1
|
Gzik-Zroska B, Joszko K, Piątek A, Wolański W, Kawlewska E, Szarek A, Kajzer W, Stradomski G. The Influence of Hot Isostatic Pressing on the Mechanical Properties of Ti-6Al-4V Samples Printed Using the LENS Method. MATERIALS (BASEL, SWITZERLAND) 2025; 18:612. [PMID: 39942278 PMCID: PMC11818564 DOI: 10.3390/ma18030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
The aim of this work was to assess the influence of the parameters of the hot isostatic pressing (HIP) process and the direction of printing of Ti-6Al-4V samples made using the laser-engineered net shaping (LENS) method on strength properties. The tests were carried out using a static testing machine and a digital image correlation system. Samples before and after the HIP process were tested. The HIP process was carried out at a temperature of 1150 °C, a heating time of 240 min and various pressure values of 500, 1000 and 1500 bar. Based on the comparative analysis of the test results, it has been shown that the ability to adjust the parameters of the HIP process has a significant impact on the final mechanical properties of the samples.
Collapse
Affiliation(s)
- Bożena Gzik-Zroska
- Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland;
| | - Kamil Joszko
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (K.J.); (W.W.); (E.K.)
| | - Agata Piątek
- SKN “Biokreatywni”, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland;
| | - Wojciech Wolański
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (K.J.); (W.W.); (E.K.)
| | - Edyta Kawlewska
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland; (K.J.); (W.W.); (E.K.)
| | - Arkadiusz Szarek
- Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-200 Częstochowa, Poland;
| | - Wojciech Kajzer
- Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, 41-800 Zabrze, Poland;
| | - Grzegorz Stradomski
- Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 42-201 Częstochowa, Poland;
| |
Collapse
|
2
|
Bose S, Sarkar N, Jo Y. Natural medicine delivery from 3D printed bone substitutes. J Control Release 2024; 365:848-875. [PMID: 37734674 PMCID: PMC11147672 DOI: 10.1016/j.jconrel.2023.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Unmet medical needs in treating critical-size bone defects have led to the development of numerous innovative bone tissue engineering implants. Although additive manufacturing allows flexible patient-specific treatments by modifying topological properties with various materials, the development of ideal bone implants that aid new tissue regeneration and reduce post-implantation bone disorders has been limited. Natural biomolecules are gaining the attention of the health industry due to their excellent safety profiles, providing equivalent or superior performances when compared to more expensive growth factors and synthetic drugs. Supplementing additive manufacturing with natural biomolecules enables the design of novel multifunctional bone implants that provide controlled biochemical delivery for bone tissue engineering applications. Controlled release of naturally derived biomolecules from a three-dimensional (3D) printed implant may improve implant-host tissue integration, new bone formation, bone healing, and blood vessel growth. The present review introduces us to the current progress and limitations of 3D printed bone implants with drug delivery capabilities, followed by an in-depth discussion on cutting-edge technologies for incorporating natural medicinal compounds embedded within the 3D printed scaffolds or on implant surfaces, highlighting their applications in several pre- and post-implantation bone-related disorders.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
3
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Bhattacharjee A, Bose S. 3D printed hydroxyapatite - Zn 2+ functionalized starch composite bone grafts for orthopedic and dental applications. MATERIALS & DESIGN 2022; 221:110903. [PMID: 37351523 PMCID: PMC10284575 DOI: 10.1016/j.matdes.2022.110903] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Hydroxyapatite (HA) - polymer composite based 3D printed bone grafts require extensive mechanical and biological property optimization for specific clinical needs. This fuels the need to develop innovative methods of optimization. Using an in-house extrusion-based 3D printer, we show the feasibility of fabricating hydroxyapatite- Zn2+ functionalized starch composites as artificial bone graft substitutes. The experimental procedure for this purpose is fortified with a univariate multi-objective optimization strategy to predict the best composition. The compressive strength of the grafts improves up to ~ 4 folds by parametric optimization and Zn2+ functionalization, without any post-processing. These grafts maintain mechanical integrity and strength during 6 weeks of dissolution study in simulated body fluid (SBF), while the non -functionalized starch-HA grafts fully degrade within a week. The Zn2+ functionalization results in up to ~ 79% antibacterial efficacy against S. aureus. Osteoblast cell viability increases ~ 1.6 folds on these graft surfaces on day 11. Our innovative methods of optimization are expected to reduce the experiment time, cost, and chance of human error in 3D printing. This study redefines the importance of understanding composition and process dependence for making a functionalized 3D printed bone graft for repairing low load-bearing defects such as craniomaxillofacial bone.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Jagadeeshanayaka N, Awasthi S, Jambagi SC, Srivastava C. Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements. Biomater Sci 2022; 10:2484-2523. [DOI: 10.1039/d2bm00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications, owing to its close resemblance; however, it is brittle and has low strength. Surface modification techniques...
Collapse
|
6
|
Innovative Surface Modification Procedures to Achieve Micro/Nano-Graded Ti-Based Biomedical Alloys and Implants. COATINGS 2021. [DOI: 10.3390/coatings11060647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to the growing aging population of the world, and as a result of the increasing need for dental implants and prostheses, the use of titanium and its alloys as implant materials has spread rapidly. Although titanium and its alloys are considered the best metallic materials for biomedical applications, the need for innovative technologies is necessary due to the sensitivity of medical applications and to eliminate any potentially harmful reactions, enhancing the implant-to-bone integration and preventing infection. In this regard, the implant’s surface as the substrate for any reaction is of crucial importance, and it is accurately addressed in this review paper. For constructing this review paper, an internet search was performed on the web of science with these keywords: surface modification techniques, titanium implant, biomedical applications, surface functionalization, etc. Numerous recent papers about titanium and its alloys were selected and reviewed, except for the section on forthcoming modern implants, in which extended research was performed. This review paper aimed to briefly introduce the necessary surface characteristics for biomedical applications and the numerous surface treatment techniques. Specific emphasis was given to micro/nano-structured topographies, biocompatibility, osteogenesis, and bactericidal effects. Additionally, gradient, multi-scale, and hierarchical surfaces with multifunctional properties were discussed. Finally, special attention was paid to modern implants and forthcoming surface modification strategies such as four-dimensional printing, metamaterials, and metasurfaces. This review paper, including traditional and novel surface modification strategies, will pave the way toward designing the next generation of more efficient implants.
