanna Manegold
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Ryšavá L, Dvořák M, Kubáň P. Dried Blood Spot Self‐Sampling with Automated Capillary Electrophoresis Processing for Clinical Analysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lenka Ryšavá
- Department of Electromigration Methods Institute of Analytical Chemistry of the Czech Academy of Sciences Veveří 97 60200 Brno Czech Republic
- Institute of Food Science and Biotechnology Faculty of Chemistry Brno University of Technology Purkyňova 118 61200 Brno Czech Republic
| | - Miloš Dvořák
- Department of Electromigration Methods Institute of Analytical Chemistry of the Czech Academy of Sciences Veveří 97 60200 Brno Czech Republic
| | - Pavel Kubáň
- Department of Electromigration Methods Institute of Analytical Chemistry of the Czech Academy of Sciences Veveří 97 60200 Brno Czech Republic
| |
Collapse
|
24
|
Ryšavá L, Dvořák M, Kubáň P. Dried Blood Spot Self-Sampling with Automated Capillary Electrophoresis Processing for Clinical Analysis. Angew Chem Int Ed Engl 2021; 60:6068-6075. [PMID: 33325588 DOI: 10.1002/anie.202012997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Indexed: 12/12/2022]
Abstract
A simple and convenient concept of blood sampling followed by a fully automated analysis is presented. A disposable sampling kit is used for accurate self-sampling of capillary blood from a finger prick. A high-throughput blood sampling is thus enabled, which is essential in many clinical assays and considerably improves life quality and comfort of involved subjects. The collected blood samples are mailed to a laboratory for a fully automated dried blood spot (DBS) processing and analysis, which are performed with a commercial capillary electrophoresis instrument. Quantitative results are obtained within 20 min from the DBS delivery to the laboratory. The presented concept is exemplified by the determination of warfarin blood concentrations and demonstrates excellent analytical performance. Moreover, this concept is generally applicable to a wide range of endogenous and exogenous blood compounds and represents a novel and attractive analytical tool for personalized health monitoring.
Collapse
Affiliation(s)
- Lenka Ryšavá
- Department of Electromigration Methods, Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 60200, Brno, Czech Republic.,Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic
| | - Miloš Dvořák
- Department of Electromigration Methods, Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 60200, Brno, Czech Republic
| | - Pavel Kubáň
- Department of Electromigration Methods, Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 60200, Brno, Czech Republic
| |
Collapse
|
25
|
Nouwairi RL, O'Connell KC, Gunnoe LM, Landers JP. Microchip Electrophoresis for Fluorescence-Based Measurement of Polynucleic Acids: Recent Developments. Anal Chem 2020; 93:367-387. [PMID: 33351599 DOI: 10.1021/acs.analchem.0c04596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Renna L Nouwairi
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Killian C O'Connell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah M Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22903, United States.,Department of Pathology, University of Virginia Health Science Center, Charlottesville, Virginia 22903, United States
| |
Collapse
|
26
|
Thomas SL, Thacker JB, Schug KA, Maráková K. Sample preparation and fractionation techniques for intact proteins for mass spectrometric analysis. J Sep Sci 2020; 44:211-246. [DOI: 10.1002/jssc.202000936] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Shannon L. Thomas
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Jonathan B. Thacker
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Kevin A. Schug
- Department of Chemistry & Biochemistry The University of Texas Arlington Arlington Texas USA
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| |
Collapse
|
27
|
Bagchi D, Olvera de la Cruz M. Dynamics of a driven confined polyelectrolyte solution. J Chem Phys 2020; 153:184904. [PMID: 33187440 DOI: 10.1063/5.0027049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transport of polyelectrolytes confined by oppositely charged surfaces and driven by a constant electric field is of interest in studies of DNA separation according to size. Using molecular dynamics simulations that include the surface polarization effect, we find that the mobilities of the polyelectrolytes and their counterions change non-monotonically with the confinement surface charge density. For an optimum value of the confinement charge density, efficient separation of polyelectrolytes can be achieved over a wide range of polyelectrolyte charge due to the differential friction imparted by oppositely charged confinement on the polyelectrolyte chains. Furthermore, by altering the placement of the charged confinement counterions, enhanced polyelectrolyte separation can be achieved by utilizing the surface polarization effect due to dielectric mismatch between the media inside and outside the confinement.
