1
|
Cademartiri F, Maffei E, Cau R, Positano V, De Gori C, Celi S, Saba L, Bossone E, Meloni A. Current and future applications of photon-counting computed tomography in cardiovascular medicine. Heart 2025:heartjnl-2025-325790. [PMID: 40368454 DOI: 10.1136/heartjnl-2025-325790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Photon-counting CT (PCCT) represents a transformative advancement in cardiac imaging, addressing key limitations of conventional CT. This review synthesises current evidence to demonstrate how PCCT's superior spatial resolution, enhanced tissue characterisation and multienergy capabilities broaden the diagnostic potential of cardiac CT. Applications include the precise detection and quantification of coronary artery calcifications, evaluation of coronary plaque burden and composition, improved assessment of coronary stents, and comprehensive myocardial tissue characterisation and perfusion analysis. By offering high-quality spectral information and detailed tissue characterisation, PCCT provides a non-invasive alternative for assessing coronary artery disease and myocardial pathology, reducing the need for invasive coronary angiography and cardiac MRI. Despite ongoing challenges in technology and clinical implementation, PCCT has the potential to revolutionise cardiovascular diagnostics, optimise diagnostic workflows and enhance patient care through more accurate, streamlined and comprehensive assessments.
Collapse
Affiliation(s)
- Filippo Cademartiri
- Department of Radiology, IRCCS SYNLAB SDN, Naples, Italy
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Erica Maffei
- Department of Radiology, IRCCS SYNLAB SDN, Naples, Italy
| | - Riccardo Cau
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanita Pubblica, Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanita Pubblica, Pisa, Italy
| | - Simona Celi
- Bioengineering Unit, Fondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanita Pubblica, Massa, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Eduardo Bossone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonella Meloni
- Bioengineering Unit, Fondazione Toscana Gabriele Monasterio per la Ricerca Medica e di Sanita Pubblica, Pisa, Italy
| |
Collapse
|
2
|
Zhi K, Wang Y, Yan L, Hou F, Wu J, Zhang S, Zhu H, Zhao L, Wang N, Zhao X, Li X, Wang Y, Chen C, Wang N, Xu Y, Yang G, Nie P. The interpretable CT-based vision transformer model for preoperative prediction of clear cell renal cell carcinoma SSIGN score and outcome. Insights Imaging 2025; 16:98. [PMID: 40346303 PMCID: PMC12064486 DOI: 10.1186/s13244-025-01972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/13/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVES To develop and validate an interpretable CT-based vision transformer (ViT) model for preoperative prediction of the stage, size, grade, and necrosis (SSIGN) and outcome in clear cell renal cell carcinoma (ccRCC) patients. METHODS Eight hundred forty-five ccRCC patients from multiple centers were retrospectively enrolled. For each patient, 768 ViT features were extracted in the cortical medullary phase (CMP) and renal parenchymal phase (RPP) images, respectively. The CMP ViT model (CVM), RPP ViT model (RVM), and CMP-RPP combined ViT model (CRVM) were constructed to predict the SSIGN in ccRCC patients. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of each model. Decision curve analysis (DCA) was used to evaluate the net clinical benefit. The endpoint was the progression-free survival (PFS). Kaplan-Meier survival analysis was used to assess the association between model-predicted SSIGN and PFS. The SHAP approach was applied to determine the prediction process of the CRVM. RESULTS The CVM, RVM, and CRVM demonstrated good performance in predicting SSIGN, with a high AUC of 0.859, 0.883, and 0.895, respectively, in the test cohort. DCA demonstrated the CRVM performed best in clinical net benefit. In predicting PFS, CRVM achieved a higher Harrell's concordance index (C-index, 0.840) than the CVM (0.719) and RVM (0.773) in the test cohort. The SHAP helped us understand the impact of ViT features on CRVM's SSIGN prediction from a global and individual perspective. CONCLUSION The interpretable CT-based CRVM may serve as a non-invasive biomarker in predicting the SSIGN and outcome of ccRCC. CRITICAL RELEVANCE STATEMENT Our findings outline the potential of an interpretable CT-based ViT biomarker for predicting the SSIGN score and outcome of ccRCC, which might facilitate patient counseling and assist clinicians in therapy decision-making for individual cases. KEY POINTS Current first-line imaging lacks preoperative prediction of the SSIGN score for ccRCC patients. The ViT model could predict the SSIGN score and outcome of ccRCC patients. This study can facilitate the development of personalized treatment for ccRCC patients.
Collapse
Affiliation(s)
- Kaiyue Zhi
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanmei Wang
- GE Healthcare China, Pudong New Town, Shanghai, China
| | - Lei Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feng Hou
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuo Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - He Zhu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lianzi Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ning Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xia Zhao
- Department of Radiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianjun Li
- Department of Nuclear Medicine, Weifang People's Hospital, Weifang, China
| | - Yicong Wang
- Department of Medical Imaging, The Affiliated Hospital of Jining Medical College, Jining, China
| | - Chengcheng Chen
- Department of Radiology, Rizhao People's Hospital, Rizhao, China
| | - Nan Wang
- Department of Nuclear Medicine, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City, China.
| | - Guangjie Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Pei Nie
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Dillinger D, Waldeck S, Overhoff D, Faby S, Jürgens M, Schmidt B, Hesse A, Schoch J, Schmelz H, Stoll R, Nestler T. Automated Kidney Stone Composition Analysis with Photon-Counting Detector CT, a Performance Study-A Phantom Study. Acad Radiol 2025; 32:2005-2012. [PMID: 39550346 DOI: 10.1016/j.acra.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND For treatment of urolithiasis, the stone composition is of particular interest, as uric acid (UA) stones can be treated by chemolitholysis. In this ex vivo study, we employed an advanced composition analysis approach for urolithiasis utilizing spectral data obtained from a photon-counting detector CT (PCDCT) to differentiate UA and non-UA stones. Our primary objective was to assess the accuracy of this analysis method. METHODS A total of 148 urinary stones with a known composition that was measured by the standard reference method infrared spectroscopy (reference) were placed in an abdomen phantom and scanned in the PCDCT. Our objectives were to assess the stone detection rates of PCDCT and the accuracy of the prediction of the stone composition in UA vs non-UA compared to the reference. RESULTS Automated detection recognized 86.5% of all stones, with best detection rate for stones larger > 5 mm in diameter (95.4%, 88.8% for stones larger than 3 mm, 94.7% for stones larger than 4 mm). Depending on the volume, we found a recognition rate of 92.8% for stones larger than 20 mm3 and 94.0% for stones with more than 30 mm3. Prediction of UA composition showed an overall sensitivity and a positive predictive value of 66.7% and a specificity and negative predictive value of 94.5%. Best diagnostic values volume wise were found by only including stones with a larger volume than 30 mm3, there we found a sensitivity of 91.7%, and a specificity of 92.4%. Sensitivity in dependance of the largest diameter was best for stones larger than 5 mm (85.7%), but specificity decreased with increasing diameter (to 91.3%). CONCLUSION Automated urinary stone composition analysis with PCDCT showed a good automated detection rate of 86.5% up to 95.4% depending on stone diameter. The differentiation between non-UA and UA stones is performed with an NPV of 94.5% and a PPV of 66.7%. The prediction probability of non-UA stones was very good. This means the automatic detection and differentiation algorithm can identify the patients which will not profit from chemolitholysis.
Collapse
Affiliation(s)
- Daniel Dillinger
- Department of Vascular and Endovascular Surgery, Federal Armed Services Hospital Koblenz, Koblenz, Germany (D.D.); Department of Radiology and Neuroradiology, Federal Armed Services Hospital Koblenz, Koblenz, Germany (D.D., S.W., D.O.).
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, Federal Armed Services Hospital Koblenz, Koblenz, Germany (D.D., S.W., D.O.); Institute of Neuroradiology, University Medical Centre Johannes Gutenberg University Mainz, Mainz, Germany (S.W.)
| | - Daniel Overhoff
- Department of Radiology and Neuroradiology, Federal Armed Services Hospital Koblenz, Koblenz, Germany (D.D., S.W., D.O.); Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Manheim, Germany (D.O.)
| | - Sebastian Faby
- Department of Computed Tomography, Siemens Healthineers AG, Forchheim, Germany (S.F., M.J., B.S.)
| | - Markus Jürgens
- Department of Computed Tomography, Siemens Healthineers AG, Forchheim, Germany (S.F., M.J., B.S.)
| | - Bernhard Schmidt
- Department of Computed Tomography, Siemens Healthineers AG, Forchheim, Germany (S.F., M.J., B.S.)
| | - Albrecht Hesse
- Department of Urology, Urinary Stone Analysis Centre Bonn, Bonn, Germany (A.H.)
| | - Justine Schoch
- Department of Urology, Federal Armed Services Hospital Koblenz, Koblenz, Germany (J.S., H.S., R.S., T.N.)
| | - Hans Schmelz
- Department of Urology, Federal Armed Services Hospital Koblenz, Koblenz, Germany (J.S., H.S., R.S., T.N.)
| | - Rico Stoll
- Department of Urology, Federal Armed Services Hospital Koblenz, Koblenz, Germany (J.S., H.S., R.S., T.N.)
| | - Tim Nestler
- Department of Urology, Federal Armed Services Hospital Koblenz, Koblenz, Germany (J.S., H.S., R.S., T.N.); Department of Urology, University Hospital Cologne, Cologne, Germany (T.N.)
| |
Collapse
|
4
|
Dabli D, Pastor M, Faby S, Erath J, Croisille C, Pereira F, Beregi JP, Greffier J. Photon-counting versus energy-integrating CT of abdomen-pelvis: a phantom study on the potential for reducing iodine contrast media. Eur Radiol Exp 2025; 9:36. [PMID: 40121590 PMCID: PMC11930902 DOI: 10.1186/s41747-025-00573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND To assess the potential of virtual monoenergetic images (VMIs) on a photon-counting computed tomography (PCCT) for reducing the amount of injected iodine contrast media compared to an energy-integrating CT (EICT). METHODS A multienergy phantom was scanned with a PCCT and EICT at 11 mGy with abdomen-pelvis examination parameters. VMIs were generated at 40 keV, 50 keV, 60 keV, and 70 keV. For all VMIs, the contrast-to-noise ratio (CNR) of iodine inserts with concentrations of 1 mg/mL, 2 mg/mL, 5 mg/mL, 10 mg/mL, and 15 mg/mL was calculated by dividing the signal difference between HU in iodine inserts versus solid water by the noise value assessed on solid water. The potential reduction in iodine media was calculated by the rate of reduction in iodine concentration with PCCT while maintaining the same CNR obtained with EICT for the reference concentration. RESULTS Significantly higher CNR values were found with PCCT at all VMI energy levels for iodine concentrations above 1 mg/mL. The highest reduction was observed at 40 keV, with a value of 48.9 ± 1.6% (mean ± standard deviation). It decreased as the energy level increased, by 38.5 ± 0.5%, and 30.8 ± 0.8% for 50 and 60 keV, respectively. For 70 keV, the potential reduction of 24.4 ± 1.1% was found for iodine concentrations above 1 mg/mL. This reduction reached 57 ± 2.3% at 40 keV with PCCT compared to 60 keV with EICT. CONCLUSION For abdomen-pelvis protocols, the use of VMIs with PCCT significantly improved the CNR of iodine, offering the potential to reduce the required contrast medium. RELEVANCE STATEMENT The use of VMIs with PCCT may reduce the quantity of iodine contrast medium to be injected compared with EICT, limiting costs, the risk of adverse effects, and the amount of contrast agent released into the wastewater. KEY POINTS PCCT improves the image quality of VMIs. PCCT offers the potential for reducing the amount of injected contrast medium. PCCT potential for reducing the injected contrast medium depends on energy level.
Collapse
Affiliation(s)
- Djamel Dabli
- Department of medical imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, UR UM103 IMAGINE, Nîmes, France.
| | - Maxime Pastor
- Department of medical imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, UR UM103 IMAGINE, Nîmes, France
| | - Sebastian Faby
- Department of Computed Tomography, Siemens Healthineers AG, Forchheim, Germany
| | - Julien Erath
- Department of Computed Tomography, Siemens Healthineers AG, Forchheim, Germany
| | - Cédric Croisille
- Department of Computed Tomography, Siemens Healthineers AG, Forchheim, Germany
| | | | - Jean-Paul Beregi
- Department of medical imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, UR UM103 IMAGINE, Nîmes, France
| | - Joël Greffier
- Department of medical imaging, CHU Nîmes, Univ Montpellier, Nîmes Medical Imaging Group, UR UM103 IMAGINE, Nîmes, France
| |
Collapse
|
5
|
Schwartz FR, Bache S, Lee R, Maxfield CM, Fadell MF, Gaca AM, Samei E, Frush DP, Cao JY. Photon-counting CT yields superior abdominopelvic image quality at lower radiation and iodinated contrast doses. Pediatr Radiol 2025:10.1007/s00247-025-06209-2. [PMID: 40111456 DOI: 10.1007/s00247-025-06209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Photon-counting detector (PCD) computed tomography (CT) has been shown to provide better image quality at lower radiation and intravenous contrast doses than energy-integrating detector (EID) CT in adult patients. There is limited data on these benefits for the pediatric population especially for abdominopelvic CT examinations. OBJECTIVE This study examines a reduced weight-based iodinated contrast dosing strategy in pediatric abdominopelvic CT on a PCD-CT system compared to standard dosing protocols on EID-CT using 1 mL/kg and 2 mL/kg, respectively. Image quality is assessed using both quantitative and qualitative measures. We also compare the radiation dose profile between the two PCD-CT and EID-CT cohorts. MATERIALS AND METHODS This HIPAA-compliant, IRB-approved, retrospective study included pediatric patients (≤18 years of age) who underwent contrast-enhanced CT examinations of the abdomen and pelvis for routine clinical care (01/2022 - 01/2023) in the portal-venous phase on a PCD-CT (NAEOTOM Alpha; Siemens Healthineers). Inclusion criteria included a similar prior examination within 12-months on a dual-source EID-CT scanner from the same vendor. All PCD-CT and EID-CT scans were acquired using weight-based dosing for intravenous contrast media, 1 mL/kg and 2 mL/kg, respectively, based on institutional protocols. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were measured in the aorta, portal vein, liver parenchyma, and skeletal muscle. Three pediatric radiologists qualitatively evaluated each scan for overall image quality, noise, and contrast on a scale of 0-100. Confidence in small structure detection (common bile duct) was also rated on a scale of 0-3. Radiation doses (size-specific dose estimate (SSDE)) were calculated. Statistical analysis included paired t-tests and a mixed linear effects model to account for patient age, sex, and X-ray tube voltage. A P<0.05 indicated statistical significance. RESULTS A total of 49 patients were included (24 female; mean [SD] age 9.9 [6.3] years, range 0.6-18 years). Compared to EID-CT, PCD-CT had a higher mean SNR in the portal vein (23.4 [SD=9.3] vs 17.2 [SD=7.4], P<0.001), aorta (23.4 [SD=11.6] vs 17.7 [10.1], P=0.017), hepatic parenchyma (15.2 [SD=5.6] vs 13.2 [5.1], P=0.016), and skeletal muscle (5.7 [SD=3.1] vs 4.5 [SD=3.1], P=0.01). Compared to EID-CT, PCD-CT also had a higher mean CNR in the portal vein (27.5 [SD=9.6] vs 22.1 [SD=21.1], P=0.003), aorta (27.3 [SD=9.6] vs 22.3 [SD=11.8], P=0.004), hepatic parenchyma (20 [SD=6.9] vs 16.9 [SD=8.5], P=0.013), and skeletal muscle (14.6 [4.9] vs 12.1 [5.6], P=0.008). Overall image quality, image noise, and small structure detection confidence scores were higher on PCD-CT than EID-CT (P=0.037, P<0.001, and P=0.006, respectively). Mean SSDE for PCD-CT was lower than EID-CT (9.1 mGy [SD=4.3] vs 11 mGy [5.9], P=0.012). CONCLUSION Compared with EID-CT, contrast-enhanced pediatric abdominopelvic CT offers improved subjective and objective image quality, even at lower radiation doses and reduced intravenous contrast medium volumes.
