1
|
Łopianiak I, Butruk-Raszeja B, Wojasiński M. Shore hardness of bulk polyurethane affects the properties of nanofibrous materials differently. J Mech Behav Biomed Mater 2025; 161:106793. [PMID: 39520867 DOI: 10.1016/j.jmbbm.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The present study shows the effect of the hardness of bulk polyurethane on the properties of nanofibrous materials produced in the solution blow spinning process. This study focuses on nanofibrous materials made from medical-grade polyurethanes with different hardness values on the Shore scale, from 75A to 75D. We aimed to determine the effect of the intrinsic properties of polyurethane used to produce nanofibers on the tensile properties of the resulting nanofibrous materials and in vitro platelet adhesiveness. This study used a solution blow spinning process to produce nanofibrous materials from polyurethane solutions. It evaluates their properties using scanning electron microscopy, followed by porosity determination, tensile testing, and platelet adhesion assays. Generally, the bulk polymer's Shore hardness affects nanofibrous products' porosity and tensile properties. In the tested Shore hardness range, the most visible differences in material properties were observed for the fibers produced from the hardest (75D) and softest (75A) polyurethanes. The nanofibrous material produced using 75D polyurethane exhibited the highest porosity, up to approximately 0.87, owing to the low packing density of the stiff nanofibers. It also remained the stiffest, with the highest Young's modulus. On the other hand, the softest 75A polyurethane produced a less porous nanofibrous mat with the highest tensile strength among the tested polyurethanes. All tested nanofibrous materials retained their platelet adhesion resistance upon processing into nanofibers, with a mean platelet coverage below 1 % of the nanofibrous mat surface. The study results provide insights into the relationship between the hardness of bulk polyurethane and the properties of nanofibrous materials, which can be useful in various biomedical applications, particularly in producing tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Iwona Łopianiak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland; Doctoral School of Warsaw University of Technology, Warsaw, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
2
|
Huang C, Liu X, Meng L, Qu H, Chen Q, Wang Q. Fabrication of an Antibacterial/Anticoagulant Dual-Functional Surface for Left Ventricular Assist Devices via Mussel-Inspired Polydopamine Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24306-24317. [PMID: 39498633 DOI: 10.1021/acs.langmuir.4c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Infections and thrombosis remain unsolved problems for implanted cardiovascular devices, such as left ventricular assist devices. Hence, the development of surfaces with improved blood compatibility and antimicrobial properties is imperative to reduce complications after artificial heart implantation. In this work, we report a novel approach to fabricate multifunctional surfaces for left ventricular transplanted ventricular assist devices (LVADs) by immobilizing nitric oxide (NO) generation catalysts and heparin and reducing silver nanoparticles in situ. The general view, structure, and chemical compositions of the pure/modified surfaces were characterized using digital imaging, scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle (WCA), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP). All of the results demonstrated that the AgNPs and heparin were successfully immobilized on the surface. The Cu ions and NO release experimental results showed that the immobilized copper ions could catalyze the production of NO from S-nitrosothiols within the biological system. Meanwhile, due to the synergistic anticoagulant effect of NO and surface-immobilized heparin, the fabricated modified surfaces exhibited antiplatelet adhesion activities and good hemocompatibility. Finally, the antimicrobial activity of the samples was evaluated by Escherichia coli and Staphylococcus aureus, and cytocompatibility was measured using human umbilical vein endothelial cells (HUVECs). The results demonstrated that silver nanoparticles (AgNPs) immobilized by surface reduction reaction did not cause any significant inhibition of cell proliferation while providing stable and effective antimicrobial properties. We envision that this simple surface modification strategy with bifunctional activities of antimicrobial and anticoagulant will find widespread use in clinically used indwelling left ventricular assist devices.
Collapse
Affiliation(s)
- Chuangxin Huang
- School of Rare Earth, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Xin Liu
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Lingwei Meng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Hongyi Qu
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Chen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Qiuliang Wang
- School of Rare Earth, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Fan D, Liu X, Chen H. Endothelium-Mimicking Materials: A "Rising Star" for Antithrombosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53343-53371. [PMID: 39344055 DOI: 10.1021/acsami.4c12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advancement of antithrombotic materials has significantly mitigated the thrombosis issue in clinical applications involving various medical implants. Extensive research has been dedicated over the past few decades to developing blood-contacting materials with complete resistance to thrombosis. However, despite these advancements, the risk of thrombosis and other complications persists when these materials are implanted in the human body. Consequently, the modification and enhancement of antithrombotic materials remain pivotal in 21st-century hemocompatibility studies. Previous research indicates that the healthy endothelial cells (ECs) layer is uniquely compatible with blood. Inspired by bionics, scientists have initiated the development of materials that emulate the hemocompatible properties of ECs by replicating their diverse antithrombotic mechanisms. This review elucidates the antithrombotic mechanisms of ECs and examines the endothelium-mimicking materials developed through single, dual-functional and multifunctional strategies, focusing on nitric oxide release, fibrinolytic function, glycosaminoglycan modification, and surface topography modification. These materials have demonstrated outstanding antithrombotic performance. Finally, the review outlines potential future research directions in this dynamic field, aiming to advance the development of antithrombotic materials.
