1
|
Du J, Xu J, Luo Y, Li X, Zhao L, Liu S, Jia X, Wang Z, Ge L, Cui K, Ga Y, Zhu M, Ji T, Huang Z, Xia X. High-Throughput Monitoring of 323 Pharmaceuticals and Personal Care Products (PPCPs) and Pesticides in Surface Water for Environmental Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40425320 DOI: 10.1021/acs.est.5c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
The ubiquity of pharmaceuticals and personal care products (PPCPs) and pesticides in aquatic environments has raised significant ecological concerns due to their potential to disrupt aquatic ecosystems. This study presents a high-throughput ultraperformance liquid chromatography-tandem mass spectrometry method without sample enrichment to monitor 323 PPCPs and pesticides in the surface water of the Jingmi Water Diversion Canal in Beijing, China. One hundred and three PPCPs and pesticides were detected, with the highest detection frequency observed for antibiotics, which constituted 25.2% of the total detections. Notably, the average concentrations of detected PPCPs and pesticides were significantly higher in the winter (69.0 ng/L) than in the summer (42.1 ng/L). Spatial characterization indicated higher concentrations of PPCPs and pesticides in urban areas compared with suburban areas, with carbendazim, caffeine, atrazine, and diazepam being the most frequently detected compounds. The ecological risk assessment based on risk quotient values identified moderate to high risks for aquatic organisms, particularly in urban areas and during winter. These findings highlight the necessity for improved wastewater treatment technologies and continuous environmental monitoring to protect aquatic ecosystems from the adverse effects of PPCPs and pesticides.
Collapse
Affiliation(s)
- Jingjing Du
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Luo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Saiwa Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xi Jia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhinan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lirui Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kexin Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Ga
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengxuan Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tianrun Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zelong Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Muñoz-Bartual M, Arjona-Mudarra P, Piñaga-Solé M, Mateo-Paredes NM, Garrigues S, Esteve-Turrillas FA. Assessing pharmaceutical and illicit drugs abuse in a university environment through wastewater analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178893. [PMID: 40010247 DOI: 10.1016/j.scitotenv.2025.178893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Monitoring the presence of illicit and pharmaceutical drugs in wastewater has emerged as a powerful tool for determining drug consumption patterns and trends within a specific population group. In this study, an analytical method has been developed to determine the presence of forty psychoactive substances, including stimulants, benzodiazepines, antidepressants, and opioids, in wastewater. The proposed approach combines in-situ wastewater single sampling, solid-phase extraction, and ultra-high performance liquid chromatography coupled with tandem mass spectrometry determination. Extraction conditions were evaluated to obtain the best extraction efficiencies and sensitivity. The developed method provided limits of quantification ranging from 1.7 (LSD) to 73.1 (5-EAPB) ng L-1, recoveries from 81 (butylone) to 118 % (diphenhydramine), and relative standard deviations lower than 17 %. More than one hundred wastewater samples were collected at different locations from Campus of Valencia University between 2023 and 2024 for estimating substance consumption by the university community and evaluation of ongoing awareness actions. The results showed the presence of 21 substances in at least one site. Venlafaxine and its main metabolite, escitalopram, and clorazepate were the pharmaceuticals found with the highest occurrence, with concentrations ranging from 15 (clorazepate) to 11,309 ng L-1 (O-desmethylvenlafaxine). Regarding the illicit drugs, cocaine and benzoylecgonine were found in the greatest proportion, with concentrations ranging from 6 to 980 ng L-1 and from 19 to 5699 ng L-1, respectively. From these concentrations the population consumption was calculated, providing the highest mean consumption for venlafaxine and O-desmethylvenlafaxine (489.0 and 37.2 mg day-1 1000 people-1), followed by cocaine, tramadol, MDMA and amphetamine with consumption values of 40.8, 30.9, 30.8 and 17.0 mg day-1 1000 people-1, respectively. The proposed analytical strategy has been demonstrated to be suitable for monitoring the detection frequency of psychoactive substances, providing insight into temporal and spatial trends of drug use through wastewater surveillance.
Collapse
Affiliation(s)
- M Muñoz-Bartual
- Analytical Chemistry Department, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - P Arjona-Mudarra
- Analytical Chemistry Department, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - M Piñaga-Solé
- Environmental, Health and Safety Services. University of Valencia, Burjassot, Spain
| | - N M Mateo-Paredes
- Environmental, Health and Safety Services. University of Valencia, Burjassot, Spain
| | - S Garrigues
- Analytical Chemistry Department, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - F A Esteve-Turrillas
- Analytical Chemistry Department, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
3
|
Choi JM, Manthapuri V, Keenum I, Brown CL, Xia K, Chen C, Vikesland PJ, Blair MF, Bott C, Pruden A, Zhang L. A machine learning framework to predict PPCP removal through various wastewater and water reuse treatment trains. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2025; 11:481-493. [PMID: 39758590 PMCID: PMC11694563 DOI: 10.1039/d4ew00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
The persistence of pharmaceuticals and personal care products (PPCPs) through wastewater treatment and resulting contamination of aquatic environments and drinking water is a pervasive concern, necessitating means of identifying effective treatment strategies for PPCP removal. In this study, we employed machine learning (ML) models to classify 149 PPCPs based on their chemical properties and predict their removal via wastewater and water reuse treatment trains. We evaluated two distinct clustering approaches: C1 (clustering based on the most efficient individual treatment process) and C2 (clustering based on the removal pattern of PPCPs across treatments). For this, we grouped PPCPs based on their relative abundances by comparing peak areas measured via non-target profiling using ultra-performance liquid chromatography-tandem mass spectrometry through two field-scale treatment trains. The resulting clusters were then classified using Abraham descriptors and log K ow as input to the three ML models: support vector machines (SVM), logistic regression, and random forest (RF). SVM achieved the highest accuracy, 79.1%, in predicting PPCP removal. Notably, a 58-75% overlap was observed between the ML clusters of PPCPs and the Abraham descriptor and log K ow clusters of PPCPs, indicating the potential of using Abraham descriptors and log K ow to predict the fate of PPCPs through various treatment trains. Given the myriad of PPCPs of concern, this approach can supplement information gathered from experimental testing to help optimize the design of wastewater and water reuse treatment trains for PPCP removal.
Collapse
Affiliation(s)
- Joung Min Choi
- Department of Computer Science, Virginia Tech Blacksburg VA 24061 USA
| | - Vineeth Manthapuri
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Ishi Keenum
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
- Civil, Environmental and Geospatial Engineering, Michigan Tech University MI 49931 USA
| | - Connor L Brown
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech Blacksburg VA 24061 USA
| | - Kang Xia
- School of Plant and Environmental Sciences Blacksburg VA 24061 USA
| | - Chaoqi Chen
- School of Plant and Environmental Sciences Blacksburg VA 24061 USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Matthew F Blair
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Charles Bott
- Hampton Roads Sanitation District Virginia Beach VA 23455 USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech Blacksburg VA 24061 USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech Blacksburg VA 24061 USA
| |
Collapse
|
4
|
Ekka B, Mierina I, Zarina R, Mezule L. Efficient removal of lipophilic compounds from sewage sludge: Comparative evaluation of solvent extraction techniques. Heliyon 2024; 10:e40749. [PMID: 39687164 PMCID: PMC11648152 DOI: 10.1016/j.heliyon.2024.e40749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Municipal sewage sludge, a by-product of wastewater treatment plants, presents environmental challenges due to its complex composition. Particular concern is the lipophilic and aliphatic compounds that pose risks to the environment and human health. This study focuses on the efficient removal of those compounds from sewage sludge using several organic solvents (hexane, toluene, chloroform, dichloromethane, acetone, hexane-methanol mixture, ethanol, and methanol) and ionic liquids (ILs) like tetrakis(hydroxymethyl)phosphonium chloride and 1-ethyl-3-methylimidazolium acetate by solvent extraction techniques. To determine optimal conditions, various factors such as solvent types, contact time, and temperature were examined. The results reveal that solvent polarity significantly impacts extract composition, with non-polar solvents like hexane and toluene yielding profiles characteristic of lipid-type compounds. An in-depth analysis of contaminants present in the sewage sludge was studied by Fourier-transform infrared spectroscopy (FTIR). Additionally, nuclear magnetic resonance (NMR) was used to identify the extracted compounds, including triglycerides, aliphatic esters, aliphatic alcohols, and free carboxylic acids. NMR provides data on the composition of the sewage sludge and indicates that among all the solvents used, tetrakis(hydroxymethyl) phosphonium chloride was the most suitable solvent for removing lipophilic and aliphatic compounds. Regeneration potential and reusability of the IL were conducted and verified by NMR. The results showed that tetrakis(hydroxymethyl) phosphonium chloride ionic liquid could be used for several extraction cycles. Identifying these compounds in the extracted mixture demonstrates that it adds value and potential for various applications. Towards environmental sustainability and circular economy, this effort develops strategies for the safe management, disposal, and recyclability of sewage sludge and, the reduction in environmental and health hazards associated with organic compounds.
Collapse
Affiliation(s)
- Basanti Ekka
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas 6a, Riga, Latvia
| | - Inese Mierina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, Riga, LV-1048, Latvia
| | - Ruta Zarina
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas 6a, Riga, Latvia
| | - Linda Mezule
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas 6a, Riga, Latvia
| |
Collapse
|
5
|
Ciotola E, Sottorff I, Koch K, Cesaro A, Esposito G. Assessment of trace organic chemicals in anaerobically digested sludge and their partitioning behaviour: Simultaneous Soxhlet chemical extraction and quantification via LC-MS/MS analysis. WATER RESEARCH 2024; 268:122780. [PMID: 39556983 DOI: 10.1016/j.watres.2024.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
The increasing number of trace organic contaminants (TrOCs) detected in anaerobically digested sludge (ADS) is triggering increasing concern on its circular-economy reuse practices. A large scientific effort has been performed to define their concentration limits, partition behaviour, and innovative technologies for their removal, which require the definition of versatile and economically sustainable analytical methodologies. In this study, a Soxhlet extraction method coupled with LC-MS/MS analysis was developed to simultaneously determine 32 TrOCs in ADS, 11 of them being quantified in this matrix for the first time. The targeted TrOCs were selected based on the European Urban Wastewater Treatment Directive, and on their frequency of detection in municipal wastewater and/or sludge and chemical diversity. The use of methanol as solvent allowed good recovery efficiencies from ADS solid phase, with an extraction time of 3.5 h and without the need for subsequent clean-up procedures. The targeted LC-MS/MS method enabled high-sensitivity quantification of TrOCs in the liquid phase. At least 25 out of the 32 target compounds were detected in ADS samples from two wastewater treatment plants in Germany, providing their concentration data and highlighting the influence of TrOCs characteristics and sludge properties on contaminant partition coefficients (KD). The experimental outcomes highlight the versatility of the Soxhlet method, which is effective in extracting compounds characterized by diverse properties and structures, and opens new perspectives for the analysis of various substrates. This could support the European Sewage Sludge Directive, expanding its application to soils and cultivated foods and offering insights into TrOCs transfer among different substrates and their influence when used as fertilizer, aiding in the efficient definition of risk assessment methodologies and regulatory concentration limits.
