1
|
Ning Y, Wang Y, Wang S, Wang W. One-component dual-mode sensor array for identification and quantification of biothiols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125555. [PMID: 39647266 DOI: 10.1016/j.saa.2024.125555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Biothiol analysis is significant to health assessment and early detection of potential diseases. Considering practical requirements, simple and rapid identification and determination of biothiols are still a great challenge due to the similar structures. Fortunately, the recently emerging colorimetric sensor array technique makes such a task possible. Herein, one-component dual-mode sensor array consisting of carbon dots (CDs) and Ag nanoparticles (AgNPs) system was designed for identification and quantification of biothiols. The identification principle is based on the inner filter effect (IFE) and different binding constants. Due to the IFE between CDs and AgNPs, the fluorescence of CDs was quenched, but recovered again after addition of biothiols because of the binding of biothiols with AgNPs. Significantly, the fluorescence recovered in varying degree due to the different binding constants of biothiols to AgNPs. Meanwhile, the absorbance of the system decreased and the color of the solution deepened. Therefore, the CDs-AgNPs system with fluorescence and absorbance response was used as the single sensing unit and generated the cross-responsive signal for different biothiols. The sensor array achieved 100 % accuracy in identifying biothiols and biothiol mixtures. Moreover, the rapid quantification of biothiols in serum samples was also achieved by RGB-based smartphone colorimetry. The way to construct one component sensor array with dual mode signal outputs tremendously saves cost and time, providing a powerful tool for the identification of different biothiols. In addition, the rapid quantification of biothiols in serum samples based on RGB-based smartphone colorimetry demonstrated its powerful application prospects in disease diagnosis.
Collapse
Affiliation(s)
- Yuanna Ning
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yongbo Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Shaojie Wang
- School of Life Science, Xinghuacun College, Shanxi University, Taiyuan 030006, PR China
| | - Wencai Wang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
2
|
Zhang X, Zhang Y, Chen J, Feng R, Wu X, Zhang T, Yu S, Gan N, Tang K, Wu YX. Transferrin Modified Gold Nanoclusters-Based Biosensing Nanoplatform for High-Precision Multimodal Bioimaging of Tumor Cells. Anal Chem 2025; 97:1264-1272. [PMID: 39785614 DOI: 10.1021/acs.analchem.4c05044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO2 nanosheets was developed for multimodal imaging of tumor cells. First, oxidizable MnO2 nanosheets provided a smart tool for use as nanocarriers and contrast agents for intracellular glutathione (GSH)-activated magnetic resonance imaging (MRI). Then, MnO2 nanosheets delivered Tf-AuNC-based biosensing nanoplatforms into cells through endocytosis. Endogenous GSH degraded MnO2 nanosheets into Mn2+, and the released functional nucleic acid probes can perform specific biosensing responses to miR-21 exhibiting multimodal imaging including two-photon near-infrared fluorescence imaging (TP-NIRFI), fluorescence lifetime imaging (FLIM), and MRI. Finally, the biosensing nanoplatform achieved satisfactory results in tumor cells and tissues by TP-NIRFI (300.0 μm penetration depth), FLIM (τ ≈ 50.0 ns), and MRI. Therefore, biosensing nanoplatforms based on Tf-AuNCs and MnO2 nanosheets show great potential for multimodal detection and imaging in tumor cells.
Collapse
Affiliation(s)
- Xianmiao Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuhang Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jia Chen
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rong Feng
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiangwu Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Zhang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shengrong Yu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Ning Gan
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
3
|
Xue Y, Bao C, Liu H, Ma F, Yang M, Li X. BSA-Assisted Synthesis of Au Nanoclusters/MnO 2 Nanosheets for Fluorescence "Switch-On" Detection of Alkaline Phosphatase. BIOSENSORS 2025; 15:49. [PMID: 39852099 PMCID: PMC11763645 DOI: 10.3390/bios15010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO2 nanosheets (Au NCs-MnO2 NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO2 NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO2 NSs to Mn2+ and facilitate the fluorescence recovery of Au NCs. The fluorescence assay offers the advantages of facile preparation, cost-effectiveness, good specificity, and high sensitivity. Moreover, the assay exhibits a broad linear range (0.005 U/mL to 8 U/mL) for ALP detection with a remarkable limit of detection of 0.0015 U/mL. Notably, this assay demonstrates promising applicability for detection ALP in human serum samples, thereby providing valuable potential for clinical applications.
