1
|
Dikhit MR, Pranav A, Kumar A, Sen A. Designing a Multi-Epitope Vaccine Candidate for Visceral Leishmaniasis Targeting Leishmania and Sand Fly Vector Antigens: An In Silico Approach. Acta Trop 2025; 264:107600. [PMID: 40154672 DOI: 10.1016/j.actatropica.2025.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Leishmania donovani, which is responsible for visceral leishmaniasis (VL), poses severe public health challenges, necessitating novel strategies to decrease its incidence. The epitopes predicted with immune informatics tools provide the opportunity for the development of a good vaccine candidate. The immunogenicity of sand fly salivary proteins SP02, SP12, SP13, SP14, SP15, SP19, and SP56 and known Leishmania MHC class I and class II epitopes was evaluated. Among the sand fly salivary proteins the most prominent ten B cell epitopes based on their immunogenicity, stability and safety were derived from these proteins. Two remarkable vaccination candidates that were considered safe, SP14 and SP15, were "LPTILAHSPAGASVNQ" (1.244) and "RLLIKDYVVTRKVVKD" (1.178), respectively. These T cell epitopes included thirteen verified MHC I and six MHC class II epitopes. All known immunodominant epitopes were used in the vaccine build together with possible linkers and an adjuvant at the N-terminus to improve immunogenicity. The proposed vaccine was extensively tested to establish its stability, non-allergic reaction, and nontoxicity, all of which were confirmed.The vaccine construct's stable interaction with TLR4 highlighted important hydrogen bonds necessary for stable receptor engagement. Indicative of a robust Th1 response, immune simulations showed an elivated IgG and IgM titers, substantial helper and cytotoxic T-cell responses, and elevated levels of IFN-γ, IL-2, and IL-12, further supporting the vaccine construct's potential as a promising candidate for leishmaniasis control. However, experimental validations will determine its potential as an effective vaccine candidate.
Collapse
Affiliation(s)
- Manas Ranjan Dikhit
- Department of Bioinformatics, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India.
| | - A Pranav
- Department of Bioinformatics, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Ajay Kumar
- Department of Vector Biology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Abhik Sen
- Department of Molecular Biology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| |
Collapse
|
2
|
Kato H. Dr. Jekyll and Mr. Hyde in sand fly saliva. Parasitol Int 2025; 105:102998. [PMID: 39581305 DOI: 10.1016/j.parint.2024.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phlebotomine sand flies are very small hematophagous insects, and some species transmit human pathogens, such as Leishmania protozoa. Similar to other hematophagous insects, sand flies possess unique bioactive substances in their saliva to facilitate blood feeding. Active transcriptome and proteome analyses revealed that sand flies have unique molecules in their saliva that are structurally different from those of other arthropods. These components exert anticoagulant, antiplatelet, vasodilator, and anti-inflammatory effects on the host, and the unique bioactivities of each molecule are currently being characterized. Several bioactivities of salivary components have been associated with the exacerbation of Leishmania infection, and investigations on the molecular mechanisms responsible are underway. On the other hand, host immunity to some salivary components has been shown to confer protection against Leishmania infection, suggesting the potential of salivary components as vaccine candidates. Although some negative effects of protection by sand fly saliva have been reported, the identification of suitable immunogens and elucidation of appropriate protective immunity are expected for the development of a sand fly saliva vaccine against Leishmania infection.
Collapse
Affiliation(s)
- Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke city, Tochigi 329-0498, Japan.