Collapse
Affiliation(s)
- Enrica Ciotola
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| | - Ignacio Sottorff
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany.
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| |
Collapse
|
6
|
Woźniak J, Nawała J, Dziedzic D, Popiel S. Overview of Liquid Sample Preparation Techniques for Analysis, Using Metal-Organic Frameworks as Sorbents. Molecules 2024; 29:4752. [PMID: 39407677 PMCID: PMC11477957 DOI: 10.3390/molecules29194752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The preparation of samples for instrumental analysis is the most essential and time-consuming stage of the entire analytical process; it also has the greatest impact on the analysis results. Concentrating the sample, changing its matrix, and removing interferents are often necessary. Techniques for preparing samples for analysis are constantly being developed and modified to meet new challenges, facilitate work, and enable the determination of analytes in the most comprehensive concentration range possible. This paper focuses on using metal-organic frameworks (MOFs) as sorbents in the most popular techniques for preparing liquid samples for analysis, based on liquid-solid extraction. An increase in interest in MOFs-type materials has been observed for about 20 years, mainly due to their sorption properties, resulting, among others, from the high specific surface area, tunable pore size, and the theoretically wide possibility of their modification. This paper presents certain advantages and disadvantages of the most popular sample preparation techniques based on liquid-solid extraction, the newest trends in the application of MOFs as sorbents in those techniques, and, most importantly, presents the reader with a summary, which a specific technique and MOF for the desired application. To make a tailor-made and well-informed choice as to the extraction technique.
Collapse
Affiliation(s)
| | | | | | - Stanisław Popiel
- Faculty of Advanced Technologies and Chemistry, Institute of Chemistry, Military University of Technology, Kaliskiego Str. 2, 00-908 Warsaw, Poland; (J.W.); (J.N.); (D.D.)
| |
Collapse
|
7
|
Alqarni AM. Analytical Methods for the Determination of Pharmaceuticals and Personal Care Products in Solid and Liquid Environmental Matrices: A Review. Molecules 2024; 29:3900. [PMID: 39202981 PMCID: PMC11357415 DOI: 10.3390/molecules29163900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Among the various compounds regarded as emerging contaminants (ECs), pharmaceuticals and personal care products (PPCPs) are of particular concern. Their continuous release into the environment has a negative global impact on human life. This review summarizes the sources, occurrence, persistence, consequences of exposure, and toxicity of PPCPs, and evaluates the various analytical methods used in the identification and quantification of PPCPs in a variety of solid and liquid environmental matrices. The current techniques of choice for the analysis of PPCPs are state-of-the-art liquid chromatography coupled to mass spectrometry (LC-MS) or tandem mass spectrometry (LC-MS2). However, the complexity of the environmental matrices and the trace levels of micropollutants necessitate the use of advanced sample treatments before these instrumental analyses. Solid-phase extraction (SPE) with different sorbents is now the predominant method used for the extraction of PPCPs from environmental samples. This review also addresses the ongoing analytical method challenges, including sample clean-up and matrix effects, focusing on the occurrence, sample preparation, and analytical methods presently available for the determination of environmental residues of PPCPs. Continuous development of innovative analytical methods is essential for overcoming existing limitations and ensuring the consistency and diversity of analytical methods used in investigations of environmental multi-class compounds.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
Beamud SG, Fernández H, Nichela D, Crego MP, Gonzalez-Polo M, Latini L, Aguiar MB, Diblasi L, Parolo ME, Temporetti P. Occurrence of Pharmaceutical Micropollutants in Lake Nahuel Huapi, Argentine Patagonia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1274-1284. [PMID: 38558040 DOI: 10.1002/etc.5859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Tourism is one of the most important activities for the economy of Nor Patagonia Argentina. In Bariloche City, located on the shores of Lake Nahuel Huapi, both the permanent and the temporary populations have increased significantly in recent decades, and this has not necessarily been accompanied by an improvement in sewage networks. Emerging micropollutants such as pharmaceutical compounds reach aquatic systems directly, in the absence of a domestic sewage network, or through effluents from wastewater treatment plants (WWTP), which do not efficiently remove these substances and represent a major threat to the environment. Therefore, the objective of our study was to monitor the presence of pharmaceutical compounds discharged both through wastewater effluents and diffusely from housing developments into Lake Nahuel Huapi. The results obtained demonstrate the presence of pharmaceuticals in Lake Nahuel Huapi with concentrations ranging from not detectable (ND) to 110.6 ng L-1 (caffeine). The highest pharmaceutical concentration recorded in WWTP influent corresponded to caffeine (41728 ng L-1), and the lowest concentration was paracetamol (18.8 ng L-1). The removal efficiency of pharmaceuticals in the WWTP was calculated, and ranged from 0% for carbamazepine to 66% for ciprofloxacin. This antibiotic showed the lowest % of attenuation (73%) in Lake Nahuel Huapi. These results on the occurrence of a wide variety of pharmaceuticals are the first generated in Patagonia, representing a regional baseline for this type of micropollutant and valuable information for the subsequent design of removal strategies for emerging pharmaceutical pollutants in surface water. Environ Toxicol Chem 2024;43:1274-1284. © 2024 SETAC.
Collapse
Affiliation(s)
- Sara Guadalupe Beamud
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas), Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Horacio Fernández
- Sewerage Service, Treatment Plant, Cooperativa de Electricidad Bariloche, Bariloche, Argentina
| | - Daniela Nichela
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas), Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Maria Paula Crego
- Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Marina Gonzalez-Polo
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas), Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| | - Lorena Latini
- Centro de Investigación en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue), Neuquén, Argentina
| | - María Belén Aguiar
- Centro de Investigación en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue), Neuquén, Argentina
| | - Lorena Diblasi
- Centro de Investigación en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue), Neuquén, Argentina
| | - María Eugenia Parolo
- Centro de Investigación en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue), Neuquén, Argentina
| | - Pedro Temporetti
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas), Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
9
|
Johnson JL, Dodder NG, Mladenov N, Steinberg L, Richardot WH, Hoh E. Comparison of Trace Organic Chemical Removal Efficiencies between Aerobic and Anaerobic Membrane Bioreactors Treating Municipal Wastewater. ACS ES&T WATER 2024; 4:1381-1392. [PMID: 38633364 PMCID: PMC11019542 DOI: 10.1021/acsestwater.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Evaluating persistent trace organic chemicals (TOrCs) and transformation products (TPs) in membrane bioreactors (MBRs) is essential, given that MBRs are now widely implemented for wastewater treatment and water reuse. This research applied comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS)-based nontargeted analysis to compare the effectiveness of parallel aerobic and anaerobic MBRs (AeMBRs and AnMBRs, respectively), treating the same municipal wastewater. The average total chromatographic feature peak area abundances were significantly reduced by 84% and 72% from influent to membrane permeate in both the AeMBR and AnMBR (p < 0.05), respectively. However, the reduction of the average number of chromatographic features was significant for only AeMBR treatment (p = 0.006). A similar number of TPs were generated during both AeMBR and AnMBR treatments (165 vs 171 compounds, respectively). The overall results suggest that the AeMBR was more effective for reducing the diversity of TOrCs than the AnMBR, but both aerobic and anaerobic processes had a similar reduction of TOrC abundance. Suspect screening analysis using GC×GC/TOF-MS, which resulted in the tentative identification of 351 TOrCs, proved to be a powerful approach for uncovering compounds previously unreported in wastewater, including many fragrances and personal care products.
Collapse
Affiliation(s)
- Jade L. Johnson
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
- San
Diego State University Research Foundation, San Diego, California 92182, United States
| | - Nathan G. Dodder
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
- San
Diego State University Research Foundation, San Diego, California 92182, United States
| | - Natalie Mladenov
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - Lauren Steinberg
- Department
of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182, United States
| | - William H. Richardot
- San
Diego State University Research Foundation, San Diego, California 92182, United States
| | - Eunha Hoh
- School
of Public Health, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
10
|
Azuma T, Matsunaga N, Ohmagari N, Kuroda M. Development of a High-Throughput Analytical Method for Antimicrobials in Wastewater Using an Automated Pipetting and Solid-Phase Extraction System. Antibiotics (Basel) 2024; 13:335. [PMID: 38667011 PMCID: PMC11605239 DOI: 10.3390/antibiotics13040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 12/01/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged and spread globally. Recent studies have also reported the presence of antimicrobials in a wide variety of aquatic environments. Conducting a nationwide monitoring survey of AMR in the environment to elucidate its status and to assess its impact on ecosystems and human health is of social importance. In this study, we developed a novel high-throughput analysis (HTA) system based on a 96-well plate solid-phase extraction (SPE), using automated pipetting and an SPE pre-treatment system. The effectiveness of the system as an HTA for antimicrobials in environmental water was verified by comparing it with a conventional manual analytical system in a domestic hospital over a period of two years and four months. The results of the manual analysis and HTA using a combination of automated pipetting and SPE systems were generally consistent, and no statistically significant difference was observed (p > 0.05) between the two systems. The agreement ratios between the measured concentrations based on the conventional and HTA methods were positively correlated with a correlation coefficient of r = 0.99. These results indicate that HTA, which combines automated pipetting and an SPE pre-treatment system for rapid, high-volume analysis, can be used as an effective approach for understanding the environmental contamination of antimicrobials at multiple sites. To the best of our knowledge, this is the first report to present the accuracy and agreement between concentrations based on a manual analysis and those measured using HTA in hospital wastewater. These findings contribute to a comprehensive understanding of antimicrobials in aquatic environments and assess the ecological and human health risks associated with antimicrobials and antimicrobial-resistant bacteria to maintain the safety of aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.M.); (N.O.)
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (N.M.); (N.O.)