Collapse
Affiliation(s)
- Fides Regina Schwartz
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| | | | - Rachel Lee
- Duke University Health System, Durham, USA
| | | | | | - Ana M Gaca
- Duke University Health System, Durham, USA
| | | | | | | |
Collapse
|
6
|
Kawashima H, Ichikawa K, Yoshida R, Katayama T, Arimoto M, Kataoka J, Nagata H, Kobayashi S. Performance improvements of virtual monoenergetic images in photon-counting detector CT compared with dual source dual-energy CT: Fourier-based assessment. Phys Eng Sci Med 2025; 48:143-153. [PMID: 39658761 PMCID: PMC11996975 DOI: 10.1007/s13246-024-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
To confirm the performance improvement of virtual monoenergetic images (VMIs) for iodine contrast tasks in a clinical photon-counting detector CT (PCD CT) using Fourier-based assessment, compared with those in the latest-generation dual-source dual-energy CT (DECT). A water-filled bath with a diameter of 300 mm, which contains rod-shaped phantoms equivalent to diluted iodine (2 and 12 mg/mL), was scanned using PCD CT and DECT at 15, 7.5, and 3 mGy. VMIs were generated without any iterative reconstruction algorithm. Task transfer function (TTF), noise power spectrum (NPS), and slice sensitivity profile were evaluated for VMIs at 70 and 40 keV. The detectability index (d') and the squared system performance function (SPF2) calculated by TTF2/NPS were compared. At 40 keV, the d' values of PCD CT were higher (percentage increase of 25.7-39.9%) than those of DECT, whereas at 70 keV, the difference was rather small. The SPF2 values at 40 keV of PCD CT grew notably higher than those of DECT as the spatial frequency increased. The higher SPF2 values endorsed the lower image noise and the sharper edge of the rod phantom as observed. The d' and SPF2 in VMIs at 40 keV of PCD CT were notably higher than those of DECT, which endorsed the clinical advantages of PCD CT that had been previously reported in various studies.
Collapse
Affiliation(s)
- Hiroki Kawashima
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11- 80 Kodatsuno, Kanazawa, 920-0942, Japan.
| | - Katsuhiro Ichikawa
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11- 80 Kodatsuno, Kanazawa, 920-0942, Japan
| | - Ryoichi Yoshida
- Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Takuto Katayama
- Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Makoto Arimoto
- Faculty of Mathematics and Physics/Advanced Research Center for Space Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 20-1192, Japan
| | - Jun Kataoka
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hiroji Nagata
- Section of Radiological Technology, Department of Medical Technology, Kanazawa Medical University Hospital, Daigaku 1-1, Uchinada, Kahoku, 920-0293, Japan
| | - Satoshi Kobayashi
- Department of Radiology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| |
Collapse
|
7
|
Popp D, Siedlecki M, Friedrich L, Haerting M, Scheurig-Muenkler C, Schwarz F, Kroencke T, Bette S, Decker JA. Potential of photon-counting detector CT technology for contrast medium reduction in portal venous phase thoracoabdominal CT. Eur Radiol 2025:10.1007/s00330-025-11409-3. [PMID: 39939421 DOI: 10.1007/s00330-025-11409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
OBJECTIVES To compare image quality and iodine attenuation intra-individually in portal venous phase photon-counting detector CT (PCD-CT) scans using protocols with different contrast medium (CM) volume. MATERIALS AND METHODS A prospectively acquired patient cohort between 04/2021 and 11/2023 was retrospectively screened if patients had the following combination of portal venous phase thoracoabdominal CT scans: (a) PCD-CT with 120 mL CM volume (PCD-CT120 mL), (b) PCD-CT with 100 mL CM volume (PCD-CT100 mL), and (c) prior energy-integrating detector CT (EID-CT) with 120 mL CM volume. On PCD-CT, virtual monoenergetic image (VMI) reconstructions at 70 keV were applied for both groups as well as additional VMI at 60 keV for PCD‑CT100 mL. Quantitative analyses including signal-to-noise (SNR) and contrast-to-noise ratios (CNR) and qualitative analyses were performed using a mixed linear effects model. RESULTS The final study cohort comprised 49 patients (mean age 67 [31-86] years, 12 female). Comparison to EID-CT was available in 33 patients. In standard 70 keV VMI reconstructions, PCD-CT100 mL was non-inferior to PCD-CT120 mL as well as to EID-CT120 mL for CNR in abdominal organs (all p > 0.050). The mixed linear effects model revealed significant differences between contrast volume groups for both contrast enhancement and image quality ratings. PCD-CT100 mL/70 keV demonstrated the smallest deviation from optimal contrast enhancement (-0.306, p < 0.001). CONCLUSION In portal venous phase thoracoabdominal PCD-CT, a nearly 17% reduction in CM was achievable while maintaining subjective and objective image quality compared to prior higher CM volume PCD-CT scans within the same patients and still surpassing image quality of previous exams on an EID-CT system. KEY POINTS Question How do image quality and iodine attenuation intra-individually compare in portal venous phase photon-counting detector CT (PCD-CT) scans using protocols with different contrast medium volume. Findings PCD-CT scans exhibit superior quantitative and qualitative image quality compared to energy-integrating detector-CT acquisitions and are not negatively affected by contrast volume reductions up to 17%. Clinical relevance This study provides further evidence that PCD-CT enables a considerable reduction in iodine dose for portal venous phase acquisition, benefiting both patients and healthcare system costs.
Collapse
Affiliation(s)
- Daniel Popp
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Department of Radiology and Nuclear medicine, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - Martin Siedlecki
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Lena Friedrich
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Mark Haerting
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christian Scheurig-Muenkler
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Florian Schwarz
- Institute for Radiology, DONAUISAR Hospital Deggendorf-Dingolfing-Landau, Deggendorf, Germany
- Medical Faculty, Ludwig Maximilian University Munich, Munich, Germany
| | - Thomas Kroencke
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany.
| | - Stefanie Bette
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
8
|
Sharifi A, O'Donnell T, Dane B. Optimizing photon counting CT enterography: determining the optimal virtual monoenergy for bowel imaging. Abdom Radiol (NY) 2025:10.1007/s00261-025-04832-z. [PMID: 39934396 DOI: 10.1007/s00261-025-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVE To determine the optimal virtual monoenergy for viewing the bowel at photon-counting CT enterography using quantitative assessment of mural attenuation, contrast-to-noise ratio, signal-to-noise ratio and noise. METHODS This study was institutional review board approved and Health Insurance Portability and Accountability Act compliant. Consecutive adults (≥ 18 years) who underwent photon-counting CT enterography from 5/1/2022-5/31/2022 with available Spectral Postprocessing (SPP) images for retrospective virtual monoenergy creation were identified. Nine virtual monoenergetic series (40-120 keV, 10 keV increments) were created. Two region-of-interest measurements were placed in the stomach wall, jejunum wall, ileum wall, and each psoas muscle by two radiologists on 0.6 mm images in PACS. Region-of-interests were copied to other virtual monoenergies to ensure identical placement and size. Attenuation (HU) and noise (HU standard deviation) were recorded from each region-of-interest. Signal-to-noise ratio and contrast-to-noise ratio were computed for stomach, jejunum, ileum, and all bowel combined. Pairwise comparisons for attenuation, noise, signal-to-noise ratio and contrast-to-noise ratio for each virtual monoenergy were performed with ANOVA. A p <.05 indicated statistical significance. RESULTS 50 patients (32 female; mean[SD] age: 57 years) were included. Attenuation and noise for all bowel regions were highest at 40 keV with statistically significant pairwise comparisons from 40 to 70 keV (all p <.05), but similar for 70-120 keV (all p >.05). Signal-to-noise ratio was similar from 40 to 70 keV (all p >.05) for all bowel regions. Contrast-to-noise ratio decreased with increasing keV. Contrast-to-noise ratio was similar for all bowel at 40 keV and 50 keV (p =.06), for stomach from 40 to 70 keV (all p >.05), for jejunum from 40 to 50 keV (p =.21), and for ileum from 40 to 60 keV (all p >.05). CONCLUSION 50 keV virtual monoenergetic images from photon-counting CT enterography optimizes contrast-to-noise ratio while mitigating noise and should routinely be utilized for bowel assessment at photon-counting CT enterography. As most photon-counting CT users primarily interpret virtual monoenergetic images in clinical practice, knowledge of the optimal virtual monoenergy can inform protocol development.
Collapse
Affiliation(s)
| | | | - Bari Dane
- New York University Langone Medical Center, New York, US.
| |
Collapse
|
9
|
Hein D, Holmin S, Prochazka V, Yin Z, Danielsson M, Persson M, Wang G. Syn2Real: synthesis of CT image ring artifacts for deep learning-based correction. Phys Med Biol 2025; 70:04NT01. [PMID: 39842097 DOI: 10.1088/1361-6560/adad2c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Objective. We strive to overcome the challenges posed by ring artifacts in x-ray computed tomography (CT) by developing a novel approach for generating training data for deep learning-based methods. Training such networks require large, high quality, datasets that are often generated in the data domain, time-consuming and expensive. Our objective is to develop a technique for synthesizing realistic ring artifacts directly in the image domain, enabling scalable production of training data without relying on specific imaging system physics.Approach. We develop 'Syn2Real,' a computationally efficient pipeline that generates realistic ring artifacts directly in the image domain. To demonstrate the effectiveness of our approach, we train two versions of UNet, vanilla and a high capacity version with self-attention layers that we call UNetpp, withℓ2and perceptual losses, as well as a diffusion model, on energy-integrating CT images with and without these synthetic ring artifacts.Main Results.Despite being trained on conventional single-energy CT images, our models effectively correct ring artifacts across various monoenergetic images, at different energy levels and slice thicknesses, from a prototype photon-counting CT system. This generalizability validates the realism and versatility of our ring artifact generation process.Significance.Ring artifacts in x-ray CT pose a unique challenge to image quality and clinical utility. By focusing on data generation, our work provides a foundation for developing more robust and adaptable ring artifact correction methods for pre-clinical, clinical and other CT applications.
Collapse
Affiliation(s)
- Dennis Hein
- Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden
- MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm Sweden
| | | | - Zhye Yin
- GE HealthCare, Waukesha, WI, United States of America
| | - Mats Danielsson
- Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden
- MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Persson
- Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden
- MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
| | - Ge Wang
- Department of Biomedical Engineering, School of Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| |
Collapse
|
10
|
Yang Y, Wang S, Stevens GM, Fan J, Wang AS. Optimal weighting strategies for maximizing contrast-to-noise ratio in photon counting CT images. Med Phys 2025; 52:750-770. [PMID: 39447021 DOI: 10.1002/mp.17489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Photon counting detectors (PCDs) with energy discrimination capabilities have the potential to generate grayscale CT images with improved contrast-to-noise ratio (CNR) through optimal weighting of their spectral measurements. PURPOSE This study evaluates the CNR performance of grayscale CT projections and images generated from spectral measurements of PCDs using three energy-weighting strategies: pre-log weighting, post-log weighting, and material decomposition (MD) weighting. This study provides the expressions of optimal weights and maximum achievable CNR of these energy-weighting strategies, which only require the knowledge of detected bin counts and do not require information of PCD energy responses or imaging techniques. METHODS We defined and solved a generalized eigenvalue problem to obtain the maximum achievable CNR in the projection domain for low-contrast tasks using three energy-weighting strategies: pre-log weighting (weighted sum of energy bin counts), post-log weighting (weighted sum of line integrals), and MD weighting (weighted sum of basis material thicknesses, which is equivalent to virtual monoenergetic images [VMIs]). These expressions only contain energy bin counts from PCD measurements. We used a realistic PCD energy response model to simulate the detected bin counts and conducted Monte Carlo simulations of different contrast tasks and phantoms to evaluate the projection- and image-domain CNR performance of these energy-weighting strategies. Additionally, the total counts method (a special case of pre-log weighting with unity weights) was included for comparison. We also conducted Gammex head and body phantom scans on an edge-on-irradiated silicon PCCT prototype to evaluate the image-domain CNR performance of these energy-weighting strategies. RESULTS The results show that pre-log, post-log, and MD weighting strategies generate approximately equal projection-domain maximum achievable CNR, with a difference of less than 2%, and outperform the total counts method. These three energy-weighting strategies also generate approximately equal image-domain maximum CNR when the contrast task is located at the center of a homogeneous phantom. Pre-log weighting generates the highest image-domain CNR for an off-center contrast task location or inhomogeneous phantoms while also outperforming the total counts method. CONCLUSIONS We derived the expression of projection-domain maximum achievable CNR using three energy-weighting strategies. Our results suggest that using pre-log weighting strategies enables fast grayscale CT image generation with high CNR from spectral PCD measurements for inhomogeneous phantoms and off-center region of interests (ROIs).
Collapse
Affiliation(s)
- Yirong Yang
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Sen Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Grant M Stevens
- Department of MICT Research, GE HealthCare, Waukesha, Wisconsin, USA
| | - Jiahua Fan
- Department of CT Engineering, GE HealthCare, Waukesha, Wisconsin, USA
| | - Adam S Wang
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
11
|
Siegel MJ, Thomas MA, Haq A, Seymore N, Sodhi KS, Abadia A. Comparison of Radiation Dose and Image Quality in Pediatric Abdominopelvic Photon-Counting Versus Energy-Integrating Detector CT. J Comput Assist Tomogr 2025:00004728-990000000-00425. [PMID: 39905977 DOI: 10.1097/rct.0000000000001730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/24/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVE Adoption of abdominal photon counting detector CT (PCD-CT) into clinical pediatric CT practice requires evidence that it provides diagnostic images at acceptable radiation doses. Thus, this study aimed to compare radiation dose and image quality of PCD-CT and conventional energy-integrating detector CT (EID-CT) in pediatric abdominopelvic CT. MATERIALS AND METHODS This institutional review board-approved retrospective study included 147 children (median age 8.5 y; 80 boys, 67 girls) who underwent clinically indicated contrast-enhanced abdominopelvic PCD-CT between October 1, 2022 and April 30, 2023 and 147 children (median age 8.5 y; 74 boys, 73 girls) who underwent EID-CT between July 1, 2021 and January 1, 2022. Patients in the 2 groups were matched by age and effective diameter. Radiation dose parameters (CT dose index volume, CTDIvol; dose length product, DLP; size-specific dose estimate, SSDE) were recorded. In a subset of 25 matched pairs, subjective image quality was assessed on a scale of 1 to 4 (1=highest quality), and liver attenuation, dose-normalized noise, and contrast-to-noise ratio (CNR) were measured. Groups were compared using parametric and/or nonparametric testing. RESULTS Among the 147 matched pairs, there were no significant differences in sex (P=0.576), age (P=0.084), or diameter (P=0.668). PCD-CT showed significantly lower median CTDIvol, DLP, and SSDE (1.6 mGy, 63.8 mGy-cm, 3.1 mGy) compared with EID-CT (3.7 mGy, 155.3 mGy-cm, 6.0 mGy) (P<0.001). In the subset of 25 patients, PCD-CT and EID-CT showed no significant difference in overall image quality for reader 1 (1.0 vs. 1.0, P=0.781) or reader 2 (1.0 vs. 1.0, P=0.817), or artifacts for reader 1 (1.0 vs. 1.0, P=0.688) or reader 2 (1.0 vs. 1.0, P=0.219). After normalizing for radiation dose, image noise was significantly lower with PCD-CT (P<0.001), while CNR in the liver (P=0.244) and portal vein (P=0.079) were comparable to EID-CT. CONCLUSION Abdominopelvic PCD-CT in children significantly reduces radiation dose while maintaining subjective image quality, and accounting for dose levels, has the potential to lower image noise and achieve comparable CNR to EID-CT. These data expand understanding of the capabilities of PCD-CT and support its routine use in children.