Collapse
|
7
|
Li J, Yuan H, Chandrakar A, Moroni L, Habibovic P. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing. Acta Biomater 2021; 126:496-510. [PMID: 33727193 DOI: 10.1016/j.actbio.2021.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical analysis showed that limited contamination occurred during sintering. The compressive strength and Young's modulus of the scaffolds exhibited values between those of cancellous and cortical bone. The 3D Ti6Al4V-TCP scaffolds with 10 wt% TCP allowed deposition of a calcium phosphate layer on the surface in a simulated body fluid. Cumulative release of calcium and phosphate ions from the scaffolds was observed in a simulated physiological solution, in contrast to a cell culture medium. A pilot in vivo study, in which the scaffolds were implanted intramuscularly in dogs showed ectopic bone formation in the Ti6Al4V-TCP scaffolds with 10 wt% TCP, showing their osteoinductive potential. The porous 3D Ti6Al4V-TCP scaffolds developed here combine the mechanical properties of the metal with the bioactivity of the ceramic and are therefore likely to yield more effective strategies to control the implant-bone interface and thereby improve long-term clinical results in orthopaedics and craniomaxillofacial surgery. STATEMENT OF SIGNIFICANCE: In this work, 3D porous hybrid scaffolds made of a titanium alloy and a beta-tricalcium phosphate ceramic (Ti6Al4V-TCP) were developed using the direct additive manufacturing technique 3D fiber deposition. Upon optimization of the powders and slurry, scaffolds with up to 10 wt.% TCP with good mechanical properties and controllable porous structure at different length scales were successfully manufactured. A preliminary in vivo study in an intramuscular model demonstrated that the addition of TCP to the metal alloy improved its bioactivity. The combination of the two materials and the use of a direct additive manufacturing technique resulted in scaffolds that may lead to more effective strategies to control the implant-bone interface and thereby improve long-term clinical results in orthopaedics and craniomaxillofacial surgery.
Collapse
Affiliation(s)
- J Li
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; Department of Instructive Biomaterial Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - H Yuan
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; Department of Instructive Biomaterial Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; Kuros Biosciences, Bilthoven, the Netherlands
| | - A Chandrakar
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - L Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - P Habibovic
- Department of Instructive Biomaterial Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
8
|
Liu Z, Liu X, Ramakrishna S. Surface engineering of biomaterials in orthopedic and dental implants: Strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol J 2021; 16:e2000116. [PMID: 33813785 DOI: 10.1002/biot.202000116] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The success of biomedical implants in orthopedic and dental applications is usually limited due to insufficient bone-implant integration, and implant-related infections. Biointerfaces are critical in regulating their interactions and the desirable performance of biomaterials in biological environment. Surface engineering has been widely studied to realize better control of the interface interaction to further enhance the desired behavior of biomaterials. PURPOSE AND SCOPE This review aims to investigate surface coating strategies in hard tissue applications to address insufficient osteointegration and implant-related infection problems. SUMMARY We first focused on surface coatings to enhance the osteointegration and biocompatibility of implants by emphasizing calcium phosphate-related, nanoscale TiO2 -related, bioactive tantalum-based and biomolecules incorporated coatings. Different coating strategies such as plasma spraying, biomimetic deposition, electrochemical anodization and LENS are discussed. We then discussed techniques to construct anti-adhesive and bactericidal surface while emphasizing multifunctional surface coating techniques that combine potential osteointegration and antibacterial activities. The effects of nanotopography via TiO2 coatings on antibacterial performance are interesting and included. A smart bacteria-responsive titanium dioxide nanotubes coating is also attractive and elaborated. CONCLUSION Developing multifunctional surface coatings combining osteogenesis and antimicrobial activity is the current trend. Surface engineering methods are usually combined to obtain hierarchical multiscale surface structures with better biofunctionalization outcomes.
Collapse
Affiliation(s)
- Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China.,Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Tantalum Particles Induced Cytotoxic and Inflammatory Effects in Human Monocytes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6658498. [PMID: 33564679 PMCID: PMC7867444 DOI: 10.1155/2021/6658498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/30/2022]
Abstract
The aim of this study is to evaluate the biological safety of tantalum (Ta) particles and to further explore the effects of Ta particles on human monocyte toxicity and inflammatory cytokine expression. Human monocyte leukemia (THP-1) cells were cultured with Ta and hydroxyapatite (HA) particles. Cell counting kit-8 method was used to evaluate the cytotoxicity of Ta and HA particles. The apoptosis effects were evaluated by flow cytometry, and the protein expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were evaluated by ELISA. The protein levels of inflammation-related signaling pathways including nuclear factor-kappa B (NF-κB) and extracellular regulated kinase (ERK) were detected by western blotting. The cytotoxicity test showed that the toxicity level of Ta in vitro was grade l, which is within the clinically acceptable range. Compared with the HA control, Ta had no significant effect on THP-1 cell apoptosis, IL-6, and TNF-α release. The phosphorylated levels of NF-κB and ERK at 3 h in the Ta group were lower than those in the HA and control groups (P < 0.001 both). These results reveal Ta particles behave good biosafety properties and provide some new insights for the future clinical use of Ta.