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
11
|
Magnuson JT, Sydnes MO, Ræder EM, Schlenk D, Pampanin DM. Transcriptomic profiles of brains in juvenile Atlantic cod (Gadus morhua) exposed to pharmaceuticals and personal care products from a wastewater treatment plant discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169110. [PMID: 38065506 DOI: 10.1016/j.scitotenv.2023.169110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are frequently detected in marine environments, posing a threat to aquatic organisms. Our previous research demonstrated the occurrence of neuroactive compounds in effluent and sediments from a wastewater treatment plant (WWTP) in a fjord North of Stavanger, the fourth-largest city in Norway. To better understand the influence of PPCP mixtures on fish, Atlantic cod (Gadus morhua) were caged for one month in 3 locations: site 1 (reference), site 2 (WWTP discharge), and site 3 (6.7 km west of discharge). Transcriptomic profiling was conducted in the brains of exposed fish and detection of PPCPs in WWTP effluent and muscle fillets were determined. Caffeine (47.8 ng/L), benzotriazole (10.9 ng/L), N,N-diethyl-meta-toluamide (DEET) (5.6 ng/L), methyl-1H-benzotriazole (5.5 ng/L), trimethoprim (3.4 ng/L), carbamazepine (2.1 ng/L), and nortriptyline (0.4 ng/L) were detected in the WWTP effluent. Octocrylene concentrations were observed in muscle tissue at all sites and ranged from 53 to 193 ng/g. Nervous system function and endocrine system disorders were the top enriched disease and function pathways predicted in male and female fish at site 2, with the top shared canonical pathways involved with estrogen receptor and Sirtuin signaling. At the discharge site, predicted disease and functional responses in female brains were involved in cellular assembly, organization, and function, tissue development, and nervous system development, whereas male brains were involved in connective tissue development, function, and disorders, nervous system development and function, and neurological disease. The top shared canonical pathways in females and males were involved in fatty acid activation and tight junction signaling. This study suggests that pseudopersistent, chronic exposure of native juvenile Atlantic cod from this ecosystem to PPCPs may alter neuroendocrine and neuron development.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway; U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA.
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Erik Magnus Ræder
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Ås 1433, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| |
Collapse
|
12
|
Nasri E, de la Vega ACS, Martí CB, Ben Mansour H, Diaz-Cruz MS. Pharmaceuticals and personal care products in Tunisian hospital wastewater: occurrence and environmental risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2716-2731. [PMID: 38063970 PMCID: PMC10791778 DOI: 10.1007/s11356-023-31220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Despite concerns about the potential risk associated with the environmental occurrence of pharmaceuticals and personal care products (PPCPs), few studies address the emissions of hospitals to aquatic compartments. We examined within a 3-month sampling period the occurrence and environmental risk of PPCPs in seven Tunisian hospital wastewaters. From personal care products, UV filters, main metabolites, and benzotriazoles were quantified, with benzophenone 3 (oxybenzone, BP3) and benzotriazole (BZT) the most frequently found (71%) at median concentrations in the range 2.43 ± 0.87 ngL-1-64.05 ± 6.82 ngL-1 for BP3 and 51.67 ± 1.67 ngL-1-254 ± 9.9 ngL-1 for BZT. High concentrations were also found for 4-hydroxybenzophenone (4HB) (221 ± 6.22 ngL-1), one of the main metabolites of BP3. The antibiotics ofloxacin and trimethoprim, the anti-inflammatory acetaminophen, the antiepileptic carbamazepine, and the stimulant caffeine were present in all the wastewaters. The highest median concentration corresponded to acetaminophen, with 1240 ± 94 mgL-1 in Tunis Hospital, followed by ofloxacin with 78850 ± 39 μgL-1 in Sousse Hospital. For ecotoxicity assessment, acute toxicity was observed for Daphnia magna and Vibrio fischeri. The toxicity data were used in a hazard quotient (HQ) approach to evaluate the risk posed by the target PPCPs to aquatic organisms. The calculated HQs revealed that marbofloxacin (234 for V. fischeri), enrofloxacin (121 for D. magna), and BZT (82.2 for D. magna and 83.7 for V. fischeri) posed the highest risk, concluding that potential risk exists toward aquatic microorganisms. This study constitutes the first monitoring of UV filters in Tunisian hospital effluents and provides occurrence and toxicity data of PPCPs for reference in further surveys in the country.
Collapse
Affiliation(s)
- Emna Nasri
- Research Unit of Analysis and Process Applied to the Environmental e APAE Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
- Laboratory of Biotechnology and Bio-Monitoring of the Environment and Oasis Ecosystems, Department of Life Sciences, Faculty of Sciences of Gafsa, Sidi Ahmed Zarroug University Campus, 2112, Gafsa, Tunisia
| | - Ana Cristina Soler de la Vega
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Carlos Barata Martí
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environmental e APAE Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
| | - Maria Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
13
|
Khan NA, López-Maldonado EA, Majumder A, Singh S, Varshney R, López JR, Méndez PF, Ramamurthy PC, Khan MA, Khan AH, Mubarak NM, Amhad W, Shamshuddin SZM, Aljundi IH. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. CHEMOSPHERE 2023; 344:140264. [PMID: 37758081 DOI: 10.1016/j.chemosphere.2023.140264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, México.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - J R López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - P F Méndez
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Knowledge Park I, Greater Noida, 201310, Uttar Pradesh, India
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Waqas Amhad
- Institute of Fundamental and Frontier Sciences, University of Electonic Science and Technology of China, Chengdu, 610054 China
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
14
|
Mejías C, Arenas M, Martín J, Santos JL, Aparicio I, Alonso E. Green Assessment of Analytical Procedures for the Determination of Pharmaceuticals in Sewage Sludge and Soil. Crit Rev Anal Chem 2023; 55:278-291. [PMID: 37922128 DOI: 10.1080/10408347.2023.2276294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The main difficulties when analyzing pharmaceutically active compounds (PhACs) in solid environmental samples is the complexity of the samples and the low concentration levels of such pollutants. Most efforts are focused in achieving good analytical performance parameters such as high recoveries or low detection limits without considering if the methods are environmentally friendly. In this work, the main tools proposed for assessing the greenness of analytical methodologies (Analytical Eco-scale, Green Analytical Procedure Index (GAPI), and Analytical GREEnness metric (AGREE)) have been applied to nine analytical procedures that include recent important analytical tendencies. The three metrics identified the paper spray ionization method as the greenest procedure since it used untreated samples for direct mass spectrometry analysis. Using Analytical Eco-scale, most of the evaluated procedures were rated as "acceptable green". However, the use of internal standards resulted key in the environmental impact of the method which provided contradictory results versus other metrics. GAPI found greenness similarities between most of selected methods, hindering a greenness classification. AGREE allowed the weighting of each evaluation criterion providing a greenness ranking. The application of each metric detecting their weaknesses and strengths was discussed. The incorporation of validation analytical features in greenness metrics was a gap revealed.
Collapse
Affiliation(s)
- Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Marina Arenas
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
15
|
Jiang J, Hou R, Cui H, Liu D, Yan G, Fan Y, Cheng K, Cao Z. Occurrences of typical PPCPs during wastewater treatment and the composting of sewage sludge with micron-sized and nano-sized Fe 3O 4. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122386. [PMID: 37591323 DOI: 10.1016/j.envpol.2023.122386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
New pollutants, pharmaceuticals and personal care products (PPCPs), accumulate in sewage sludge (SS) in wastewater treatment plants (WWTPs), posing risks to the environment and to human health. In the present study, the fates of typical PPCPs, carbamazepine (CBZ), triclosan (TCS), ibuprofen (IBU) and galaxolide (HHCB), were examined during WW treatment. Additionally, SS collected from a WWTP was used for aerobic composting to investigate the influences of micron-sized Fe3O4 (M-Fe) and nano-sized Fe3O4 (N-Fe) on the degradation of these PPCPs and the succession of microbial communities during the composting process. The results showed that the mean concentrations of CBZ, TCS, IBU and HHCB in the influent of the WWTP were 926.5, 174.4, 8869, and 967.3 ng/g, respectively, and in the effluent were 107.6, 47.0, 283.4, and 88.4 ng/g, respectively. The removal rate averaged ∼80%, while the enrichment rates of the PPCPs in SS ranged from 37.2% to 60.5%. M-Fe and N-Fe reduced NH3 emissions by 32.9% and 54.1% and N2O emissions by 26.2% and 50.8%, respectively. Moreover, the addition of M-Fe and N-Fe effectively increased PPCP degradation rates 1.12-1.66-fold. During the whole process, the additions of M-Fe and N-Fe significantly shifted microbial community structure, and the abundances of Proteobacteria, Chloroflexi, and Actinobacteria were increased during the thermophilic stage, marking them as key PPCP-degrading phyla. Taken together, our results indicated that the addition of M-Fe and N-Fe is an effective method for improving the quality of end compost and accelerating the degradation of PPCPs.
Collapse
Affiliation(s)
- Jishao Jiang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Rui Hou
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Huilin Cui
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guangxuan Yan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yujuan Fan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ke Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhiguo Cao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
16
|
Bangia S, Bangia R, Daverey A. Pharmaceutically active compounds in aqueous environment: recent developments in their fate, occurrence and elimination for efficient water purification. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1344. [PMID: 37857877 DOI: 10.1007/s10661-023-11858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
The existence of pharmaceutically active compounds (PhACs) in the water is a major concern for environmentalists due to their deleterious effects on living organisms even at minuscule concentrations. This review focuses on PhACs such as analgesics and anti-inflammatory compounds, which are massively excreted in urine and account for the majority of pharmaceutical pollution. Furthermore, other PhACs such as anti-epileptics, beta-blockers and antibiotics are discussed because they also contribute significantly to pharmaceutical pollution in the aquatic environment. This review is divided into two parts. In the first part, different classes of PhACs and their fate in the wastewater environment are presented. In the second part, recent advances in the removal of PhACs by conventional wastewater treatment plants, including membrane bioreactors (MBRs), activated carbon adsorption and bench-scale studies concerning a broad range of advanced oxidation processes (AOPs) that render practical and appropriate strategies for the complete mineralization and degradation of pharmaceutical drugs, are reviewed. This review indicates that drugs like diclofenac, naproxen, paracetamol and aspirin are removed efficiently by conventional systems. Activated carbon adsorption is suitable for the removal of diclofenac and carbamazepine, whereas AOPs are leading water treatment strategies for the effective removal of reviewed PhACs.
Collapse
Affiliation(s)
- Saulab Bangia
- Hamburg University of Technology, 21073, Hamburg, Germany
| | - Riya Bangia
- Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India.
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
17
|
Husain Khan A, Abdul Aziz H, Palaniandy P, Naushad M, Cevik E, Zahmatkesh S. Pharmaceutical residues in the ecosystem: Antibiotic resistance, health impacts, and removal techniques. CHEMOSPHERE 2023; 339:139647. [PMID: 37516325 DOI: 10.1016/j.chemosphere.2023.139647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Hospital wastewater has emerged as a major category of environmental pollutants over the past two decades, but its prevalence in freshwater is less well documented than other types of contaminants. Due to compound complexity and improper operations, conventional treatment is unable to remove pharmaceuticals from hospital wastewater. Advanced treatment technologies may eliminate pharmaceuticals, but there are still concerns about cost and energy use. There should be a legal and regulatory framework in place to control the flow of hospital wastewater. Here, we review the latest scientific knowledge regarding effective pharmaceutical cleanup strategies and treatment procedures to achieve that goal. Successful treatment techniques are also highlighted, such as pre-treatment or on-site facilities that control hospital wastewater where it is used in hospitals. Due to the prioritization, the regulatory agencies will be able to assess and monitor the concentration of pharmaceutical residues in groundwater, surface water, and drinking water. Based on the data obtained, the conventional WWTPs remove 10-60% of pharmaceutical residues. However, most PhACs are eliminated during the secondary or advanced therapy stages, and an overall elimination rate higher than 90% can be achieved. This review also highlights and compares the suitability of currently used treatment technologies and identifies the merits and demerits of each technology to upgrade the system to tackle future challenges. For this reason, pharmaceutical compound rankings in regulatory agencies should be the subject of prospective studies.