Collapse
Affiliation(s)
- Marilyn J Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Matthew Allan Thomas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Adeel Haq
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Noah Seymore
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Kushaljit Singh Sodhi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | | |
Collapse
|
12
|
Hartung V, Hendel R, Huflage H, Augustin AM, Grunz JP, Kleefeldt F, Peter D, Lichthardt S, Ergün S, Bley TA, Gruschwitz P. Ultra-high Versus Standard Resolution Photon-Counting Detector CT Angiography for Imaging of Femoral Stents in a Cadaveric Perfusion Model. Acad Radiol 2025; 32:556-564. [PMID: 39112296 DOI: 10.1016/j.acra.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND AND AIMS The aim of this study was to investigate the imaging performance and quality differences of PCD-CT in standard resolution mode (SR) versus ultra-high resolution mode (UHR) in the lower extremity runoff of dose-matched CTAs in a human cadaveric model. METHODS Extracorporeal perfusion of the upper leg was established in one fresh-frozen human cadaver via inguinal and popliteal accesses using a peristaltic pump. Seven peripheral stents were deployed in the SFA. Photon-counting CTAs were performed under contrast perfusion in SR and UHR mode with dose-equivalent 120kVp acquisition protocols (low-/ medium-/ high-dose: CTDIVol=3, 5, 10 mGy) and reconstructed with four vascular convolution kernels. Lumen visibility and contrast-to-noise ratio were compared using analyses of variance. Subjective image quality was assessed using a pairwise, forced-choice comparison software. RESULTS Lumen visibility was equal for SR and UHR at the used dose levels. CNR increase by UHR was significant for (ultra-)sharp convolution kernels BV60 (3 mGy; UHR vs. SR, 19.9 ± 1.9 vs. 15.7 ± 1.6, p < 0.046) and BV76 (8.0 ± 0.6 vs. 5.4 ± 0.3, p < 0.001). The relative CNR increase was higher for low-dose than high-dose scans (BV76: 48% vs. 36% at high dose, p < 0.033). The CNR of the low-dose scan in UHR mode was comparable to the high-dose scan in SR mode when the ultra-sharp kernel was used (8.0 ± 0.6 vs. 9.1 ± 1.1, p > 0.760). Among UHR examinations, a significant increase in CNR could only be measured in BV76 (8.0 ± 0.6 (3 mGy) vs. 12.4 ± 0.9 (10 mGy), p < 0.001). Readers preferred subjective image quality of UHR for all kernels with BV76 being ranked highest. CONCLUSION The CNR increase in UHR mode is highest when combining low radiation dose and ultra-sharp reconstructions. Meanwhile, the subjective image quality in UHR mode generally supersedes SR images, suggesting further dose reduction potential.
Collapse
Affiliation(s)
- Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.).
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.)
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.)
| | - Anne Marie Augustin
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.); Department of Interventional and Diagnostic Radiology, Klinikum Bayreuth, Bayreuth, Germany (A.M.A.)
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.); Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA (J.P.G.)
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University Würzburg, Würzburg, Germany (F.K., S.E.)
| | - Dominik Peter
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, Center of Operative Medicine, University Hospital Würzburg, Würzburg, Germany (D.P., S.L.)
| | - Sven Lichthardt
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, Center of Operative Medicine, University Hospital Würzburg, Würzburg, Germany (D.P., S.L.)
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University Würzburg, Würzburg, Germany (F.K., S.E.)
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.)
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.)
| |
Collapse
|
13
|
Rippel K, Decker JA, Luitjens J, Habeeballah O, Bette S, Braun F, Kroencke TJ, Scheurig-Muenkler C. Virtual Monoenergetic Imaging of Thoracoabdominal Computed Tomography Angiography on Photon-Counting Detector Computertomography: Assessment of Image Quality and Leveraging Low-keV Series for Salvaging Suboptimal Contrast Acquisitions. Diagnostics (Basel) 2024; 14:2843. [PMID: 39767204 PMCID: PMC11675690 DOI: 10.3390/diagnostics14242843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The aim of this study was to assess the possibility of image improvement of ECG-gated, high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta before transaortic valve replacement (TAVR) on a novel dual-source photon-counting detector CT (PCD-CT) in the setting of suboptimal low-contrast attenuation. METHODS Continuously examined patients who underwent an ECG-gated, high-pitch CTA of the aorta on a PCD-CT with a contrast decrease of at least 50% between the ascending aorta and the common femoral arteries (CFA) were included. Patient characteristics were documented. Virtual monoenergetic imaging (VMI) reconstructions with three keV settings were generated. CT values and noise were measured for five vascular segments of the aorta and the CFA. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated. Two independent board-certified radiologists rated the images with the focus on vascular attenuation, vessel sharpness, and image quality using a 5-point Likert scale. RESULTS Fifty-five patients (mean age 77.4 ± 8.5 years; 15 women) were included. The SNR was significantly higher at 40 and 45 keV VMI compared to reference 70 keV (p < 0.001 and p = 0.005, respectively). The same was shown for the CNR (p < 0.001 and p = 0.0049, respectively). Subjective image evaluation showed a significant increase in vessel attenuation in the lower keV reconstructions, while the overall image quality decreased only slightly. Furthermore, 50% (8/16) of primarily non-diagnostic scans were considered diagnostic when using low-keV reconstructions (p > 0.05). CONCLUSIONS ECG-gated CTA of the aorta in high-pitch mode on PCD-CT with suboptimal contrast enhancement at the level of the CFA can be salvaged by using low-keV VMI. This implies the possibility of radiation dose reduction by eliminating the need for repeat scans.
Collapse
Affiliation(s)
- Katharina Rippel
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Josua A. Decker
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Jan Luitjens
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Osama Habeeballah
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Stefanie Bette
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Franziska Braun
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Thomas J. Kroencke
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany
| | - Christian Scheurig-Muenkler
- Diagnostic and Interventional Radiology, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| |
Collapse
|
14
|
Onishi H, Tsuboyama T, Nakamoto A, Ota T, Fukui H, Tatsumi M, Honda T, Kiso K, Matsumoto S, Kaketaka K, Enchi Y, Kawabata S, Nakasone S, Tomiyama N. Photon-counting CT: technical features and clinical impact on abdominal imaging. Abdom Radiol (NY) 2024; 49:4383-4399. [PMID: 38888738 PMCID: PMC11522066 DOI: 10.1007/s00261-024-04414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Photon-counting CT has a completely different detector mechanism than conventional energy-integrating CT. In the photon-counting detector, X-rays are directly converted into electrons and received as electrical signals. Photon-counting CT provides virtual monochromatic images with a high contrast-to-noise ratio for abdominal CT imaging and may improve the ability to visualize small or low-contrast lesions. In addition, photon-counting CT may offer the possibility of reducing radiation dose. This review provides an overview of the actual clinical operation of photon-counting CT and its diagnostic utility in abdominal imaging. We also describe the clinical implications of photon-counting CT including imaging of hepatocellular carcinoma, liver metastases, hepatic steatosis, pancreatic cancer, intraductal mucinous neoplasm of the pancreas, and thrombus.
Collapse
Affiliation(s)
- Hiromitsu Onishi
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsushi Nakamoto
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Ota
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideyuki Fukui
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mitsuaki Tatsumi
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toru Honda
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kengo Kiso
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shohei Matsumoto
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koki Kaketaka
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukihiro Enchi
- Division of Radiology, Department of Medical Technology, Osaka University Hospital, Suita, Japan
| | - Shuichi Kawabata
- Division of Radiology, Department of Medical Technology, Osaka University Hospital, Suita, Japan
| | - Shinya Nakasone
- Division of Radiology, Department of Medical Technology, Osaka University Hospital, Suita, Japan
| | - Noriyuki Tomiyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
15
|
Sartoretti T, McDermott MC, Stammen L, Martens B, Moser LJ, Jost G, Pietsch H, Gutjahr R, Nowak T, Schmidt B, Flohr TG, Wildberger JE, Alkadhi H. Tungsten-Based Contrast Agent for Photon-Counting Detector CT Angiography in Calcified Coronaries: Comparison to Iodine in a Cardiovascular Phantom. Invest Radiol 2024; 59:677-683. [PMID: 38526041 PMCID: PMC11827686 DOI: 10.1097/rli.0000000000001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVES Calcified plaques induce blooming artifacts in coronary computed tomography angiography (CCTA) potentially leading to inaccurate stenosis evaluation. Tungsten represents a high atomic number, experimental contrast agent with different physical properties than iodine. We explored the potential of a tungsten-based contrast agent for photon-counting detector (PCD) CCTA in heavily calcified coronary vessels. MATERIALS AND METHODS A cardiovascular phantom exhibiting coronaries with calcified plaques was imaged on a first-generation dual-source PCD-CT. The coronaries with 3 different calcified plaques were filled with iodine and tungsten contrast media solutions equating to iodine and tungsten delivery rates (IDR and TDR) of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 g/s, respectively. Electrocardiogram-triggered sequential acquisitions were performed in the spectral mode (QuantumPlus). Virtual monoenergetic images (VMIs) were reconstructed from 40 to 190 keV in 1 keV increments. Blooming artifacts and percentage error stenoses from calcified plaques were quantified, and attenuation characteristics of both contrast media were recorded. RESULTS Blooming artifacts from calcified plaques were most pronounced at 40 keV (78%) and least pronounced at 190 keV (58%). Similarly, percentage error stenoses were highest at 40 keV (48%) and lowest at 190 keV (2%), respectively. Attenuation of iodine decreased monotonically in VMIs from low to high keV, with the strongest decrease from 40 keV to 100 keV (IDR of 2.5 g/s: 1279 HU at 40 keV, 187 HU at 100 kV, and 35 HU at 190 keV). The attenuation of tungsten, on the other hand, increased monotonically as a function of VMI energy, with the strongest increase between 40 and 100 keV (TDR of 2.5 g/s: 202 HU at 40 keV, 661 HU at 100 kV, and 717 HU at 190 keV). For each keV level, the relationship between attenuation and IDR/TDR could be described by linear regressions ( R2 ≥ 0.88, P < 0.001). Specifically, attenuation increased linearly when increasing the delivery rate irrespective of keV level or contrast medium. Iodine exhibited the highest relative increase in attenuation values at lower keV levels when increasing the IDR. Conversely, for tungsten, the greatest relative increase in attenuation values occurred at higher keV levels when increasing the TDR. When high keV imaging is desirable to reduce blooming artifacts from calcified plaques, IDR has to be increased at higher keV levels to maintain diagnostic vessel attenuation (ie, 300 HU), whereas for tungsten, TDR can be kept constant or can be even reduced at high keV energy levels. CONCLUSIONS Tungsten's attenuation characteristics in relation to VMI energy levels are reversed to those of iodine, with tungsten exhibiting high attenuation values at high keV levels and vice versa. Thus, tungsten shows promise for high keV imaging CCTA with PCD-CT as-in distinction to iodine-both high vessel attenuation and low blooming artifacts from calcified plaques can be achieved.
Collapse
|
16
|
Zhou W, Huo D, Browne LP, Zhou X, Weinman J. Universal 120-kV Dual-Source Ultra-High Pitch Protocol on the Photon-Counting CT System for Pediatric Abdomen of All Sizes: A Phantom Investigation Comparing With Energy-Integrating CT. Invest Radiol 2024; 59:719-726. [PMID: 38595181 DOI: 10.1097/rli.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVES The purpose of this study is to determine if a universal 120-kV ultra-high pitch and virtual monoenergetic images (VMIs) protocol on the photon-counting computed tomography (PCCT) system can provide sufficient image quality for pediatric abdominal imaging, regardless of size, compared with protocols using a size-dependent kV and dual-source flash mode on the energy-integrating CT (EICT) system. MATERIALS AND METHODS One solid water insert and 3 iodine (2, 5, 10 mg I/mL) inserts were attached or inserted into phantoms of variable sizes, simulating the abdomens of a newborn, 5-year-old, 10-year-old, and adult-sized pediatric patients. Each phantom setting was scanned on an EICT using clinical size-specific kV dual-source protocols with a pitch of 3.0. The scans were performed with fixed scanning parameters, and the CTDI vol values of full dose were 0.30, 0.71, 1.05, and 7.40 mGy for newborn to adult size, respectively. In addition, half dose scans were acquired on EICT. Each phantom was then scanned on a PCCT (Siemens Alpha) using a universal 120-kV protocol with the same full dose and half dose as determined above on the EICT scanner. All other parameters matched to EICT settings. Virtual monoenergetic images were generated from PCCT scans between 40 and 80 keV with a 5-keV interval. Image quality metrics were compared between PCCT VMIs and EICT, including image noise (measured as standard deviation of solid water), contrast-to-noise ratio (CNR) (measured at iodine inserts with solid water as background), and noise power spectrum (measured in uniform phantom regions). RESULTS Noise at a PCCT VMI of 70 keV (7.0 ± 0.6 HU for newborn, 14.7 ± 1.6 HU for adult) is comparable ( P > 0.05, t test) or significantly lower ( P < 0.05, t test) compared with EICT (7.8 ± 0.8 HU for newborn, 15.3 ± 1.5 HU for adult). Iodine CNR from PCCT VMI at 50 keV (50.8 ± 8.4 for newborn, 27.3 ± 2.8 for adult) is comparable ( P > 0.05, t test) or significantly higher ( P < 0.05, t test) to the corresponding EICT measurements (57.5 ± 6.7 for newborn, 13.8 ± 1.7 for adult). The noise power spectrum curve shape of PCCT VMI is similar to EICT, despite PCCT VMI exhibiting higher noise at low keV levels. CONCLUSIONS The universal PCCT 120 kV with ultra-high pitch and postprocessed VMIs demonstrated equivalent or improved performance in noise (70 keV) and iodine CNR (50 keV) for pediatric abdominal CT, compared with size-specific kV images on the EICT.
Collapse
Affiliation(s)
- Wei Zhou
- From the Department of Radiology, University of Colorado, Anschutz Medical Campus, Aurora, CO (W.Z., D.H., L.P.B., J.W.); Department of Radiology, Children's Hospital Colorado, Aurora, CO (L.P.B., J.W.); and Bioinformatics and Computational Biology, University of Minnesota, St Paul, MN (X.Z.)
| | | | | | | | | |
Collapse
|
17
|
Hein D, Holmin S, Szczykutowicz T, Maltz JS, Danielsson M, Wang G, Persson M. Noise suppression in photon-counting computed tomography using unsupervised Poisson flow generative models. Vis Comput Ind Biomed Art 2024; 7:24. [PMID: 39311990 PMCID: PMC11420411 DOI: 10.1186/s42492-024-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024] Open
Abstract
Deep learning (DL) has proven to be important for computed tomography (CT) image denoising. However, such models are usually trained under supervision, requiring paired data that may be difficult to obtain in practice. Diffusion models offer unsupervised means of solving a wide range of inverse problems via posterior sampling. In particular, using the estimated unconditional score function of the prior distribution, obtained via unsupervised learning, one can sample from the desired posterior via hijacking and regularization. However, due to the iterative solvers used, the number of function evaluations (NFE) required may be orders of magnitudes larger than for single-step samplers. In this paper, we present a novel image denoising technique for photon-counting CT by extending the unsupervised approach to inverse problem solving to the case of Poisson flow generative models (PFGM)++. By hijacking and regularizing the sampling process we obtain a single-step sampler, that is NFE = 1. Our proposed method incorporates posterior sampling using diffusion models as a special case. We demonstrate that the added robustness afforded by the PFGM++ framework yields significant performance gains. Our results indicate competitive performance compared to popular supervised, including state-of-the-art diffusion-style models with NFE = 1 (consistency models), unsupervised, and non-DL-based image denoising techniques, on clinical low-dose CT data and clinical images from a prototype photon-counting CT system developed by GE HealthCare.
Collapse
Affiliation(s)
- Dennis Hein
- Department of Physics, KTH Royal Institute of Technology, Stockholm, 1142, Sweden.
- MedTechLabs, Karolinska University Hospital, Stockholm, 17164, Sweden.