| |
Collapse
|
3
|
Sabbahi R, Hock V, Azzaoui K, Hammouti B. Leishmania-sand fly interactions: exploring the role of the immune response and potential strategies for Leishmaniasis control. J Parasit Dis 2024; 48:655-670. [PMID: 39493480 PMCID: PMC11528092 DOI: 10.1007/s12639-024-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 11/05/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania, affecting millions of people worldwide. The disease is transmitted by the bite of infected female sand flies, which act as vectors and hosts for the parasites. The interaction between Leishmania parasites and sand flies is complex and dynamic, involving various factors that influence parasite development, survival and transmission. This review examines how the immune response of sand flies affects vector competence and transmission of Leishmania parasites, and what the potential strategies are to prevent or reduce infection. The review also summarizes the main findings and conclusions of the existing literature and discusses implications and recommendations for future research and practice. The study reveals that the immune response of sand flies is a key determinant of vector competence and transmission of Leishmania parasites, and that several molecular and cellular mechanisms are involved in the interaction between parasite and vector. The study also suggests that there are potential strategies for controlling leishmaniasis, such as interfering with parasite development, modulating the vector's immune response or reducing the vector population. However, the study also identifies several gaps and limitations in current knowledge and calls for more comprehensive and systematic studies on vector-parasite interaction and its impact on leishmaniasis transmission and control.
Collapse
Affiliation(s)
- Rachid Sabbahi
- Research Team in Science and Technology, Higher School of Technology, Ibn Zohr University, 70000 Laayoune, Morocco
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
| | - Virginia Hock
- Department of Biology, Dawson College, 3040 Sherbrooke St. W, Montreal, QC H3Z 1A4 Canada
| | - Khalil Azzaoui
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
- Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000 Fez, Morocco
| | | |
Collapse
|
4
|
Mahor H, Mukherjee A, Sarkar A, Saha B. Anti-leishmanial therapy: Caught between drugs and immune targets. Exp Parasitol 2023; 245:108441. [PMID: 36572088 DOI: 10.1016/j.exppara.2022.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/12/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is an enigmatic disease that has very restricted options for chemotherapy and none for prophylaxis. As a result, deriving therapeutic principles for curing the disease has been a major objective in Leishmania research for a long time. Leishmania is a protozoan parasite that lives within macrophages by subverting or switching cell signaling to the pathways that ensure its intracellular survival. Therefore, three groups of molecules aimed at blocking or eliminating the parasite, at least, in principle, include blockers of macrophage receptor- Leishmania ligand interaction, macrophage-activating small molecules, peptides and cytokines, and signaling inhibitors or activators. Macrophages also act as an antigen-presenting cell, presenting antigen to the antigen-specific T cells to induce activation and differentiation of the effector T cell subsets that either execute or suppress anti-leishmanial functions. Three groups of therapeutic principles targeting this sphere of Leishmania-macrophage interaction include antibodies that block pro-leishmanial response of T cells, ligands that activate anti-leishmanial T cells and the antigens for therapeutic vaccines. Besides these, prophylactic vaccines have been in clinical trials but none has succeeded so far. Herein, we have attempted to encompass all these principles and compose a comprehensive review to analyze the feasibility and adoptability of different therapeutics for leishmaniasis.
Collapse
Affiliation(s)
- Hima Mahor
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Arka Mukherjee
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India; Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
5
|
Fayaz S, Bahrami F, Parvizi P, Fard-Esfahani P, Ajdary S. An overview of the sand fly salivary proteins in vaccine development against leishmaniases. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:792-801. [PMID: 36721440 PMCID: PMC9867623 DOI: 10.18502/ijm.v14i6.11253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leishmaniases are a group of vector-borne parasitic diseases transmitted through the infected sand flies. Leishmania parasites are inoculated into the host skin along with sand fly saliva. The sand fly saliva consists of biologically active molecules with anticoagulant, anti-inflammatory, and immunomodulatory properties. Such properties help the parasite circumvent the host's immune responses. The salivary compounds support the survival and multiplication of the parasite and facilitate the disease progression. It is documented that frequent exposure to uninfected sand fly bites produces neutralizing antibodies against specific salivary proteins and further activates the cellular mechanisms to prevent the establishment of the disease. The immune responses due to sand fly saliva are highly specific and depend on the composition of the salivary molecules. Hence, thorough knowledge of these compounds in different sand fly species and information about their antigenicity are paramount to designing an effective vaccine. Herein, we review the composition of the sand fly saliva, immunomodulatory properties of some of its components, immune responses to its proteins, and potential vaccine candidates against leishmaniases.