Collapse
Affiliation(s)
- Yijiong Xue
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
- Xia Duopu Health Center of Ningxiang, Changsha 410605, China
| | - Chengqi Bao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
| | - Hui Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
| | - Fanghui Ma
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (Y.X.); (C.B.); (H.L.); (F.M.)
- Furong Labratory, Changsha 410083, China
| | - Xiaoqing Li
- Furong Labratory, Changsha 410083, China
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Zhao T, Zhang T, Tao Z, Zhou Z, Xia X, Wu Z, Wang F, Ren J, Wang E. A lysosome-targeted fluorescent probe with large Stokes shift for visualizing biothiols in vivo and in vitro. iScience 2024; 27:111334. [PMID: 39634562 PMCID: PMC11615578 DOI: 10.1016/j.isci.2024.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Lysosomal biothiols play critical roles in numerous cellular processes and diseases. Researching an effective method for real-time labeling biothiols in lysosomes is of great significance and urgency, as it could provide essential information for the diagnosis of relevant diseases. In this study, we developed a lysosome-targeted fluorescent probe (LY-DCM-P) with a large Stokes shift of 150 nm for the sensitive and selective detection of biothiols in vivo and in vitro. Additionally, LY-DCM-P showed low cytotoxicity and excellent lysosome-targeted ability. The probe was successfully employed to monitor fluctuations in lysosomal biothiols in various living systems, enabling enormous potential to accurately monitor the occurrence and progress of biothiol-related diseases.
Collapse
Affiliation(s)
- Taotao Zhao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Tong Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Zijun Tao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Zhe Zhou
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Xiaofeng Xia
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Zhengjun Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Feiyi Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Jun Ren
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| | - Erfei Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
5
|
Hu Z, Cheng M, Zhang Y, Zhang L, Xu H, Zhu X. A Sensitive and Quick Fluorescent Sensor for the "Turn-On" Detection and Imaging of Glutathione Based on Sulfur Quantum Dots and MnO 2 Nanosheets. LUMINESCENCE 2024; 39:e4929. [PMID: 39508153 DOI: 10.1002/bio.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Glutathione (GSH) is one of the most abundant bioethanol antioxidants in living cells. Here, a fluorescent probe based on MnO2 nanosheets and sulfur quantum dots (SQDs) was fabricated. Because of the synergistic effect of IFE and FRET, the fluorescence from SQDs was quenched by MnO2 nanosheets. In the presence of GSH, the fluorescence of SQDs could be recovered because of the reduction of MnO2 nanosheets by GSH. The method can detect GSH in the concentration range of 5 ~ 1000 μM with the detection limit as low as 1.26 μM. This quick, easy, and cost-effective sensor could be used for the quantification of GSH in serum samples and the imaging of GSH in Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Zhenlin Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Min Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanyan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leyao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huifeng Xu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xi Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Hu X, Quan C, Ren T, Zhao L, Shen Y, Zhu Y, Wang J. MnO 2 nanoparticles decorated with Ag/Au nanotags for label-based SERS determination of cellular glutathione. Mikrochim Acta 2023; 190:341. [PMID: 37530902 DOI: 10.1007/s00604-023-05870-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/09/2023] [Indexed: 08/03/2023]
Abstract
A novel stimulus-responsive surface-enhanced Raman scattering (SERS) nanoprobe has been developed for sensitive glutathione (GSH) detection based on manganese dioxide (MnO2) core and silver/gold nanoparticles (Ag/Au NPs). The MnO2 core is not only capable to act as a scaffold to amplify the SERS signal via producing "hot spots", but also can be degraded in the presence of the target and thus greatly enhance the nanoprobe sensitivity for sensing of GSH. This approach enables a wide linear range from 1 to 100 µM with a 2.95 µM (3σ/m) detection limit. Moreover, the developed SERS nanoprobe represents great possibility in both sensitive detection of intracellular GSH and even can monitor the change of intracellular GSH level when the stimulant occurs. This sensing system not merely offers a novel strategy for sensitive sensing of GSH, but also provides a new avenue for other biomolecules detection.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Cuilu Quan
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Tiantian Ren
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Linan Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yanting Shen
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yanyan Zhu
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| | - Jing Wang
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
8
|