Collapse
Affiliation(s)
- Debarshee Bagchi
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
28
|
Determination of the alcoholic content in whiskeys using micellar electrokinetic chromatography on microchips. Food Chem 2020; 329:127175. [PMID: 32516708 DOI: 10.1016/j.foodchem.2020.127175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/31/2023]
Abstract
This report describes the development of a methodology based on micellar electrokinetic chromatography for the separation of alcohols on chip-based systems aiming the determination of alcoholic content in whiskey samples. The separation conditions were optimized the best results were achieved using 50 mmolL-1 phosphate buffer containing 30 mmolL-1 sodium dodecyl sulfate. The alcoholic content was determined in 16 seized whiskey samples from 4 different brands as well as in the original samples. The methodology presented herein allowed the correct classification of 75% of the seized samples as adulterated and the data obtained did not statistically differ from those recorded by a reference technique. The proposed analytical approach emerges as a promising tool to provide a rapid screening of the beverages authenticity and it may be useful to be widely explored for the quality control.
Collapse
|
29
|
Liénard-Mayor T, Taverna M, Descroix S, Mai TD. Droplet-interfacing strategies in microscale electrophoresis for sample treatment, separation and quantification: A review. Anal Chim Acta 2020; 1143:281-297. [PMID: 33384124 DOI: 10.1016/j.aca.2020.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
In this study, for the first time we report on a comprehensive overview of different strategies to hyphenate droplet-based sample handling and preparation with electrophoretic separation in different formats (i.e. microchip and capillary electrophoresis). Droplet-interfaced electrophoresis is an emerging technique in which micro/nanometric droplets are used as a bridge and carrier of target analytes between sample treatment and electrokinetic separation steps, thus being expected to overcome the challenges of working dimension mismatch and low degree of module integration. This review covers all works on this topic from 2006 (the year of the first communication) up to 2020, with focus being given to three principal interfacing strategies, including droplets in immiscible phases, digital microfluidics with electrowetting-on-dielectric principle and inkjet droplet generation. Different instrumental developments for such purpose, the viewpoints on pros and cons of these designs as well as application demonstrations of droplet-interfaced electrokinetic strategies are discussed.
Collapse
Affiliation(s)
- Théo Liénard-Mayor
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France; Institut Universitaire de France, France
| | - Stéphanie Descroix
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
30
|
Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. MICROMACHINES 2020; 11:E593. [PMID: 32549277 PMCID: PMC7344675 DOI: 10.3390/mi11060593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate 'pre-clinical model'. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from 'conventional' pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug-organ interactions and related safety and toxicity, and to model organ development and various pathologies 'in a dish'. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies-such as organoids, organ-on-chip, and 3D printing-for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This 'composite' review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Margherita Grasso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Angelita Costantino
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Gulisano
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| |
Collapse
|
31
|
Ragab MAA, El-Kimary EI. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017-Mid 2019). Crit Rev Anal Chem 2020; 51:709-741. [PMID: 32447968 DOI: 10.1080/10408347.2020.1765729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microfluidic capillary electrophoresis (MCE) is the novel technique resulted from the CE mininaturization as planar separation and analysis device. This review presents and discusses various application fields of this advanced technology published in the period 2017 till mid-2019 in eight different sections including clinical, biological, single cell analysis, environmental, pharmaceuticals, food analysis, forensic and ion analysis. The need for miniaturization of CE and the consequence advantages achieved are also discussed including high-throughput, miniaturized detection, effective separation, portability and the need for micro- or even nano-volume of samples. Comprehensive tables for the MCE applications in the different studied fields are provided. Also, figure comparing the number of the published papers applying MCE in the eight discussed fields within the studied period is included. The future investigation should put into consideration the possibility of replacing conventional CE with the MCE after proper validation. Suitable validation parameters with their suitable accepted ranges should be tailored for analysis methods utilizing such unique technique (MCE).