Collapse
|
10
|
Bandyopadhyay A, Shivaram A, Isik M, Avila JD, Dernell WS, Bose S. Additively manufactured calcium phosphate reinforced CoCrMo alloy: Bio-tribological and biocompatibility evaluation for load-bearing implants. ADDITIVE MANUFACTURING 2019; 28:312-324. [PMID: 31341790 PMCID: PMC6656377 DOI: 10.1016/j.addma.2019.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cobalt-chromium-molybdenum (CoCrMo) alloys are widely used in load-bearing implants; specifically, in hip, knee, and spinal applications due to their excellent wear resistance. However, due to in vivo corrosion and mechanically assisted corrosion, metal ion release occurs and accounts for poor biocompatibility. Therefore, a significant interest to find an alternative to CoCrMo alloy exists. In the present work we hypothesize that calcium phosphate (CaP) will behave as a solid lubricant in CoCrMo alloy under tribological testing, thereby minimizing wear and metal ion release concerns associated with CoCrMo alloy. CoCrMo-CaP composite coatings were processed using laser engineered net shaping (LENS™) system. After LENS™ processing, CoCrMo alloy was subjected to laser surface melting (LSM) using the same LENS™ set-up. Samples were investigated for microstructural features, phase identification, and biocompatibility. It was found that LSM treated CoCrMo improved wear resistance by 5 times. CoCrMo-CaP composites displayed the formation of a phosphorus-based tribofilm. In vitro cell-material interactions study showed no cytotoxic effect. Sprague-Dawley rat and rabbit in vivo study displayed increased osteoid formation for CoCrMo-CaP composites, up to 2 wt.% CaP. Our results show that careful surface modification treatments can simultaneously improve wear resistance and in vivo biocompatibility of CoCrMo alloy, which can correlate to a reduction of metal ion release in vivo.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| | - Anish Shivaram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| | - Murat Isik
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| | - Jose D. Avila
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| | | | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| |
Collapse
|
11
|
Bose S, Traxel KD, Vu AA, Bandyopadhyay A. Clinical significance of three-dimensional printed biomaterials and biomedical devices. MRS BULLETIN 2019; 44:494-504. [PMID: 31371848 PMCID: PMC6675023 DOI: 10.1557/mrs.2019.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three-dimensional printing (3DP) is becoming a standard manufacturing practice for a variety of biomaterials and biomedical devices. This layer-by-layer methodology provides the ability to fabricate parts from computer-aided design files without the need for part-specific tooling. Three-dimensional printed medical components have transformed the field of medicine through on-demand patient care with specialized treatment such as local, strategically timed drug delivery, and replacement of once-functioning body parts. Not only can 3DP technology provide individualized components, it also allows for advanced medical care, including surgical planning models to aid in training and provide temporary guides during surgical procedures for reinforced clinical success. Despite the advancement in 3DP technology, many challenges remain for forward progress, including sterilization concerns, reliability, and reproducibility. This article offers an overview of biomaterials and biomedical devices derived from metals, ceramics, polymers, and composites that can be three-dimensionally printed, as well as other techniques related to 3DP in medicine, including surgical planning, bioprinting, and drug delivery.
Collapse
Affiliation(s)
- Susmita Bose
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, USA
| | - Kellen D Traxel
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, USA
| | - Ashley A Vu
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, USA
| | - Amit Bandyopadhyay
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, USA
| |
Collapse
|
12
|
Li J, Li W, Li Z, Wang Y, Li R, Tu J, Jin G. In vitro and in vivo evaluations of the fully porous Ti6Al4V acetabular cups fabricated by a sintering technique. RSC Adv 2019; 9:6724-6732. [PMID: 35518492 PMCID: PMC9061126 DOI: 10.1039/c9ra00638a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 11/21/2022] Open
Abstract
A type of canine fully porous Ti6Al4V acetabular cup was fabricated by a well-controlled powder sintering technique. The traditional hydroxyapatite-coated (HA-coated) cups were also prepared as the control. The characteristics, mechanical and biological properties of the two types of cups were evaluated by scanning electron microscopy, mechanical tests, finite element analysis and canine total hip arthroplasty (THA). Results showed that the porous cup had high porosity and large pore size with good mechanical properties without obvious stress shielding, and it had sufficient safety for implantation according to the finite element analysis. Both groups showed good biocompatibility and osteogenic ability after the THA surgeries, but the porous group had more bone ingrowth and higher bone-implant contact rate according to the micro-CT and histopathologic results. Therefore, the canine fully porous Ti6Al4V acetabular cup fabricated by the sintering technique could provide sufficient space and adequate mechanical support without obvious stress shielding effect for bone ingrowth. Compared with the traditional HA-coated cup, the porous cup may be more effective in achieving in vivo stability, which could contribute to reducing the risk of aseptic loosening.