Zhang T, Zhu S, Wang J, Liu Z, Wang M, Li S, Huang Q. Construction of a novel nano-enzyme for ultrasensitive glucose detection with surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122307. [PMID: 36630808 DOI: 10.1016/j.saa.2022.122307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Fabricating more sensitive, stable and low-cost nanomaterials for the detection of glucose is important for the disease diagnosis and monitoring. Herein, we established a nanocomposite (polypyrrole bridging GO@Au@MnO2) as a novel surface-enhanced Raman scattering (SERS) nanoprobe for the quantitative detection of glucose in trace serum. Each component in the nanocomposites played an irreplaceable role in SERS detection of glucose. Polypyrrole (PPy) could act as Raman signal and extra SERS signal molecules didn't need to be introduced; Graphene oxide (GO) and gold nanoparticles (Au NPs) could enhance Raman signal of PPy; Au NPs also acted as glucose oxidase, which can oxidize glucose to produce gluconic acid and hydrogen peroxide(H2O2); Manganese oxide (MnO2) further enhanced Raman signal of PPy and responded to hydrogen peroxide, which will induce the decrease of Raman intensity of PPy. Thus, glucose can be quantified according to Raman signal output of PPy, which displayed a liner range from 1 to 10 μM, with detectable limit of 0.114 μM. Because of the merits in sensitivity, convenience and versatility, the novel method shows large potential space for disease-related substance detection in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shunhua Zhu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Jingjing Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Zhiying Liu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Mingxin Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shibao Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| | - Qingli Huang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China; School of Pharmacy of Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China.
| |
Collapse
|
9
|
Jin Z, Sheng W, Liu J, Liu C, Ma Y, Wang S, Zhang W, Huang N. A fluorescence immunoassay based on GSH destroying MnO 2@QDs for the simultaneous ultrasensitive detection of four mycotoxins in cereals. Food Chem 2023; 420:136099. [PMID: 37037114 DOI: 10.1016/j.foodchem.2023.136099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
A novel fluorescence immunoassay based on MnO2 nanoflowers loading multicolor quantum dots and glutathione destroying MnO2 nanoflowers to release quantum dots combined with magnetic separation is developed for rapid, ultra-sensitive, and simultaneous quantitative detection of ochratoxin A, aflatoxin B1, fumonisin B1, and zearalenone in cereal samples. The test linear range of assay is from 0.001 to 200 μg L-1. The limit of detection for ochratoxin A, aflatoxin B1, fumonisin B1, and zearalenone is 0.0001 μg L-1, 0.0001 μg L-1, 0.0003 μg L-1, and 0.0001 μg L-1, respectively. The simultaneous detection of four mycotoxins can be achieve within 30 min. The test results of four mycotoxins in the incurred corn, rice, and oat samples have been confirmed by ultra-performance liquid chromatography tandem mass spectrometry, the differences between results are considered no significantly different (p > 0.05). This multiplexed test scheme has provided a potential analysis strategy for multiple food risk factors.
Collapse
Affiliation(s)
- Zixin Jin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Junli Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenchen Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yueru Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wanli Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Na Huang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Zhang X, Sun B, Zhang Y, Zhang Q, Akhtar MH, Li M, Gu Y, Yu C. Portable smartphone-assisted ratiometric fluorescence sensor for visual detection of glucose. Anal Chim Acta 2023; 1260:341173. [PMID: 37121649 DOI: 10.1016/j.aca.2023.341173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/25/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Fluorescence-based visual assays have sparked tremendous attention in on-site detection due to their obvious color gradient changes and high sensitivity. In this study, a novel emission wavelength shift-based visual sensing platform is constructed to detect glucose based on the oxidation of Rhodamine B (RhB). MnO2 nanosheets (MnO2 NS) with strong oxidizing properties were introduced to oxidize RhB, which resulted in a blue shift in the emission wavelength, and a visual color changed of the fluorescence from orange-red to green. The oxidation reaction could be inhibited via reducing and destroying MnO2 NS by H2O2, which was produced by the oxidizing procedure of glucose in the presence of glucose oxidase (GOx). A series of wavelength shifts and fluorescence color variations appeared with the addition of various amounts of glucose. A ratiometric fluorescence glucose sensor with a lowest recorded concentration of 0.25 μM was developed. Meanwhile, test paper-based assays integrated with the smartphone platform were established for the sensing of glucose by means of the significant fluorescence color changes, offering a reliable, sensitive, and portable on-site assay of glucose.