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, 17164, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, 17164, Sweden
| | - Timothy Szczykutowicz
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, United States
| | | | - Mats Danielsson
- Department of Physics, KTH Royal Institute of Technology, Stockholm, 1142, Sweden
- MedTechLabs, Karolinska University Hospital, Stockholm, 17164, Sweden
| | - Ge Wang
- Department of Biomedical Engineering, School of Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Mats Persson
- Department of Physics, KTH Royal Institute of Technology, Stockholm, 1142, Sweden
- MedTechLabs, Karolinska University Hospital, Stockholm, 17164, Sweden
| |
Collapse
|
18
|
Dane B, Mabud T, Melamud K, Ginocchio L, Smereka P, Okyere M, O'Donnell T, Megibow A. Reduced Intravenous Contrast Dose Portal Venous Phase Photon-Counting Computed Tomography Compared With Conventional Energy-Integrating Detector Portal Venous Phase Computed Tomography. J Comput Assist Tomogr 2024; 48:675-682. [PMID: 38595174 DOI: 10.1097/rct.0000000000001617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVE The aim of this study was to compare portal venous phase photon-counting CT (PCCT) using 20 cc less than weight-based contrast dosing with energy-integrating detector CT (EID-CT) using weight-based dosing by quantitative and qualitative analysis. METHODS Fifty adult patients who underwent a reduced intravenous contrast dose portal venous phase PCCT from May 1, 2023, to August 10, 2023, and a prior portal-venous EID-CT with weight-based contrast dosing were retrospectively identified. Hounsfield units (HU) and noise (SD of HU) were obtained from region-of-interest measurements on 70-keV PCCT and EID-CT in 4 hepatic segments, the main and right portal vein, and both paraspinal muscles. Signal-to-noise and contrast-to-noise ratios were computed. Three abdominal radiologists qualitatively assessed overall image quality, hepatic enhancement, and confidence for metastasis identification on 5-point Likert scales. Readers also recorded the presence/absence of hepatic metastases. Quantitative variables were compared with paired t tests, and multiple comparisons were accounted for with a Bonferroni-adjusted α level of .0016. Ordinal logistic regression was used to evaluate qualitative assessments. Interreader agreement for hepatic metastases was calculated using Fleiss' κ. RESULTS Fifty patients (32 women; mean [SD] age, 64 [13] years) were included. There was no significant difference in hepatic HU, portal vein HU, noise, and signal-to-noise or contrast-to-noise ratio between reduced contrast dose portal venous phase PCCT versus EID-CT (all P s > 0.0016). Image quality, degree of hepatic enhancement, and confidence for metastasis identification were not different for reduced dose PCCT 70-keV images and EID-CT ( P = 0.06-0.69). κ Value for metastasis identification was 0.86 (95% confidence interval, 0.70-1.00) with PCCT and 0.78 (95% confidence interval, 0.59-0.98) with EID-CT. CONCLUSION Reduced intravenous contrast portal venous phase PCCT 70-keV images had similar attenuation and image quality as EID-CT with weight-based dosing. Metastases were identified with near-perfect agreement in reduced dose PCCT 70-keV images.
Collapse
Affiliation(s)
- Bari Dane
- From the Department of Radiology, NYU Langone Health, New York, NY
| | - Tarub Mabud
- From the Department of Radiology, NYU Langone Health, New York, NY
| | - Kira Melamud
- From the Department of Radiology, NYU Langone Health, New York, NY
| | - Luke Ginocchio
- From the Department of Radiology, NYU Langone Health, New York, NY
| | - Paul Smereka
- From the Department of Radiology, NYU Langone Health, New York, NY
| | - Mabel Okyere
- From the Department of Radiology, NYU Langone Health, New York, NY
| | | | - Alec Megibow
- From the Department of Radiology, NYU Langone Health, New York, NY
| |
Collapse
|
19
|
Huflage H, Hendel R, Woznicki P, Conrads N, Feldle P, Patzer TS, Ergün S, Bley TA, Kunz AS, Grunz JP. The Small Pixel Effect in Ultra-High-Resolution Photon-Counting CT of the Lumbar Spine. Invest Radiol 2024; 59:629-634. [PMID: 38329822 DOI: 10.1097/rli.0000000000001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
OBJECTIVES Image acquisition in ultra-high-resolution (UHR) scan mode does not impose a dose penalty in photon-counting CT (PCCT). This study aims to investigate the dose saving potential of using UHR instead of standard-resolution PCCT for lumbar spine imaging. MATERIALS AND METHODS Eight cadaveric specimens were examined with 7 dose levels (5-35 mGy) each in UHR (120 × 0.2 mm) and standard-resolution acquisition mode (144 × 0.4 mm) on a first-generation PCCT scanner. The UHR images were reconstructed with 3 dedicated bone kernels (Br68 [spatial frequency at 10% of the modulation transfer function 14.5 line pairs/cm], Br76 [21.0], and Br84 [27.9]), standard-resolution images with Br68 and Br76. Using automatic segmentation, contrast-to-noise ratios (CNRs) were established for lumbar vertebrae and psoas muscle tissue. In addition, image quality was assessed subjectively by 19 independent readers (15 radiologists, 4 surgeons) using a browser-based forced choice comparison tool totaling 16,974 performed pairwise tests. Pearson's correlation coefficient ( r ) was used to analyze the relationship between CNR and subjective image quality rankings, and Kendall W was calculated to assess interrater agreement. RESULTS Irrespective of radiation exposure level, CNR was higher in UHR datasets than in standard-resolution images postprocessed with the same reconstruction parameters. The use of sharper convolution kernels entailed lower CNR but higher subjective image quality depending on radiation dose. Subjective assessment revealed high interrater agreement ( W = 0.86; P < 0.001) with UHR images being preferred by readers in the majority of comparisons on each dose level. Substantial correlation was ascertained between CNR and the subjective image quality ranking (all r 's ≥ 0.95; P < 0.001). CONCLUSIONS In PCCT of the lumbar spine, UHR mode's smaller pixel size facilitates a considerable CNR increase over standard-resolution imaging, which can either be used for dose reduction or higher spatial resolution depending on the selected convolution kernel.
Collapse
Affiliation(s)
- Henner Huflage
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (H.H., R.H., P.W., N.C., P.F., T.S., T.A.B., A.S.K., J.-P.G.); and Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (S.E.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Greffier J, Faby S, Pastor M, Frandon J, Erath J, Beregi JP, Dabli D. Comparison of low-energy virtual monoenergetic images between photon-counting CT and energy-integrating detectors CT: A phantom study. Diagn Interv Imaging 2024; 105:311-318. [PMID: 38429207 DOI: 10.1016/j.diii.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE The purpose of this study was to assess image quality and dose level using a photon-counting CT (PCCT) scanner by comparison with a dual-source CT (DSCT) scanner on virtual monoenergetic images (VMIs) at low energy levels. MATERIALS AND METHODS A phantom was scanned using a DSCT and a PCCT with a volume CT dose index of 11 mGy, and additionally at 6 mGy and 1.8 mGy for PCCT. Noise power spectrum and task-based transfer function were evaluated from 40 to 70 keV on VMIs to assess noise magnitude and noise texture (fav) and spatial resolution on two iodine inserts (f50), respectively. A detectability index (d') was computed to assess the detection of two contrast-enhanced lesions according to the energy level used. RESULTS For all energy levels, noise magnitude values were lower with PCCT than with DSCT at 11 and 6 mGy, but greater at 1.8 mGy. fav values were higher with PCCT than with DSCT at 11 mGy (8.6 ± 1.5 [standard deviation [SD]%), similar at 6 mGy (1.6 ± 1.5 [SD]%) and lower at 1.8 mGy (-17.8 ± 2.2 [SD]%). For both inserts, f50 values were higher with PCCT than DSCT at 11- and 6 mGy for all keV levels, except at 6 mGy and 40 keV. d' values were higher with PCCT than with DSCT at 11- and 6 mGy for all keV and both simulated lesions. Similar d' values to those of the DSCT at 11 mGy, were obtained at 2.25 mGy for iodine insert at 2 mg/mL and at 0.96 mGy for iodine insert at 4 mg/mL at 40 keV. CONCLUSION Compared to DSCT, PCCT reduces noise magnitude and improves noise texture, spatial resolution and detectability on VMIs for all low-keV levels.
Collapse
Affiliation(s)
- Joël Greffier
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France.
| | - Sebastian Faby
- Department of Computed Tomography, Siemens Healthineers AG, 91301 Forchheim, Germany
| | - Maxime Pastor
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| | - Julien Frandon
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| | - Julien Erath
- Department of Computed Tomography, Siemens Healthineers AG, 91301 Forchheim, Germany
| | - Jean Paul Beregi
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| | - Djamel Dabli
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30029 Nîmes, France
| |
Collapse
|
21
|
Racine D, Mergen V, Viry A, Frauenfelder T, Alkadhi H, Vitzthum V, Euler A. Photon-Counting Detector CT for Liver Lesion Detection-Optimal Virtual Monoenergetic Energy for Different Simulated Patient Sizes and Radiation Doses. Invest Radiol 2024; 59:554-560. [PMID: 38193782 DOI: 10.1097/rli.0000000000001060] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
OBJECTIVES The aim of this study was to evaluate the optimal energy level of virtual monoenergetic images (VMIs) from photon-counting detector computed tomography (CT) for the detection of liver lesions as a function of phantom size and radiation dose. MATERIALS AND METHODS An anthropomorphic abdominal phantom with liver parenchyma and lesions was imaged on a dual-source photon-counting detector CT at 120 kVp. Five hypoattenuating lesions with a lesion-to-background contrast difference of -30 HU and -45 HU and 3 hyperattenuating lesions with +30 HU and +90 HU were used. The lesion diameter was 5-10 mm. Rings of fat-equivalent material were added to emulate medium- or large-sized patients. The medium size was imaged at a volume CT dose index of 5, 2.5, and 1.25 mGy and the large size at 5 and 2.5 mGy, respectively. Each setup was imaged 10 times. For each setup, VMIs from 40 to 80 keV at 5 keV increments were reconstructed with quantum iterative reconstruction at a strength level of 4 (QIR-4). Lesion detectability was measured as area under the receiver operating curve (AUC) using a channelized Hotelling model observer with 10 dense differences of Gaussian channels. RESULTS Overall, highest detectability was found at 65 and 70 keV for both hypoattenuating and hyperattenuating lesions in the medium and large phantom independent of radiation dose (AUC range, 0.91-1.0 for the medium and 0.94-0.99 for the large phantom, respectively). The lowest detectability was found at 40 keV irrespective of the radiation dose and phantom size (AUC range, 0.78-0.99). A more pronounced reduction in detectability was apparent at 40-50 keV as compared with 65-75 keV when radiation dose was decreased. At equal radiation dose, detection as a function of VMI energy differed stronger for the large size as compared with the medium-sized phantom (12% vs 6%). CONCLUSIONS Detectability of hypoattenuating and hyperattenuating liver lesions differed between VMI energies for different phantom sizes and radiation doses. Virtual monoenergetic images at 65 and 70 keV yielded highest detectability independent of phantom size and radiation dose.
Collapse
Affiliation(s)
- Damien Racine
- From the Institute of Radiation Physics, University Hospital Lausanne (CHUV), University of Lausanne, Lausanne, Switzerland (D.R., A.V., V.V.); Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland (V.M., T.F., H.A., A.E.); and Department of Radiology, Kantonsspital Baden, Baden, Switzerland (A.E.)
| | | | | | | | | | | | | |
Collapse
|
22
|
Rajendran K, Bruesewitz M, Swicklik J, Ferrero A, Thorne J, Yu L, McCollough C, Leng S. Task-based automatic keV selection: leveraging routine virtual monoenergetic imaging for dose reduction on clinical photon-counting detector CT . Phys Med Biol 2024; 69:10.1088/1361-6560/ad41b3. [PMID: 38648795 PMCID: PMC11108732 DOI: 10.1088/1361-6560/ad41b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Objective. Photon-counting detector (PCD) CT enables routine virtual-monoenergetic image (VMI) reconstruction. We evaluated the performance of an automatic VMI energy level (keV) selection tool on a clinical PCD-CT system in comparison to an automatic tube potential (kV) selection tool from an energy-integrating-detector (EID) CT system from the same manufacturer.Approach.Four torso-shaped phantoms (20-50 cm width) containing iodine (2, 5, and 10 mg cc-1) and calcium (100 mg cc-1) were scanned on PCD-CT and EID-CT. Dose optimization techniques, task-based VMI energy level and tube-potential selection on PCD-CT (CARE keV) and task-based tube potential selection on EID-CT (CARE kV), were enabled. CT numbers, image noise, and dose-normalized contrast-to-noise ratio (CNRd) were compared.Main results. PCD-CT produced task-specific VMIs at 70, 65, 60, and 55 keV for non-contrast, bone, soft tissue with contrast, and vascular settings, respectively. A 120 kV tube potential was automatically selected on PCD-CT for all scans. In comparison, EID-CT used x-ray tube potentials from 80 to 150 kV based on imaging task and phantom size. PCD-CT achieved consistent dose reduction at 9%, 21% and 39% for bone, soft tissue with contrast, and vascular tasks relative to the non-contrast task, independent of phantom size. On EID-CT, dose reduction factor for contrast tasks relative to the non-contrast task ranged from a 65% decrease (vascular task, 70 kV, 20 cm phantom) to a 21% increase (soft tissue with contrast task, 150 kV, 50 cm phantom) due to size-specific tube potential adaptation. PCD-CT CNRdwas equivalent to or higher than those of EID-CT for all tasks and phantom sizes, except for the vascular task with 20 cm phantom, where 70 kV EID-CT CNRdoutperformed 55 keV PCD-CT images.Significance. PCD-CT produced more consistent CT numbers compared to EID-CT due to standardized VMI output, which greatly benefits standardization efforts and facilitates radiation dose reduction.
Collapse
Affiliation(s)
| | | | | | - Andrea Ferrero
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jamison Thorne
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Schwartz FR, Marin D, Lofino L, Abadia A, O'Donnell T, Dane B. Protocol optimization for abdominal imaging using photon-counting CT: a consensus of two academic institutions. Abdom Radiol (NY) 2024; 49:1762-1770. [PMID: 38546824 DOI: 10.1007/s00261-024-04254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Photon-counting detector CT (PCD CT) is a promising technology for abdominal imaging due to its ability to provide high spatial and contrast resolution images with reduced patient radiation exposure. However, there is currently no consensus regarding the optimal imaging protocols for PCD CT. This article aims to present the PCD CT abdominal imaging protocols used by two tertiary care academic centers in the United States. METHODS A review of PCD CT abdominal imaging protocols was conducted by two abdominal radiologists at different academic institutions. Protocols were compared in terms of acquisition parameters and reconstruction settings. Both imaging centers independently selected similar protocols for PCD CT abdominal imaging, using QuantumPlus mode. RESULTS There were some differences in the use of reconstruction kernels and iterative reconstruction levels, however the individual combination at each site resulted in similar image impressions. Overall, the imaging protocols used by both centers provide high-quality images with low radiation exposure. CONCLUSION These findings provide valuable insights into the development of standardized protocols for PCD CT abdominal imaging, which can help to ensure consistent as well as high-quality imaging across different institutions and allow for future multicenter research collaborations.