Collapse
Affiliation(s)
- Ji Li
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Wei Li
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University Xixiazhuang, Badachu Road, Shijingshan District Beijing 100144 China
| | - Zhongli Li
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Yuxing Wang
- Department of Orthopedics, General Hospital of PLA No. 28 Fuxing Road, Haidian District Beijing 100853 China +86 010 66938306 +86 010 66938306
| | - Ruiling Li
- State Key Laboratory of Materials, Department of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Jiangping Tu
- State Key Laboratory of Materials, Department of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Gong Jin
- ZhongAoHuiCheng Technology Co. No. 20 Kechuang Road, Economic and Technological Development Zone Beijing 100176 China
| |
Collapse
|
13
|
Ke D, Vu AA, Bandyopadhyay A, Bose S. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater 2019; 84:414-423. [PMID: 30500448 PMCID: PMC6485960 DOI: 10.1016/j.actbio.2018.11.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Plasma sprayed hydroxyapatite (HA) coating is known to improve the osteoconductivity of metallic implants. However, the adhesive bond strength of the coating is affected due to a mismatch in coefficients of thermal expansion (CTE) between the metal and HA ceramic. In this study, a gradient HA coating was prepared on Ti6Al4V by laser engineered net shaping (LENS™) followed by plasma spray deposition. In addition, 1 wt% MgO and 2 wt% Ag2O were mixed with HA to improve the biological and antibacterial properties of the coated implant. Results showed that the presence of an interfacial layer by LENS™ enhanced adhesive bond strength from 26 ± 2 MPa for just plasma spray coating to 39 ± 4 MPa for LENS™ and plasma spray coatings. Presence of MgO and Ag2O did not influence the adhesive bond strength. Also, Ag+ ions release dropped by 70% less with a gradient HA LENS™ layer due to enhanced crystallization of the HA layer. In vitro human osteoblast cell culture revealed presence of Ag2O had no deleterious effect on proliferation and differentiation when compared to pure HA as control and provided antibacterial properties against E. coli and S. aureus bacterial strands. This study presents an innovative way to improve interfacial mechanical and antibacterial properties of plasma sprayed HA coating for load-bearing orthopedic as well as dental implants. STATEMENT OF SIGNIFICANCE: Implants are commonly composed of metals that lack osteoconductivity. Osteoconductivity is a property where bone grows on the surface meaning the material is compatible with the surrounding bone tissue. Plasma sprayed hydroxyapatite (HA) coating improves the osteoconductivity of metallic implants, however, the adhesive bond strength can be weak. This study incorporates a gradient HA coating by using an additive manufacturing technique, laser engineered net shaping (LENS™), followed by plasma spray deposition to enhance the adhesive bond strength by incorporating a thermal barrier. The proposed system has not been well studied in the current literature and the results presented bring forth an innovative way to improve the interfacial mechanical and antibacterial properties of plasma sprayed HA coating for load-bearing orthopedic implants.
Collapse
Affiliation(s)
- Dongxu Ke
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Ashley A Vu
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA.
| |
Collapse
|
14
|
Deng B, Bruzzaniti A, Cheng GJ. Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering. Int J Nanomedicine 2018; 13:8217-8230. [PMID: 30555235 PMCID: PMC6280903 DOI: 10.2147/ijn.s162842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The osteoinductive behaviors of nitinol (NiTi)-based metal implants for bone regeneration are largely dependent on their surface composition and topology. Continuous-mode laser sintering often results in complete melting of the materials and aggregation of particles, which lack control of heat transfer, as well as microstructural changes during sintering of the nanocomposite materials. Methods In the current study, in situ direct laser deposition was used to additively manufacture three-dimensional NiTi structures from Ni and Ti powders. The mechanical property of NiTi has been shown to be similar to bone. Nanosecond pulsed laser sintering process was then utilized to generate a nanoporous composite surface with NiTi alloy and hydroxyapatite (HA) by ultrafast laser heating and cooling of Ni, Ti, and HA nanoparticles mixtures precoated on the 3D NiTi substrates; HA was added in order to improve the biocompatibility of the alloy. We then studied the underlying mechanism in the formation of NiTi/HA nanocomposite, and the synergistic effect of the sintered HA component and the nanoporous topology of the composite coating. In addition, we examined the activity of bone-forming osteoblasts on the NiTi/HA surfaces. For this, osteoblast cell morphology and various biomarkers were examined to evaluate cellular activity and function. Results We found that the nanoscale porosity delivered by nanosecond pulsed laser sintering and the HA component positively contributed to osteoblast differentiation, as indicated by an increase in the expression of collagen and alkaline phosphatase, both of which are necessary for osteoblast mineralization. In addition, we observed topological complexities which appeared to boost the activity of osteoblasts, including an increase in actin cytoskeletal structures and adhesion structures. Conclusion These findings demonstrate that the pulsed laser sintering method is an effective tool to generate biocompatible coatings in complex alloy-composite material systems with desired composition and topology. Our findings also provide a better understanding of the osteoinductive behavior of the sintered nanocomposite coatings for use in orthopedic and bone regeneration applications.
Collapse
Affiliation(s)
- Biwei Deng
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA, .,Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA,
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, USA,
| | - Gary J Cheng
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA, .,Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA,
| |
Collapse
|
15
|
In situ reactive multi-material Ti6Al4V-calcium phosphate-nitride coatings for bio-tribological applications. J Mech Behav Biomed Mater 2018; 85:1-11. [DOI: 10.1016/j.jmbbm.2018.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/19/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
|
16
|
Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. PROGRESS IN MATERIALS SCIENCE 2018; 93:45-111. [PMID: 31406390 PMCID: PMC6690629 DOI: 10.1016/j.pmatsci.2017.08.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biomaterials are used to engineer functional restoration of different tissues to improve human health and the quality of life. Biomaterials can be natural or synthetic. Additive manufacturing (AM) is a novel materials processing approach to create parts or prototypes layer-by-layer directly from a computer aided design (CAD) file. The combination of additive manufacturing and biomaterials is very promising, especially towards patient specific clinical applications. Challenges of AM technology along with related materials issues need to be realized to make this approach feasible for broader clinical needs. This approach is already making a significant gain towards numerous commercial biomedical devices. In this review, key additive manufacturing methods are first introduced followed by AM of different materials, and finally applications of AM in various treatment options. Realization of critical challenges and technical issues for different AM methods and biomaterial selections based on clinical needs are vital. Multidisciplinary research will be necessary to face those challenges and fully realize the potential of AM in the coming days.