Collapse
|
11
|
Chen J, Qin H, Xu L, Leng S, Chang J. Tetrabutylammonium-chloride-glycerol of deep eutectic solvent functionalized MnO 2: a novel mimic enzyme for the quantitative and qualitative colorimetric detection of L-cysteine. Analyst 2022; 148:182-190. [PMID: 36477518 DOI: 10.1039/d2an01771g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
L-Cysteine is a common amino acid that plays an important role in human livelihood and production. Therefore, a novel method for the simultaneous quantitative and qualitative determination of L-cysteine by a colorimetric detection system is proposed. As a viable oxidase mimic, [N4444]Cl-G/MnO2, which consisted of MnO2 nanosheets functionalized by a tetrabutylammonium chloride-glycerol ([N4444]Cl-G) based deep eutectic solvent (DES) was fabricated. Owing to the oxidation of MnO2 nanosheets, [N4444]Cl-G/MnO2 could oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue product (oxTMB) with the characteristic UV-vis spectrum absorbance at 652 nm. The oxidation of TMB by DES/MnO2 was inhibited when L-cysteine was introduced, and the absorbance decreased proportionally with the increase in L-cysteine concentration. Due to this inhibition effect, a colorimetric detection system ([N4444]Cl-G/MnO2-TMB) was developed for the quantitative determination of L-cysteine. Under optimal conditions, the assay showed good linearity over the concentration range of 0.125-2.00 μg mL-1 with a low detection limit of 5.96 ng mL-1. A study of the inhibition mechanism demonstrated that the sulfhydryl group of L-cysteine could decompose [N4444]Cl-G/MnO2 into Mn2+, thus limiting the conversion of TMB to oxTMB. In addition, the [N4444]Cl-G/MnO2-TMB system was used in test strips for the visual qualitative detection of L-cysteine. The selectivity and test strip results demonstrated the high selectivity, simple operation, and rapid response of the [N4444]Cl-G/MnO2-TMB system for the qualitative detection of L-cysteine. Given the satisfying performance of the detection strategy, colorimetric sensing based on the [N4444]Cl-G/MnO2-TMB system is considered to have prospective application value in the quantitative and qualitative detection of L-cysteine.
Collapse
Affiliation(s)
- Jing Chen
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China. .,Tongren Key Laboratory for Modernization Research, Development and Utilization of Traditional Chinese Medicine and National Medicine, Tongren University, Tongren 554300, PR China
| | - Hangdao Qin
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China.
| | - Lu Xu
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China. .,Tongren Key Laboratory for Modernization Research, Development and Utilization of Traditional Chinese Medicine and National Medicine, Tongren University, Tongren 554300, PR China
| | - Senlin Leng
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China.
| | - Jun Chang
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China.
| |
Collapse
|
12
|
Lei Z, Guo J, Zou J, Wang Z. Colorimetric determination of biothiols based on peroxidase-mimicking Ag nanoparticles decorated Ti 3C 2 nanosheets. Mikrochim Acta 2022; 189:369. [PMID: 36063228 DOI: 10.1007/s00604-022-05472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Ag nanoparticle-decorated Ti3C2 nanosheets (AgNPs@Ti3C2 NSs) were facilely synthesized via a self-reduction approach, in which Ti3C2 NSs acted as both reductant and supporter. The AgNPs@Ti3C2 NS nanocomposite exhibited excellent peroxidase-like activity with o-phenylenediamine (OPD) and H2O2 as substrates. The catalytic behavior followed the typical Michaelis-Menten kinetics; Michaelis constant (Km) and maximum initial velocity (Vmax) for OPD were 0.263 mM and 43.2 × 10-8 M-1 s, indicating high affinity and high catalytic efficiency towards OPD. The catalytic mechanism was revealed to be an accelerated electron transfer process. Based on the inhibition effect on the peroxidase-like activity of AgNPs@Ti3C2 NSs, a simple, fast, and sensitive colorimetric method for detection of low-weight biothiols (cysteine (Cys), homocysteine (Hcy), and glutathione (GSH)) was developed by measuring the absorbance at 425 nm. The colorimetric method displayed wide linear range (50 nM to 50 μM for Cys, 10 nM to 250 μM for Hcy, 10 nM to 50 μM for GSH), low limit of detection (48.5 nM for Cys, 5.5 nM for Hcy, 7.0 nM for GSH), and good selectivity and short assay time (3 min). Moreover, the feasibility of this colorimetric sensor was demonstrated by accurately determining Cys in diluted human serum samples; good recovery (95.9-101.0%) and low relative standard deviations (2.8-4.9%) were obtained, showing great promise for point-of-care test in clinical samples.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| | - Jingfang Guo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Jing Zou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| |