Collapse
Affiliation(s)
- Afzal Husain Khan
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Puganeshwary Palaniandy
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Emre Cevik
- Bioenergy Research Unit, Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, 1982, PO Box:1982, Dammam, 31441, Saudi Arabia
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| |
Collapse
|
18
|
Dong Y, Das S, Parsons JR, Praetorius A, de Rijke E, Helmus R, Slootweg JC, Jansen B. Simultaneous detection of pesticides and pharmaceuticals in three types of bio-based fertilizers by an improved QuEChERS method coupled with UHPLC-q-ToF-MS/MS. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131992. [PMID: 37437483 DOI: 10.1016/j.jhazmat.2023.131992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Bio-based fertilizers (BBFs) have the potential to contain both pesticides and pharmaceutical residues, which may pose a threat to soils, crops, and human health. However, no analytical screening method is available currently to simultaneously analyze a wide range of contaminants in the complex origin-dependent matrices of BBFs. To fill this gap, our study tested and improved an original QuEChERS method (OQM) for simultaneously analyzing 78 pesticides and 18 pharmaceuticals in BBFs of animal, plant, and ashed sewage sludge origin. In spiked recovery experiments, 34-58 pharmaceuticals and pesticides were well recovered (recovery of 70-120%) via OQM at spiking concentrations levels of 10 ng/g and 50 ng/g in these three different types of BBFs. To improve the extraction efficiency further, ultrasonication and end-over-end rotation were added based on OQM, resulting in the improved QuEChERS method (IQM) that could recover 57-79 pesticides and pharmaceuticals, in the range of 70-120%. The detection limits of this method were of 0.16-4.32/0.48-12.97 ng/g, 0.03-11.02/0.10-33.06 ng/g, and 0.06-5.18/0.18-15.54 ng/g for animal, plant, and ash-based BBF, respectively. Finally, the IQM was employed to screen 15 BBF samples of various origins. 15 BBFs contained at least one pesticide or pharmaceutical with ibuprofen being frequently detected in at concentration levels of 4.1-181 ng/g. No compounds were detected in ash-based BBFs.
Collapse
Affiliation(s)
- Yan Dong
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands.
| | - Supta Das
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - Eva de Rijke
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, the Netherlands
| | - Boris Jansen
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, the Netherlands
| |
Collapse
|
19
|
Fernández-Fernández V, Ramil M, Rodríguez I. Basic micro-pollutants in sludge from municipal wastewater treatment plants in the Northwest Spain: Occurrence and risk assessment of sludge disposal. CHEMOSPHERE 2023:139094. [PMID: 37268235 DOI: 10.1016/j.chemosphere.2023.139094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Sludge is one of the most problematic residues generated during wastewater treatment. Herein, we validate a single-step, sensitive procedure for the determination of a selection of 46 basic micro-pollutants, either used as pharmaceuticals or pesticides, in sludge from municipal sewage treatment plants (STPs), using liquid chromatography tandem mass spectrometry as determination technique. The proposed method permitted to achieve accurate recoveries (values from 70% to 120%, for samples spiked at different concentration levels) using solvent-based calibration standards. This feature, combined with limits of quantification lower than 5 ng g-1 (dry weight), allowed the rapid and sensitive quantification of target compounds in freeze-dried sludge samples. Out of 46 investigated pollutants, 33 species showed detection frequencies above 85% in a group of 48 sludge samples, obtained from 45 STPs located in the Northwest of Spain. The assessment of eco-toxicological risks associated to sludge disposal as fertilizer in agriculture and/or forestry, considering average concentrations found in sludge samples, highlighted eight pollutants (sertraline, venlafaxine, N-desethyl amiodarone, amiodarone, norsertraline, trazodone, amitriptyline and ketoconazole) representing an environmental hazard based on ratios between predicted soil levels and non-effect concentrations estimated using the equilibrium partition method.
Collapse
Affiliation(s)
- V Fernández-Fernández
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain.
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782, Santiago de Compostela, Spain
| |
Collapse
|
20
|
Zhang Z, Zhu F, Ma Y, Huo Z, Zhang L, Shen F, Ji W, Zhou Q. Preparation of amine-modified amphiphilic resins for the extraction of trace pharmaceuticals and personal care products in environmental waters. J Chromatogr A 2023; 1701:464062. [PMID: 37216852 DOI: 10.1016/j.chroma.2023.464062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Herein, four amine-modified amphiphilic resins were synthesized and utilized as solid-phase extraction (SPE) materials to enrich pharmaceuticals and personal care products (PPCPs) from environmental water. The obtained materials (Strong anion-exchange amphiphilic materials, SAAMs; Weak anion-exchange amphiphilic materials, WAAMs) possessed large specific surface area (473-626 m2/g), high ion exchange capacity (0.89-1.97 mmol/g), and small contact angle (74.41-79.74°), indicating good hydrophilicity. The main factors affecting the efficiency of the extraction process were studied, including column volume, column flow rate, sample salinity and sample pH. Notably, the trend observed in absolute recovery was significantly correlated with the Zeta potential of the employed adsorbents. Furthermore, based on the obtained materials, a method of SPE coupled with ultra-performance liquid chromatography and tandem mass spectrometry (SPE/LC-MS/MS) was developed, and then utilized to determine PPCPs in the samples collected from the Yangtze River Delta. The Method detection limit (MDL) and Method quantification limit (MQL) ranged from 0.05 to 0.60 ng/L and 0.17 to 2.00 ng/L, respectively, with a relative standard deviation (RSD) below 6.3%, demonstrating good accuracy and sensitivity. As evidenced by comparison with previous literature, the developed method exhibited satisfactory performance, showing great potential for further commercial application in the extraction of trace PPCPs from environmental water samples.
Collapse
Affiliation(s)
- Ziang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Yan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Libin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - Fei Shen
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Wenliang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, PR China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China.
| |
Collapse
|
21
|
Li X, Huang X, Zhao C, Wang X, Dong B, Goonetilleke A, Kim KH. Characterizing molecular transformation of dissolved organic matter during high-solid anaerobic digestion of dewatered sludge using ESI FT-ICR MS. CHEMOSPHERE 2023; 320:138101. [PMID: 36764615 DOI: 10.1016/j.chemosphere.2023.138101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of anaerobic digestion (AD) on molecular characteristics of dissolved organic matter (DOM) in the dewatered sludge has been described by advanced electrospray ionization combined with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) technology. With the progress of AD, molecular amounts in DOM samples increased with the lowering in the carbon atom number of average molecular formula and average double bond equivalent (DBE). CHON and CHONS groups are the two main organic substances in sludge with their relative DOM proportions of 29.64% and 32.56%, respectively. The resistants (i.e., refractory organic matter) mainly consist of the proteins regions of CHO groups as well as the proteins/lignin regions of CHON groups. The contrasting temporal trends in protein contents (e.g., decrease (CHO and CHON) vs. increase (CHONS)) may imply differences in their degradation characteristics. Likewise, the multi-N (N3, N4) and S2 organic groups in the sludge are converted to N2 and S1 molecules, while the relative abundance of O atoms (in Ox molecules) tends to increase. In addition, the resistants in sludge DOM contain high oxidizing C and low unsaturation. The overall results of this research are expected to provide the theoretical basis for further optimization of the sludge AD process.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Xiang Huang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Chuyun Zhao
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Xuan Wang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Ashantha Goonetilleke
- School of Civil and Environmental Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
22
|
Mazzeo DEC, Dombrowski A, Oliveira FA, Levy CE, Oehlmann J, Marchi MRR. Endocrine disrupting activity in sewage sludge: Screening method, microbial succession and cost-effective strategy for detoxification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117207. [PMID: 36621316 DOI: 10.1016/j.jenvman.2022.117207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Sewage sludge (SS) presents a high agronomic potential due to high concentrations of organic matter and nutrients, encouraging its recycling as a soil conditioner. However, the presence of toxic substances can preclude this use. To enable the safe disposal of this waste in agriculture, SS requires additional detoxification to decrease the environmental risks of this practice. Although some alternatives have been proposed in this sense, little attention is provided to eliminating endocrine-disrupting chemicals (EDCs). To fill this gap, this study aimed to develop effective and low-cost technology to eliminate EDCs from SS. For this, a detoxification process combining microorganisms and biostimulating agents (soil, sugarcane bagasse, and coffee grounds) was performed for 2, 4, and 6 months with aerobic and anaerobic SSs. The (anti-)estrogenic, (anti-)androgenic, retinoic-like, and dioxin-like activities of SSs samples were verified using yeast-based reporter-gene assays to prove the effectiveness of the treatments. A fractionation procedure of samples, dividing the target sample extract into several fractions according to their polarity, was conducted to decrease the matrix complexity and facilitate the identification of EDCs. A decrease in the abundance and microbial diversity of the SS samples was noted along the biostimulation with the predominance of filamentous fungal species over yeasts and gram-positive bacteria and non-fermenting rods over enterobacteria. Among the 9 EDCs quantified by LC-ESI-MS/MS, triclosan and alkylphenols presented the highest concentrations in both SS. Before detoxification, the studied SSs induced significant agonistic activity, especially at the human estrogen receptor α (hERα) and the human aryl hydrocarbon receptor (AhR). The raw anaerobic sludge also activated the androgen (hAR), retinoic acid (RARα), and retinoid X (RXRα) receptors. However, no significant endocrine-disrupting activities were observed after the SS detoxification, showing that the technology applied here efficiently eliminates receptor-mediated toxicity.
Collapse
Affiliation(s)
- Dânia Elisa C Mazzeo
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos - UFSCAR, Araras, Brazil.
| | - Andrea Dombrowski
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Flávio Andrade Oliveira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Carlos Emílio Levy
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas - UNICAMP, Rua Alexander Fleming, 105, 13081-970, Campinas, SP, Brazil
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Germany
| | - Mary Rosa R Marchi
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
23
|
Kumar M, Sridharan S, Sawarkar AD, Shakeel A, Anerao P, Mannina G, Sharma P, Pandey A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160031. [PMID: 36372172 DOI: 10.1016/j.scitotenv.2022.160031] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical and personnel care products (PPCPs) from wastewater are a potential hazard to the human health and wildlife, and their occurrence in wastewater has caught the concern of researchers recently. To deal with PPCPs, various treatment technologies have been evolved such as physical, biological, and chemical methods. Nevertheless, modern and efficient techniques such as advance oxidation processes (AOPs) demand expensive chemicals and energy, which ultimately leads to a high treatment cost. Therefore, integration of chemical techniques with biological processes has been recently suggested to decrease the expenses. Furthermore, combining ozonation with activated carbon (AC) can significantly enhance the removal efficiency. There are some other emerging technologies of lower operational cost like photo-Fenton method and solar radiation-based methods as well as constructed wetland, which are promising. However, feasibility and practicality in pilot-scale have not been estimated for most of these advanced treatment technologies. In this context, the present review work explores the treatment of emerging PPCPs in wastewater, via available conventional, non-conventional, and integrated technologies. Furthermore, this work focused on the state-of-art technologies via an extensive literature search, highlights the limitations and challenges of the prevailing commercial technologies. Finally, this work provides a brief discussion and offers future research directions on technologies needed for treatment of wastewater containing PPCPs, accompanied by techno-economic feasibility assessment.