Collapse
Affiliation(s)
- Susmita Bose
- Corresponding authors. (S. Bose), (A. Bandyopadhyay)
| | | | | | | |
Collapse
|
17
|
Bose S, Robertson SF, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater 2018; 66:6-22. [PMID: 29109027 PMCID: PMC5785782 DOI: 10.1016/j.actbio.2017.11.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022]
Abstract
The demand for synthetic biomaterials in medical devices, pharmaceutical products and, tissue replacement applications are growing steadily due to aging population worldwide. The use for patient matched devices is also increasing due to availability and integration of new technologies. Applications of additive manufacturing (AM) or 3D printing (3DP) in biomaterials have also increased significantly over the past decade towards traditional as well as innovative next generation Class I, II and III devices. In this review, we have focused our attention towards the use of AM in surface modified biomaterials to enhance their in vitro and in vivo performances. Specifically, we have discussed the use of AM to deliberately modify the surfaces of different classes of biomaterials with spatial specificity in a single manufacturing process as well as commented on the future outlook towards surface modification using AM. STATEMENT OF SIGNIFICANCE It is widely understood that the success of implanted medical devices depends largely on favorable material-tissue interactions. Additive manufacturing has gained traction as a viable and unique approach to engineered biomaterials, for both bulk and surface properties that improve implant outcomes. This review explores how additive manufacturing techniques have been and can be used to augment the surfaces of biomedical devices for direct clinical applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Samuel Ford Robertson
- W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
18
|
Guo Y, Tan Y, Liu Y, Liu S, Zhou R, Tang H. Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:197-206. [DOI: 10.1016/j.msec.2017.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022]
|
19
|
Titanium-hydroxyapatite composites sintered at low temperature for tissue engineering: in vitro cell support and biocompatibility. J Appl Biomater Funct Mater 2017; 15:e176-e183. [PMID: 28222206 PMCID: PMC6379773 DOI: 10.5301/jabfm.5000340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 11/20/2022] Open
Abstract
Background In clinical orthopedics, a critical problem is the bone tissue loss produced
by a disease or injury. The use of composites from titanium and
hydroxyapatite for biomedical applications has increased due to the
resulting advantageous combination of hydroxyapatite bioactivity and
favorable mechanical properties of titanium. Powder metallurgy is a simple
and lower-cost method that uses powder from titanium and hydroxyapatite to
obtain composites having hydroxyapatite phases in a metallic matrix.
However, this method has certain limitations arising from thermal
decomposition of hydroxyapatite in the titanium-hydroxyapatite system above
800°C. We obtained a composite from titanium and bovine hydroxyapatite
powders sintered at 800°C and evaluated its bioactivity and
cytocompatibility according to the ISO 10993 standard. Methods Surface analysis and bioactivity of the composite was evaluated by X-ray
diffraction and SEM. MTT assay was carried out to assess cytotoxicity on
Vero and NIH3T3 cells. Cell morphology and cell adhesion on the composite
surface were analyzed using fluorescence and SEM. Results We obtained a porous composite with hydroxyapatite particles well integrated
in titanium matrix which presented excellent bioactivity. Our data did not
reveal any toxicity of titanium-hydroxyapatite composite on Vero or NIH3T3
cells. Moreover, extracts from composite did not affect cell morphology or
density. Finally, NIH3T3 cells were capable of adhering to and proliferating
on the composite surface. Conclusions The composite obtained displayed promising biomedical applications through
the simple method of powder metallurgy. Additionally, these findings provide
an in vitro proof for adequate biocompatibility of titanium-hydroxyapatite
composite sintered at 800°C.
Collapse
|
20
|
Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E334. [PMID: 28772697 PMCID: PMC5506916 DOI: 10.3390/ma10040334] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.
Collapse
Affiliation(s)
- Noam Eliaz
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| | - Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| |
Collapse
|
21
|
Geng Z, Wang R, Zhuo X, Li Z, Huang Y, Ma L, Cui Z, Zhu S, Liang Y, Liu Y, Bao H, Li X, Huo Q, Liu Z, Yang X. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:852-861. [PMID: 27987782 DOI: 10.1016/j.msec.2016.10.079] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/02/2016] [Accepted: 10/30/2016] [Indexed: 11/25/2022]
Abstract
Implant-related infection in primary total joint prostheses has attracted considerable research attention. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into calcium phosphate (CaP) coatings on Titanium (Ti) via a hydrothermal method. Further, strontium (Sr) was added as a binary dopant to reduce the cytotoxicity of Ag in the coatings. Results showed that the CaP coatings were uniformly deposited on Ti with enhanced hydrophilicity and nanoscale surface roughness. Moreover, cell adhesion, proliferation, and differentiation were improved after the CaP coating deposition. The antibacterial properties of the coatings were distinctly improved by the incorporation of Ag, but the cell proliferation and differentiation were significantly decreased. Owing to the incorporation of Sr, the Ag-CaP coatings were able to effectively counteract the negative effects of Ag while maintaining good antibacterial properties. In summary, hydrothermally deposited CaP coatings doped with Ag and Sr exhibit excellent biocompatibility and antimicrobial activity. Thus, such co-doped CaP coatings have considerable potential for orthopaedic implant modification.
Collapse
Affiliation(s)
- Zhen Geng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Renfeng Wang
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072, China
| | - Xianglong Zhuo
- Department of Spinal Surgery, Liuzhou Worker's Hospital, Liuzhou 545001, China.
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, China.
| | - Yongcan Huang
- Orthopedics Research Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lili Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, China
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yunde Liu
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072, China
| | - Huijing Bao
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072, China
| | - Xue Li
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072, China
| | - Qianyu Huo
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072, China
| | - Zhili Liu
- School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072, China
| | - Xianjin Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, China.
| |
Collapse
|
22
|
|
23
|
Huang D, Niu L, Wei Y, Guo M, Zuo Y, Zou Q, Hu Y, Chen W, Li Y. Interfacial and biological properties of the gradient coating on polyamide substrate for bone substitute. J R Soc Interface 2015; 11:rsif.2014.0101. [PMID: 25121648 DOI: 10.1098/rsif.2014.0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fabrication of bioactive and mechanical matched bone substitutes is crucial for clinical application in bone defects repair. In this study, nano-hydroxyapatite/polyamide (nHA/PA) composite was coated on injection-moulded PA by a chemical corrosion and phase-inversion technique. The shear strength, gradient composition and pore structure of the bioactive coating were characterized. Osteoblast-like MG63 cells were cultured on pure PA and composite-coated PA samples. The cells' adhesion, spread and proliferation were determined using MTT assay and microscopy. The results confirm that the samples with the nHA/PA composite coating have better cytocompatibility and have no negative effects on cells. To investigate the in vivo biocompatibility, both pure PA and composite-coated PA cylinders were implanted in the trochlea of rabbit femurs and studied histologically, and the bonding ability with bone were determined using push-out tests. The results show that composite-coated implants exhibit better biocompatibility and the shear strength of the composite-coated implants with host bone at 12 weeks can reach 3.49±0.42 MPa, which is significantly higher than that of pure PA implants. These results indicate that composite-coated PA implants have excellent biocompatibility and bonding abilities with host bone and they have the potential to be applied in repair of bone defects.