Collapse
|
13
|
Xia HY, Li BY, Zhao Y, Han YH, Wang SB, Chen AZ, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
MnO2 nanosheet-assisted ratiometric fluorescent sensor for ascorbic acid based on Pyronin Y and thiamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Wang G, Li Y, Chen H, Tang S, Cheng Y, Yu Y, Majeedano AQ, Pu S, Wang G. A New Dual-peak Fluorescent Probe for Water Content Detection Made From Taxus. J Fluoresc 2022; 32:1931-1939. [PMID: 35771342 DOI: 10.1007/s10895-022-02983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
In this paper, the leaves of Taxus were used as the sole carbon source, and two kinds of carbon dots blue and red, with different properties, were synthesized by the hydrothermal method under different conditions. The red carbon dots were quenched in the water, and the blue carbon dots had stable fluorescence properties in water environment. The bimodal fluorescence probe formed by mixing could accurately and stably measure the water content in ethanol, which was in the range of 82.5%-100%, is highly correlated with the fluorescence intensity ratio (I481/I678) of mixed carbon dots under 390 nm excitation light, with R2 = 0.995 and the detection limit as low as 0.31%. The experimental materials are environmentally friendly, low in cost, and simple to operate, as well as the water content measured by proportional fluorescence has high accuracy, which provides a new method for measuring moisture in ethanol.
Collapse
Affiliation(s)
- Gang Wang
- College of Forestry, Sichuan Agricultural University, 611130, Chengdu, Sichuan province, China
| | - Yaping Li
- College of Forestry, Sichuan Agricultural University, 611130, Chengdu, Sichuan province, China
| | - Haipeng Chen
- College of Science, Sichuan Agricultural University, 625014, Ya'an, Sichuan province, China
| | - Shuqin Tang
- College of Forestry, Sichuan Agricultural University, 611130, Chengdu, Sichuan province, China
| | - Yiyang Cheng
- College of Science, Sichuan Agricultural University, 625014, Ya'an, Sichuan province, China
| | - Yuhong Yu
- College of Forestry, Sichuan Agricultural University, 611130, Chengdu, Sichuan province, China
| | - Abdul Qayoom Majeedano
- College of Forestry, Sichuan Agricultural University, 611130, Chengdu, Sichuan province, China
| | - Shangrao Pu
- Department of Landscape Plants, Sichuan Agricultural University, 611130, Chengdu, Sichuan province, China.
| | - Gang Wang
- College of Forestry, Sichuan Agricultural University, 611130, Chengdu, Sichuan province, China.
| |
Collapse
|
16
|
Cao M, Zhuang Z, Liu Y, Zhang Z, Xuan J, Zhang Q, Wang W. Peptide-mediated green synthesis of the MnO 2@ZIF-8 core-shell nanoparticles for efficient removal of pollutant dyes from wastewater via a synergistic process. J Colloid Interface Sci 2022; 608:2779-2790. [PMID: 34774323 DOI: 10.1016/j.jcis.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/12/2023]
Abstract
The MnO2@ZIF-8 core-shell nanoparticles for highly efficient dye degradation have been synthesized with a green method. ZIF-8 crystals with controlled morphology and size are first synthesized by using peptide to modulate the crystal growth. MnO2 is then coated on ZIF-8 via in situ reaction. The surface MnO2 density can be controlled by the dosage of KMnO4. The MnO2@ZIF-8 nanoparticles work as photocatalyst to degrade rhodamine B in a Fenton-like process, giving a degradation ratio of > 96.0%. The degradation kinetics comply well with the Pseudo-second-order model and the experimental equilibrium data meet the Langmuir model best. The specific hierarchical structure of MnO2@ZIF-8 assures a synergistic enhancement of the catalytic degradation performance from several aspects. First, anchoring of the MnO2 nanoparticles on ZIF-8 allows their well disperse to provide more active surface area. Second, highly porous ZIF-8 can adsorb dye molecules to accumulate them at the surface reactive sites. Third, the MnO2/ZIF-8 nano-heterojunctions enhance charge carrier transfer and accelerate the production of free oxidative radicals. The study demonstrates a green method for fabrication of hierarchical hybrid structures, paving the way for designing novel photocatalysts with potential applications for wastewater treatment.