Collapse
Affiliation(s)
- Manish Kumar
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440 010, India
| | - Adnan Shakeel
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
24
|
Nikolopoulou V, Ajibola AS, Aalizadeh R, Thomaidis NS. Wide-scope target and suspect screening of emerging contaminants in sewage sludge from Nigerian WWTPs by UPLC-qToF-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159529. [PMID: 36270367 DOI: 10.1016/j.scitotenv.2022.159529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
There is currently a paucity of scientific data in Africa on the analysis and occurrence of emerging contaminants in sewage sludge. In this work, the occurrence of European Union (EU) Water Framework Directive priority substances and wide-range emerging contaminants were investigated and discussed comprehensively in the sewage sludge samples from three different wastewater treatment plants (WWTPs) in Lagos, Nigeria. The identification strategy was implemented by target and suspect screening in liquid chromatography-high resolution mass spectrometry. 250 compounds were identified in the sewage sludge samples from the investigated WWTPs. From 250 detected compounds, 182 compounds were quantified, and 78 compounds significantly show high environmental risk score (calculated from provisional no-effect concentrations values (PNEC) as well as their environmental quality data (EQs)). Most of contaminants detected at high amount belong to pharmaceuticals and are from hospital WWTP. While the highest concentration (72.4 mg kg-1) was measured for salicylic acid (a non-steroidal anti-inflammatory drug), antibiotics showed high concentrations up to 24.4 and 28.4 mg kg-1 for ciprofloxacin and ofloxacin, respectively. Three simple factors including frequency of exceedance, frequency of occurrence and extent of exceedance were used to aid prioritization of these substances in future monitoring campaigns. This work presents the first comprehensive and wide-scope screening of a large number of emerging contaminants in sewage sludge from Nigerian WWTPs.
Collapse
Affiliation(s)
- Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Akinranti S Ajibola
- Analytical/Environmental Unit, Department of Chemistry, University of Ibadan, Ibadan, Nigeria
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
25
|
Miserli K, Kosma C, Konstantinou I. Determination of pharmaceuticals and metabolites in sludge and hydrochar after hydrothermal carbonization using sonication-QuEChERS extraction method and UHPLC LTQ/Orbitrap MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1686-1703. [PMID: 35922598 DOI: 10.1007/s11356-022-22215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals (PhACs) are an important group of emerging contaminants that are released continuously in the environment from wastewater treatments plants (WWTPs). They can produce biological effects even though at very low concentrations. Conventional WWTPs are not able to remove or degrade completely emerging pollutants resulting in the presence of PhACs in sewage sludge after wastewater treatment. PhACs are found in sludge at low ppb-ppt levels, and their analysis and detection is a difficult task due to the complexity of sewage sludge matrices. Hydrothermal carbonization is currently being proposed as a suitable conversion technology for sewage sludge management to recover valuable products and to be used for soil amendment. In this work, a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based methodology with a dispersive solid-phase extraction (d-SPE) clean-up followed by ultra-high-performance liquid chromatography coupled with high-resolution linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ/Orbitrap MS), operated in positive ionization mode, was adopted to investigate 33 multiclass pharmaceuticals in sewage sludge and in hydrochar produced after hydrothermal carbonization. The analytical method was first optimized studying various extraction parameters and finally validated in terms of linearity, recovery, intra and inter-day precisions, expanded uncertainty (%U)/Horrat ratio at three spiking levels, matrix-effects (ME), process efficiency (PE), and limits of detection and quantification. The developed methodology fulfilled all analytical requirements and was finally applied to sludge samples from the WWTP of Ioannina city where a group of antibiotics was detected at concentrations up to 15 ng g-1 and psychiatric drugs such as amisulpride, clozapine, and citalopram were detected at higher concentration levels up to 205, 87.4 and 63.2 ng g-1, respectively. The method was also applied to hydrothermally treated sludge sample under different reaction conditions. Most of the antibiotic compounds were not detected, and several psychiatric drugs such as mirtazapine, bupropion, valsartan, diazepam, and caffeine were found at concentrations below the LOQ.
Collapse
Affiliation(s)
- Kleopatra Miserli
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Christina Kosma
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
- Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), 45110, Ioannina, Greece.
| |
Collapse
|
26
|
Wang J, Gao J, Liao M, Liu J, Hu X, He B. Attitudes and opinions about ecopharmacovigilance from multi-disciplinary perspectives: a cross-sectional survey among academic researchers in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2273-2282. [PMID: 35931847 DOI: 10.1007/s11356-022-22406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
As a promising upstream strategy to reduce the environmental loads of pharmaceutical emerging contaminants (PECs) through source control, ecopharmacovigilance (EPV) is concerned with the set of activities to identify, evaluate, understand, and prevent against diverse PEC-related problems, and has been accepted as a multi-disciplinary and multi-stakeholder system. This cross-sectional observational survey aimed to assess the attitudes and opinions about EPV from multi-disciplinary perspectives among Chinese academic professors from four main EPV-related disciplines including pharmacy, management, clinical medicine, and environmental and ecological science based on a self-developed questionnaire. Forty-two usable survey instruments were acquired. Results showed that the responding Chinese academic researchers from different disciplines expressed consistently positive attitudes and strong intentions for EPV, in spite of several disparities existing among disciplinary groups showing that pharmacy and medical researchers felt more certain of the environmental adverse effects of PECs, and researchers in pharmacy and environmental and ecological science were more interested in EPV. A multi-disciplinary consensus was achieved in regard to the types of key stakeholders in EPV practices including the pharmaceutical manufacturers, the public, the drug safety authority, hospitals, and the environmental protection agency. The main roles and responsibilities of each stakeholder identity in EPV practices were summarized based on the expert opinions.
Collapse
Affiliation(s)
- Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Jian Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, China.
| |
Collapse
|
27
|
Portela-Monge C, Bolado S, López-Serna R, Jiménez JJ. Determination of contaminants of emerging concern in raw pig manure as a whole: difference with the analysis of solid and liquid phases separately. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2357-2367. [PMID: 36285718 DOI: 10.1039/d2em00323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The content of veterinary drugs in manure is usually estimated by the amount of residues determined in its solid or liquid phase, individually, which previously required a separation step. As an alternative, a multiresidue method for the analysis of 48 veterinary drugs and other contaminants of emerging concern (CECs) in swine raw manure as a whole has been developed and in-house validated in this work. The impact of several experimental factors during ultrasound assisted extraction was assessed. Hence, the use of alumina seemed to especially decrease the matrix effect and improve the overall recovery of drugs, mainly those with a high octanol-water partition coefficient. CECs in the extracts were analyzed by ultra-high performance liquid chromatography coupled to mass spectrometry in tandem. A standard addition-matrix matched calibration was used for quantification. Application of the method to two related samples (raw manure and farm centrifuged raw manure) from a facility revealed that the concentrations of CECs determined in the raw manure by the comprehensive methodology were higher than those calculated by adding the concentrations measured in the solid and liquid phases, separately. This was attributed to the loss of CECs adsorbed on fine particles in the suspension during the sample preparation procedure of the liquid-phase. Furthermore, the decrease of residues in the raw manure when this is centrifuged in the farm to yield compost is shown.
Collapse
Affiliation(s)
- Cristina Portela-Monge
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain.
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
| | - Silvia Bolado
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid, Spain
| | - Rebeca López-Serna
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain.
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
| | - Juan José Jiménez
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain.
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
28
|
Vaudreuil MA, Vo Duy S, Munoz G, Sauvé S. Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157353. [PMID: 35842153 DOI: 10.1016/j.scitotenv.2022.157353] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Quantification of drugs residues in wastewaters of different sources could help better understand contamination pathways, eventually leading to effluent regulation. However, limited data are available for hospital-derived wastewaters. Here, an analytical method based on automated on-line solid-phase extraction liquid chromatography tandem mass spectrometry (on-line SPE - UPLC-MS/MS) was developed for the quantification of multi-class pharmaceuticals in wastewaters. Filtrate phase and suspended solids (SPM) were both considered to evaluate the distribution of targeted analytes. Experimental design optimization involved testing different chromatographic columns, on-line SPE columns, and loading conditions for the filtrate phase, and different organic solvents and cleanup strategies for suspended solids. The selected methods were validated with suitable limits of detection, recovery, accuracy, and precision. A total of 30 hospital effluents and 6 wastewater treatment plants were sampled to evaluate concentrations in real field-collected samples. Certain pharmaceuticals were quantified at high levels such as caffeine at 670,000 ng/L in hospital wastewaters and hydroxyibuprofen at 49,000 ng/L in WWTP influents. SPM samples also had high contaminant concentrations such as ibuprofen at 31,000 ng/g in hospital effluents, fluoxetine at 529 ng/g in WWTP influents or clarithromycin at 295 ng/g in WWTP effluents. Distribution coefficients (Kd) and particle-associated fractions (Φ) indicate that pharmaceuticals tend to have better affinity to suspended solids in hospital wastewater than in municipal wastewaters. The results also bring arguments for at source treatment of these specific effluents before their introduction into urban wastewater systems.
Collapse
Affiliation(s)
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
29
|
Tian Y, Li J, Li X, Li J, Meng J. Sample pretreatment and analytical methodology for the determination of antibiotics in swine wastewater and activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83671-83685. [PMID: 35773613 DOI: 10.1007/s11356-022-21595-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
An analytical method for the simultaneous extraction and determination of eight veterinary antibiotics in swine wastewater and activated sludge was developed and validated based on the instrumental determination by liquid chromatography tandem quadrupole mass spectrometry. Ultrasound-assisted extraction and solid-phase extraction were introduced into the pretreatment procedure of the two complex environmental matrices. The critical steps involved in the sample pretreatment procedure and the instrumental analysis conditions were optimized progressively. Recoveries of the optimized method were good with 75.3-118.2% in wastewater and 82.8-130.1% in sludge. The absolute deviations of methods were lower than 11.7%, presenting a high reproducibility and precision. The limits of quantification for the eight pharmaceuticals in wastewater and sludge were 5-15 ng·L-1 and 2-6 ng·g-1, showing high sensitivity of the methods. The developed method has been successfully applied to evaluate the actual concentration levels of tetracyclines, quinolones, and sulfonamides in actual swine wastewater (maximum detected concentration of 87.377 μg·L-1) and activated sludge (maximum detected concentration of 51242.3 ng·g-1).