Collapse
Affiliation(s)
- Shima Fayaz
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Corresponding author: Soheila Ajdary, Ph.D, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran. Tel: +98-2166968857 Fax: +98-2166968857 ;
| |
Collapse
|
6
|
Lajevardi MS, Taheri T, Gholami E, Seyed N, Rafati S. Structural analysis of PpSP15 and PsSP9 sand fly salivary proteins designed with a self-cleavable linker as a live vaccine candidate against cutaneous leishmaniasis. Parasit Vectors 2022; 15:377. [PMID: 36261836 PMCID: PMC9580450 DOI: 10.1186/s13071-022-05437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Leishmania parasites are deposited in the host through sand fly bites along with sand fly saliva. Therefore, salivary proteins are promising vaccine candidates for controlling leishmaniasis. Herein, two immunogenic salivary proteins, PpSP15 from Phlebotomus papatasi and PsSP9 from Phlebotomus sergenti, were selected as vaccine candidates to be delivered by live Leishmania tarentolae as vector. The stepwise in silico protocol advantaged in this study for multi-protein design in L. tarentolae is then described in detail. Methods All possible combinations of two salivary proteins, PpSP15 and PsSP9, with or without T2A peptide were designed at the mRNA and protein levels. Then, the best combination for the vaccine candidate was selected based on mRNA and protein stability along with peptide analysis. Results At the mRNA level, the most favored secondary structure was PpSP15-T2A-PsSP9. At the protein level, the refined three-dimensional models of all combinations were structurally valid; however, local quality estimation showed that the PpSp15-T2A-PsSP9 fusion had higher stability for each amino acid position, with low root-mean-square deviation (RMSD), compared with the original proteins. In silico evaluation confirmed the PpSP15-T2A-PsSP9 combination as a good Th1-polarizing candidate in terms of high IFN-γ production and low IL-10/TGF-β ratio in response to three consecutive immunizations. Potential protein expression was then confirmed by Western blotting. Conclusions The approach presented herein is among the first studies to have privileged protein homology modeling along with mRNA analysis for logical live vaccine design-coding multi-proteins. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05437-x.
Collapse
Affiliation(s)
- Mahya Sadat Lajevardi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Kawahori S, Seki C, Mizushima D, Tabbabi A, Yamamoto DS, Kato H. Ayaconin, a novel inhibitor of the plasma contact system from the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Acta Trop 2022; 234:106602. [PMID: 35817195 DOI: 10.1016/j.actatropica.2022.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
Transcriptome analysis of the salivary gland cDNA library from a phlebotomine sand fly, Lutzomyia ayacuchensis, identified a transcript coding for the PpSP15/SL1 family protein as the second most abundant salivary component. In the present study, a recombinant protein of the PpSP15/SL1 family protein, designated ayaconin, was expressed in Escherichia coli, and its biological activity was characterized. The recombinant ayaconin purified from the soluble fraction of E. coli lysate efficiently inhibited the intrinsic but not extrinsic blood coagulation pathway. When the target of ayaconin was evaluated using fluorescent substrates of coagulation factors, ayaconin inhibited factor XIIa (FXIIa) activity more efficiently in a dose-dependent manner, suggesting that FXII is the primary target of ayaconin. In addition, incubation of ayaconin with FXII prior to activation effectively inhibited FXIIa activity, whereas such inhibition was not observed when ayaconin was mixed after the production of FXIIa, indicating that ayaconin inhibits the activation process of FXII to produce FXIIa, but not the enzymatic activity of FXIIa. Moreover, ayaconin was shown to bind to FXII, suggesting that the binding of ayaconin to FXII is involved in the inhibitory mechanism against FXII activation. These results suggest that ayaconin plays an important role in the blood-sucking of Lu. ayacuchensis.