Collapse
Affiliation(s)
- Duanqi Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Wu Y, Chen X, Song P, Li R, Zhou Y, Wang Q, Shi J, Qiao W, Dong N. Functional Oxidized Hyaluronic Acid Cross-Linked Decellularized Heart Valves for Improved Immunomodulation, Anti-Calcification, and Recellularization. Adv Healthc Mater 2024; 13:e2303737. [PMID: 38560921 DOI: 10.1002/adhm.202303737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.
Collapse
Affiliation(s)
- Yunlong Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Peng Song
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Rui Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ying Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qin Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
5
|
Vienken J, Boccato C. Do medical devices contribute to sustainability? The role of innovative polymers and device design. Int J Artif Organs 2024; 47:240-250. [PMID: 38618975 DOI: 10.1177/03913988241245013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sustainability of a medical device has not yet become a major issue in public discussions compared to other topics with impact to material performance, clinical application, production economy and environmental pollution. Due to their unique properties, polymers (plastics) allow for multiple, flexible applications in medical device technology. Polymers are part of the majority of disposable and single use medical device and contribute with 3% to the worldwide production of plastics. The global medical polymer market size was valued 19.9 billion US-$ in 2022 and its value projection for 2023 is expected to reach 43.03 billion US-$ Here, a wider concept of related sustainability is introduced for medical devices and their polymer components. A close look on medical device specification reveals that additional properties are required to provide sustainability, such as biodegradability, quality by device design (QbD), as well as an inbuild performance service for patients, healthcare professionals and healthcare providers. The increasing global numbers for chronic and non-communicable diseases require a huge demand for single use medical devices. A careful look at polymer specification and its performance properties is needed, including possible chemical modifications and degradation processes during waste disposal. Bioengineers in charge of design and production of medical devices will only be successful when they apply a holistic and interdisciplinary approach to medical device sustainability.
Collapse
|
6
|
Sun W, Liang X, Lei J, Jiang C, Sheng D, Zhang S, Liu X, Chen H. Regulating cell behavior via regional patterned distribution of heparin-like polymers. BIOMATERIALS ADVANCES 2023; 154:213664. [PMID: 37866231 DOI: 10.1016/j.bioadv.2023.213664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Molecular patterning on biomaterial surfaces is an effective strategy to regulate biomaterial properties. Among the specific molecules, due to their biological functions, such as regulating cell behavior, heparin-like polymers (HLPs) have attracted much attention. In this study, HLP-distributed regional patterned surfaces (300 μm diameter circular array) were prepared by the combination of visible light-induced graft polymerization, transfer imprinting, and self-assembly to regulate the behavior of human umbilical vein endothelial cells (HUVECs) and human umbilical vein smooth muscle cells (HUVSMCs). The introduction of the regional pattern on HLP-modified surfaces enhanced the promotion effect of sulfonate-containing polymer (pSS) and sulfonate-, and glyco-containing copolymer (pS-co-pM), and slightly weakened the inhibition effect of glyco-containing polymer (pMAG) on the growth of HUVECs and HUVSMCs. Compared with flat surfaces, it was found that the unmodified regional patterned surfaces inhibit the spreading of HUVECs and HUVSMCs, while significantly promoting the spreading of HUVECs and HUVSMCs on all the HLP-distributed regional patterned surfaces. The patterned surface modified with pS-co-pM had the highest average spread area of HUVECs (∼10,554 μm2), which was 193 % higher than that of the unmodified flat surface. This trend was somewhat related to surface VEGF adsorption. The combination of regional divisive patterns and different HLP distributions enriched the potential of further exploring the influences of HLP chemical distributions and complex surface environments on cell-material interactions.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Chi Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Denghai Sheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| |
Collapse
|
7
|
Lei J, Sun W, Sheng D, Wang S, Liu X, Zhao T, Chen H. Effect of Structural Elements of Heparin-Mimicking Polymers on Vascular Cell Distribution and Functions: Chemically Homogeneous or Heterogeneous? ACS Biomater Sci Eng 2023; 9:5304-5311. [PMID: 37582232 DOI: 10.1021/acsbiomaterials.3c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Heparin-mimicking polymers (HMPs) are artificially synthesized alternatives to heparin with comparable regulatory effects on protein adsorption and cell behavior. By introducing two major structural elements of HMPs (sulfonate- and glyco-containing units) to different areas of material surfaces, heterogeneous surfaces patterned with different HMPs and homogeneous surfaces patterned with the same HMPs can be obtained. In this work, heterogeneous HMP-patterned poly(dimethylsiloxane) (PDMS) surfaces with sulfonate-containing polySS (pS) and glyco-containing polyMAG (pM) distributed in circular patterns (with a diameter of 300 μm) were prepared (S-M and M-S). Specifically, pS and pM were distributed inside and outside the circles on S-M, respectively, and exchanged their distribution on M-S. Homogeneous HMP-patterned silicone surfaces (SM-SM) where sulfonate- and glyco-containing poly(SS-co-MAG) (pSM) were distributed uniformly were prepared. Vascular cells showed interestingly different behaviors between chemically homogeneous and heterogeneous surfaces. They tended to grow in the sulfonate-modified area on S-M and M-S and were distributed uniformly on SM-SM. Compared with M-S, S-M showed a better promoting effect on the growth of vascular cells. Among all the samples, SM-SM exhibited the highest proliferation density and an optimum spreading state of vascular cells, as well as the highest human umbilical vein endothelial cell (HUVEC) viability (∼99%) and relatively low human umbilical vein smooth muscle cell (HUVSMC) viability (∼72%). By heterogeneous or homogeneous patterning with different structural elements of HMPs, the modified silicone surfaces spatially guided vascular cell distribution and functions. This strategy provides a new surface engineering approach to the study of cell-HMP interactions.