Collapse
Affiliation(s)
- Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| | - Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| |
Collapse
|
32
|
Lian DS, Chen XY, Zeng HS, Wang YY. Capillary electrophoresis based on nucleic acid analysis for diagnosing inherited diseases. Clin Chem Lab Med 2020; 59:249-266. [PMID: 32374277 DOI: 10.1515/cclm-2020-0186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/04/2020] [Indexed: 11/15/2022]
Abstract
Most hereditary diseases are incurable, but their deterioration could be delayed or stopped if diagnosed timely. It is thus imperative to explore the state-of-the-art and high-efficient diagnostic techniques for precise analysis of the symptoms or early diagnosis of pre-symptoms. Diagnostics based on clinical presentations, hard to distinguish different phenotypes of the same genotype, or different genotypes displaying similar phenotypes, are incapable of pre-warning the disease status. Molecular diagnosis is ahead of harmful phenotype exhibition. However, conventional gold-standard molecular classifications, such as karyotype analysis, Southern blotting (SB) and sequencing, suffer drawbacks like low automation, low throughput, prolonged duration, being labor intensive and high cost. Also, deficiency in flexibility and diversity is observed to accommodate the development of precise and individualized diagnostics. The aforementioned pitfalls make them unadaptable to the increasing clinical demand for detecting and interpreting numerous samples in a rapid, accurate, high-throughput and cost-effective manner. Nevertheless, capillary electrophoresis based on genetic information analysis, with advantages of automation, high speed, high throughput, high efficiency, high resolution, digitization, versatility, miniature and cost-efficiency, coupled with flexible-designed PCR strategies in sample preparation (PCR-CE), exhibit an excellent power in deciphering cryptic molecular information of superficial symptoms of genetic diseases, and can analyze in parallel a large number of samples in a single PCR-CE, thereby providing an alternative, accurate, customized and timely diagnostic tool for routine screening of clinical samples on a large scale. Thus, the present study focuses on CE-based nucleic acid analysis used for inherited disease diagnosis. Also, the limitations and challenges of this PCR-CE for diagnosing hereditary diseases are discussed.
Collapse
Affiliation(s)
- Dong-Sheng Lian
- Guangzhou Women and Children's Medical Center of Guangzhou Medical University, NO. 9 at Jinsui Rd., Tianhe District, Guangzhou, Guangdong, P.R. China.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Xiang-Yuan Chen
- Guangzhou Women and Children's Medical Center of Guangzhou Medical University, NO. 9 at Jinsui Rd., Tianhe District, Guangzhou, Guangdong, P.R. China
| | - Hua-Song Zeng
- Guangzhou Women and Children's Medical Center of Guangzhou Medical University, NO. 9 at Jinsui Rd., Tianhe District, Guangzhou, Guangdong, P.R. China
| | - Yan-Yi Wang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
33
|
Miková B, Dvořák M, Ryšavá L, Kubáň P. Hollow Fiber Liquid-Phase Microextraction At-Line Coupled to Capillary Electrophoresis for Direct Analysis of Human Body Fluids. Anal Chem 2020; 92:7171-7178. [DOI: 10.1021/acs.analchem.0c00697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Blanka Miková
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200 Brno, Czech Republic
- Department of Analytical Chemistry, Masaryk University, Kotlářská 2, CZ-60200 Brno, Czech Republic
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200 Brno, Czech Republic
| | - Lenka Ryšavá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200 Brno, Czech Republic
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200 Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200 Brno, Czech Republic
| |
Collapse
|
34
|
Van Gool A, Corrales F, Čolović M, Krstić D, Oliver-Martos B, Martínez-Cáceres E, Jakasa I, Gajski G, Brun V, Kyriacou K, Burzynska-Pedziwiatr I, Wozniak LA, Nierkens S, Pascual García C, Katrlik J, Bojic-Trbojevic Z, Vacek J, Llorente A, Antohe F, Suica V, Suarez G, t'Kindt R, Martin P, Penque D, Martins IL, Bodoki E, Iacob BC, Aydindogan E, Timur S, Allinson J, Sutton C, Luider T, Wittfooth S, Sammar M. Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev Proteomics 2020; 17:257-273. [PMID: 32427033 DOI: 10.1080/14789450.2020.1763174] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. AREAS COVERED We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. EXPERT COMMENTARY The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.