Collapse
Affiliation(s)
- Satoru Kawahori
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Chisato Seki
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke City, Tochigi 329-0498, Japan.
| |
Collapse
|
8
|
Lajevardi MS, Gholami E, Taheri T, Sarvnaz H, Habibzadeh S, Seyed N, Mortazavi Y, Rafati S. Leishmania tarentolae as Potential Live Vaccine Co-Expressing Distinct Salivary Gland Proteins Against Experimental Cutaneous Leishmaniasis in BALB/c Mice Model. Front Immunol 2022; 13:895234. [PMID: 35757692 PMCID: PMC9226313 DOI: 10.3389/fimmu.2022.895234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Leishmaniasis is a neglected vector-borne disease caused by Leishmania parasites transmitted through the infected sand flies bite. Current treatments are limited, partly due to their high cost and significant adverse effects, and no human vaccine is yet available. Sand flies saliva has been examined for their potential application as an anti-Leishmania vaccine. The salivary protein, PpSP15, was the first protective vaccine candidate against L. major. Additionally, PsSP9 was already introduced as a highly immunogenic salivary protein against L. tropica. Herein, we aimed to develop an effective multivalent live vaccine to control Cutaneous Leishmaniasis induced by two main species, L. major and L. tropica. Hence, the two above-mentioned salivary proteins using T2A linker were incorporated inside the L. tarentolae genome as a safe live vector. Then, the immunogenicity and protective effects of recombinant L. tarentolae co-expressing PpSP15 and PsSP9 were evaluated in pre-treated BALB/c mice with CpG against L. major and L. tropica. Following the cytokine assays, parasite burden and antibody assessment at different time-points at pre and post-infection, promising protective Th1 immunity was obtained in vaccinated mice with recombinant L. tarentolae co-expressing PpSP15 and PsSP9. This is the first study demonstrating the potency of a safe live vaccine based on the combination of different salivary proteins against the infectious challenge with two different species of Leishmania.
Collapse
Affiliation(s)
- Mahya Sadat Lajevardi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Sarvnaz
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Aoki V, Abdeladhim M, Li N, Cecilio P, Prisayanh P, Diaz LA, Valenzuela JG. Some Good and Some Bad: Sand Fly Salivary Proteins in the Control of Leishmaniasis and in Autoimmunity. Front Cell Infect Microbiol 2022; 12:839932. [PMID: 35281450 PMCID: PMC8913536 DOI: 10.3389/fcimb.2022.839932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
Sand flies are hematophagous insects responsible for the transmission of vector-borne diseases to humans. Prominent among these diseases is Leishmaniasis that affects the skin and mucous surfaces and organs such as liver and spleen. Importantly, the function of blood-sucking arthropods goes beyond merely transporting pathogens. The saliva of vectors of disease contains pharmacologically active components that facilitate blood feeding and often pathogen establishment. Transcriptomic and proteomic studies have enumerated the repertoire of sand fly salivary proteins and their potential use for the control of Leishmaniasis, either as biomarkers of vector exposure or as anti-Leishmania vaccines. However, a group of specific sand fly salivary proteins triggers formation of cross-reactive antibodies that bind the ectodomain of human desmoglein 1, a member of the epidermal desmosomal cadherins. These cross-reactive antibodies are associated with skin autoimmune blistering diseases, such as pemphigus, in certain immunogenetically predisposed individuals. In this review, we focus on two different aspects of sand fly salivary proteins in the context of human disease: The good, which refers to salivary proteins functioning as biomarkers of exposure or as anti-Leishmania vaccines, and the bad, which refers to salivary proteins as environmental triggers of autoimmune skin diseases.
Collapse
Affiliation(s)
- Valeria Aoki
- Department of Dermatology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Universidade de Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Valeria Aoki,
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pedro Cecilio
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Phillip Prisayanh
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Luis A. Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
10
|
Kumar S, Zutshi S, Jha MK, Chauhan P, Saha B. Development of the Antileishmanial Vaccine. Methods Mol Biol 2022; 2410:433-461. [PMID: 34914062 DOI: 10.1007/978-1-0716-1884-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Search for an efficacious antileishmanial vaccine has led to clinical trials of numerous vaccine candidates in the past few decades. As no promising candidate has emerged from these studies, novel vaccine modalities and vaccine assessment techniques are still emerging for antileishmanial vaccine development. Briefly, this chapter discusses: (a) history and timeline of antileishmanial vaccine development; (b) techniques utilized for developing whole-parasite and subunit-based antileishmanial vaccine formulations, and (c) immunogenicity and post-challenge protective efficacy assessment of vaccine candidates.