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Ziwei Zhuang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zijin Zhang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jiaming Xuan
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Qinghua Zhang
- State Key Laboratory of Heavy Oil Processing and Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Wentao Wang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
17
|
Co-N-C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols. Anal Bioanal Chem 2022; 414:1857-1865. [PMID: 35028690 DOI: 10.1007/s00216-021-03816-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
Biothiol detection is of great importance for clinical disease diagnosis. Previous nanozyme-based colorimetric sensors for biothiol detection showed unsatisfactory catalytic activity, which led to a high detection limit. Therefore, developing new nanozymes with the high catalytic activity for biothiol detection is extremely necessary. Recently, single-atom nanozymes (SAzymes) have attracted much attention in biosensing due to their 100% atom utilization and excellent catalytic activity. Most previous works focus on the peroxidase-like activity of Fe-based SAzymes by using unstable and destructive H2O2 as the oxidant. It is essential to develop new SAzymes with high oxidase-like activity for biosensing to break through the limitation. Herein, Co-N-C SAzymes with high oxidase-like activity are explored. Furthermore, Co-N-C SAzymes are used as a biosensor for colorimetric detection of biothiols (GSH/Cys) based on the inhibition of thiols toward the oxidase-like activity of Co-N-C SAzymes, which showed high sensitivity with a low detection limit of 0.07 µM for GSH and 0.06 µM for Cys. Besides, the method showed good reproducibility and high selectivity against other amino acids. This work offers new insights using Co-N-C SAzymes in the biosensing field.
Collapse
|
18
|
Yuan X, Bai F, Ye H, Zhao H, Zhao L, Xiong Z. Smartphone-assisted ratiometric fluorescence sensing platform and logical device based on polydopamine nanoparticles and carbonized polymer dots for visual and point-of-care testing of glutathione. Anal Chim Acta 2021; 1188:339165. [PMID: 34794560 DOI: 10.1016/j.aca.2021.339165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2023]
Abstract
As a crucial biothiol, glutathione (GSH) plays a key role in the organisms. Monitoring GSH level is of great significance for disease diagnosis and biomedical research. In this work, polydopamine (PDA) nanoparticles-red fluorescent carbonized polymer dots (r-CPDs) based ratiometric fluorescence sensing platform was constructed and employed for GSH assay. Dopamine (DA) could be oxidized by cobalt oxyhydroxide (CoOOH) nanosheets and further polymerized into PDA nanoparticles with green fluorescence. However, in the presence of GSH, CoOOH nanosheets were reduced and decomposed, which prevented the production of PDA nanoparticles. In the sensing system, green-emitting PDA nanoparticles were employed as a response unit and r-CPDs were used as an internal reference unit. With the addition of GSH, the green fluorescence of PDA nanoparticles decreased as well as the red fluorescence of system remained relatively stable. Importantly, a distinct fluorescence color evolution from green to red was presented with a serious of GSH concentrations. Based on this, a portable smartphone-assisted ratiometric chromaticity analytical method was developed to achieve the on-site visual detection of GSH. Both the established ratiometric fluorescence and ratiometric chromaticity sensing methods for GSH assay have the merits of wide linear range, high sensitivity and excellent accuracy, which are suitable for the determination of GSH in human serum and exhibit great application potential in rapid and accurate monitoring of the GSH levels in clinical. Moreover, an ingenious logical device reflecting GSH levels was designed based on the two different fluorescence signals, which provided a new strategy for the intelligent online detection of GSH in complex biological matrices.