Collapse
Affiliation(s)
- Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Denghai Sheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Sujian Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Tingting Zhao
- Jiangsu Biosurf Biotech Company Ltd., Building 26, Dongjing Industrial Square, No. 1, Jintian Road, Suzhou Industrial Park, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
8
|
Moradi MR, Salahinejad E, Sharifi E, Tayebi L. Controlled drug delivery from chitosan-coated heparin-loaded nanopores anodically grown on nitinol shape-memory alloy. Carbohydr Polym 2023; 314:120961. [PMID: 37173015 PMCID: PMC10585653 DOI: 10.1016/j.carbpol.2023.120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Nitinol (NiTi shape-memory alloy) is an interesting candidate in various medical applications like dental, orthopedic, and cardiovascular devices, owing to its unique mechanical behaviors and proper biocompatibility. The aim of this work is the local controlled delivery of a cardiovascular drug, heparin, loaded onto nitinol treated by electrochemical anodizing and chitosan coating. In this regard, the structure, wettability, drug release kinetics, and cell cytocompatibility of the specimens were analyzed in vitro. The two-stage anodizing process successfully developed a regular nanoporous layer of Ni-Ti-O on nitinol, which considerably decreased the sessile water contact angle and induced hydrophilicity. The application of the chitosan coatings controlled the release of heparin mainly by a diffusional mechanism, where the drug release mechanisms were evaluated by the Higuchi, first-order, zero-order, and Korsmeyer-Pepass models. Human umbilical cord endothelial cells (HUVECs) viability assay also showed the non-cytotoxicity of the samples, so that the best performance was found for the chitosan-coated samples. It is concluded that the designed drug delivery systems are promising for cardiovascular, particularly stent applications.
Collapse
Affiliation(s)
- M R Moradi
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - E Salahinejad
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - E Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - L Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
9
|
Feng J, Wang J, Wang H, Cao X, Ma X, Rao Y, Pang H, Zhang S, Zhang Y, Wang L, Liu X, Chen H. Multistage Anticoagulant Surfaces: A Synergistic Combination of Protein Resistance, Fibrinolysis, and Endothelialization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466472 DOI: 10.1021/acsami.3c05145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Anticoagulant surface modification of blood-contacting materials has been shown to be effective in preventing thrombosis and reducing the dose of anticoagulant drugs that patients take. However, commercially available anticoagulant coatings, that is, both bioinert and bioactive coatings, are typically based on a single anticoagulation strategy. This puts the anticoagulation function of the coating at risk of failure during long-term use. Considering the several pathways of the human coagulation system, the synergy of multiple anticoagulation theories may provide separate, targeted effects at different stages of thrombosis. Based on this presumption, in this work, negatively charged poly(sodium p-styrenesulfonate-co-oligo(ethylene glycol) methyl ether methacrylate) and positively charged poly(lysine-co-1-adamantan-1-ylmethyl methacrylate) were synthesized to construct matrix layers on the substrate by electrostatic layer-by-layer self-assembly (LBL). Amino-functionalized β-cyclodextrin (β-CD-PEI) was subsequently immobilized on the surface by host-guest interactions, and heparin was grafted. By adjusting the content of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA), the interactions between modified surfaces and plasma proteins/cells were regulated. This multistage anticoagulant surface exhibits inertness at the initial stage of implantation, resisting nonspecific protein adsorption (POEGMA). When coagulation reactions occur, heparin exerts its active anticoagulant function in a timely manner, blocking the pathway of thrombosis. If thrombus formation is inevitable, lysine can play a fibrinolytic role in dissolving fibrin clots. Finally, during implantation, endothelial cells continue to adhere and proliferate on the surface, forming an endothelial layer, which meets the blood compatibility requirements. This method provides a new approach to construct a multistage anticoagulant surface for blood-contacting materials.