Collapse
Affiliation(s)
- Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | | | - Mukesh Kumar Jha
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India.
- Trident Academy of Creative Technology, Bhubaneshwar, Odisha, India.
| |
Collapse
|
11
|
Alidosti M, Heidari Z, Shahnazi H, Zamani-Alavijeh F. Behaviors and Perceptions Related to Cutaneous Leishmaniasis in Endemic Areas of the World: A Review. Acta Trop 2021; 223:106090. [PMID: 34389332 DOI: 10.1016/j.actatropica.2021.106090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/18/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022]
Abstract
The investigation of perceptions and behaviors associated with cutaneous leishmaniasis (CL) in different societies has indicated that mere attention to biological and medical aspects is not enough to prevent and control diseases and it is necessary to know the disease-associated behaviors and beliefs. The present study aimed to answer a question: what are the behaviors and perceptions associated with cutaneous leishmaniasis in endemic regions of the world?. This study is a review of the articles published on CL from January 2010 to January 2021, on the International databases Science Direct, Scopus and PubMed. We utilized the terms cutaneous leishmaniasis, in combination with some keywords, including belief, perceptions, knowledge, attitude, practices, prevention, and behavior. Non-original studies, including editorials, reviews, prefaces, brief communications, and letters to the editor, CL epidemiological articles, pre-published articles that has not been peer reviewed, and articles that not provide complete findings on CL-related perceptions and behaviors were excluded from the present paper. After screening, 25 articles from 17 regions of the world were included in the study. The results depicted a novel classification of behaviors and perceptions related to CL prevention and control. Two positive and negative categories of perceptions and behaviors were discovered. Positive perceptions and behaviors were classified into five categories, including: 1- good awareness, 2- perceived susceptibility, 3- perceived severity, 4- perceived response efficiency, and 5- appropriate behaviors. Furthermore, negative perceptions and behaviors were classified into four categories: 1- poor awareness 2- misconceptions (A. About the disease vector B.about the cause of the disease, C. about the consequences of the disease and the treatment process), 3- perceived barriers (A. in prevention, B. in medical treatment), and 4- misbehaviors (A. negligence, B. local and traditional behavioral patterns). In most endemic parts of the world, misconceptions are probably the leading cause of several misbehaviors in dealing with CL. It seems that providing educational programs to strengthen positive beliefs and correct negative beliefs are rooted in the studies in different countries and could be useful for improving the relevant behaviors and ultimately, taking a step towards the prevention and control of CL.
Collapse
Affiliation(s)
- Masoumeh Alidosti
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Shahnazi
- Department of Health Education and Promotion, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Zamani-Alavijeh
- Department of Health Education and Promotion, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms 2021; 9:microorganisms9112253. [PMID: 34835379 PMCID: PMC8618729 DOI: 10.3390/microorganisms9112253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, fatal if untreated. Vaccination is the most cost-effective approach to disease control; however, to date, no vaccines against human VL have been made available. This work examines the efficacy of a novel vaccine consisting of the Leishmania membrane protein KMP11, LEISH-F3+ (a recombinant fusion protein, composed of epitopes of the parasite proteins nucleoside hydrolase, sterol-24-c-methyltransferase, and cysteine protease B), and the sand fly salivary protein LJL143, in two dose ratios. The inclusion of the TLR4 agonist GLA-SE as an adjuvant, and the use of virosomes (VS) as a delivery system, are also examined. In a hamster model of VL, the vaccine elicited antigen-specific immune responses prior to infection with Leishmania infantum. Of note, the responses were greater when higher doses of KMP11 and LEISH-F3+ proteins were administered along with the GLA-SE adjuvant and/or when delivered within VS. Remarkably, hamsters immunized with the complete combination (i.e., all antigens in VS + GLA-SE) showed significantly lower parasite burdens in the spleen compared to those in control animals. This protection was underpinned by a more intense, specific humoral response against the KMP11, LEISH-F3+, and LJL143 antigens in vaccinated animals, but a significantly less intense antibody response to the pool of soluble Leishmania antigens (SLA). Overall, these results indicate that this innovative vaccine formulation confers protection against L. infantum infection, supporting the advancement of the vaccine formulation into process development and manufacturing and the conduction of toxicity studies towards future phase I human clinical trials.