Collapse
Affiliation(s)
- Xucan Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Fujuan Bai
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Heng Ye
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Hanqing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
19
|
Yu M, Zhang H, Liu Y, Zhang Y, Shang M, Wang L, Zhuang Y, Lv X. A colorimetric and fluorescent dual-readout probe based on red emission carbon dots for nitrite detection in meat products. Food Chem 2021; 374:131768. [PMID: 34891086 DOI: 10.1016/j.foodchem.2021.131768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023]
Abstract
Nitrite (NO2-) is widely present in the human environment and accurate, sensitive and selective detecting of nitrite is of vital significance for food safety and water quality. Herein, a novel red emission carbon dots (r-CDs) fluorescent probe was fabricated for dual-mode detection of nitrite, which was capable of both convenient colorimetric analysis and accurate fluorometric detection. When NO2- is added to the rose-red r-CDs solution, NO2- interacts with the amino groups which on the surface of r-CDs to form diazotized substance, resulting in that the colorimetric color of r-CDs solution realizes the transition from rose red to light purple, and the red fluorescence is gradually quenched. The detection limits of colorimetric and fluorescence for NO2- were 0.193 μM and 0.149 μM, respectively. Furthermore, the dual-readout probe revealed satisfactory recovery and reliability when analyzing the concentration of NO2- in ham and bacon samples..
Collapse
Affiliation(s)
- Min Yu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Minghui Shang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Jia P, Hou J, Yang K, Wang L. On-off-on fluorescent sensor for glutathione based on bifunctional vanadium oxide quantum dots induced spontaneous formation of MnO 2 nanosheets. Mikrochim Acta 2021; 188:299. [PMID: 34401971 DOI: 10.1007/s00604-021-04958-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Fluorescence sensing of glutathione by tailor-made chemical sensors is a prospective technique, which could provide simple, fast, and visual detection. Herein, a fluorescence sensor based on vanadium oxide quantum dots (VOx QDs) and permanganate (MnO4-) has been designed for monitoring glutathione. The bifunctional VOx QDs, possessing rich redox chemistry and robust fluorescence (exhibiting fluorescence near 505 nm upon excitation at 450 nm), were synthesized via cryogenic-mediated liquid-phase exfoliation. In the presence of MnO4-, VOx QDs induced the spontaneous formation of MnO2 nanosheets which caused the fluorescence quenching. However, the subsequent introduction of glutathione could trigger MnO2 reduction to Mn2+, and the fluorescence was recovered. Based on this phenomenon, an "on-off-on" fluorescence sensor for glutathione detection was established. Under the optimal conditions, this sensor allowed detection of glutathione in the linear range of 0.5-100 μM with a detection limit of 0.254 μM. Additionally, the proposed strategy revealed the selectivity toward glutathione and the potential of practical application in the analysis of human serum, vegetable, and fruit samples.
Collapse
Affiliation(s)
- Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jinjie Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
21
|
Sang F, Li M, Yin S, Shi H, Zhao Y, Zhang Z. Highly sensitive and selective detection and intracellular imaging of glutathione using MnO 2 nanosheets assisted enhanced fluorescence of gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119743. [PMID: 33845335 DOI: 10.1016/j.saa.2021.119743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Glutathione (GSH) plays a critical role in biological defense system and is associated with numerous human pathologies. However, it still remains a challenge for fluorescent detection of GSH over cysteine (Cys) and homocysteine (Hcy) because of their similar structures. In this work, MnO2 nanosheets can efficiently quench the fluorescence of gold nanoclusters (Met-AuNCs) prepared by blending methionine and HAuCl4 owing to their superior absorption capability. However, GSH can reduce MnO2 nanosheets into Mn2+ which leads to the fluorescence recovery of Met-AuNCs. More intriguingly, GSH can dramatically and selectively enhance the fluorescence intensity of Met-AuNCs. Hence, a low background, ultrasensitive fluorescent detection of GSH was obtained with a detection limit of 68 nM. Moreover, the assay has been successfully used for GSH detection in human serum samples and cellular imaging with high selectivity over Cys and Hcy.