Collapse
Affiliation(s)
- Jian Feng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
- The SIP Biointerface Engineering Research Institute, Suzhou 215123, P.R. China
- Jiangsu Biosurf Biotech Co, Ltd., Suzhou 215123, P.R. China
| | - Huanhuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xinyin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoliang Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yu Rao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Huimin Pang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
- The SIP Biointerface Engineering Research Institute, Suzhou 215123, P.R. China
| |
Collapse
|
10
|
Ryltseva GA, Dudaev AE, Menzyanova NG, Volova TG, Alexandrushkina NA, Efimenko AY, Shishatskaya EI. Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells. J Funct Biomater 2023; 14:jfb14020085. [PMID: 36826884 PMCID: PMC9959859 DOI: 10.3390/jfb14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The needs of modern regenerative medicine for biodegradable polymers are wide and varied. Restoration of the viability of the vascular tree is one of the most important components of the preservation of the usefulness of organs and tissues. The creation of vascular implants compatible with blood is an important task of vascular bioengineering. The function of the endothelial layer of the vessel, being largely responsible for the development of thrombotic complications, is of great importance for hemocompatibility. The development of surfaces with specific characteristics of biomaterials that are used in vascular technologies is one of the solutions for their correct endothelialization. Linear polyhydroxyalkanoates (PHAs) are biodegradable structural polymeric materials suitable for obtaining various types of implants and tissue engineering, having a wide range of structural and physicomechanical properties. The use of PHA of various monomeric compositions in endothelial cultivation makes it possible to evaluate the influence of material properties, especially surface characteristics, on the functional state of cells. It has been established that PHA samples with the inclusion of 3-hydroxyhexanoate have optimal characteristics for the formation of a human umbilical vein endothelial cell, HUVEC, monolayer in terms of cell morphology as well as the levels of expression of vinculin and VE-cadherin. The obtained results provide a rationale for the use of PHA copolymers as materials for direct contact with the endothelium in vascular implants.
Collapse
Affiliation(s)
- Galina A. Ryltseva
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Natalia G. Menzyanova
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia A. Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anastasia Yu. Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| |
Collapse
|
11
|
Li H, Guo Y, Ma B, Qian Y, Sun W, Zhou X. The polydopamine‐assisted heparin anchor enhances the hydrophilicity, hemocompatibility, and biocompatibility of polyurethane. J Appl Polym Sci 2022. [DOI: 10.1002/app.53352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Heng Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Yu Guo
- Center of Stomatology The Second Affiliated Hospital of Soochow University Suzhou China
| | - Buyun Ma
- Nano Science and Technology Institute University of Science and Technology of China Suzhou China
| | - Yunzhu Qian
- Center of Stomatology The Second Affiliated Hospital of Soochow University Suzhou China
| | - Wentao Sun
- Nano Science and Technology Institute University of Science and Technology of China Suzhou China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
12
|
Fallon ME, Le HH, Bates NM, Yao Y, Yim EK, Hinds MT, Anderson DE. Hemocompatibility of micropatterned biomaterial surfaces is dependent on topographical feature size. Front Physiol 2022; 13:983187. [PMID: 36200053 PMCID: PMC9527343 DOI: 10.3389/fphys.2022.983187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Small-diameter synthetic vascular grafts that have improved hemocompatibility and patency remain an unmet clinical need due to thrombosis. A surface modification that has potential to attenuate these failure mechanisms while promoting an endothelial layer is the micropatterning of luminal surfaces. Anisotropic features have been shown to downregulate smooth muscle cell proliferation, direct endothelial migration, and attenuate platelet adhesion and activation. However, the effect of micropatterning feature size and orientation relative to whole blood flow has yet to be investigated within a systematic study. In this work, hemocompatibility of micropattern grating sizes of 2, 5, and 10 µm were investigated. The thrombogenicity of the micropattern surface modifications were characterized by quantifying FXIIa activity, fibrin formation, and static platelet adhesion in vitro. Additionally, dynamic platelet attachment and end-point fibrin formation were quantified using an established, flowing whole blood ex vivo non-human primate shunt model without antiplatelet or anticoagulant therapies. We observed a higher trend in platelet attachment and significantly increased fibrin formation for larger features. We then investigated the orientation of 2 µm gratings relative to whole blood flow and found no significant differences between the various orientations for platelet attachment, rate of linear platelet attachment, or end-point fibrin formation. MicroCT analysis of micropatterned grafts was utilized to quantify luminal patency. This work is a significant step in the development of novel synthetic biomaterials with improved understanding of hemocompatibility for use in cardiovascular applications.