Collapse
|
13
|
Karmakar S, Nath S, Sarkar B, Chakraborty S, Paul S, Karan M, Pal C. Insect vectors' saliva and gut microbiota as a blessing in disguise: probability versus possibility. Future Microbiol 2021; 16:657-670. [PMID: 34100305 DOI: 10.2217/fmb-2020-0239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drawing of host blood is a natural phenomenon during the bite of blood-probing insect vectors. Along with the blood meal, the vectors introduce salivary components and a trail of microbiota. In the case of infected vectors, the related pathogen accompanies the aforementioned biological components. In addition to Anopheles gambiae or Anopheles stephensi, the bites of other nonmalarial vectors cannot be ignored in malaria-endemic regions. Similarly, the bite incidence of Phlebotomus papatasi cannot be ignored in visceral leishmaniasis-endemic regions. Even the chances of getting bitten by uninfected vectors are higher than the infected vectors. We have discussed the probability or possibility of uninfected, infected, and/or nonvector's saliva and gut microbiota as a therapeutic option leading to the initial deterrent to pathogen establishment.
Collapse
Affiliation(s)
- Suman Karmakar
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Supriya Nath
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Biswajyoti Sarkar
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Sondipon Chakraborty
- Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Sharmistha Paul
- Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Mintu Karan
- Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| | - Chiranjib Pal
- Cellular Immunology & Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India.,Vector Molecular Biology Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, West Bengal, 700126, India
| |
Collapse
|
14
|
Rêgo FD, Soares RP. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021; 93:e20200254. [PMID: 33950136 DOI: 10.1590/0001-37652021xxxx] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
Lutzomyia longipalpis is the most important vector of Leishmania infantum, the etiological agent of visceral leishmaniasis (VL) in the New World. It is a permissive vector susceptible to infection with several Leishmania species. One of the advantages that favors the study of this sand fly is the possibility of colonization in the laboratory. For this reason, several researchers around the world use this species as a model for different subjects including biology, insecticides testing, host-parasite interaction, physiology, genetics, proteomics, molecular biology, and saliva among others. In 2003, we published our first review (Soares & Turco 2003) on this vector covering several aspects of Lu. longipalpis. This current review summarizes what has been published between 2003-2020. During this period, modern approaches were incorporated following the development of more advanced and sensitive techniques to assess this sand fly.
Collapse
Affiliation(s)
- Felipe D Rêgo
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
RÊGO FELIPED, SOARES RODRIGOPEDRO. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021. [DOI: 10.1590/0001-3765202120200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
16
|
Cecílio P, Oristian J, Meneses C, Serafim TD, Valenzuela JG, Cordeiro da Silva A, Oliveira F. Engineering a vector-based pan-Leishmania vaccine for humans: proof of principle. Sci Rep 2020; 10:18653. [PMID: 33122717 PMCID: PMC7596519 DOI: 10.1038/s41598-020-75410-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Leishmaniasis is a spectrum of diseases transmitted by sand fly vectors that deposit Leishmania spp. parasites in the host skin during blood feeding. Currently, available treatment options are limited, associated with high toxicity and emerging resistance. Even though a vaccine for human leishmaniasis is considered an achievable goal, to date we still do not have one available, a consequence (amongst other factors) of a lack of pre-clinical to clinical translatability. Pre-exposure to uninfected sand fly bites or immunization with defined sand fly salivary proteins was shown to negatively impact infection. Still, cross-protection reports are rare and dependent on the phylogenetic proximity of the sand fly species, meaning that the applicability of a sand fly saliva-based vaccine will be limited to a defined geography, one parasite species and one form of leishmaniasis. As a proof of principle of a future vector saliva-based pan-Leishmania vaccine, we engineered through a reverse vaccinology approach that maximizes translation to humans, a fusion protein consisting of immunogenic portions of PdSP15 and LJL143, sand fly salivary proteins demonstrated as potential vaccine candidates against cutaneous and visceral leishmaniasis, respectively. The in silico analysis was validated ex vivo, through T cell proliferation experiments, proving that the fusion protein (administered as a DNA vaccine) maintained the immunogenicity of both PdSP15 and LJL143. Additionally, while no significant effect was detected in the context of L. major transmission by P. duboscqi, this DNA vaccine was defined as partially protective, in the context of L. major transmission by L. longipalpis sand flies. Importantly, a high IFNγ response alone was not enough to confer protection, that mainly correlated with low T cell mediated Leishmania-specific IL-4 and IL-10 responses, and consequently with high pro/anti-inflammatory cytokine ratios. Overall our immunogenicity data suggests that to design a potentially safe vector-based pan-Leishmania vaccine, without geographic restrictions and against all forms of leishmaniasis is an achievable goal. This is why we propose our approach as a proof-of principle, perhaps not only applicable to the anti-Leishmania vector-based vaccines' field, but also to other branches of knowledge that require the design of multi-epitope T cell vaccines with a higher potential for translation.