Collapse
Affiliation(s)
- Fides R Schwartz
- Duke University Hospital and Brigham and Women's Hospital, Boston, USA.
| | | | | | | | | | - Bari Dane
- New York University Langone Hospital, New York, USA
| |
Collapse
|
24
|
Woeltjen MM, Niehoff JH, Roggel R, Michael AE, Gerdes B, Surov A, Borggrefe J, Kroeger JR. Pancreatic cancer in photon-counting CT: Low keV virtual monoenergetic images improve tumor conspicuity. Eur J Radiol 2024; 173:111374. [PMID: 38422607 DOI: 10.1016/j.ejrad.2024.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF THE STUDY The aim of the study was to identify differences in the tumor conspicuity of pancreatic adenocarcinomas in different monoenergetic or polyenergetic reconstructions and contrast phases in photon-counting CT (PCCT). MATERIAL AND METHODS 34 patients were retrospectively enrolled in this study. Quantitative image analysis was performed with region of interest (ROI) measurements in different monoenergetic levels ranging from 40 up to 70 keV (5-point steps) and polyenergetic series. Tumor-parenchyma attenuation differences and contrast-to-noise-ratio (CNR) were calculated. A qualitative image analysis was accomplished by 4 radiologists using a 5-point Likert scale (1 = "not recognizable" up to 5 = "easy recognizable"). Differences between groups were evaluated for statistical significance using the Friedman test and in case of significant differences pair-wise post-hoc testing with Bonferroni correction was applied. RESULTS Tumor-parenchyma attenuation difference was significantly different between the different image reconstructions for both arterial- and portal-venous-phase-images (p < 0.001). Tumor-parenchyma attenuation difference was significantly higher on arterial-phase-images at mono40keV compared to polyenergetic images (p < 0.001) and mono55keV images or higher (p < 0.001). For portal-venous-phase-images tumor-parenchyma attenuation difference was significantly higher on mono40keV images compared to polyenergetic images (p < 0.001) and mono50keV images (p = 0.03) or higher (p < 0.001). The same trend was seen for CNR. Tumor conspicuity was rated best on mono40keV images with 4.3 ± 0.9 for arterial-phase-images and 4.3 ± 1.1 for portal-venous-phase-images. In contrast, overall image quality was rated best on polyenergetic-images with 4.8 ± 0.5 for arterial-phase-images and 4.7 ± 0.6 for portal-venous-phase-images. CONCLUSION Low keV virtual monoenergetic images significantly improve the tumor conspicuity of pancreatic adenocarcinomas in PCCT based on quantitative and qualitative results. On the other hand, readers prefer polyenergetic images for overall image quality.
Collapse
Affiliation(s)
- Matthias Michael Woeltjen
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany.
| | - Julius Henning Niehoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ruth Roggel
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Arwed Elias Michael
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Berthold Gerdes
- Department of General-, Visceral-, Thoracic- and Endocrine Surgery, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Alexey Surov
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Hartung V, Gruschwitz P, Huflage H, Augustin AM, Kleefeldt F, Peter D, Lichthardt S, Ergün S, Bley TA, Grunz JP, Petritsch B. Photon-Counting Detector CT for Femoral Stent Imaging in an Extracorporeally Perfused Human Cadaveric Model. Invest Radiol 2024; 59:320-327. [PMID: 37812470 DOI: 10.1097/rli.0000000000001019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND AND AIMS This study aims to compare the performance of first-generation dual-source photon-counting detector computed tomography (PCD-CT) to third-generation dual-source energy-integrating detector (EID-CT) regarding stent imaging in the femoral arterial runoff. METHODS Continuous extracorporeal perfusion was established in 1 human cadaver using an inguinal and infragenicular access and peristaltic pump. Seven peripheral stents were implanted into both superior femoral arteries by means of percutaneous angioplasty. Radiation dose-equivalent CT angiographies (high-/medium-/low-dose: 10/5/3 mGy) with constant tube voltage of 120 kVp, matching iterative reconstruction algorithm levels, and convolution kernels were used both with PCD-CT and EID-CT. In-stent lumen visibility, luminal and in-stent attenuation as well as contrast-to-noise ratio (CNR) were assessed via region of interest and diameter measurements. Results were compared using analyses of variance and regression analyses. RESULTS Maximum in-stent lumen visibility achieved with PCD-CT was 94.48% ± 2.62%. The PCD-CT protocol with the lowest lumen visibility (BV40: 78.93% ± 4.67%) performed equal to the EID-CT protocol with the best lumen visibility (BV59: 79.49% ± 2.64%, P > 0.999). Photon-counting detector CT yielded superior CNR compared with EID-CT regardless of kernel and dose level ( P < 0.001). Maximum CNR was 48.8 ± 17.4 in PCD-CT versus 31.28 ± 5.7 in EID-CT (both BV40, high-dose). The theoretical dose reduction potential of PCD-CT over EID-CT was established at 88% (BV40), 83% (BV48/49), and 73% (BV59/60), respectively. In-stent attenuation was not significantly different from luminal attenuation outside stents in any protocol. CONCLUSIONS With superior lumen visibility and CNR, PCD-CT allowed for noticeable dose reduction over EID-CT while maintaining image quality in a continuously perfused human cadaveric model.
Collapse
Affiliation(s)
- Viktor Hartung
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany (V.H., P.G., H.H., A.M.A., T.A.B., J.-P.G., B.M.W.P.); Institute of Anatomy and Cell Biology, Julius-Maximilians University Würzburg, Würzburg, Germany (F.K., S.E.); and Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, Center of Operative Medicine, University Hospital of Würzburg, Würzburg, Germany (D.P., S.L.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dillinger D, Overhoff D, Froelich MF, Kaatsch HL, Booz C, Hagen A, Vogl TJ, Schönberg SO, Waldeck S. Photon-Counting Detector CT Virtual Monoenergetic Images in Cervical Trauma Imaging-Optimization of Dental Metal Artifacts and Image Quality. Diagnostics (Basel) 2024; 14:626. [PMID: 38535045 PMCID: PMC10968735 DOI: 10.3390/diagnostics14060626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVES The aim of this study was to analyze the extent of dental metal artifacts in virtual monoenergetic (VME) images, as they often compromise image quality by obscuring soft tissue affecting vascular attenuation reducing sensitivity in the detection of dissections. METHODS Neck photon-counting CT datasets of 50 patients undergoing contrast-enhanced trauma CT were analyzed. Hyperattenuation and hypoattenuation artifacts, muscle with and without artifacts and vessels with and without artifacts were measured at energy levels from 40 keV to 190 keV. The corrected artifact burden, corrected image noise and artifact index were calculated. We also assessed subjective image quality on a Likert-scale. RESULTS Our study showed a lower artifact burden and less noise in artifact-affected areas above the energy levels of 70 keV for hyperattenuation artifacts (conventional polychromatic CT images 1123 ± 625 HU vs. 70 keV VME 1089 ± 733 HU, p = 0.125) and above of 80 keV for hypoattenuation artifacts (conventional CT images -1166 ± 779 HU vs. 80 keV VME -1170 ± 851 HU, p = 0.927). Vascular structures were less hampered by metal artifacts than muscles (e.g., corrected artifact burden at 40 keV muscle 158 ± 125 HU vs. vessels -63 ± 158 HU p < 0.001), which was also reflected in the subjective image assessment, which showed better ratings at higher keV values and overall better ratings for vascular structures than for the overall artifact burden. CONCLUSIONS Our research suggests 70 keV might be the best compromise for reducing metal artifacts affecting vascular structures and preventing vascular contrast if solely using VME reconstructions. VME imaging shows only significant effects on the general artifact burden. Vascular structures generally experience fewer metal artifacts than soft tissue due to their greater distance from the teeth, which are a common source of such artifacts.
Collapse
Affiliation(s)
- Daniel Dillinger
- Department of Vascular Surgery and Endovascular Surgery, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Daniel Overhoff
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Hanns L. Kaatsch
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Christian Booz
- Institute for Diagnostic and Interventional Radiology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Achim Hagen
- Department of Vascular Surgery and Endovascular Surgery, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Thomas J. Vogl
- Institute for Diagnostic and Interventional Radiology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stefan O. Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
27
|
Dane B, Ruff A, O'Donnell T, El-Ali A, Ginocchio L, Prabhu V, Megibow A. Photon-Counting Computed Tomography Versus Energy-Integrating Dual-Energy Computed Tomography: Virtual Noncontrast Image Quality Comparison. J Comput Assist Tomogr 2024; 48:251-256. [PMID: 38013203 DOI: 10.1097/rct.0000000000001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PURPOSE This study aimed to compare the image quality of portal venous phase-derived virtual noncontrast (VNC) images from photon-counting computed tomography (PCCT) with energy-integrating dual-energy computed tomography (EI-DECT) in the same patient using quantitative and qualitative analyses. METHODS Consecutive patients retrospectively identified with available portal venous phase-derived VNC images from both PCCT and EI-DECT were included. Patients without available VNC in picture archiving and communication system in PCCT or prior EI-DECT and non-portal venous phase acquisitions were excluded. Three fellowship-trained radiologists blinded to VNC source qualitatively assessed VNC images on a 5-point scale for overall image quality, image noise, small structure delineation, noise texture, artifacts, and degree of iodine removal. Quantitative assessment used region-of-interest measurements within the aorta at 4 standard locations, both psoas muscles, both renal cortices, spleen, retroperitoneal fat, and inferior vena cava. Attenuation (Hounsfield unit), quantitative noise (Hounsfield unit SD), contrast-to-noise ratio (CNR) (CNR vascular , CNR kidney , CNR spleen , CNR fat ), signal-to-noise ratio (SNR) (SNR vascular , SNR kidney , SNR spleen , SNR fat ), and radiation dose were compared between PCCT and EI-DECT with the Wilcoxon signed rank test. A P < 0.05 indicated statistical significance. RESULTS A total of 74 patients (27 men; mean ± SD age, 63 ± 13 years) were included. Computed tomography dose index volumes for PCCT and EI-DECT were 9.2 ± 3.5 mGy and 9.4 ± 9.0 mGy, respectively ( P = 0.06). Qualitatively, PCCT VNC images had better overall image quality, image noise, small structure delineation, noise texture, and fewer artifacts (all P < 0.00001). Virtual noncontrast images from PCCT had lower attenuation (all P < 0.05), noise ( P = 0.006), and higher CNR ( P < 0.0001-0.04). Contrast-enhanced structures had lower SNR on PCCT ( P = 0.001, 0.002), reflecting greater contrast removal. The SNRfat (nonenhancing) was higher for PCCT than EI-DECT ( P < 0.00001). CONCLUSIONS Virtual noncontrast images from PCCT had improved image quality, lower noise, improved CNR and SNR compared with those derived from EI-DECT.
Collapse
Affiliation(s)
- Bari Dane
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Andrew Ruff
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | | | - Alexander El-Ali
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Luke Ginocchio
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Vinay Prabhu
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Alec Megibow
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
28
|
Rippel K, Luitjens J, Habeeballah O, Scheurig-Muenkler C, Bette S, Braun F, Kroencke TJ, Schwarz F, Decker JA. Evaluation of ECG-Gated, High-Pitch Thoracoabdominal Angiographies With Dual-Source Photon-Counting Detector Computed Tomography. J Endovasc Ther 2024:15266028241230943. [PMID: 38380529 DOI: 10.1177/15266028241230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE The aim of this study was to evaluate the radiation dose, image quality, and the potential of virtual monoenergetic imaging (VMI) reconstructions of high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta on a dual-source photon-counting detector-CT (PCD-CT) in comparison with an energy-integrating detector-CT (EID-CT), with a special focus on low-contrast attenuation. METHODS Consecutive patients being referred for an electrocardiogram (ECG)-gated, high-pitch CTA of the thoracoabdominal aorta prior to transcatheter aortic valve replacement (TAVR), and examined on the PCD-CT, were included in this prospective single-center study. For comparison, a retrospective patient group with ECG-gated, high-pitch CTA examinations of the thoracoabdominal aorta on EID-CT with a comparable scan protocol was matched for gender, body mass index, height, and age. Virtual monoenergetic imaging reconstructions from 40 to 120 keV were performed. Enhancement and noise were measured in 7 vascular segments and the surrounding air as mean and standard deviation of CT values. The radiation dose was noted and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Finally, a subgroup analysis was performed, comparing VMI reconstructions from 40 keV to 70 keV in patients with at least a 50% decrease in contrast attenuation between the ascending aorta and femoral arteries. RESULTS Fifty patients (mean age 77.0±14.5 years; 31 women) were included. The radiation dose was significantly lower on the PCD-CT (4.2±1.4 vs. 7.2±2.2 mGy; p<0.001). With increasing keV, vascular noise, SNR, and CNR decreased. Intravascular attenuation was significantly higher on VMI at levels from 40 to 65, compared with levels of 120 keV (p<0.01 and p<0.005, respectively). On the PCD-CT, SNR was significantly higher in keV levels 40 and 70 (all p<0.001), and CNR was higher at keV levels 40 and 45 (each p<0.001), compared with scans on the EID-CT. At VMI ≤60 keV, image noise was also significantly higher than that in the control group. The subgroup analysis showed a drastically improved diagnostic performance of the low-keV images in patients with low-contrast attenuation. CONCLUSION The ECG-gated CTA of the thoracoabdominal aorta in high-pitch mode on PCD-CT have significantly lower radiation dose and higher objective image quality than EID-CT. In addition, low-keV VMI can salvage suboptimal contrast studies, further reducing radiation dose by eliminating the need for repeat scans. CLINICAL IMPACT ECG-gated CT-angiographies of the thoracoabdominal aorta can be acquired with a lower radtiation dose and a better image quality by using a dual-source photon-countinge detector CT. Furthermore, the inherent spectral data offers the possiblity to improve undiagnostic images and thus saves the patient from further radiation and contrast application.
Collapse
Affiliation(s)
- K Rippel
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - J Luitjens
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - O Habeeballah
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - C Scheurig-Muenkler
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Stefanie Bette
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Franziska Braun
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - T J Kroencke
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, Augsburg, Germany
| | - F Schwarz
- DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| | - J A Decker
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| |
Collapse
|
29
|
Layer YC, Mesropyan N, Kupczyk PA, Luetkens JA, Isaak A, Dell T, Ernst BP, Attenberger UI, Kuetting D. Use of virtual monoenergetic images for reduction of extensive dental implant associated artifacts in photon-counting detector CT. Sci Rep 2024; 14:497. [PMID: 38177651 PMCID: PMC10766624 DOI: 10.1038/s41598-023-50926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
Aim of this study was to assess the impact of virtual monoenergetic images (VMI) on dental implant artifacts in photon-counting detector computed tomography (PCD-CT) compared to standard reconstructed polychromatic images (PI). 30 scans with extensive (≥ 5 dental implants) dental implant-associated artifacts were retrospectively analyzed. Scans were acquired during clinical routine on a PCD-CT. VMI were reconstructed for 100-190 keV (10 keV steps) and compared to PI. Artifact extent and assessment of adjacent soft tissue were rated using a 5-point Likert grading scale for qualitative assessment. Quantitative assessment was performed using ROIs in most pronounced hypodense and hyperdense artifacts, artifact-impaired soft tissue, artifact-free fat and muscle tissue. A corrected attenuation was calculated as difference between artifact-impaired tissue and tissue without artifacts. Qualitative assessment of soft palate and cheeks improved for all VMI compared to PI (Median PI: 1 (Range: 1-3) and 1 (1-3); e.g. VMI130 keV 2 (1-5); p < 0.0001 and 2 (1-4); p < 0.0001). In quantitative assessment, VMI130 keV showed best results with a corrected attenuation closest to 0 (PI: 30.48 ± 98.16; VMI130 keV: - 0.55 ± 73.38; p = 0.0026). Overall, photon-counting deducted VMI reduce the extent of dental implant-associated artifacts. VMI of 130 keV showed best results and are recommended to support head and neck CT scans.
Collapse
Affiliation(s)
- Yannik C Layer
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Patrick A Kupczyk
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tatjana Dell
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Benjamin P Ernst
- Department of Otorhinolaryngology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
30
|
Dane B, Qian K, Soni R, Megibow A. Crohn's disease inflammation severity assessment with iodine density from photon counting CT enterography: comparison with endoscopic histopathology. Abdom Radiol (NY) 2024; 49:271-278. [PMID: 37814149 DOI: 10.1007/s00261-023-04060-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE To determine optimal iodine density thresholds for active inflammation in CD patients with PCCT enterography and determine if iodine density can be used to stratify CD activity severity. METHODS A retrospective PACS search identified patients with CD imaged with PCCT enterography from 4/11/2022 to 10/30/2022 and with clinical notes, endoscopic/surgical pathology and available source PCCT data for iodine density analysis. Two abdominal radiologists with expertise in CD each drew two region of interest measurements within the visibly most affected region of terminal or neoterminal ileum wall on commercially available system (SyngoVia). Radiologists were blinded to clinical information and pathologic findings. Disease activity and severity were recorded from the pathology report. Harvey-Bradshaw Index, medications, and laboratory values were recorded. Receiver operating characteristic (ROC) curves were utilized to determine the optimum iodine density threshold for active inflammation and mild versus moderate-to-severe inflammation. Intra- and inter-reader agreement was assessed by intra-class correlation coefficient (ICC). RESULTS 23 CD patients (15 females; mean [SD] age: 52 [17] years) imaged with PCCT enterography were included. 15/23 had active inflammation: 9/15 mild, 4/15 moderate, and 2/15 severe active inflammation. The optimal iodine density threshold for active inflammation was 2.7 mg/mL, with 97% sensitivity, 100% specificity, and 98% accuracy (AUC = 1.00). The optimal iodine density threshold for distinguishing mild from moderate-to-severe inflammation was 3.4 mg/mL, with 83% sensitivity, 89% specificity, and 87% accuracy (AUC = 0.85). Intra-reader reliability (R1/R2) ICC was 0.81/0.86. Inter-reader reliability ICC was 0.94. CONCLUSION Iodine density from PCCT enterography can distinguish mild from moderate-to-severe active inflammation.