Collapse
Affiliation(s)
- Meghan E. Fallon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Hillary H. Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Novella M. Bates
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Evelyn K.F. Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Deirdre E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Deirdre E.J. Anderson,
| |
Collapse
|
13
|
Bjørge IM, de Sousa BM, Patrício SG, Silva AS, Nogueira LP, Santos LF, Vieira SI, Haugen HJ, Correia CR, Mano JF. Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19116-19128. [PMID: 35446549 DOI: 10.1021/acsami.2c01161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia G Patrício
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Ana Sofia Silva
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Liebert P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Lúcia F Santos
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Clara R Correia
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| |
Collapse
|
14
|
Xu Y, Jiang X, Niu C, Yang S, Xiao X, Huang Z, Feng L. Preparation and Assessment of Nitric Oxide‐releasing Small‐diameter Collagen‐based Vascular Graft for Vascular Regeneration Application. MACROMOLECULAR MATERIALS AND ENGINEERING 2022. [DOI: 10.1002/mame.202100862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yue Xu
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Xia Jiang
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Chuan Niu
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Shaojie Yang
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Xiong Xiao
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Ziwei Huang
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| | - Li Feng
- Regenerative Medicine Research Center West China Hospital Sichuan University Chengdu People's Republic of China
| |
Collapse
|
15
|
Zhang Y, Zhang L, Duan S, Hu Y, Ding X, Zhang Y, Li Y, Wu Y, Ding X, Xu FJ. Heparinized anticoagulant coatings based on polyphenol-amine inspired chemistry for blood-contacting catheters. J Mater Chem B 2022; 10:1795-1804. [PMID: 35244123 DOI: 10.1039/d1tb02582a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Blood-contacting catheters occupy a vital position in modern clinical treatment including but not limited to cardiovascular diseases, but catheter-related thrombosis associated with high morbidity and mortality remains a major health concern. Hence, there is an urgent need for functionalized catheter surfaces with superior hemocompatibility that prevent protein adsorption and thrombus formation. In this work, we developed a strategy for constructing a kind of polyphenol-amine coating on the TPU surface (TLA) with tannic acid and lysine via simple dip-coating, inspired by dopamine adhesion. Based on the long-term stability and modifiable properties of TLA coatings, heparin was introduced by an amide reaction to provide anticoagulant activity (TLH). X-ray photoelectron spectroscopy and surface zeta potential measurements fully indicated the successful immobilization of heparin. Water contact angle measurements demonstrated good hydrophilicity and stability for 15 days of TLH coatings. Furthermore, the TLH coatings exhibited significant hemocompatibility and no cytotoxicity. The good antithrombotic properties of the functionalized surfaces were confirmed by an ex vivo blood circulation model. The present work is supposed to find potential clinical applications for preventing surface-induced thrombosis of blood-contacting catheters.
Collapse
Affiliation(s)
- Yuning Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lujiao Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Hu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaocheng Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Li
- Key Laboratory for Medical Polymer Materials Technology and Application of Henan Province, ChangYuan, Henan Province, 453400, China
| | - Yongzhen Wu
- Key Laboratory for Medical Polymer Materials Technology and Application of Henan Province, ChangYuan, Henan Province, 453400, China
| | - Xuejia Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China. .,Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
16
|
Feng R, Dan N, Chen Y, Dan W. Crosslinking of dialdehyde heparin: a new strategy for improving the anticoagulant properties of porcine acellular dermal matrix. RSC Adv 2022; 12:6811-6820. [PMID: 35424614 PMCID: PMC8981558 DOI: 10.1039/d1ra08982j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/22/2022] [Indexed: 01/25/2023] Open
Abstract
The anticoagulant properties of valve materials are essential to maintain blood patency after artificial valve implantation. Porcine acellular dermal matrix (pADM) has low immunogenicity, good biocompatibility, and can reduce calcification by eliminating heterogeneous cells. However, its main component is collagen, which has strong coagulation function and poor anticoagulant activity. When used in heart valve materials, it can easily coagulate and form a life-threatening thrombus. Therefore, it is necessary to improve its anticoagulant performance. The glutaraldehyde (GA) cross-linked valves widely used clinically are easy to calcify with poor anticoagulant performance and cytotoxicity. In this study, dialdehyde heparin containing cross-linking active aldehyde groups was prepared by sodium periodate oxidation, then it was used for crosslinking with pADM to chemically modify its anticoagulant performance. Compared with GA cross-linked pADM (GA-pA), dialdehyde heparin cross-linked pADM (OL-pA) has better thermal stability and biocompatibility, especially its anticoagulant and antiplatelet adhesion were significantly improved, which can reduce the incidence of coagulation, thrombocytopenia and bleeding. In summary, dialdehyde heparin is expected to be applied to modify the anticoagulant properties of pADM and has great potential for the preparation and clinical application of anticoagulant materials such as heart valves and artificial blood vessels.
Collapse
Affiliation(s)
- Rongxin Feng
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University Chengdu Sichuan 610065 China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University Chengdu Sichuan 610065 China
- Research Center of Biomedical Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University Chengdu Sichuan 610065 China
- Research Center of Biomedical Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Weihua Dan
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University Chengdu Sichuan 610065 China
- Research Center of Biomedical Engineering, Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
17
|
Zhao P, Fang Q, Gao D, Wang Q, Cheng Y, Ao Q, Wang X, Tian X, Zhang Y, Tong H, Yan N, Hu X, Fan J. Klotho functionalization on vascular graft for improved patency and endothelialization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112630. [DOI: 10.1016/j.msec.2021.112630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
|
18
|
Khanna A, Zamani M, Huang NF. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J Cardiovasc Dev Dis 2021; 8:137. [PMID: 34821690 PMCID: PMC8622600 DOI: 10.3390/jcdd8110137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Collapse
Affiliation(s)
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
19
|
Fontelo R, Soares da Costa D, Reis RL, Novoa-Carballal R, Pashkuleva I. Antithrombotic and hemocompatible properties of nanostructured coatings assembled from block copolymers. J Colloid Interface Sci 2021; 608:1608-1618. [PMID: 34742077 DOI: 10.1016/j.jcis.2021.10.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
We describe the antithrombotic properties of nanopatterned coatings created by self-assembly of poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) with different molecular weights. By changing the assembly conditions, we obtained nanopatterns that differ by their morphology (size and shape of the nanopattern) and chemistry. The surface exposition of P2VP block allowed quaternization, i.e. introduction of positive surface charge and following electrostatic deposition of heparin. Proteins (albumin and fibrinogen) adsorption, platelet adhesion and activation, cytocompatibility, and reendothelization capacity of the coatings were assessed and discussed in a function of the nanopattern morphology and chemistry. We found that quaternization results in excellent antithrombotic and hemocompatible properties comparable to heparinization by hampering the fibrinogen adhesion and platelet activation. In the case of quaternization, this effect depends on the size of the polymer blocks, while all heparinized patterns had similar performance showing that heparin surface coverage of 40 % is enough to improve substantially the hemocompatibility.