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Xianhui Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China.
| |
Collapse
|
30
|
Yang F, van Herwerden D, Preud’homme H, Samanipour S. Collision Cross Section Prediction with Molecular Fingerprint Using Machine Learning. Molecules 2022; 27:6424. [PMID: 36234961 PMCID: PMC9572128 DOI: 10.3390/molecules27196424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
High-resolution mass spectrometry is a promising technique in non-target screening (NTS) to monitor contaminants of emerging concern in complex samples. Current chemical identification strategies in NTS experiments typically depend on spectral libraries, chemical databases, and in silico fragmentation tools. However, small molecule identification remains challenging due to the lack of orthogonal sources of information (e.g., unique fragments). Collision cross section (CCS) values measured by ion mobility spectrometry (IMS) offer an additional identification dimension to increase the confidence level. Thanks to the advances in analytical instrumentation, an increasing application of IMS hybrid with high-resolution mass spectrometry (HRMS) in NTS has been reported in the recent decades. Several CCS prediction tools have been developed. However, limited CCS prediction methods were based on a large scale of chemical classes and cross-platform CCS measurements. We successfully developed two prediction models using a random forest machine learning algorithm. One of the approaches was based on chemicals' super classes; the other model was direct CCS prediction using molecular fingerprint. Over 13,324 CCS values from six different laboratories and PubChem using a variety of ion-mobility separation techniques were used for training and testing the models. The test accuracy for all the prediction models was over 0.85, and the median of relative residual was around 2.2%. The models can be applied to different IMS platforms to eliminate false positives in small molecule identification.
Collapse
Affiliation(s)
- Fan Yang
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM-UMR5254), E2S UPPA, CNRS, 64000 Pau, France
| | - Denice van Herwerden
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Hugues Preud’homme
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Materiaux (IPREM-UMR5254), E2S UPPA, CNRS, 64000 Pau, France
| | - Saer Samanipour
- Van ’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- UvA Data Science Center, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
31
|
Bolesta W, Głodniok M, Styszko K. From Sewage Sludge to the Soil-Transfer of Pharmaceuticals: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10246. [PMID: 36011880 PMCID: PMC9408069 DOI: 10.3390/ijerph191610246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sewage sludge, produced in the process of wastewater treatment and managed for agriculture, poses the risk of disseminating all the pollutants contained in it. It is tested for heavy metals or parasites, but the concentration of pharmaceuticals in the sludge is not controlled. The presence of these micropollutants in sludge is proven and there is no doubt about their negative impact on the environment. The fate of these micropollutants in the soil is a new and important issue that needs to be known to finally assess the safety of the agricultural use of sewage sludge. The article will discuss issues related to the presence of pharmaceuticals in sewage sludge and their physicochemical properties. The changes that pharmaceuticals undergo have a significant impact on living organisms. This is important for the implementation of a circular economy, which fits perfectly into the agricultural use of stabilized sewage sludge. Research should be undertaken that clearly shows that there is no risk from pharmaceuticals or vice versa: they contribute to the strict definition of maximum allowable concentrations in sludge, which will become an additional criterion in the legislation on municipal sewage sludge.
Collapse
Affiliation(s)
- Wioleta Bolesta
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
- Water and Sewage Company in Żory, ul. Wodociągowa 10, 44-240 Zory, Poland
| | - Marcin Głodniok
- Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| | - Katarzyna Styszko
- Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| |
Collapse
|
32
|
Li S, Lin Y, Zhu S, Liu G. Electrocatalytic degradation of sulfamethylthiadiazole by GAC@Ni/Fe three-dimensional particle electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57112-57126. [PMID: 35344147 DOI: 10.1007/s11356-022-19021-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
In this work, GAC@Ni/Fe particle electrodes were prepared and employed for the degradation of sulfamethylthiadiazole (SMT) by three-dimensional electrocatalytic technology. The effects of particle electrode bi-metal loading ratio, cell voltage, particle electrode dosage, electrode plate spacing, and SMT initial concentration on SMT removal were studied. In addition, GAC@Ni/Fe particle electrode was analyzed by the scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS), and Fourier transform infrared spectrometer (FTIR) to characterize which indicated that a significant amount of iron-nickel oxide was formed on the surface of GAC@Ni/Fe particle electrode. The results indicated that when the nickel-iron loading ratio is 1:1, the SMT removal effect is the best, and the removal rate can reach 90.89% within 30 min. Compared with the granular activated carbon without bimetal, the removal efficiency is increased by 37.58%. The degradation of SMT in the GAC@Ni/Fe particle three-dimensional electrode reactor is the joint result of both direct oxidation and indirect oxidation. The contribution rates of direct oxidation of anode and particle electrode and indirect oxidation of ·OH in the degradation are 32%, 27%, and 41%, respectively. Based on the intermediate detected by ultra-high liquid chromatography and the calculation of bond energy of SMT molecule by Gauss software, the degradation pathway of SMT in the GAC@Ni/Fe three-dimensional electrode reactor is proposed. This research provides a green, healthy, and effective method for removing sulfonamide micro-polluted wastewater.
Collapse
Affiliation(s)
- Siwen Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, China.
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China.
| | - Suiyi Zhu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| | - Gen Liu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Street, Changchun, Jilin, 130117, China
| |
Collapse
|
33
|
Disposable screen-printed carbon-based electrodes in amperometric detection for simultaneous determination of parabens in complex-matrix personal care products by HPLC. Talanta 2022; 245:123459. [DOI: 10.1016/j.talanta.2022.123459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 04/03/2022] [Indexed: 01/02/2023]
|
34
|
Emerging Pollutants in Wastewater, Advanced Oxidation Processes as an Alternative Treatment and Perspectives. Processes (Basel) 2022. [DOI: 10.3390/pr10051041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Emerging pollutants are present in wastewaters treated by conventional processes. Due to water cycle interactions, these contaminants have been reported in groundwater, surface water, and drinking waters. Since conventional processes cannot guarantee their removal or biotransformation, it is necessary to study processes that comply with complete elimination. The current literature review was conducted to describe and provide an overview of the available information about the most significant groups of emerging pollutants that could potentially be found in the wastewater and the environment. In addition, it describes the main entry and distribution pathways of emerging contaminants into the environment through the water and wastewater cycle, as well as some of the potential effects they may cause to flora, fauna, and humans. Relevant information on the SARS-CoV-2 virus and its potential spread through wastewater is included. Furthermore, it also outlines some of the Advanced Oxidation Processes (AOPs) used for the total or partial emerging pollutants removal, emphasizing the reaction mechanisms and process parameters that need to be considered. As well, some biological processes that, although slow, are effective for the biotransformation of some emerging contaminants and can be used in combination with advanced oxidation processes.
Collapse
|
35
|
Shahryari T, Singh P, Raizada P, Davidyants A, Thangavelu L, Sivamani S, Naseri A, Vahidipour F, Ivanets A, Hosseini-Bandegharaei A. Adsorption properties of Danthron-impregnated carbon nanotubes and their usage for solid phase extraction of heavy metal ions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. Methods for the analysis of endocrine disrupting chemicals in selected environmental matrixes. ENVIRONMENTAL RESEARCH 2022; 206:112616. [PMID: 34953884 DOI: 10.1016/j.envres.2021.112616] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are heterogenous in structure, chemical and physical properties, and their capacity to partition into various environmental matrixes. In many cases, these chemicals can disrupt the endocrine systems of vertebrate and invertebrate organisms when present at very low concentrations. Therefore, sensitive and varied analytical methods are required to detect these compounds in the environment. This review summarizes the analytical methods and instruments that are most used to monitor for EDCs in selected environmental matrixes. Only those matrixes for which there is a clear link between exposures and endocrine effects are included in this review. Also discussed are emerging methods for sample preparation and advanced analytical instruments that provide greater selectivity and sensitivity.
Collapse
Affiliation(s)
| | - S Bayen
- McGill University, Montréal, QC, Canada
| | - M Desrosiers
- Ministère du Développement durable, de l'Environnement et de la Lutte Contre les Changements Climatiques du Québec, Québec City, QC, Canada
| | - G Muñoz
- Université de Montréal, Montréal, QC, Canada
| | - S Sauvé
- Université de Montréal, Montréal, QC, Canada
| | - V Yargeau
- McGill University, Montréal, QC, Canada
| |
Collapse
|
37
|
Pérez-Lemus N, López-Serna R, Pérez-Elvira S, Barrado E. Analysis of 60 pharmaceuticals and personal care products in sewage sludge by ultra-high performance liquid chromatography and tandem mass spectroscopy. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Sellier A, Khaska S, Le Gal La Salle C. Assessment of the occurrence of 455 pharmaceutical compounds in sludge according to their physical and chemical properties: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128104. [PMID: 34996022 DOI: 10.1016/j.jhazmat.2021.128104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Sludge agronomical reuse is of major interest due to the beneficial contribution of nutrients. However, it implies the introduction of unregulated pharmaceuticals into amended-soils and creates a controversial issue about sludge management. To limit their dissemination, it is essential to identify the compounds of interest and understand their attenuation mechanisms through the sludge processes. This paper summarizes the knowledge on 455 investigated pharmaceuticals among 32 therapeutical categories in amendable sludge matrices. It contributes to enlarging the list of commonly quantified compounds to 305 residues including 84 additional compounds compared to previous reviews. It highlights that sorption appears as the main mechanism controlling the occurrence of pharmaceuticals in sludge matrices and shows the considerable residual levels of pharmaceuticals reaching several mg/kg in dry weight. Antibiotics, stimulants, and antidepressants show the highest concentrations up to 232 mg/kg, while diuretics, anti-anxieties or anticoagulants present the lowest concentrations reaching up to 686 µg/kg. Collected data show the increase in investigated compounds as antifungals or antihistamines, and underline emerging categories like antidiabetics, antivirals, or antiarrhythmics. The in-depth analysis of the substantial database guides onto the pharmaceuticals that are the most likely to occur in these amendable matrices to assist future research.
Collapse
Affiliation(s)
- Anastasia Sellier
- CHROME Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) / Université de Nîmes, 30021 Nîmes Cedex 01 - FRANCE.
| | - Somar Khaska
- CHROME Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) / Université de Nîmes, 30021 Nîmes Cedex 01 - FRANCE.
| | - Corinne Le Gal La Salle
- CHROME Détection, évaluation, gestion des risques CHROniques et éMErgents (CHROME) / Université de Nîmes, 30021 Nîmes Cedex 01 - FRANCE.
| |
Collapse
|
39
|
Priya AK, Gnanasekaran L, Rajendran S, Qin J, Vasseghian Y. Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment- A review. ENVIRONMENTAL RESEARCH 2022; 204:112298. [PMID: 34717947 DOI: 10.1016/j.envres.2021.112298] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals, personal care items, steroid hormones, and agrochemicals are among the synthetic and indigenous products that make up micropollutants, also known as emerging contaminants. Pharmaceutical and personal care products (PPPs) are a class of developing micropollutants that can harm living organisms even at low concentrations. Many are detected in surface water and wastewater from the treatment process, with quantities ranging from ng L-1 to gL-1; however, residual PPPs at dangerously high levels have indeed recently been recognized in the ecosystem. Residential sewage treatment plant (STP) dump the largest majority of these pollutants into the environment on a regular basis. As a result of its robust structure, it has a longer lifespan in the environment. This review article discusses how surface water pollutants such pesticides, petroleum hydrocarbons, and perfluorinated compounds affect water quality, as well as the most cost-effective adsorbents for removing these PPPs. The goal of this study is to provide information about the origins of PPP, as well as diagnostic procedures and treatment options. Research on developing contaminants is also aimed at evaluating the efficacy and affordability of adsorption.