Collapse
Affiliation(s)
- Bari Dane
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA.
| | - Kun Qian
- Department of Biostatistics, NYU Langone Health, 180 Madison Avenue, New York, NY, 10016, USA
| | - Ria Soni
- NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Alec Megibow
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| |
Collapse
|
31
|
Decker JA, Becker J, Härting M, Jehs B, Risch F, Canalini L, Wollny C, Scheurig-Muenkler C, Kroencke T, Schwarz F, Bette S. Optimal conspicuity of pancreatic ductal adenocarcinoma in virtual monochromatic imaging reconstructions on a photon-counting detector CT: comparison to conventional MDCT. Abdom Radiol (NY) 2024; 49:103-116. [PMID: 37796327 PMCID: PMC10789688 DOI: 10.1007/s00261-023-04042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE To analyze the conspicuity of pancreatic ductal adenocarcinoma (PDAC) in virtual monoenergetic images (VMI) on a novel photon-counting detector CT (PCD-CT) in comparison to energy-integrating CT (EID-CT). METHODS Inclusion criteria comprised initial diagnosis of PDAC (reference standard: histopathological analysis) and standardized contrast-enhanced CT imaging either on an EID-CT or a PCD-CT. Patients were excluded due to different histopathological diagnosis or missing tumor delineation on CT. On the PCD-CT, 40-190 keV VMI reconstructions were generated. Image noise, tumor-to-pancreas ratio (TPR) and contrast-to-noise ratio (CNR) were analyzed by ROI-based measurements in arterial and portal venous contrast phase. Two board-certified radiologist evaluated image quality and tumor delineation at both, EID-CT and PCD-CT (40 and 70 keV). RESULTS Thirty-eight patients (mean age 70.4 years ± 10.3 [range 45-91], 27 males; PCD-CT: n=19, EID-CT: n=19) were retrospectively included. On the PCD-CT, tumor conspicuity (reflected by low TPR and high CNR) was significantly improved at low-energy VMI series (≤ 70 keV compared to > 70 keV), both in arterial and in portal venous contrast phase (P < 0.001), reaching the maximum at 40 keV. Comparison between PCD-CT and EID-CT showed significantly higher CNR on the PCD-CT in portal venous contrast phase at < 70 keV (P < 0.016). On the PCD-CT, tumor conspicuity was improved in portal venous contrast phase compared to arterial contrast phase especially at the lower end of the VMI spectrum (≤ 70 keV). Qualitative analysis revealed that tumor delineation is improved in 40 keV reconstructions compared to 70 keV reconstructions on a PCD-CT. CONCLUSION PCD-CT VMI reconstructions (≤ 70 keV) showed significantly improved conspicuity of PDAC in quantitative and qualitative analysis in both, arterial and portal venous contrast phase, compared to EID-CT, which may be important for early detection of tumor tissue in clinical routine. Tumor delineation was superior in portal venous contrast phase compared to arterial contrast phase.
Collapse
Affiliation(s)
- Josua A Decker
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Judith Becker
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Mark Härting
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Bertram Jehs
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Franka Risch
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Luca Canalini
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Claudia Wollny
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Christian Scheurig-Muenkler
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Thomas Kroencke
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Universitätsstr. 2, 86159, Augsburg, Germany.
| | - Florian Schwarz
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Medical Faculty, Ludwig Maximilian University Munich, Bavariaring 19, 80336, Munich, Germany
- Institute for Radiology, DONAUISAR Hospital Deggendorf-Dingolfing-Landau, Perlasberger Str. 41, 94469, Deggendorf, Germany
| | - Stefanie Bette
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| |
Collapse
|
32
|
Zanon C, Cademartiri F, Toniolo A, Bini C, Clemente A, Colacchio EC, Cabrelle G, Mastro F, Antonello M, Quaia E, Pepe A. Advantages of Photon-Counting Detector CT in Aortic Imaging. Tomography 2023; 10:1-13. [PMID: 38276249 PMCID: PMC10821336 DOI: 10.3390/tomography10010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Photon-counting Computed Tomography (PCCT) is a promising imaging technique. Using detectors that count the number and energy of photons in multiple bins, PCCT offers several advantages over conventional CT, including a higher image quality, reduced contrast agent volume, radiation doses, and artifacts. Although PCCT is well established for cardiac imaging in assessing coronary artery disease, its application in aortic imaging remains limited. This review summarizes the available literature and provides an overview of the current use of PCCT for the diagnosis of aortic imaging, focusing mainly on endoleaks detection and characterization after endovascular aneurysm repair (EVAR), contrast dose volume, and radiation exposure reduction, particularly in patients with chronic kidney disease and in those requiring follow-up CT.
Collapse
Affiliation(s)
- Chiara Zanon
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | | | - Costanza Bini
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | - Elda Chiara Colacchio
- Vascular and Endovascular Surgery Section, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Giulio Cabrelle
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Florinda Mastro
- Division of Cardiac Surgery, University of Padua, 35128 Padua, Italy
| | - Michele Antonello
- Vascular and Endovascular Surgery Section, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Emilio Quaia
- Department of Radiology, University of Padua, 35128 Padua, Italy
| | - Alessia Pepe
- Department of Radiology, University of Padua, 35128 Padua, Italy
| |
Collapse
|
33
|
Horst KK, Yu L, McCollough CH, Esquivel A, Thorne JE, Rajiah PS, Baffour F, Hull NC, Weber NM, Thacker PG, Thomas KB, Binkovitz LA, Guerin JB, Fletcher JG. Potential benefits of photon counting detector computed tomography in pediatric imaging. Br J Radiol 2023; 96:20230189. [PMID: 37750939 PMCID: PMC10646626 DOI: 10.1259/bjr.20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Photon counting detector (PCD) CT represents the newest advance in CT technology, with improved radiation dose efficiency, increased spatial resolution, inherent spectral imaging capabilities, and the ability to eliminate electronic noise. Its design fundamentally differs from conventional energy integrating detector CT because photons are directly converted to electrical signal in a single step. Rather than converting X-rays to visible light and having an output signal that is a summation of energies, PCD directly counts each photon and records its individual energy information. The current commercially available PCD-CT utilizes a dual-source CT geometry, which allows 66 ms cardiac temporal resolution and high-pitch (up to 3.2) scanning. This can greatly benefit pediatric patients by facilitating high quality fast scanning to allow sedation-free imaging. The energy-resolving nature of the utilized PCDs allows "always-on" dual-energy imaging capabilities, such as the creation of virtual monoenergetic, virtual non-contrast, virtual non-calcium, and other material-specific images. These features may be combined with high-resolution imaging, made possible by the decreased size of individual detector elements and the absence of interelement septa. This work reviews the foundational concepts associated with PCD-CT and presents examples to highlight the benefits of PCD-CT in the pediatric population.
Collapse
Affiliation(s)
- Kelly K. Horst
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Andrea Esquivel
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | | | - Francis Baffour
- Department of Radiology, Mayo Clinic, Rochester, United States
| | - Nathan C. Hull
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Paul G. Thacker
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Kristen B. Thomas
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Larry A. Binkovitz
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Julie B. Guerin
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | |
Collapse
|
34
|
Skawran S, Sartoretti T, Gennari AG, Schwyzer M, Sartoretti E, Treyer V, Maurer A, Huellner MW, Waelti S, Messerli M. Evolution of CT radiation dose in pediatric patients undergoing hybrid 2-[ 18F]FDG PET/CT between 2007 and 2021. Br J Radiol 2023; 96:20220482. [PMID: 37751216 PMCID: PMC10646648 DOI: 10.1259/bjr.20220482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVES To evaluate the evolution of CT radiation dose in pediatric patients undergoing hybrid 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) PET/CT between 2007 and 2021. METHODS AND MATERIALS Data from all pediatric patients aged 0-18 years who underwent hybrid 2-[18F]FDG PET/CT of the body between January 2007 and May 2021 were reviewed. Demographic and imaging parameters were collected. A board-certified radiologist reviewed all CT scans and measured image noise in the brain, liver, and adductor muscles. RESULTS 294 scans from 167 children (72 females (43%); median age: 14 (IQR 10-15) years; BMI: median 17.5 (IQR 15-20.4) kg/m2) were included. CT dose index-volume (CTDIvol) and dose length product (DLP) both decreased significantly from 2007 to 2021 (both p < 0.001, Spearman's rho coefficients -0.46 and -0.35, respectively). Specifically, from 2007 to 2009 to 2019-2021 CTDIvol and DLP decreased from 2.94 (2.14-2.99) mGy and 309 (230-371) mGy*cm, respectively, to 0.855 (0.568-1.11) mGy and 108 (65.6-207) mGy*cm, respectively. From 2007 to 2021, image noise in the brain and liver remained constant (p = 0.26 and p = 0.06), while it decreased in the adductor muscles (p = 0.007). Peak tube voltage selection (in kilovolt, kV) of CT scans shifted from high kV imaging (140 or 120kVp) to low kV imaging (100 or 80kVp) (p < 0.001) from 2007 to 2021. CONCLUSION CT radiation dose in pediatric patients undergoing hybrid 2-[18F]FDG PET/CT has decreased in recent years equaling approximately one-third of the initial amount. ADVANCES IN KNOWLEDGE Over the past 15 years, CT radiation dose decreased considerably in pediatric patients undergoing hybrid imaging, while objective image quality may not have been compromised.
Collapse
|
35
|
Hagen F, Estler A, Hofmann J, Walder L, Faby S, Almarie B, Nikolaou K, Wrazidlo R, Horger M. Reduced versus standard dose contrast volume for contrast-enhanced abdominal CT in overweight and obese patients using photon counting detector technology vs. second-generation dual-source energy integrating detector CT. Eur J Radiol 2023; 169:111153. [PMID: 38250749 DOI: 10.1016/j.ejrad.2023.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 01/23/2024]
Abstract
PURPOSE To compare image quality of contrast-enhanced abdominal-CT using 1st-generation Dual Source Photon-Counting Detector CT (DS-PCD-CT) versus 2nd-generation Dual-Source Energy Integrating-Detector CT (DS-EID-CT) in patients with BMI ≥ 25, applying two different contrast agent volumes, vendor proposed protocols and different virtual monoenergetic images (VMI). METHOD 68 overweight (BMI ≥ 25 kgm2) patients (median age: 65 years; median BMI 33.3 kgm2) who underwent clinically indicated, portal-venous contrast-enhanced abdominal-CT on a commercially available 1st-generation DS-PCD-CT were prospectively included if they already have had a pre-exam on 2nd-generation DS-EID-CT using a standardized exam protocol. Obesity were defined by BMI-calculation (overweight: 25-29.9, obesity grade I: 30-34.9; obesity grade II: 35-39.9; obesity grade III: > 40) and by the absolute weight value. Body weight adapted contrast volume (targeted volume of 1.2 mL/kg for the 1st study and 0.8 mL/kg for the 2nd study) was applied in both groups. Dual Energy mode was used for both the DS-PCD-CT and the DS-EID-CT. Polychromatic images and VMI (40 keV and 70 keV) were reconstructed for both the DS-EID-CT and the DS-PCD-CT data (termed T3D). Two radiologists assessed subjective image quality using a 5-point Likert-scale. Each reader drew ROIs within parenchymatous organs and vascular structures to analyze image noise, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). RESULTS Median time interval between scans was 12 months (Min: 6 months; Max: 36 months). BMI classification included overweight (n = 10, 14.7 %), obesity grade I (n = 38, 55.9 %), grade II (n = 13, 19.1 %) and grade III (n = 7, 10.3 %). The SNR achieved with DS-PCD-CT at QIR level 3was 12.61 vs. 11.47 (QIR 2) vs. 10.53 (DS-EID-CT), irrespective of parenchymatous organs. For vessels, the SNR were 16.73 vs. 14.20 (QIR 2) vs. 12.07 (DS-EID-CT). Moreover, the obtained median noise at QIR level 3 was as low as that of the DS-EID-CT (8.65 vs. 8.65). Both radiologists rated the image quality higher for DS-PCD-CT data sets (p < 0.05). The highest CNR was achieved at 40 keV for both scanners. T3D demonstrated significantly higher SNR and lower noise level compared to 40 keV and 70 keV. Median CTDIvol and DLP values for DS-PCD-CT and DS-EID-CT were 10.90 mGy (IQR: 9.31 - 12.50 mGy) vs. 16.55 mGy (IQR: 15.45 - 18.17 mGy) and 589.50 mGy * cm (IQR: 498.50 - 708.25 mGy * cm) vs. 848.75 mGy * cm (IQR: 753.43 - 969.58 mGy * cm) (p < 0.001). CONCLUSION Image quality can be maintained while significantly reducing the contrast volume and the radiation dose (27% and 34% lower DLP and 31% lower CDTIvol) for abdominal contrast-enhanced CT using a 1st-generation DS-PCD-CT. Moreover, polychromatic reconstruction T3D on a DS-PCD-CT enables sufficient diagnostic image quality for oncological imaging.
Collapse
Affiliation(s)
- Florian Hagen
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen, Germany
| | - Arne Estler
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen, Germany
| | - Johannes Hofmann
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen, Germany
| | - Lukas Walder
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen, Germany
| | | | - Bassel Almarie
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen, Germany
| | - Robin Wrazidlo
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen, Germany.
| |
Collapse
|
36
|
Ren L, Sun Y, Yeh B, Marsh JF, Winfree TN, Burke KA, Rajendran K, McCollough CH, Mileto A, Fletcher JG, Leng S. Characterization of single- and multi-energy CT performance of an oral dark borosilicate contrast media using a clinical photon-counting-detector CT platform. Med Phys 2023; 50:6779-6788. [PMID: 37669507 PMCID: PMC10840945 DOI: 10.1002/mp.16713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The feasibility of oral dark contrast media is under exploration in abdominal computed tomography (CT) applications. One of the experimental contrast media in this class is dark borosilicate contrast media (DBCM), which has a CT attenuation lower than that of intra-abdominal fat. PURPOSE To evaluate the performances of DBCM using single- and multi-energy CT imaging on a clinical photon-counting-detector CT (PCD-CT). METHODS Five vials, three with iodinated contrast agent (5, 10, and 20 mg/mL; Omnipaque 350) and two with DBCM (6% and 12%; Nextrast, Inc.), and one solid-water rod (neutral contrast agent) were inserted into two multi-energy CT phantoms, and scanned on a clinical PCD-CT system (NAEOTOM Alpha) at 90, 120, 140, Sn100, and Sn140 kV (Sn: tin filter) in multi-energy mode. CARE keV IQ level was 180 (CTDIvol: 3.0 and 12.0 mGy for the small and large phantoms, respectively). Low-energy threshold images were reconstructed with a quantitative kernel (Qr40, iterative reconstruction strength 2) and slice thickness/increment of 2.0/2.0 mm. Virtual monoenergetic images (VMIs) were reconstructed from 40 to 140 keV at 10 keV increments. On all images, average CT numbers for each vial/rod were measured using circular region-of-interests and averaged over eight slices. The contrast-to-noise ratio (CNR) of iodine (5 mg/mL) against DBCM was calculated and plotted against tube potential and VMI energy level, and compared to the CNR of iodine against water. Similar analyses were performed on iodine maps and VNC images derived from the multi-energy scan at 120 kV. RESULTS With increasing kV or VMI keV, the negative HU of DBCM decreased only slightly, whereas the positive HU of iodine decreased across all contrast concentrations and phantom sizes. CT numbers for DBCM decreased from -178.5 ± 9.6 to -194.4 ± 6.3 HU (small phantom) and from -181.7 ± 15.7 to -192.1 ± 11.9 HU (large phantom) for DBCM-12% from 90 to Sn140 kV; on VMIs, the CT numbers for DBCM decreased minimally from -147.1 ± 15.7 to -185.1 ± 9.2 HU (small phantom) and -158.8 ± 28.6 to -188.9 ± 14.7 HU (large phantom) from 40 to 70 keV, but remained stable from 80 to 140 keV. The highest iodine CNR against DBCM in low-energy threshold images was seen at 90 or Sn140 kV for the small phantom, whereas all CNR values from low-energy threshold images for the large phantom were comparable. The CNR values of iodine against DBCM computed on VMIs were highest at 40 or 70 keV depending on iodine and DBCM concentrations. The CNR values of iodine against DBCM were consistently higher than iodine to water (up to 460% higher dependent on energy level). Further, the CNR of iodine compared to DBCM is less affected by VMI energy level than the identical comparison between iodine and water: CNR values at 140 keV were reduced by 46.6% (small phantom) or 42.6% (large phantom) compared to 40 keV; CNR values for iodine compared to water were reduced by 86.3% and 83.8% for similar phantom sizes, respectively. Compared to 70 keV VMI, the iodine CNR against DBCM was 13%-79% lower on iodine maps and VNC. CONCLUSIONS When evaluated at different tube potentials and VMI energy levels using a clinical PCD-CT system, DBCM showed consistently higher CNR compared to iodine versus water (a neutral contrast).