Collapse
Affiliation(s)
- R Fontelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - D Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R Novoa-Carballal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - I Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
20
|
Li P, Wang Y, Jin X, Dou J, Han X, Wan X, Yuan J, Shen J. Fabrication of PCL/keratin composite scaffolds for vascular tissue engineering with catalytic generation of nitric oxide potential. J Mater Chem B 2021; 8:6092-6099. [PMID: 32555924 DOI: 10.1039/d0tb00857e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue-engineered vascular grafts (TEVGs) have been proposed as a promising approach to fulfill the need for small-diameter blood vessel substitutes. However, common failure caused by thrombosis and neointimal proliferation after implantation has restricted their use in the clinic. Herein, a NO-generating scaffold for vascular tissue engineering was developed by coelectrospinning poly(ε-caprolactone) (PCL) with keratin. The morphology and surface chemical composition were characterized via SEM, ATR-FTIR spectroscopy and XPS. The biocomposite scaffold selectively enhanced the adhesion and growth of endothelial cells (ECs) while suppressing the proliferation of smooth muscle cells (SMCs) in the presence of GSH and GSNO due to the catalytic generation of NO. In addition, these mats displayed excellent blood compatibility by prolonging the blood-clotting time. In summary, these NO-generating PCL/keratin scaffolds have potential applications in vascular tissue engineering with rapid endothelialization and reduced SMC proliferation.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yanfang Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xingxing Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiuzhen Wan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
21
|
Zhang Q, He S, Zhu X, Luo H, Gama M, Peng M, Deng X, Wan Y. Heparinization and hybridization of electrospun tubular graft for improved endothelialization and anticoagulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111861. [PMID: 33641887 DOI: 10.1016/j.msec.2020.111861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/05/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Constructing biomimetic structure and immobilizing antithrombus factors are two effective methods to ensure rapid endothelialization and long-term anticoagulation for small-diameter vascular grafts. However, few literatures are available regarding simultaneous implementation of these two strategies. Herein, a nano-micro-fibrous biomimetic graft with a heparin coating was prepared via a step-by-step in situ biosynthesis method to improve potential endothelialization and anticoagulation. The 4-mm-diameter tubular graft consists of electrospun cellulose acetate (CA) microfibers and entangled bacterial nanocellulose (BNC) nanofibers with heparin coating on dual fibers. The hybridized and heparinized graft possesses suitable pore structure that facilitates endothelia cells adhesion and proliferation but prevents infiltration of fibrous tissue and blood leakage. In addition, it shows higher mechanical properties than those of bare CA and hybridized CA/BNC grafts, which match well with native blood vessels. Moreover, this dually modified graft exhibits improved blood compatibility and endothelialization over the counterparts without hybridization or heparinization according to the testing results of platelet adhesion, cell morphology, and protein expression of von Willebrand Factor. This novel graft with dual modifications shows promising as a new small-diameter vascular graft. This study provides a guidance for promoting endothelialization and blood compatibility by dual modifications of biomimetic structure and immobilized bioactive molecules.
Collapse
Affiliation(s)
- Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Shan He
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Xiangbo Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, P 4715-057 Braga, Portugal
| | - Mengxia Peng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Xiaoyan Deng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
22
|
Guo Z, Genlong J, Huang Z, Li H, Ge Y, Wu Z, Yu P, Li Z. Synergetic effect of growth factor and topography on fibroblast proliferation. Biomed Phys Eng Express 2020; 6. [PMID: 34035190 DOI: 10.1088/2057-1976/abc8e2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022]
Abstract
An innovative basic fibroblast growth factor (bFGF)-loaded polycaprolactone (PCL) fibrous membrane with highly aligned structure is developed for guided tissue regeneration (GTR). The aligned membrane is fabricated by electrospinning. In order to make efficient use of bFGF, PCL electrospun fibrous membrane is firstly surface-coated by self-polymerization of dopamine, and followed by immobilization of heparin via covalent conjugation to the polydopamine (PDA) layer. Subsequently, bFGF is loaded by binding to heparin. The loading yield of bFGF on heparin-immobilized PDA-coated PCL membrane significantly increases to around 7 times as compared with that of pure PCL membrane. NIH-3T3 cells show an enhanced proliferation and exhibit a stretched morphology aligned along the direction of the fibers on the aligned membranes. However, aligned bFGF-loaded PCL membrane exhibit a similar morphology but a highest cell density prolonged till 9 days. The synergetic effect of growth factor and topography would effectively regulate cell proliferation.