Collapse
Affiliation(s)
- Di Huang
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Lulu Niu
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yan Wei
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Meiqing Guo
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yinchun Hu
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Weiyi Chen
- Department of Biomedical Engineering, Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
24
|
Dorozhkin SV. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:272-326. [PMID: 26117762 DOI: 10.1016/j.msec.2015.05.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/21/2015] [Accepted: 05/08/2015] [Indexed: 01/12/2023]
Abstract
Since various interactions among cells, surrounding tissues and implanted biomaterials always occur at their interfaces, the surface properties of potential implants appear to be of paramount importance for the clinical success. In view of the fact that a limited amount of materials appear to be tolerated by living organisms, a special discipline called surface engineering was developed to initiate the desirable changes to the exterior properties of various materials but still maintaining their useful bulk performances. In 1975, this approach resulted in the introduction of a special class of artificial bone grafts, composed of various mechanically stable (consequently, suitable for load bearing applications) implantable biomaterials and/or bio-devices covered by calcium orthophosphates (CaPO4) to both improve biocompatibility and provide an adequate bonding to the adjacent bones. Over 5000 publications on this topic were published since then. Therefore, a thorough analysis of the available literature has been performed and about 50 (this number is doubled, if all possible modifications are counted) deposition techniques of CaPO4 have been revealed, systematized and described. These CaPO4 deposits (coatings, films and layers) used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
25
|
Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition. J Mech Behav Biomed Mater 2015; 46:31-40. [DOI: 10.1016/j.jmbbm.2015.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Accepted: 02/19/2015] [Indexed: 01/24/2023]
|
26
|
Boi M, Bianchi M, Gambardella A, Liscio F, Kaciulis S, Visani A, Barbalinardo M, Valle F, Iafisco M, Lungaro L, Milita S, Cavallini M, Marcacci M, Russo A. Tough and adhesive nanostructured calcium phosphate thin films deposited by the pulsed plasma deposition method. RSC Adv 2015. [DOI: 10.1039/c5ra11034c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium phosphate thin films were deposited at room temperature by the pulsed plasma deposition method. After annealing at 600 °C, film mechanical properties and adhesion to the titanium substrate strongly improved.
Collapse
|
27
|
Brie IC, Soritau O, Dirzu N, Berce C, Vulpoi A, Popa C, Todea M, Simon S, Perde-Schrepler M, Virag P, Barbos O, Chereches G, Berce P, Cernea V. Comparative in vitro study regarding the biocompatibility of titanium-base composites infiltrated with hydroxyapatite or silicatitanate. J Biol Eng 2014; 8:14. [PMID: 24987458 PMCID: PMC4077223 DOI: 10.1186/1754-1611-8-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional bone tissues. Adding bioactive materials can improve new bone formation and better osseointegration. Three types of titanium (Ti) implants were tested for in vitro biocompatibility in this comparative study: Ti6Al7Nb implants with 25% total porosity used as controls, implants infiltrated using a sol-gel method with hydroxyapatite (Ti HA) and silicatitanate (Ti SiO2). The behavior of human osteoblasts was observed in terms of adhesion, cell growth and differentiation. RESULTS The two coating methods have provided different morphological and chemical properties (SEM and EDX analysis). Cell attachment in the first hour was slower on the Ti HA scaffolds when compared to Ti SiO2 and porous uncoated Ti implants. The Alamar blue test and the assessment of total protein content uncovered a peak of metabolic activity at day 8-9 with an advantage for Ti SiO2 implants. Osteoblast differentiation and de novo mineralization, evaluated by osteopontin (OP) expression (ELISA and immnocytochemistry), alkaline phosphatase (ALP) activity, calcium deposition (alizarin red), collagen synthesis (SIRCOL test and immnocytochemical staining) and osteocalcin (OC) expression, highlighted the higher osteoconductive ability of Ti HA implants. Higher soluble collagen levels were found for cells cultured in simple osteogenic differentiation medium on control Ti and Ti SiO2 implants. Osteocalcin (OC), a marker of terminal osteoblastic differentiation, was most strongly expressed in osteoblasts cultivated on Ti SiO2 implants. CONCLUSIONS The behavior of osteoblasts depends on the type of implant and culture conditions. Ti SiO2 scaffolds sustain osteoblast adhesion and promote differentiation with increased collagen and non-collagenic proteins (OP and OC) production. Ti HA implants have a lower ability to induce cell adhesion and proliferation but an increased capacity to induce early mineralization. Addition of growth factors BMP-2 and TGFβ1 in differentiation medium did not improve the mineralization process. Both types of infiltrates have their advantages and limitations, which can be exploited depending on local conditions of bone lesions that have to be repaired. These limitations can also be offset through methods of functionalization with biomolecules involved in osteogenesis.