Collapse
Affiliation(s)
- Liqiang Ren
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | - Yuxin Sun
- NEXTRAST, INC., Hillsborough, CA, US
| | | | | | | | | | | | | | - Achille Mileto
- Department of Radiology, Virginia Mason Medical Center, Seattle, WA, US
| | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| |
Collapse
|
37
|
Farhadi F, Sahbaee P, Rajagopal JR, Nikpanah M, Saboury B, Gutjahr R, Biassou NM, Shah R, Flohr TG, Samei E, Pritchard WF, Malayeri AA, Bluemke DA, Jones EC. Virtual monoenergetic imaging in photon-counting CT of the head and neck. Clin Imaging 2023; 102:109-115. [PMID: 37672849 PMCID: PMC10838526 DOI: 10.1016/j.clinimag.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE Advantages of virtual monoenergetic images (VMI) have been reported for dual energy CT of the head and neck, and more recently VMIs derived from photon-counting (PCCT) angiography of the head and neck. We report image quality metrics of VMI in a PCCT angiography dataset, expanding the anatomical regions evaluated and extending observer-based qualitative methods further than previously reported. METHODS In a prospective study, asymptomatic subjects underwent contrast enhanced PCCT of the head and neck using an investigational scanner. Image sets of low, high, and full spectrum (Threshold-1) energies; linear mix of low and high energies (Mix); and 23 VMIs (40-150 keV, 5 keV increments) were generated. In 8 anatomical locations, SNR and radiologists' preferences for VMI energy levels were measured using a forced-choice rank method (4 observers) and ratings of image quality using visual grading characteristic (VGC) analysis (2 observers) comparing VMI to Mix and Threshold-1 images. RESULTS Fifteen subjects were included (7 men, 8 women, mean 57 years, range 46-75). Among all VMIs, SNRs varied by anatomic location. The highest SNRs were observed in VMIs. Radiologists preferred 50-60 keV VMIs for vascular structures and 75-85 keV for all other structures. Cumulative ratings of image quality averaged across all locations were higher for VMIs with areas under the curve of VMI vs Mix and VMI vs Threshold-1 of 0.67 and 0.68 for the first reader and 0.72 and 0.76 for the second, respectively. CONCLUSION Preferred keV level and quality ratings of VMI compared to mixed and Threshold-1 images varied by anatomical location.
Collapse
Affiliation(s)
- Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Jayasai R Rajagopal
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Moozhan Nikpanah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Nadia M Biassou
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ritu Shah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - William F Pritchard
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ashkan A Malayeri
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - David A Bluemke
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Elizabeth C Jones
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
38
|
Wu Y, Ye Z, Chen J, Deng L, Song B. Photon Counting CT: Technical Principles, Clinical Applications, and Future Prospects. Acad Radiol 2023; 30:2362-2382. [PMID: 37369618 DOI: 10.1016/j.acra.2023.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Photon-counting computed tomography (PCCT) is a new technique that utilizes photon-counting detectors to convert individual X-ray photons directly into an electrical signal, which can achieve higher spatial resolution, improved iodine signal, radiation dose reduction, artifact reduction, and multienergy imaging. This review introduces the technical principles of PCCT, and summarizes its first-in-human experience and current applications in clinical settings, and discusses the future prospects of PCCT.
Collapse
Affiliation(s)
- Yingyi Wu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Liping Deng
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.); Department of Radiology, Sanya People' s Hospital, Sanya, Hainan, China (B.S.).
| |
Collapse
|
39
|
Gruschwitz P, Hartung V, Kleefeldt F, Ergün S, Huflage H, Peter D, Hendel R, Patzer TS, Pannenbecker P, Kuhl PJ, Bley TA, Petritsch B, Grunz JP. Photon-Counting Versus Energy-Integrating Detector CT Angiography of the Lower Extremity in a Human Cadaveric Model With Continuous Extracorporeal Perfusion. Invest Radiol 2023; 58:740-745. [PMID: 37185253 DOI: 10.1097/rli.0000000000000982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVES Detailed visualization of the arterial runoff is mandatory for the assessment of peripheral arterial occlusive disease. This study aims to compare the performance of a first-generation photon-counting detector computed tomography (PCD-CT) to a third-generation energy-integrating detector CT (EID-CT). MATERIALS AND METHODS Computed tomography angiographies of 8 upper leg arterial runoffs were performed on human cadaveric models with continuous extracorporeal perfusion. For both PCD-CT and EID-CT, radiation dose-equivalent 120 kVp acquisition protocols (low-/medium-/high-dose: CTDI Vol = 3/5/10 mGy) were used. All scans were performed with standard collimation (PCD-CT: 144 × 0.4 mm; EID-CT: 96 × 0.6 mm), a pitch factor of 0.4, and a gantry rotation time of 1.0 second. Reformatting of data included the use of comparable vascular kernels (Bv 48/49), a slice thickness and increment of 1.0 mm, and a field of view of 150 × 150 mm. Eight radiologists evaluated image quality independently using a browser-based pairwise forced-choice comparison setup. Kendall concordance coefficient ( W ) was calculated to estimate interrater agreement. Signal-to-noise ratio and contrast-to-noise ratio (CNR) were compared based on 1-way analyses of variance and linear regression analysis. RESULTS Low-dose PCD-CT achieved superior signal-to-noise ratio/CNR values compared with high-dose EID-CT ( P < 0.001). Linear regression analysis suggested that an EID-CT scan with a CTDI Vol of at least 15.5 mGy was required to match the CNR value of low-dose PCD-CT. Intraluminal contrast attenuation was higher in PCD-CT than EID-CT, irrespective of dose level (415.0 ± 31.9 HU vs 329.2 ± 29.4 HU; P < 0.001). Subjective image quality of low-dose PCD-CT was considered superior to high-dose EID-CT ( P < 0.001). Interrater agreement was high ( W = 0.989). CONCLUSIONS Using cadaveric models with continuous extracorporeal perfusion allows for intraindividual image quality comparisons between PCD-CT and EID-CT on variable dose levels. With superior luminal contrast attenuation and denoising in angiographies of the peripheral arterial runoff, PCD-CT displayed potential for radiation saving of up to 83% compared with EID-CT.
Collapse
Affiliation(s)
- Philipp Gruschwitz
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| | - Viktor Hartung
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| | | | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg
| | - Henner Huflage
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| | - Dominik Peter
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Robin Hendel
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| | - Theresa Sophie Patzer
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| | - Pauline Pannenbecker
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| | - Philipp Josef Kuhl
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| | - Thorsten Alexander Bley
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| | - Bernhard Petritsch
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| | - Jan-Peter Grunz
- From the Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg
| |
Collapse
|
40
|
Decker JA, Risch F, Schwarz F, Scheurig-Muenkler C, Kroencke TJ. Improved Thermal Sensitivity Using Virtual Monochromatic Imaging Derived from Photon Counting Detector CT Data Sets: Ex Vivo Results of CT-Guided Cryoablation in Porcine Liver. Cardiovasc Intervent Radiol 2023; 46:1385-1393. [PMID: 37700006 PMCID: PMC10547619 DOI: 10.1007/s00270-023-03546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE To investigate differences in thermal sensitivity of virtual monoenergetic imaging (VMI) series generated from photon-counting detector (PCD) CT data sets, regarding their use to improve discrimination of the ablation zone during percutaneous cryoablation. MATERIALS AND METHODS CT-guided cryoablation was performed using an ex vivo model of porcine liver on a PCD-CT system. The ablation zone was imaged continuously for 8 min by acquiring a CT scan every 5 s. Tissue temperature was measured using fiberoptic temperature probes placed parallel to the cryoprobe. CT-values and noise were measured at the tip of the temperature probes on each scan and on VMI series from 40 to 130 keV. Correlation of CT-values and temperature was assessed using linear regression analyses. RESULTS For the whole temperature range of [- 40, + 20] °C, we observed a linear correlation between CT-values and temperature in reference 70 keV images (R2 = 0.60, p < 0.001) with a thermal sensitivity of 1.4HU/°C. For the most dynamic range of [- 15, + 20] °C, the sensitivity increased to 2.4HU/°C (R2 = 0.50, p < 0.001). Using VMI reconstructions, the thermal sensitivity increased from 1.4 HU/°C at 70 keV to 1.5, 1.7 and 2.0HU/°C at 60, 50 and 40 keV, respectively (range [- 40, + 20] °C). For [- 15, + 20]°C, the thermal sensitivity increased from 2.4HU/°C at 70 keV to 2.5, 2.6 and 2.7HU/°C at 60, 50 and 40 keV, respectively. Both CT-values and noise also increased with decreasing VMI keV-levels. CONCLUSION During CT-guided cryoablation of porcine liver, low-keV VMI reconstructions derived from PCD-CT data sets exhibit improved thermal sensitivity being highest between + 20 and - 15 °C.
Collapse
Affiliation(s)
- Josua A Decker
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Florian Schwarz
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
- Medical Faculty, Ludwig Maximilian University Munich, Bavariaring 19, 80336, Munich, Germany
- Diagnostic and Interventional Radiology, Donauisar Klinikum Deggendorf, Perlasberger Str. 41, 94469, Deggendorf, Germany
| | - Christian Scheurig-Muenkler
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Thomas J Kroencke
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
- Centre for Advanced Analytics and Predictive Sciences, Augsburg University, Universitätsstr. 2, 86159, Augsburg, Germany.
| |
Collapse
|
41
|
Abstract
In 1971, the first patient CT examination by Ambrose and Hounsfield paved the way for not only volumetric imaging of the brain but of the entire body. From the initial 5-minute scan for a 180° rotation to today's 0.24-second scan for a 360° rotation, CT technology continues to reinvent itself. This article describes key historical milestones in CT technology from the earliest days of CT to the present, with a look toward the future of this essential imaging modality. After a review of the beginnings of CT and its early adoption, the technical steps taken to decrease scan times-both per image and per examination-are reviewed. Novel geometries such as electron-beam CT and dual-source CT have also been developed in the quest for ever-faster scans and better in-plane temporal resolution. The focus of the past 2 decades on radiation dose optimization and management led to changes in how exposure parameters such as tube current and tube potential are prescribed such that today, examinations are more customized to the specific patient and diagnostic task than ever before. In the mid-2000s, CT expanded its reach from gray-scale to color with the clinical introduction of dual-energy CT. Today's most recent technical innovation-photon-counting CT-offers greater capabilities in multienergy CT as well as spatial resolution as good as 125 μm. Finally, artificial intelligence is poised to impact both the creation and processing of CT images, as well as automating many tasks to provide greater accuracy and reproducibility in quantitative applications.
Collapse
Affiliation(s)
- Cynthia H. McCollough
- Department of Radiology, Mayo Clinic, 200 First St SW Rochester, MN, United States 55905
| | | |
Collapse
|
42
|
Graafen D, Müller L, Halfmann MC, Stoehr F, Foerster F, Düber C, Yang Y, Emrich T, Kloeckner R. Soft Reconstruction Kernels Improve HCC Imaging on a Photon-Counting Detector CT. Acad Radiol 2023; 30 Suppl 1:S143-S154. [PMID: 37095047 DOI: 10.1016/j.acra.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
RATIONALE AND OBJECTIVES Hepatocellular carcinoma (HCC) is the only tumor entity that allows non-invasive diagnosis based on imaging without further histological proof. Therefore, excellent image quality is of utmost importance for HCC diagnosis. Novel photon-counting detector (PCD) CT improves image quality via noise reduction and higher spatial resolution, inherently providing spectral information. The aim of this study was to investigate these improvements for HCC imaging with triple-phase liver PCD-CT in a phantom and patient population study focusing on identification of the optimal reconstruction kernel. MATERIALS AND METHODS Phantom experiments were performed to analyze objective quality characteristics of the regular body and quantitative reconstruction kernels, each with four sharpness levels (36-40-44-48). For 24 patients with viable HCC lesions on PCD-CT, virtual monoenergetic images at 50 keV were reconstructed using these kernels. Quantitative image analysis included contrast-to-noise ratio (CNR) and edge sharpness. Three raters performed qualitative analyses evaluating noise, contrast, lesion conspicuity, and overall image quality. RESULTS In all contrast phases, the CNR was highest using the kernels with a sharpness level of 36 (all p < 0.05), with no significant influence on lesion sharpness. Softer reconstruction kernels were also rated better regarding noise and image quality (all p < 0.05). No significant differences were found in image contrast and lesion conspicuity. Comparing body and quantitative kernels with equal sharpness levels, there was no difference in image quality criteria, neither regarding in vitro nor in vivo analysis. CONCLUSION Soft reconstruction kernels yield the best overall quality for the evaluation of HCC in PCD-CT. As the image quality of quantitative kernels with potential for spectral post-processing is not restricted compared to regular body kernels, they should be preferred.
Collapse
Affiliation(s)
- D Graafen
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.).
| | - L Müller
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| | - M C Halfmann
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.); German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany (M.C.H., T.E.)
| | - F Stoehr
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| | - F Foerster
- Department of Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (F.F.)
| | - C Düber
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| | - Y Yang
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| | - T Emrich
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.); German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany (M.C.H., T.E.); Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (T.E.)
| | - R Kloeckner
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany (D.G., L.M., M.C.H., F.S., C.D., Y.Y., T.E., R.K.)
| |
Collapse
|
43
|
Pinos D, Griffith J, Emrich T, Schoepf UJ, O'Doherty J, Zsarnoczay E, Fink N, Vecsey-Nagy M, Suranyi P, Tesche C, Aquino GJ, Varga-Szemes A, Brandt V. Intra-individual comparison of image quality of the coronary arteries between photon-counting detector and energy-integrating detector CT systems. Eur J Radiol 2023; 166:111008. [PMID: 37542817 DOI: 10.1016/j.ejrad.2023.111008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
PURPOSE To intra-individually compare the objective and subjective image quality of coronary computed tomography angiography (CCTA) between photon-counting detector CT (PCD-CT) and energy-integrating detector CT (EID-CT). METHOD Consecutive patients undergoing clinically indicated CCTA on an EID-CT system were prospectively enrolled for a research CCTA performed on a PCD-CT system within 30 days. Polychromatic images were reconstructed for both EID- and PCD-CT, while virtual monoenergetic images (VMI) were generated at 40, 45, 50, 55, 60 and 70 keV for PCD-CT. Two blinded readers calculated contrast-to-noise ratio (CNR) for each major coronary artery and rated image noise, vessel attenuation, vessel sharpness, and overall quality on a 1-5 Likert scale. Patients were then stratified by body mass index (BMI) [high (>30 kg/m2) vs low (<30 kg/m2)] for subgroup analysis. RESULTS A total of 20 patients (67.5 ± 9.0 years, 75% male) were included in the study. Compared with EID-CT, coronary artery CNR values from PCD-CT monoenergetic and polychromatic reconstructions were all significantly higher than CNR values from EID-CT, with incrementally greater differences in obese subjects (all p < 0.008). Subjective image noise and sharpness were also significantly higher for all VMI reconstructions compared to EID-CT (all p < 0.008). All subjective scores were significantly higher for 55, 60, and 70 keV PCD-CT than EID-CT values (all p < 0.05). CONCLUSIONS The improved objective and subjective image quality of PCD-CT compared to EID-CT may provide better visualization of the coronary arteries for a wide array of patients, especially those with a high BMI.