Collapse
Affiliation(s)
- Zhenzhao Guo
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Jiao Genlong
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, People's Republic of China
| | - Zhiqiang Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yao Ge
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhe Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Pei Yu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, People's Republic of China
| | - Zhizhong Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
23
|
Hagen MW, Hinds MT. The Effects of Topographic Micropatterning on Endothelial Colony-Forming Cells. Tissue Eng Part A 2020; 27:270-281. [PMID: 32600119 DOI: 10.1089/ten.tea.2020.0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Artificial small-diameter vascular grafts remain an unmet need in modern medicine, due to the thrombosis and neointimal hyperplasia that plague currently available synthetic devices. Tissue engineering techniques, including in vitro endothelialization, could offer a solution to this problem. A potential minimally invasive source of patient autologous endothelium is endothelial colony-forming cells (ECFCs), endothelial-like outgrowth products of circulating progenitors. While ECFCs respond to shear stress similar to mature endothelial cells (ECs), their response to luminal topographic micropatterning (TMP), a biomaterial modification with the potential to flow-independently, enhance the attachment, migration, gene expression, and function of mature ECs, remains unstudied. In this study, case-matched carotid endothelial cells (CaECs) and blood-derived ECFCs are statically cultured on polyurethane substrates with micropatterned pitches (pitch = peak to peak distance) ranging from 3-to 14 μm. On all pattern pitches tested, both CaECs and ECFCs showed significant and robust alignment to the angle of the micropatterns. Using a novel cell-by-cell image analysis technique, it was found that actin fibers similarly and significantly aligned to the angle of micropatterned features on all pitches tested. Microtubules analyzed through the same novel approach showed significant alignment on most pitches examined, with a greater variation in fiber angle overall. Interestingly, only CaECs showed significant cellular elongation, and notably to a lower degree than previously seen either in vivo due to flow or in vitro due to spatial growth restriction micropatterning, but consistent with earlier studies of TMP. Neither cell type displayed any significant micropattern-driven changes in the expression of KLF-2 or the downstream adhesion molecules it regulates. These results demonstrate that TMP flow-independently affects ECFC morphology, but that alignment alone is insufficient to drive protective changes in EC and ECFC function.
Collapse
Affiliation(s)
- Matthew W Hagen
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA.,Work was performed at Oregon Health and Science University, Portland, Oregon, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA.,Work was performed at Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
24
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
25
|
Majewska P, Oledzka E, Sobczak M. Overview of the latest developments in the field of drug-eluting stent technology. Biomater Sci 2020; 8:544-551. [PMID: 31701961 DOI: 10.1039/c9bm00468h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Angioplasty with stent implantation is considered to be the basic treatment method of stenosis of blood vessels. The process of stent implantation changed through the years, from stents made only from metals, produced from polymers, to biodegradable ones and those which elute drugs. The purpose of this review is to outline the development of this medical procedure and present the advantages and disadvantages of each type of stent.
Collapse
Affiliation(s)
- Paula Majewska
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha St., Warsaw 02-097, Poland.
| | | | | |
Collapse
|
26
|
Zhao P, Li X, Fang Q, Wang F, Ao Q, Wang X, Tian X, Tong H, Bai S, Fan J. Surface modification of small intestine submucosa in tissue engineering. Regen Biomater 2020; 7:339-348. [PMID: 32793379 PMCID: PMC7414999 DOI: 10.1093/rb/rbaa014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
With the development of tissue engineering, the required biomaterials need to have the ability to promote cell adhesion and proliferation in vitro and in vivo. Especially, surface modification of the scaffold material has a great influence on biocompatibility and functionality of materials. The small intestine submucosa (SIS) is an extracellular matrix isolated from the submucosal layer of porcine jejunum, which has good tissue mechanical properties and regenerative activity, and is suitable for cell adhesion, proliferation and differentiation. In recent years, SIS is widely used in different areas of tissue reconstruction, such as blood vessels, bone, cartilage, bladder and ureter, etc. This paper discusses the main methods for surface modification of SIS to improve and optimize the performance of SIS bioscaffolds, including functional group bonding, protein adsorption, mineral coating, topography and formatting modification and drug combination. In addition, the reasonable combination of these methods also offers great improvement on SIS surface modification. This article makes a shallow review of the surface modification of SIS and its application in tissue engineering.
Collapse
Affiliation(s)
- Pan Zhao
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Xiang Li
- Department of Cell Biology, School of Life Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Qin Fang
- Cardiac Surgery, Liaoning First Hospital of China Medical University, No. 155 Nanjing Street, Heping District, Shenyang, Liaoning 110122, China
| | - Fanglin Wang
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Qiang Ao
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Hao Tong
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Shuling Bai
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Sciences, China Medical University, 77 Puhe Avenue, Shenbei New District, Shenyang 110122, China
| |
Collapse
|
27
|
Musilkova J, Filova E, Pala J, Matejka R, Hadraba D, Vondrasek D, Kaplan O, Riedel T, Brynda E, Kucerova J, Konarik M, Lopot F, Jan Pirk, Bacakova L. Human decellularized and crosslinked pericardium coated with bioactive molecular assemblies. ACTA ACUST UNITED AC 2019; 15:015008. [PMID: 31665713 DOI: 10.1088/1748-605x/ab52db] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Decellularized human pericardium is under study as an allogenic material for cardiovascular applications. The effects of crosslinking on the mechanical properties of decellularized pericardium were determined with a uniaxial tensile test, and the effects of crosslinking on the collagen structure of decellularized pericardium were determined by multiphoton microscopy. The viability of human umbilical vein endothelial cells seeded on decellularized human pericardium and on pericardium strongly and weakly crosslinked with glutaraldehyde and with genipin was evaluated by means of an MTS assay. The viability of the cells, measured by their metabolic activity, decreased considerably when the pericardium was crosslinked with glutaraldehyde. Conversely, the cell viability increased when the pericardium was crosslinked with genipin. Coating both non-modified pericardium and crosslinked pericardium with a fibrin mesh or with a mesh containing attached heparin and/or fibronectin led to a significant increase in cell viability. The highest degree of viability was attained for samples that were weakly crosslinked with genipin and modified by means of a fibrin and fibronectin coating. The results indicate a method by which in vivo endothelialization of human cardiac allografts or xenografts could potentially be encouraged.