Collapse
Affiliation(s)
- Ioana-Carmen Brie
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania ; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania
| | - Olga Soritau
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | | | - Cristian Berce
- University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania
| | - Adriana Vulpoi
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, 400084 Cluj-Napoca, Romania
| | | | - Milica Todea
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, 400084 Cluj-Napoca, Romania
| | - Simion Simon
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes Bolyai University, 400084 Cluj-Napoca, Romania
| | - Maria Perde-Schrepler
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | - Piroska Virag
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | - Otilia Barbos
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriela Chereches
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania
| | | | - Valentin Cernea
- The Institute of Oncology "Prof. Dr. I. Chiricuta" Cluj-Napoca, Cluj-Napoca, Romania ; University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Mahmoodi M, Hashemi PM, Imani R. Characterization of a novel nanobiomaterial fabricated from HA, TiO 2 and Al 2O 3 powders: an in vitro study. Prog Biomater 2014; 3:25. [PMID: 29470734 PMCID: PMC5151102 DOI: 10.1007/s40204-014-0025-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/02/2014] [Indexed: 02/05/2023] Open
Abstract
For the purposes of this study, hydroxyapatite (HA)–Al2O3–TiO2 nanobiomaterial with significant surface properties and biocompatibility capable of forming surface apatite was fabricated by cold-press and sintering method. Samples were examined for hardness and porosity. The results showed that in terms of hardness and porosity, sample A (50 wt% TiO2–30 wt% HA–20 wt% Al2O3) was superior to sample B (30 wt% TiO2–50 wt% HA–20 wt% Al2O3), and also the density of nanobiomaterial was close to natural bone density. Bioactivity of the samples in a simulated body fluid (SBF) was investigated. Then, after immersing the samples in SBF solution for a period of 7 days, sample B exhibited greater ability to form calcium phosphate compounds on the surface as compared to sample A. In addition, in vitro studies showed that MG-67 osteoblast-like cells attached and spread on the samples surface. The results showed that cells proliferated in greater numbers on the sample B as compared to the sample A. Finally, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis were performed to identify phases, study microstructure, and determine percentage of elements, respectively. The results revealed that considering their different properties, both nanobiomaterials can be used in medical applications.
Collapse
Affiliation(s)
- Mahboobeh Mahmoodi
- Department of Materials and Mechanic, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Peyman Mahmoodi Hashemi
- Department of Biomedical Engineering, College of Engineering and Technical, Yazd Science and Research Branch, Islamic Azad University, Yazd, Iran
| | - Rana Imani
- Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
29
|
Rakngarm Nimkerdphol A, Otsuka Y, Mutoh Y. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF). J Mech Behav Biomed Mater 2014; 36:98-108. [PMID: 24821139 DOI: 10.1016/j.jmbbm.2014.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
The residual stress distributions in hydroxyapatite (HAp) coating with and without mixed hydroxyapatite/titanium (HAp/Ti) bond coating on commercially pure Titanium substrate (cp-Ti) were evaluated by Raman piezo-spectroscopy analysis. The Raman shifted position 962cm(-1), which is the symmetrical stretching of surrounded oxygen atoms with phosphorous atom ( [Formula: see text] ), was referred to analyses of stress dependency. The piezo-spectroscopic coefficient, which is a Raman shift value per stress (cm(-1)/GPa), was fitted from the result of four-points bending test of rectangular HAp bar and as-sprayed HAp on Zn plate. The calculated values were 3.89cm(-1)/GPa for the former and 7.11cm(-1)/GPa for the latter. By using these calibrations, the compressive residual stress in HAp coating with HAp/Ti bond coating (HA-B) has been found to be distributed in the range of -137MPa to -75MPa. For the heat-treated HAp coating (HA-B-HT) specimen, the compressive residual stresses placed in the range of -40--22MPa. The changes in the values of residual stress of the HAp coating after immersion in SBF were also evaluated. The residual stress in HA-WB specimens tend to change from compressive to tensile after 30 days immersion. The HA-B-HT specimens exhibited similar behavior and reached to zero stress after the immersion. The mechanism of the changes in residual stress would be the effect of stress redistribution around melted calcium phosphate particles to remained HAp splats.
Collapse
Affiliation(s)
- Achariya Rakngarm Nimkerdphol
- Department of Materials Science, Maejo University, Chiangmai 50290, Thailand; Department of System Safety, Nagaoka University of Technology, Niigata 940-2188, Japan
| | - Yuichi Otsuka
- Department of System Safety, Nagaoka University of Technology, Niigata 940-2188, Japan.
| | - Yoshiharu Mutoh
- Department of System Safety, Nagaoka University of Technology, Niigata 940-2188, Japan
| |
Collapse
|
30
|
Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review. Acta Biomater 2014; 10:557-79. [PMID: 24211734 DOI: 10.1016/j.actbio.2013.10.036] [Citation(s) in RCA: 325] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022]
Abstract
A systematic analysis of results available from in vitro, in vivo and clinical trials on the effects of biocompatible calcium phosphate (CaP) coatings is presented. An overview of the most frequently used methods to prepare CaP-based coatings was conducted. Dense, homogeneous, highly adherent and biocompatible CaP or hybrid organic/inorganic CaP coatings with tailored properties can be deposited. It has been demonstrated that CaP coatings have a significant effect on the bone regeneration process. In vitro experiments using different cells (e.g. SaOS-2, human mesenchymal stem cells and osteoblast-like cells) have revealed that CaP coatings enhance cellular adhesion, proliferation and differentiation to promote bone regeneration. However, in vivo, the exact mechanism of osteogenesis in response to CaP coatings is unclear; indeed, there are conflicting reports of the effectiveness of CaP coatings, with results ranging from highly effective to no significant or even negative effects. This review therefore highlights progress in CaP coatings for orthopaedic implants and discusses the future research and use of these devices. Currently, an exciting area of research is in bioactive hybrid composite CaP-based coatings containing both inorganic (CaP coating) and organic (collagen, bone morphogenetic proteins, arginylglycylaspartic acid etc.) components with the aim of promoting tissue ingrowth and vascularization. Further investigations are necessary to reveal the relative influences of implant design, surgical procedure, and coating characteristics (thickness, structure, topography, porosity, wettability etc.) on the long-term clinical effects of hybrid CaP coatings. In addition to commercially available plasma spraying, other effective routes for the fabrication of hybrid CaP coatings for clinical use still need to be determined and current progress is discussed.