Collapse
Affiliation(s)
- A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641027, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
40
|
Maciel EVS, Lanças FM. A cartridge-based device for automated analyses of solid matrices by online sample prep-capillary LC-MS/MS. Anal Bioanal Chem 2022; 414:2725-2737. [PMID: 35106613 DOI: 10.1007/s00216-022-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Sample preparation is an essential step focused on eliminating interfering compounds while pre-concentrating the analytes. However, its multiple steps are laborious, time-consuming, and a source of errors. Currently, automated approaches represent a promising alternative to overcome these drawbacks. Similarly, miniaturisation has been considered an ideal strategy for creating greener analytical workflows. The combination of these concepts is currently highly desired by analytical chemists. However, most automated and miniaturised sample preparation techniques are primarily concerned with liquid samples, while solids are frequently overlooked. We present an approach based on a cartridge packed with solids (soil samples) coupled with a capillary LC-MS, combining sample preparation and analytical steps into a unique platform. As a proof-of-concept, nine pesticides used in sugarcane crops were extracted and analysed by our proposed method. For optimisation, a fractional factorial design (25-1) was performed with the following variables: aqueous dilution of the sample (V1), extraction strength (V2), matrix washing time (V3), extraction flow (V4), and analytical flow (V5). After, the most influential ones (V1, V2, and V3) were taken into a central composite design (23) to select their best values. Under optimised conditions, the method reported linear ranges between 10 and 125 ng g-1 with R2 > 0.985. Accuracy and precision were in accordance with the values established by the International Council for Harmonisation (Q2(R1)). Therefore, the proposed approach was effective in extracting and analysing selected pesticides in soil samples. Also, we carried out initial qualitative tests for pesticides in honeybees to see if there is the possibility to apply our method in other solids.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil.
| |
Collapse
|
41
|
Díaz-Cubilla M, Letón P, Luna-Vázquez C, Marrón-Romera M, Boltes K. Effect of Carbamazepine, Ibuprofen, Triclosan and Sulfamethoxazole on Anaerobic Bioreactor Performance: Combining Cell Damage, Ecotoxicity and Chemical Information. TOXICS 2022; 10:toxics10010042. [PMID: 35051084 PMCID: PMC8779021 DOI: 10.3390/toxics10010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are partially degraded in wastewater treatment plants (WWTPs), thereby leading to the formation of more toxic metabolites. Bacterial populations in bioreactors operated in WWTPs are sensitive to different toxics such as heavy metals and aromatic compounds, but there is still little information on the effect that pharmaceuticals exert on their metabolism, especially under anaerobic conditions. This work evaluated the effect of selected pharmaceuticals that remain in solution and attached to biosolids on the metabolism of anaerobic biomass. Batch reactors operated in parallel under the pressure of four individual and mixed PPCPs (carbamazepine, ibuprofen, triclosan and sulfametoxazole) allowed us to obtain relevant information on anaerobic digestion performance, toxicological effects and alterations to key enzymes involved in the biodegradation process. Cell viability was quantitatively evaluated using an automatic analysis of confocal microscopy images, and showed that triclosan and mixed pollutants caused higher toxicity and cell death than the other individual compounds. Both individual pollutants and their mixture had a considerable impact on the anaerobic digestion process, favoring carbon dioxide production, lowering organic matter removal and methane production, which also produced microbial stress and irreversible cell damage.
Collapse
Affiliation(s)
- Mabel Díaz-Cubilla
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33,600, 28871 Alcala de Henares, Spain; (M.D.-C.); (P.L.)
| | - Pedro Letón
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33,600, 28871 Alcala de Henares, Spain; (M.D.-C.); (P.L.)
- IMDEA Water Institute, Parque Científico Tecnológico, 28805 Alcala de Henares, Spain
| | - Carlos Luna-Vázquez
- Departamento de Electrónica, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33,600, 28871 Alcala de Henares, Spain; (C.L.-V.); (M.M.-R.)
| | - Marta Marrón-Romera
- Departamento de Electrónica, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33,600, 28871 Alcala de Henares, Spain; (C.L.-V.); (M.M.-R.)
| | - Karina Boltes
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33,600, 28871 Alcala de Henares, Spain; (M.D.-C.); (P.L.)
- IMDEA Water Institute, Parque Científico Tecnológico, 28805 Alcala de Henares, Spain
- Correspondence: Karina Boltes
| |
Collapse
|
42
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Spatial and seasonal variations of endocrine disrupting compounds in water and sediment samples of Markman Canal and Swartkops River Estuary, South Africa and their ecological risk assessment. MARINE POLLUTION BULLETIN 2021; 173:113012. [PMID: 34607130 DOI: 10.1016/j.marpolbul.2021.113012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 05/12/2023]
Abstract
The presence of pharmaceuticals in surface water and sediment has sparked up a global concern, as they could cause harm to human health. In this study, we investigated five pharmaceuticals (caffeine, carbamazepine, sulfamethoxazole, testosterone, and trimethoprim) in surface water and sediment samples from Swartkops River Estuary and Markman Stormwater Canal, in the Eastern Cape Province, South Africa. Ultra-Performance Liquid Chromatography (UPLC) systems coupled with a hyphenated quadrupole-time-of-flight mass spectrometry (QTOF-MS) was used for the analysis. Of the five pharmaceuticals investigated, three were detected in sediment samples at concentrations ranging from BDL - 23.86 μg/kg (dw). Caffeine and sulfamethoxazole were below the detection limit. The finding of this current study suggests that Markman and Motherwell's stormwater canals were potential contributors to pollution in Swartkops River Estuary. Ecotoxicity risk assessment indicated that trimethoprim and carbamazepine could constitute potential risk to aquatic organisms in Markman Canal and Swartkops Estuary, suggesting the need for proper control measure to prevent the pollution from toxicants in aquatic resources.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa.
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa; Department of Chemistry and Chemical Technology, National University of Lesotho, P. O. Roma, 180, Lesotho
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
43
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
44
|
Nadal JC, Dargo S, Borrull F, Cormack PAG, Fontanals N, Marcé RM. Hypercrosslinked polymer microspheres decorated with anion- and cation-exchange groups for the simultaneous solid-phase extraction of acidic and basic analytes from environmental waters. J Chromatogr A 2021; 1661:462715. [PMID: 34871939 DOI: 10.1016/j.chroma.2021.462715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
Mixed-mode ion-exchange sorbents were introduced to improve the selectivity and retention of solid-phase extraction (SPE) sorbents. Mixed-mode ion-exchange sorbents integrate reversed-phase chemistry with ion-exchange groups to promote favourable interactions with ionic species. Nevertheless, a need to extract analytes with acidic and basic properties simultaneously within the same SPE cartridge led to the introduction of novel amphoteric/zwitterionic sorbents, which incorporate cation- and anion-exchange moieties within the same functional group attached to the polymeric network. In the present study, the development, preparation and SPE evaluation of two novel hypercrosslinked zwitterionic polymeric sorbents, functionalised with either strong anion-exchange (SAX) and weak cation-exchange (WCX) or weak anion-exchange (WAX) and strong cation-exchange (SCX) groups (namely HXLPP-SAX/WCX and the HXLPP-WAX/SCX), is presented for the simultaneous retention of acidic and basic compounds. The sorbents were prepared by a precipitation polymerisation route which yielded poly(divinylbenzene-co-vinylbenzylchloride) as a precursor polymer; subsequently, the precursor polymer was hypercrosslinked, to increase the specific surface areas and capacities of the sorbents, and then functionalised to impart the zwitterionic character. The HXLPP-SAX/WCX sorbent was decorated with quaternised sarcosine groups and the HXLPP-WAX/SCX sorbent was decorated with taurine moieties. The SPE parameters were optimised to exploit the ionic interactions between compounds and the functional groups. The optimal conditions involve a washing step to remove the compounds retained by hydrophobic interactions, thus increasing the selectivity. The optimised SPE protocol used the quaternised sarcosine-based sorbent followed by liquid chromatography and tandem mass spectrometry, and was applied to determine compounds with acidic and basic properties from environmental samples, such as river water and effluent wastewater samples, with excellent selectivity and matrix effect values below -30% and apparent recovery results ranging from 52% to 105% for most of the compounds. The analytical method was validated for environmental water samples and used in the analysis of samples in which some of the target compounds were found at ng L-1 concentration levels.
Collapse
Affiliation(s)
- Joan Carles Nadal
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Stuart Dargo
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Peter A G Cormack
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, United Kingdom.