Collapse
Affiliation(s)
- Alain Van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Fernado Corrales
- Functional Proteomics Laboratory, Centro Nacional De Biotecnología , Madrid, Spain
| | - Mirjana Čolović
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade , Belgrade, Serbia
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade , Belgrade, Serbia
| | - Begona Oliver-Martos
- Neuroimmunology and Neuroinflammation Group. Instituto De Investigación Biomédica De Málaga-IBIMA. UGC Neurociencias, Hospital Regional Universitario De Málaga , Malaga, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias I Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, and Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma De Barcelona , Cerdanyola Del Vallès, Spain
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health , Zagreb, Croatia
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE , Grenoble, France
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Biology, The Cyprus School of Molecular Medicine/The Cyprus Institute of Neurology and Genetics , Nicosia, Cyprus
| | - Izabela Burzynska-Pedziwiatr
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Lucyna Alicja Wozniak
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Stephan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology , Utrecht, The Netherlands
| | - César Pascual García
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences , Bratislava, Slovakia
| | - Zanka Bojic-Trbojevic
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy - INEP, University of Belgrade , Belgrade, Serbia
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital , Oslo, Norway
| | - Felicia Antohe
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Viorel Suica
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Guillaume Suarez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne , Lausanne, Switzerland
| | - Ruben t'Kindt
- Research Institute for Chromatography (RIC) , Kortrijk, Belgium
| | - Petra Martin
- Department of Medical Oncology, Midland Regional Hospital Tullamore/St. James's Hospital , Dublin, Ireland
| | - Deborah Penque
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ines Lanca Martins
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Eda Aydindogan
- Department of Chemistry, Graduate School of Sciences and Engineering, Koç University , Istanbul, Turkey
| | - Suna Timur
- Institute of Natural Sciences, Department of Biochemistry, Ege University , Izmir, Turkey
| | | | | | - Theo Luider
- Department of Neurology, Erasmus MC , Rotterdam, The Netherlands
| | | | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel, Israel
| |
Collapse
|
35
|
Li H, Li F, Zhao L, Zhao L, Sun P, Wu J, Wang X, Pu Q. Electric Field-Driven On-Request Instant in Situ Formation/Removal of Solid Hydrogel within Microchannels for Efficient Electrophoretic Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8773-8779. [PMID: 31997635 DOI: 10.1021/acsami.9b22878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrophoretic separation in short microchannels is a promising way for rapid analysis of biomolecules, but the pressurized laminar flow may compromise the separation efficiency. In this work, through an electric field, instant formation and removal of a solid chitosan/β-glycerol phosphate (CS/β-GP) hydrogel within microchannels of microchips were realized. In a typical cross-type microchip, the CS/β-GP hydrogel was precisely formed in the separation microchannel within 15 s of the application of a voltage of 2000 V. Highly efficient separation of peptides and proteins was achieved, and theoretical plate numbers of 0.6 to 1.5 × 106/m were attained for proteins in 120 s. The used hydrogel could be swiftly removed also with an electric field, and the whole procedure was achieved on a standard microchip electrophoresis device with no extra accessory or special operation required.