Collapse
Affiliation(s)
- Pedro Cecílio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - James Oristian
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Anabela Cordeiro da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal.
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| |
Collapse
|
17
|
RNA-sequencing of the Nyssomyia neivai sialome: a sand fly-vector from a Brazilian endemic area for tegumentary leishmaniasis and pemphigus foliaceus. Sci Rep 2020; 10:17664. [PMID: 33077743 PMCID: PMC7572365 DOI: 10.1038/s41598-020-74343-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis encompasses a spectrum of diseases caused by a protozoan belonging to the genus Leishmania. The parasite is transmitted by the bite of sand flies, which inoculate the promastigote forms into the host’s skin while acquiring a blood meal. Nyssomyia neivai is one of the main vectors of tegumentary leishmaniasis (TL) in Brazil. Southeastern Brazil is an endemic region for TL but also overlaps with an endemic focus for pemphigus foliaceus (PF), also known as Fogo Selvagem. Salivary proteins of sand flies, specifically maxadilan and LJM11, have been related to pemphigus etiopathogenesis in the New World, being proposed as an environmental trigger for autoimmunity. We present a comprehensive description of the salivary transcriptome of the N. neivai, using deep sequencing achieved by the Illumina protocol. In addition, we highlight the abundances of several N. neivai salivary proteins and use phylogenetic analysis to compare with Old- and New-World sand fly salivary proteins. The collection of protein sequences associated with the salivary glands of N. neivai can be useful for monitoring vector control strategies as biomarkers of N. neivai, as well as driving vector-vaccine design for leishmaniasis. Additionally, this catalog will serve as reference to screen for possible antigenic peptide candidates triggering anti-Desmoglein-1 autoantibodies.
Collapse
|
18
|
Sumova P, Polanska N, Lestinova T, Spitzova T, Kalouskova B, Vanek O, Volf P, Rohousova I. Phlebotomus perniciosus Recombinant Salivary Proteins Polarize Murine Macrophages Toward the Anti-Inflammatory Phenotype. Front Cell Infect Microbiol 2020; 10:427. [PMID: 32984064 PMCID: PMC7476311 DOI: 10.3389/fcimb.2020.00427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Phlebotomus perniciosus (Diptera: Phlebotominae) is a medically and veterinary important insect vector. It transmits the unicellular parasite Leishmania infantum that multiplies intracellularly in macrophages causing life-threatening visceral diseases. Leishmania establishment in the vertebrate host is substantially influenced by immunomodulatory properties of vector saliva that are obligatorily co-injected into the feeding site. The repertoire of P. perniciosus salivary molecules has already been revealed and, subsequently, several salivary proteins have been expressed. However, their immunogenic properties have never been studied. In our study, we tested three P. perniciosus recombinant salivary proteins-an apyrase rSP01 and yellow-related proteins rSP03 and rSP03B-and showed their anti-inflammatory nature on the murine bone-marrow derived macrophages. Even in the presence of pro-inflammatory stimuli (IFN-γ and bacterial lipopolysaccharide, LPS), all three recombinant proteins inhibited nitric oxide production. Moreover, rSP03 seems to have a very strong anti-inflammatory effect since it enhanced arginase activity, increased the production of IL-10, and inhibited the production of TNF-α even in macrophages stimulated with IFN-γ and LPS. These results suggest that P. perniciosus apyrase and yellow-related proteins may serve as enhancing factors in sand fly saliva, facilitating the development of Leishmania infection along with their anti-haemostatic properties. Additionally, rSP03 and rSP03B did not elicit the delayed-type hypersensitivity response in mice pre-exposed to P. perniciosus bites (measured as visible skin reaction). The results of our study may help to understand the potential function of recombinant's native counterparts and their role in Leishmania transmission and establishment within the host.