| | - Núria Fontanals
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
45
|
Rathi BS, Kumar PS, Vo DVN. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149134. [PMID: 34346357 DOI: 10.1016/j.scitotenv.2021.149134] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Water is required for the existence of all living things. Water pollution has grown significantly, over the decades and now it has developed as a serious worldwide problem. The presence and persistence of Hazardous pollutants such as dyes, pharmaceuticals and personal care products, heavy metals, fertilizer and pesticides and their transformed products are the matter of serious environmental and health concerns. A variety of approaches have been tried to clean up water and maintain water quality. The type of pollutants present in the water determines the bulk of technological solutions. The main objective of this article was to review the occurrences and fate of hazardous contaminants (dyes, pharmaceuticals and personal care products, heavy metals, and pesticides) found in wastewater effluents. These effluents mingle with other streams of water and that are utilized for a variety of reasons such as irrigation and other domestic activities that is further complicating the issue. It also discussed traditional treatment approaches as well as current advances in hazardous pollutants removal employing graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other innovative forms of useable materials. It also discussed the identification and quantification of harmful pollutants using various approaches, as well as current advancements. Finally, a risk assessment of hazardous pollutants in water is provided in terms of the human health and the environment. This data is anticipated to serve as a foundation for future improvements in hazardous pollutant risk assessment. Furthermore, future studies on hazardous pollutants must not only emphasize on the parent chemicals, as well as on their possible breakdown products in various media.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
46
|
Gallardo-Altamirano MJ, Maza-Márquez P, Montemurro N, Pérez S, Rodelas B, Osorio F, Pozo C. Insights into the removal of pharmaceutically active compounds from sewage sludge by two-stage mesophilic anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147869. [PMID: 34051504 DOI: 10.1016/j.scitotenv.2021.147869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/22/2021] [Accepted: 05/14/2021] [Indexed: 05/23/2023]
Abstract
The removal efficiencies (REs) of twenty-seven pharmaceutically active compounds (PhACs) (eight analgesic/anti-inflammatories, six antibiotics, four β-blockers, two antihypertensives/diuretics, three lipid regulators and four psychiatric drugs) were evaluated in a pilot-scale two-stage mesophilic anaerobic digestion (MAD) system treating thickened sewage sludge from a pilot-scale A2O™ wastewater treatment plant (WWTP) which was fed with wastewater from the pre-treatment of the full-scale WWTP Murcia Este (Murcia, Spain). The MAD system was long-term operated using two different sets of sludge retention times (SRTs) for the acidogenic (AcD) and methanogenic (MD) digesters (phase I, 2 and 12 days; and phase II, 5 and 24 days, in AcD and MD, respectively). Quantitative PCR (qPCR) and Illumina MiSeq sequencing were used to estimate the absolute abundance of Bacteria, Archaea, and Fungi and investigate the structure, diversity and population dynamics of their communities in the AcD and MD effluents. The extension of the SRT from 12 (phase I) to 24 days (phase II) in the MD was significantly linked with an improved removal of carbamazepine, clarithromycin, codeine, gemfibrozil, ibuprofen, lorazepam, and propranolol. The absolute abundances of total Bacteria and Archaea were higher in the MD regardless of the phase, while the diversity of bacterial and archaeal communities was lower in phase II, in both digesters. Non-metric multidimensional scaling (MDS) plots showed strong negative correlations among phyla Proteobacteria and Firmicutes and between genera Methanosaeta and Methanosarcina throughout the full experimental period. Strong positive correlations were revealed between the relative abundances of Methanospirillum and Methanoculleus and the methanogenesis performance parameters (volatile solids removal, CH4 recovery rate and %CH4 in the biogas), which were also related to longer SRT. The REs of several PhACs (naproxen, ketoprofen, ofloxacin, fenofibrate, trimethoprim, and atenolol) correlated positively (r > 0.75) with the relative abundances of specific bacterial and archaeal groups, suggesting their participation in biodegradation/biotransformation pathways.
Collapse
Affiliation(s)
- M J Gallardo-Altamirano
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Civil Engineering, University of Granada, Granada, Spain
| | - P Maza-Márquez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Microbiology, University of Granada, Granada, Spain
| | - N Montemurro
- Water, Environmental and Food Chemistry (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - S Pérez
- Water, Environmental and Food Chemistry (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - B Rodelas
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Microbiology, University of Granada, Granada, Spain.
| | - F Osorio
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Civil Engineering, University of Granada, Granada, Spain
| | - C Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain; Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
47
|
Rendedula D, Satyanarayana GNV, Asati A, Kaliyaperumal M, Mudiam MKR. Development of a multiclass method to quantify phthalates, pharmaceuticals, and personal care products in river water using ultra-high performance liquid chromatography coupled with quadrupole hybrid Orbitrap mass spectrometry. ANALYTICAL SCIENCE ADVANCES 2021; 2:373-386. [PMID: 38715960 PMCID: PMC10989606 DOI: 10.1002/ansa.202000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 09/28/2024]
Abstract
Rationale The organic micropollutants such as phthalates, pharmaceuticals, and personal care products (PPPCPs) enter the surface water through various routes. The aim of this study is to develop a sensitive and efficient method to identify and quantify 26 PPPCPs found in river water with acceptable accuracy and precision using a liquid chromatograph hyphenated with quadrupole hybrid Orbitrap mass spectrometry (Q-Orbitrap-MS) in a single chromatographic run. Method The organic micropollutants were extracted from river water by solid-phase extraction (SPE) using hydrophilic-lipophilic balance sorbent and analyzed using an ultra-high performance liquid chromatograph (UHPLC) equipped with C18 stationary phase for chromatographic separation. The targeted mass experiments were conducted in a Q-Orbitrap-MS system in positive and negative electrospray ionization mode. Results The method was found to be linear in the concentration range of 1-125 ng/L with coefficient of determination lying in the range of 0.995-0.999. The method achieved limit of quantification in the range of 0.41-1.72 ng/L, and method recovery measured at three different concentrations was found to be in the range of 75-115%. Intra- and interday precision expressed as percent relative standard deviation was found to be <15%. Matrix effect was found to be in the range of 83.5-109.79%. The matrix match calibration was used for quantification of PPPCPs in river water sample. The method performance was evaluated by analyzing real samples collected from Ganga River, and the concentrations of 21 analytes were found to be in the range of 0.76-9.49 ng/L for pharmaceuticals, 1.49-8.67 ng/L for phthalates, and 0.9-7.58 ng/L for personal care products. Conclusions The present method was found to be precise, sensitive, and rapid to determine 26 PPPCPs including phthalates in river water samples using SPE-UHPLC-Q-Orbitrap-MS.
Collapse
Affiliation(s)
- Deviprasad Rendedula
- Analytical and Structural Chemistry DepartmentCSIR‐Indian Institute of Chemical TechnologyTarnaka, Uppal RoadHyderabad500007India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
- Discovery Analytical Sciences DivisionGVK BiosciencesHyderabad500007India
| | - Gubbala Naga Venkata Satyanarayana
- Analytical Chemistry LaboratoryRegulatory Toxicology GroupCSIR‐Indian Institute of Toxicology ResearchLucknow226001India
- Department of ChemistrySchool of Applied SciencesBabu Banarasi Das UniversityLucknow226028India
| | - Ankita Asati
- Analytical and Structural Chemistry DepartmentCSIR‐Indian Institute of Chemical TechnologyTarnaka, Uppal RoadHyderabad500007India
| | | | - Mohana Krishna Reddy Mudiam
- Analytical and Structural Chemistry DepartmentCSIR‐Indian Institute of Chemical TechnologyTarnaka, Uppal RoadHyderabad500007India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| |
Collapse
|
48
|
Kim HM, Kang JS. Metabolomic Studies for the Evaluation of Toxicity Induced by Environmental Toxicants on Model Organisms. Metabolites 2021; 11:485. [PMID: 34436425 PMCID: PMC8402193 DOI: 10.3390/metabo11080485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Environmental pollution causes significant toxicity to ecosystems. Thus, acquiring a deeper understanding of the concentration of environmental pollutants in ecosystems and, clarifying their potential toxicities is of great significance. Environmental metabolomics is a powerful technique in investigating the effects of pollutants on living organisms in the environment. In this review, we cover the different aspects of the environmental metabolomics approach, which allows the acquisition of reliable data. A step-by-step procedure from sample preparation to data interpretation is also discussed. Additionally, other factors, including model organisms and various types of emerging environmental toxicants are discussed. Moreover, we cover the considerations for successful environmental metabolomics as well as the identification of toxic effects based on data interpretation in combination with phenotype assays. Finally, the effects induced by various types of environmental toxicants in model organisms based on the application of environmental metabolomics are also discussed.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
49
|
Castro G, Ramil M, Cela R, Rodríguez I. Identification and determination of emerging pollutants in sewage sludge driven by UPLC-QTOF-MS data mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146256. [PMID: 33714823 DOI: 10.1016/j.scitotenv.2021.146256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Sludge from sewage treatment plants (STPs) is recognized as a sink of moderate to high lipophilic compounds resistant to biodegradation. Herein, we investigate the presence of emerging pollutants in sewage sludge combining the information provided by mass spectrometry detection, following ultra-performance liquid chromatography (UPLC), with the use of an accurate spectral database of pesticides and pharmaceuticals. In a first step, the performance of matrix solid-phase dispersion, as sample preparation technique, and two non-target data acquisition strategies (data dependent, DDA, and data independent analysis modes, DIA), used in combination with a UPLC quadrupole time-of-flight system, are assessed using a selection of deuterated compounds added either to freeze-dried sludge samples, or to sludge extracts. Possibilities and limitations of both modes are discussed. Following the DDA approach, a group of 68 micropollutants was identified in sludge from different STPs. Some of them are reported in this compartment for the first time. Finally, semi-quantitative concentration data are reported for a group of 37 pollutants in samples obtained from 16 STPs. Out of them, 10 pharmaceuticals, showing detection frequencies and median sludge residues above 50% and 100 ng g-1, respectively; are highlighted as pollutants to be monitored in sludge in order to understand their behaviour during the wastewater treatment.
Collapse
Affiliation(s)
- G Castro
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Ramil
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - R Cela
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - I Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Research Institute on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
50
|
Cavaillé L, Kim C, Bounouba M, Zind H, Claparols C, Riboul D, Pinelli E, Albasi C, Bessiere Y. Development and validation of QuEChERS-based extraction for quantification of nine micropollutants in wastewater treatment plant. Anal Bioanal Chem 2021; 413:5201-5213. [PMID: 34228133 DOI: 10.1007/s00216-021-03489-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was established for simultaneous quantification of eight pharmaceutical molecules (2-hydroxyibuprofen, diclofenac, ibuprofen, propranolol, ofloxacin, oxazepam, sulfamethoxazole, carbamazepine) and caffeine in environmental matrices. Analysis was performed by ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS-MS). Quantification was performed by using the 13C internal standard method for each molecule. Two methods were firstly optimized on freeze-dried waste activated sludge and then applied and validated on real complex matrices, which have contrasted physicochemical properties, i.e., clarified wastewater and primary sludge. The combination of acetate buffer with MgSO4 (protocol A) and citrate buffer with Na2SO4 (protocol B) was found necessary to recover the nine targeted compounds. Adding a higher salts quantity of Na2SO4 (protocol B) compared to MgSO4 (protocol A) is crucial to increase the ionic strength of the aqueous solution and to obtain comparable extraction recoveries of the targeted molecules. Adding two times solvent volume to the aqueous phase leads to increased absolute recovery for all molecules and both protocols. After demonstration of the final protocol's performance on the control matrix, its robustness was tested on the matrices of interest. As a result, the two proposed detection methods exhibit good reproducibility, high sensitivity, and high reliability.
Collapse
Affiliation(s)
- L Cavaillé
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, CNRS, INPT, UPS, 31400, Toulouse, France
| | - C Kim
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - M Bounouba
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - H Zind
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - C Claparols
- Université de Toulouse, UPS, ICT, 118 route de Narbonne, 31062, Toulouse Cedex 9, France.,CNRS, LCC, 205 route de Narbonne, BP 44099, 31077, Toulouse Cedex 4, France
| | - D Riboul
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, CNRS, INPT, UPS, 31400, Toulouse, France.,UMR 5245 CNRS-INP-UPS, Laboratoire d'écologie fonctionnelle et Environnement, 31326, Castanet-Tolosan, France
| | - E Pinelli
- UMR 5245 CNRS-INP-UPS, Laboratoire d'écologie fonctionnelle et Environnement, 31326, Castanet-Tolosan, France
| | - C Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, CNRS, INPT, UPS, 31400, Toulouse, France
| | - Y Bessiere
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France.
| |
Collapse
|