Collapse
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China.
| | - Menglin Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Suyao Yin
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Huahua Shi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Yan Zhao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| | - Zhizhou Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, People's Republic of China
| |
Collapse
|
22
|
Song Z, Jiang C, Wang F, Yu L, Ye S, Dramou P, He H. Nanozyme based on graphene oxide modified with Fe 3O 4, CuO, and cucurbit[6]uril for colorimetric determination of homocysteine. Mikrochim Acta 2021; 188:207. [PMID: 34047863 DOI: 10.1007/s00604-021-04868-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
A nanozyme based on graphene oxide modified with Fe3O4 NPs, CuO NPs, and cucurbit[6]uril has been successfully fabricated by a simple sonochemical technique. By employing CB[6] as a specific binding pocket and Fe3O4@CuO-GO as a peroxidase mimic, this novel nanozyme (BN I) is equipped with molecular recognition ability and enhanced peroxidase-like activity. On the basis of the inhibition effect of homocysteine (Hcy) towards the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by BN I, a simple colorimetric method is established for the sensitive and selective determination of Hcy. This proposed method displays a good linear response in the range 5-200 μM with a detection limit of 1.8 μM. In the practical assay of human plasma samples, the relative standard deviations (RSD) are lower than 11% and the recoveries are between 98.0 and 104.9%. In the assay of human urine samples, the RSD are below 9.0% and the recoveries range from 94.0 to 103.5%. The colorimetric method presented offers a convenient and accurate way for the determination of biomarkers in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Zhaorui Song
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211100, China
| | - Chenrui Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211100, China
| | - Fangqi Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211100, China
| | - Lili Yu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211100, China
| | - Sijing Ye
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211100, China
| | - Pierre Dramou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211100, China.
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211100, China.
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211100, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
23
|
Gold-Modified Micellar Composites as Colorimetric Probes for the Determination of Low Molecular Weight Thiols in Biological Fluids Using Consumer Electronic Devices. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This work describes a new, low-cost and simple-to-use method for the determination of free biothiols in biological fluids. The developed method utilizes the interaction of biothiols with gold ions, previously anchored on micellar assemblies through electrostatic interactions with the hydrophilic headgroup of cationic surfactant micelles. Specifically, the reaction of AuCl4− with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB) produces an intense orange coloration, due to the ligand substitution reaction of the Br− for Cl− anions, followed by the coordination of the AuBr4− anions on the micelle surface through electrostatic interactions. When biothiols are added to the solution, they complex with the gold ions and disrupt the AuBr4−–CTAB complex, quenching the initial coloration and inducing a decrease in the light absorbance of the solution. Biothiols are assessed by monitoring their color quenching in an RGB color model, using a flatbed scanner operating in transmittance mode as an inexpensive microtiter plate photometer. The method was applied to determine the biothiol content in urine and blood plasma samples, with satisfactory recoveries (i.e., >67.3–123% using external calibration and 103.8–115% using standard addition calibration) and good reproducibility (RSD < 8.4%, n = 3).
Collapse
|
24
|
Akrivi E, Kappi F, Gouma V, Vlessidis AG, Giokas DL, Kourkoumelis N. Biothiol modulated growth and aggregation of gold nanoparticles and their determination in biological fluids using digital photometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119337. [PMID: 33360206 DOI: 10.1016/j.saa.2020.119337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This work describes a novel and easy to use method for the determination of biologically important thiols that relies on their ability to inhibit the catalytic enlargement of AuNP seeds in the presence of ACl4- ions and trigger their aggregation. UV-vis spectroscopic monitoring of the plasmon resonance bands of the formed AuNPs showed that the spectral and color transitions depend both on the concentration and the structure of biothiols. The colorimetric changes induced by biothiols were quantified in the concentration range from 5 to 300 μM in the RGB color system with digital photometry using a commercially available flatbed scanner as detector. On the basis of these results, the applicability of the method was tested to the determination of glutathione in red blood cells and cysteine in blood plasma with satisfactory recoveries (88.7-96.5%), low detection limits (1.0 μM), good selectivity against major biomolecules under physiologically relevant conditions and satisfactory reproducibility (<8%). The method requires minimum technical expertise, is easy to use and is performed without scientific equipment, holding promise as a simple assay of biothiol testing even by non-experts.
Collapse
Affiliation(s)
- Elli Akrivi
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Greece; Neurology Clinic, University Hospital of Ioannina, Greece
| | - Foteini Kappi
- Department of Chemistry, School of Natural Sciences, University of Ioannina, Greece
| | - Vasiliki Gouma
- Department of Chemistry, School of Natural Sciences, University of Ioannina, Greece
| | | | - Dimosthenis L Giokas
- Department of Chemistry, School of Natural Sciences, University of Ioannina, Greece.
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Greece.
| |
Collapse
|