Collapse
Affiliation(s)
- Petra Sumova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Nikola Polanska
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tereza Lestinova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tatiana Spitzova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbora Kalouskova
- Laboratory of Structural Biochemistry of Immune Recognition, Department of Biochemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Ondrej Vanek
- Laboratory of Structural Biochemistry of Immune Recognition, Department of Biochemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Volf
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Iva Rohousova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
19
|
Coutinho De Oliveira B, Duthie MS, Alves Pereira VR. Vaccines for leishmaniasis and the implications of their development for American tegumentary leishmaniasis. Hum Vaccin Immunother 2019; 16:919-930. [PMID: 31634036 DOI: 10.1080/21645515.2019.1678998] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The leishmaniases are a collection of vector-borne parasitic diseases caused by a number of different Leishmania species that are distributed worldwide. Clinical and laboratory research have together revealed several important immune components that control Leishmania infection and indicate the potential of immunization to prevent leishmaniasis. In this review we introduce previous and ongoing experimental research efforts to develop vaccines against Leishmania species. First, second and third generation vaccine strategies that have been proposed to counter cutaneous and visceral leishmaniasis (CL and VL, respectively) are summarized. One of the major bottlenecks in development is the transition from results in animal model studies to humans, and we highlight that although American tegumentary leishmaniasis (ATL; New World CL) can progress to destructive and disfiguring mucosal lesions, most research has been conducted using mouse models and Old World Leishmania species. We conclude that assessment of vaccine candidates in ATL settings therefore appears merited.
Collapse
Affiliation(s)
- Beatriz Coutinho De Oliveira
- Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil.,Departamento de Imunologia, Instituto Aggeu Magalhães, Recife, Brazil
| | | | | |
Collapse
|
20
|
Yang Z, Wu Y. Improved annotation of Lutzomyia longipalpis genome using bioinformatics analysis. PeerJ 2019; 7:e7862. [PMID: 31616601 PMCID: PMC6790103 DOI: 10.7717/peerj.7862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023] Open
Abstract
Lutzomyia longipalpis, a sand fly, is a vector-spreading pathogenic protozoan in the New World. MicroRNA (miRNA) is evolutionarily-conserved non-coding RNA, which plays critical roles in various biological processes. To date, the functions of most proteins in L. longipalpis are unknown, and few studies have addressed the roles of miRNAs in this species. In the present study, we re-annotated the protein-coding genes and identified several miRNAs using a set of comparative genomics tools. A large number of L. longipalpis proteins were found to be homologous with those in the mosquito genome, indicating that they may have experienced similar selective pressures. Among these proteins, a set of 19 putative salivary proteins were identified, which could be used for studying the transmission of Leishmania. Twenty-one novel miRNAs were characterized, including two miRNAs, miR-4113-5p and miR-5101, which are unique to L. longipalpis. Many of the targets of these two genes were found to be involved in ATP hydrolysis-coupled proton transport, suggesting that they may have important roles in the physiology of energy production. Topology analysis of the miRNA-gene network indicated that miR-9388-5p and miR-3871-5p regulate several critical genes in response to disease development. In conclusion, our work provides a basis for improving the genome annotation of L. longipalpis, and opens a new door to understanding the molecular regulatory mechanisms in this species.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou, PR China
| | - Ying Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, PR China
| |
Collapse
|