Collapse
Affiliation(s)
- Hongli Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Fengyun Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Lei Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Ping Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Jing Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering , Beijing University of Technology , Beijing 100124 , China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , China
| |
Collapse
|
36
|
Glycosaminoglycans in biological samples – Towards identification of novel biomarkers. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Wuethrich A, Rajkumar AR, Shanmugasundaram KB, Reza KK, Dey S, Howard CB, Sina AAI, Trau M. Single droplet detection of immune checkpoints on a multiplexed electrohydrodynamic biosensor. Analyst 2019; 144:6914-6921. [PMID: 31657376 DOI: 10.1039/c9an01450k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monitoring soluble immune checkpoints in circulating fluids has the potential for minimally-invasive diagnostics and personalised therapy in precision medicine. Yet, the sensitive detection of multiple immune checkpoints from small volumes of liquid biopsy samples is challenging. In this study, we develop a multiplexed immune checkpoint biosensor (MICB) for parallel detection of soluble immune checkpoints PD-1, PD-L1, and LAG-3. MICB integrates a microfluidic sandwich immunoassay using engineered single chain variable fragments and alternating current electrohydrodynamic in situ nanofluidic mixing for promoting biosensor-target interaction and reducing non-specific non-target binding. MICB provides advantages of simultaneous analysis of up to 28 samples in <2 h, requires as little as a single sample drop (i.e., 20 μL) per target immune checkpoint, and applies high-affinity yeast cell-derived single chain variable fragments as a cost-effective alternative to monoclonal antibodies. We investigate the assay performance of MICB and demonstrate its capability for accurate immune checkpoint detection in simulated patient serum samples at clinically-relevant levels. MICB provides a dynamic range of 5 to 200 pg mL-1 for PD-1 and PD-L1, and 50 to 1000 pg mL-1 for LAG-3 with a coefficient of variation <13.8%. Sensitive immune checkpoint detection was achieved with limits of detection values of 5 pg mL-1 for PD-1, 5 pg mL-1 for PD-L1, and 50 pg mL-1 for LAG-3. The multiplexing capability, sensitivity, and relative assay simplicity of MICB make it capable of serving as a bioanalytical tool for immune checkpoint therapy monitoring.
Collapse
Affiliation(s)
- Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ou X, Chen P, Huang X, Li S, Liu B. Microfluidic chip electrophoresis for biochemical analysis. J Sep Sci 2019; 43:258-270. [DOI: 10.1002/jssc.201900758] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsCollege of Chemistry and Life ScienceHubei University of Education Wuhan P. R. China
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Xizhi Huang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| | - Bi‐Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
39
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
40
|
Sonker M, Kim D, Egatz-Gomez A, Ros A. Separation Phenomena in Tailored Micro- and Nanofluidic Environments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:475-500. [PMID: 30699038 DOI: 10.1146/annurev-anchem-061417-125758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Separations of bioanalytes require robust, effective, and selective migration phenomena. However, due to the complexity of biological matrices such as body fluids or tissue, these requirements are difficult to achieve. The separations field is thus constantly evolving to develop suitable methods to separate biomarkers and fractionate biospecimens for further interrogation of biomolecular content. Advances in the field of microfabrication allow the tailored generation of micro- and nanofluidic environments. These can be exploited to induce interactions and dynamics of biological species with the corresponding geometrical features, which in turn can be capitalized for novel separation approaches. This review provides an overview of several unique separation applications demonstrated in recent years in tailored micro- and nanofluidic environments. These include electrokinetic methods such as dielectrophoresis and electrophoresis, but also rather nonintuitive ratchet separation mechanisms, continuous flow separations, and fractionations such as deterministic lateral displacement, as well as methods employing entropic forces for separation.
Collapse
Affiliation(s)
- Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
41
|
Nguyen BT, Kang MJ. Application of Capillary Electrophoresis with Laser-Induced Fluorescence to Immunoassays and Enzyme Assays. Molecules 2019; 24:E1977. [PMID: 31121978 PMCID: PMC6571882 DOI: 10.3390/molecules24101977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Capillary electrophoresis using laser-induced fluorescence detection (CE-LIF) is one of the most sensitive separation tools among electrical separation methods. The use of CE-LIF in immunoassays and enzyme assays has gained a reputation in recent years for its high detection sensitivity, short analysis time, and accurate quantification. Immunoassays are bioassay platforms that rely on binding reactions between an antigen (analyte) and a specific antibody. Enzyme assays measure enzymatic activity through quantitative analysis of substrates and products by the reaction of enzymes in purified enzyme or cell systems. These two category analyses play an important role in the context of biopharmaceutical analysis, clinical therapy, drug discovery, and diagnosis analysis. This review discusses the expanding portfolio of immune and enzyme assays using CE-LIF and focuses on the advantages and disadvantages of these methods over the ten years of existing technology since 2008.
Collapse
Affiliation(s)
- Binh Thanh Nguyen
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
- Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Min-Jung Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
- Division of Bio-Medical Science and Technology (Biological Chemistry), Korea University of Science and Technology (UST), Daejeon 34113, Korea.
| |
Collapse
|