Collapse
Affiliation(s)
- Daniel Pinos
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Joseph Griffith
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Department of Diagnostic and Interventional Radiology, University Medical Center Mainz (1 Langenbeckstraße, 55131 Mainz, Germany); German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany (1 Langenbeckstraße, 55131 Mainz, Germany)
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA).
| | - Jim O'Doherty
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Siemens Medical Solutions USA (40 Liberty Boulevard, 19355 Malvern, PA, USA)
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Medical Imaging Center, Semmelweis University (Korányi Sándor utca 2, Budapest, 1083, Hungary)
| | - Nicola Fink
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Department of Radiology, University Hospital Munich, LMU Munich, Munich, Germany (15 Marchioninistr., 81377 München, Germany)
| | - Milan Vecsey-Nagy
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University (18 Hataror ut, 1122 Budapest, Hungary)
| | - Pal Suranyi
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Christian Tesche
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Department of Cardiology, Clinic Augustinum Munich (16 Wolkerweg, 81375 München, Germany); Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University (Lazarettstraße 36, 80636 München, Germany)
| | - Gilberto J Aquino
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA)
| | - Verena Brandt
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina (25 Courtenay Dr, Charleston, SC, 29425, USA); Department of Cardiology and Angiology, Robert-Bosch-Hospital (Auerbachstraße 110, 70376 Stuttgart, Germany)
| |
Collapse
|
44
|
McCollough CH, Rajendran K, Baffour FI, Diehn FE, Ferrero A, Glazebrook KN, Horst KK, Johnson TF, Leng S, Mileto A, Rajiah PS, Schmidt B, Yu L, Flohr TG, Fletcher JG. Clinical applications of photon counting detector CT. Eur Radiol 2023; 33:5309-5320. [PMID: 37020069 PMCID: PMC10330165 DOI: 10.1007/s00330-023-09596-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 04/07/2023]
Abstract
The X-ray detector is a fundamental component of a CT system that determines the image quality and dose efficiency. Until the approval of the first clinical photon-counting-detector (PCD) system in 2021, all clinical CT scanners used scintillating detectors, which do not capture information about individual photons in the two-step detection process. In contrast, PCDs use a one-step process whereby X-ray energy is converted directly into an electrical signal. This preserves information about individual photons such that the numbers of X-ray in different energy ranges can be counted. Primary advantages of PCDs include the absence of electronic noise, improved radiation dose efficiency, increased iodine signal and the ability to use lower doses of iodinated contrast material, and better spatial resolution. PCDs with more than one energy threshold can sort the detected photons into two or more energy bins, making energy-resolved information available for all acquisitions. This allows for material classification or quantitation tasks to be performed in conjunction with high spatial resolution, and in the case of dual-source CT, high pitch, or high temporal resolution acquisitions. Some of the most promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value. These include imaging of the inner ear, bones, small blood vessels, heart, and lung. This review describes the clinical benefits observed to date and future directions for this technical advance in CT imaging. KEY POINTS: • Beneficial characteristics of photon-counting detectors include the absence of electronic noise, increased iodine signal-to-noise ratio, improved spatial resolution, and full-time multi-energy imaging. • Promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value and applications requiring multi-energy data simultaneous with high spatial and/or temporal resolution. • Future applications of PCD-CT technology may include extremely high spatial resolution tasks, such as the detection of breast micro-calcifications, and quantitative imaging of native tissue types and novel contrast agents.
Collapse
Affiliation(s)
- Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Francis I Baffour
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Felix E Diehn
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrea Ferrero
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Katrina N Glazebrook
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kelly K Horst
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tucker F Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Bernhard Schmidt
- Computed Tomography, Siemens Healthineers, Siemensstrasse 3, Forchheim, 91301, Germany
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas G Flohr
- Computed Tomography, Siemens Healthineers, Siemensstrasse 3, Forchheim, 91301, Germany
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
45
|
Grassi G, Laino ME, Kalra M, Cherchi MV, Nicola R, Mannelli L, Balestrieri A, Suri JS, Sala E, Saba L. Application of multi-spectral CT imaging in Crohn's disease: a systematic review. Acta Radiol 2023; 64:2347-2356. [PMID: 37138467 DOI: 10.1177/02841851231170849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND No quantitative computed tomography (CT) biomarker is actually sufficiently accurate to assess Crohn's disease (CD) lesion activity, with adequate precision to guide clinical decisions. PURPOSE To assess the available literature on the use of iodine concentration (IC), from multi-spectral CT acquisition, as a quantitative parameter able to distinguish healthy from affected bowel and assess CD bowel activity and heterogeneity of activity along the involved segments. MATERIAL AND METHODS A literature search was conducted to identify original research studies published up to February 2022. The inclusion criteria were original research papers (>10 human participants), English language publications, focus on dual-energy CT (DECT) of CD with iodine quantification (IQ) as an outcome measure. The exclusion criteria were animal-only studies, languages other than English, review articles, case reports, correspondence, and study populations <10 patients. RESULTS Nine studies were included in this review; all of which showed a strong correlation between IC measurements and CD activity markers, such as CD activity index (CDAI), endoscopy findings and simple endoscopic score for Crohn's disease (SES-CD), and routine CT enterography (CTE) signs and histopathologic score. Statistically significant differences in IC were reported between affected bowel segments and healthy ones (higher P value was P < 0.001), normal segments and those with active inflammation (P < 0.0001) as well as between patients with active disease and those in remission (P < 0.001). CONCLUSION The mean normalized IC at DECTE could be a reliable tool in assisting radiologists in the diagnosis, classification and grading of CD activity.
Collapse
Affiliation(s)
- Giovanni Grassi
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Maria Elena Laino
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
- Artificial Intelligence Center, IRCSS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, MA, USA
| | - Maria Valeria Cherchi
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Refky Nicola
- Department of Radiology, Roswell Park Cancer Institute, Jacobs School of Medicine and Biomedical Science, Buffalo, NY, USA
| | | | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
- Knowledge Engineering Center, Global Biomedical Technologies, Inc., Roseville, CA, USA
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA (Affl)
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| |
Collapse
|
46
|
Gruschwitz P, Hartung V, Kleefeldt F, Ergün S, Lichthardt S, Huflage H, Hendel R, Kunz AS, Pannenbecker P, Kuhl PJ, Augustin AM, Bley TA, Petritsch B, Grunz JP. Standardized assessment of vascular reconstruction kernels in photon-counting CT angiographies of the leg using a continuous extracorporeal perfusion model. Sci Rep 2023; 13:12109. [PMID: 37495759 PMCID: PMC10372012 DOI: 10.1038/s41598-023-39063-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
This study evaluated the influence of different vascular reconstruction kernels on the image quality of CT angiographies of the lower extremity runoff using a 1st-generation photon-counting-detector CT (PCD-CT) compared with dose-matched examinations on a 3rd-generation energy-integrating-detector CT (EID-CT). Inducing continuous extracorporeal perfusion in a human cadaveric model, we performed CT angiographies of eight upper leg arterial runoffs with radiation dose-equivalent 120 kVp acquisition protocols (CTDIvol 5 mGy). Reconstructions were executed with different vascular kernels, matching the individual modulation transfer functions between scanners. Signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were computed to assess objective image quality. Six radiologists evaluated image quality subjectively using a forced-choice pairwise comparison tool. Interrater agreement was determined by calculating Kendall's concordance coefficient (W). The intraluminal attenuation of PCD-CT images was significantly higher than of EID-CT (414.7 ± 27.3 HU vs. 329.3 ± 24.5 HU; p < 0.001). Using comparable kernels, image noise with PCD-CT was significantly lower than with EID-CT (p ≤ 0.044). Correspondingly, SNR and CNR were approximately twofold higher for PCD-CT (p < 0.001). Increasing the spatial frequency for PCD-CT reconstructions by one level resulted in similar metrics compared to EID-CT (CNRfat; EID-CT Bv49: 21.7 ± 3.7 versus PCD-CT Bv60: 21.4 ± 3.5). Overall image quality of PCD-CTA achieved ratings superior to EID-CTA irrespective of the used reconstruction kernels (best: PCD-CT Bv60; worst: EID-CT Bv40; p < 0.001). Interrater agreement was good (W = 0.78). Concluding, PCD-CT offers superior intraluminal attenuation, SNR, and CNR compared to EID-CT in angiographies of the upper leg arterial runoff. Combined with improved subjective image quality, PCD-CT facilitates the use of sharper convolution kernels and ultimately bears the potential of improved vascular structure assessability.
Collapse
Affiliation(s)
- Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Sven Lichthardt
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Philipp Josef Kuhl
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Anne Marie Augustin
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| |
Collapse
|
47
|
Graafen D, Stoehr F, Halfmann MC, Emrich T, Foerster F, Yang Y, Düber C, Müller L, Kloeckner R. Quantum iterative reconstruction on a photon-counting detector CT improves the quality of hepatocellular carcinoma imaging. Cancer Imaging 2023; 23:69. [PMID: 37480062 PMCID: PMC10362630 DOI: 10.1186/s40644-023-00592-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Excellent image quality is crucial for workup of hepatocellular carcinoma (HCC) in patients with liver cirrhosis because a signature tumor signal allows for non-invasive diagnosis without histologic proof. Photon-counting detector computed tomography (PCD-CT) can enhance abdominal image quality, especially in combination with a novel iterative reconstruction algorithm, quantum iterative reconstruction (QIR). The purpose of this study was to analyze the impact of different QIR levels on PCD-CT imaging of HCC in both phantom and patient scans. METHODS Virtual monoenergetic images at 50 keV were reconstructed using filtered back projection and all available QIR levels (QIR 1-4). Objective image quality properties were investigated in phantom experiments. The study also included 44 patients with triple-phase liver PCD-CT scans of viable HCC lesions. Quantitative image analysis involved assessing the noise, contrast, and contrast-to-noise ratio of the lesions. Qualitative image analysis was performed by three raters evaluating noise, artifacts, lesion conspicuity, and overall image quality using a 5-point Likert scale. RESULTS Noise power spectra in the phantom experiments showed increasing noise suppression with higher QIR levels without affecting the modulation transfer function. This pattern was confirmed in the in vivo scans, in which the lowest noise levels were found in QIR-4 reconstructions, with around a 50% reduction in median noise level compared with the filtered back projection images. As contrast does not change with QIR, QIR-4 also yielded the highest contrast-to-noise ratios. With increasing QIR levels, rater scores were significantly better for all qualitative image criteria (all p < .05). CONCLUSIONS Without compromising image sharpness, the best image quality of iodine contrast optimized low-keV virtual monoenergetic images can be achieved using the highest QIR level to suppress noise. Using these settings as standard reconstruction for HCC in PCD-CT imaging might improve diagnostic accuracy and confidence.
Collapse
Affiliation(s)
- Dirk Graafen
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Fabian Stoehr
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Moritz C Halfmann
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany
| | - Tilman Emrich
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner-Site Rhine-Main, Mainz, Germany
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Friedrich Foerster
- Department of Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yang Yang
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christoph Düber
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lukas Müller
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roman Kloeckner
- Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Present Address: Institute of Interventional Radiology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
48
|
Dunning CAS, Rajendran K, Inoue A, Rajiah P, Weber N, Fletcher JG, McCollough CH, Leng S. Optimal Virtual Monoenergetic Photon Energy (keV) for Photon-Counting-Detector Computed Tomography Angiography. J Comput Assist Tomogr 2023; 47:569-575. [PMID: 36790898 PMCID: PMC10349687 DOI: 10.1097/rct.0000000000001450] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVE This study aimed to determine the optimal photon energy for virtual monoenergetic images (VMI) in computed tomography angiography (CTA) using photon-counting-detector (PCD) CT. METHODS Under institutional review board approval, 10 patients (abdominal, n = 4; lower extremity, n = 3; head and neck, n = 3) were scanned on an investigational PCD-CT (Count Plus, Siemens Healthcare) at 120 or 140 kV. All images were iteratively reconstructed with Bv48 kernel and 2-mm slice thickness. Axial and coronal VMI maximum-intensity projections were created in the range 40 to 65 keV (5-keV steps). Contrast-to-noise ratio (CNR) was calculated for major arteries in each VMI series. Two radiologists blindly ranked each VMI series for overall image quality and visualization of small vessels and pathology. The median and SD of scores for each photon energy were calculated. In addition, readers identified any VMIs that distinguished itself from others in terms of vessel/pathology visualization or artifacts. RESULTS Mean iodine CNR was highest in 40-keV VMIs for all evaluated arteries. Across readers, the 50-keV VMI had the highest combined score (2.00 ± 1.11). Among different body parts, the 45-keV VMI was ranked highest for the head-and-neck (1.75 ± 0.68) and lower extremity (2.00 ± 1.41) CTA. Meanwhile, 50- and 55-keV VMIs were ranked highest for abdominal (2.50 ± 1.35 and 2.50 ± 1.56) CTA. The 40-keV VMI received the highest score for iodine visualization in vessels, and the 65-keV VMI for reduced metal/calcium-blooming artifacts. CONCLUSIONS Quantitatively, VMIs at 40 keV had the highest CNR in major arterial vasculature using PCD-CTA. Based on radiologists' preference, the 45- and 50-keV VMIs were optimal for small body parts (eg, head and neck and lower extremity) and large body parts (eg, abdomen), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
49
|
Flohr T, Schmidt B. Technical Basics and Clinical Benefits of Photon-Counting CT. Invest Radiol 2023; 58:441-450. [PMID: 37185302 PMCID: PMC10259209 DOI: 10.1097/rli.0000000000000980] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
ABSTRACT Novel photon-counting detector CT (PCD-CT) has the potential to address the limitations of previous CT systems, such as insufficient spatial resolution, limited accuracy in detecting small low-contrast structures, or missing routine availability of spectral information. In this review article, we explain the basic principles and potential clinical benefits of PCD-CT, with a focus on recent literature that has grown rapidly since the commercial introduction of a clinically approved PCD-CT.
Collapse
|
50
|
Schwartz FR, Samei E, Marin D. Exploiting the Potential of Photon-Counting CT in Abdominal Imaging. Invest Radiol 2023; 58:488-498. [PMID: 36728045 DOI: 10.1097/rli.0000000000000949] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Photon-counting computed tomography (PCCT) imaging uses a new detector technology to provide added information beyond what can already be obtained with current CT and MR technologies. This review provides an overview of PCCT of the abdomen and focuses specifically on applications that benefit the most from this new imaging technique. We describe the requirements for a successful abdominal PCCT acquisition and the challenges for clinical translation. The review highlights work done within the last year with an emphasis on new protocols that have been tested in clinical practice. Applications of PCCT include imaging of cystic lesions, sources of bleeding, and cancers. Photon-counting CT is positioned to move beyond detection of disease to better quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | - Ehsan Samei
- Quantitative Imaging and Analysis Lab, Duke University Health System, Durham, NC
| | | |
Collapse
|