Collapse
Affiliation(s)
- Roman A Surmenev
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany.
| | - Maria A Surmeneva
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anna A Ivanova
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
31
|
Dorozhkin SV. Calcium Orthophosphate-Based Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2013; 6:3840-3942. [PMID: 28788309 PMCID: PMC5452669 DOI: 10.3390/ma6093840] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023]
Abstract
Various types of grafts have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A bit later, such synthetic biomaterials were called bioceramics. In principle, bioceramics can be prepared from diverse materials but this review is limited to calcium orthophosphate-based formulations only, which possess the specific advantages due to the chemical similarity to mammalian bones and teeth. During the past 40 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the calcium orthophosphate-based implants remain biologically stable once incorporated into the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed and such formulations became an integrated part of the tissue engineering approach. Now calcium orthophosphate scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous and harbor different biomolecules and/or cells. Therefore, current biomedical applications of calcium orthophosphate bioceramics include bone augmentations, artificial bone grafts, maxillofacial reconstruction, spinal fusion, periodontal disease repairs and bone fillers after tumor surgery. Perspective future applications comprise drug delivery and tissue engineering purposes because calcium orthophosphates appear to be promising carriers of growth factors, bioactive peptides and various types of cells.
Collapse
|
32
|
Huang D, Zuo Y, Li J, Zou Q, Zhang L, Gong M, Wang L, Li L, Li Y. Bioactive composite gradient coatings of nano-hydroxyapatite/polyamide66 fabricated on polyamide66 substrates. J R Soc Interface 2012; 9:1450-7. [PMID: 22258549 PMCID: PMC3367815 DOI: 10.1098/rsif.2011.0782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/16/2011] [Indexed: 11/12/2022] Open
Abstract
Tightly bonding of bioactive coating is the first crucial need for orthopaedic implants. This study describes a novel and convenient technique to prepare bioactive coating with high adhesion on orthopaedic substitutes made of polymeric matrix. Here, a chemical corrosion method has been adopted to fabricate a coating on the surface of injection-moulded polyamide66 (PA66) substrates by corrosive nano-hydroxyapatite/polyamide66 (n-HA/PA66) composite slurry. Scanning electron microscopy observation shows that a porous chemical corrosion region presents between the coating and dense PA66 substrate. Energy-dispersive X-ray spectroscopy analysis indicates that the chemical corrosion region is mainly composed of PA66 matrix, and the coating layer is an n-HA-rich layer. Both the pore size and n-HA composition increase gradually from the polymeric substrate towards the coating surface. Mechanical testing shows the bonding strength can reach 13.7 ± 0.2 MPa, which is much higher than that fabricated on polymeric matrix by other coating methods. The gradual transition in coating structure and composition benefits for the interface bonding and for the surface bone-bonding bioactivity. Subsequent cell experiments corroborate n-HA-rich coating and a porous structure is benefitting for cell attachment and proliferation. The convenient coating method could be popularized and applied on similar polymer implants to produce a tightly and porous bioactive coating for bone tissue regeneration.
Collapse
Affiliation(s)
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | | | | | | | | | | | | | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
33
|
Lv X, Lin X, Hu J, Gao B, Huang W. Phase evolution in calcium phosphate coatings obtained by in situ laser cladding. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Roy M, Fielding GA, Beyenal H, Bandyopadhyay A, Bose S. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1341-9. [PMID: 22313742 PMCID: PMC3319099 DOI: 10.1021/am201610q] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings.
Collapse
Affiliation(s)
- Mangal Roy
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Gary A. Fielding
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Haluk Beyenal
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
35
|
Balla VK, Bhat A, Bose S, Bandyopadhyay A. Laser processed TiN reinforced Ti6Al4V composite coatings. J Mech Behav Biomed Mater 2011; 6:9-20. [PMID: 22301169 DOI: 10.1016/j.jmbbm.2011.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
The purpose of this first generation investigation is to evaluate fabrication, in vitro cytotoxicity, cell-material interactions and tribological performance of TiN particle reinforced Ti6Al4V composite coatings for potential wear resistant load bearing implant applications. The microstructural analysis of the composites was performed using scanning electron microscope and phase analysis was done with X-ray diffraction. In vitro cell-material interactions, using human fetal osteoblast cell line, have been assessed on these composite coatings and compared with Ti6Al4V alloy control samples. The tribological performance of the coatings were evaluated, in simulated body fluids, up to 1000 m sliding distance under 10 N normal load. The results show that the composite coatings contain distinct TiN particles embedded in α+β phase matrix. The average top surface hardness of Ti6Al4V alloy increased from 394±8 HV to 1138±61 HV with 40 wt% TiN reinforcement. Among the composite coatings, the coatings reinforced with 40 wt% TiN exhibited the highest wear resistance of 3.74×10(-6) mm(3)/Nm, which is lower than the wear rate, 1.04×10(-5) mm(3)/Nm, of laser processed CoCrMo alloy tested under identical experimental conditions. In vitro biocompatibility study showed that these composite coatings were non-toxic and provides superior cell-material interactions compared to Ti6Al4V control, as a result of their high surface energy. In summary, excellent in vitro wear resistance and biocompatibility of present laser processed TiN reinforced Ti6Al4V alloy composite coatings clearly show their potential as wear resistant contact surfaces for load bearing implant applications.
Collapse
Affiliation(s)
- Vamsi Krishna Balla
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
36
|
Roy M, Bandyopadhyay A, Bose S. Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J Biomed Mater Res B Appl Biomater 2011; 99:258-65. [DOI: 10.1002/jbm.b.31893] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/28/2011] [Accepted: 05/08/2011] [Indexed: 11/11/2022]
|