Collapse
Affiliation(s)
- Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
29
|
Fang Q, Gu T, Fan J, Zhang Y, Wang Y, Zhao Y, Zhao P. Evaluation of a hybrid small caliber vascular graft in a rabbit model. J Thorac Cardiovasc Surg 2019; 159:461-473. [PMID: 30981517 DOI: 10.1016/j.jtcvs.2019.02.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE A hybrid small-caliber artificial vascular graft based on bilayer porcine small intestinal submucosa (SIS) with curdlan and dipyridamole mixture film serving as the so-called sandwich filler was developed for biological performance evaluation. We evaluated the performance of the graft and filler. METHODS SIS was coated with heparin by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Curdlan acted as the carrier of dipyridamole. Three types of graft tubes (2 mm internal diameter and 20 mm in length) were manufactured: bilayer SIS with 10% curdlan + 10% dipyridamole mixture film (SCD), bilayer SIS with 10% curdlan film (SC), and monolayer SIS (S). The remodeling characteristics of the grafts were evaluated by implanting them as bypass in rabbit carotid arteries for 2 and 3 months. Each group contained 16 rabbits, and 16 nonsurgical rabbits served as the control group. RESULTS Eight rabbits of each group, including the graft occluded group, were killed at 2 months and the others were killed at 3 months. Follow-up showed that all 8 grafts in SCD group were patent at 2 months. Six of 16 grafts in the SC group and 5 of 16 grafts in the S group were occluded at 2 months. One of 8 SCD grafts were occluded at 3 months and the patent showed a confluent endothelium without intimal hyperplasia. The neointima layer was composed of circumferentially aligned vascular smooth muscle cells. At 3 months, SC and S group grafts showed incomplete endothelialization and varying degrees of mural thrombus, accompanied by occlusion in the SC group (3 of 8) and S group (2 of 8). CONCLUSIONS The novel hybrid small caliber artificial vascular graft exhibited an improvement in revascularization resulting in high patency rate.
Collapse
Affiliation(s)
- Qin Fang
- Cardiac Surgery, First Hospital of China Medical University, Shenyang, China
| | - Tianxiang Gu
- Cardiac Surgery, First Hospital of China Medical University, Shenyang, China.
| | - Jun Fan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yuanming Zhang
- Cardiac Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yongchao Wang
- Cardiac Surgery, First Hospital of China Medical University, Shenyang, China
| | - Ye Zhao
- Cardiac Surgery, First Hospital of China Medical University, Shenyang, China
| | - Pan Zhao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| |
Collapse
|
30
|
Johnson R, Ding Y, Nagiah N, Monnet E, Tan W. Coaxially-structured fibres with tailored material properties for vascular graft implant. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:1-11. [PMID: 30678891 DOI: 10.1016/j.msec.2018.11.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 10/18/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022]
Abstract
Readily-available small-diameter arterial grafts require a great combination of materials properties, including high strength, compliance, suturability, blood sealing and anti-thrombogenicity, as well as anti-kinking property for those used in challenging anatomical situations. We have constructed grafts composed of coaxially-structured polycaprolactone (PCL)/gelatin nanofibres, and tailored the material structures to achieve high strength, compliance and kink resistance, as well as excellent water sealing and anti-thrombogenicity. Coaxially-structured fibres in the grafts provided mechanical stability through the core, while flexibility and cell adhesion through the sheath. Results showed that graft compliance increased while strength decreased with the concentration ratio between core and sheath polymers. Compared to pure PCL fibrous surfaces, coaxial PCL/gelatin fibrous surfaces potently inhibited platelet adhesion and activation, providing excellent anti-thrombogenicity. To render sufficient burst strength and suturability, an additional layer of pure PCL was necessary to cap the layer of coaxial PCL/gelatin fibres. The two-layered grafts with the wall thickness comparable to native arteries demonstrated artery-like compliance and kink resistance, properties important to arteries under complex mechanical loading. The in vivo evaluation was performed using the interposition carotid artery graft model in rabbits for three months. Interestingly, results from ultrasonic imaging and histological analysis demonstrated that the two-layered grafts with a thinner outer PCL layer, which possessed higher compliance and kink resistance, showed increased blood flow, minimal lumen reduction and fibrosis. All vascular grafts exhibited patency and induced limited cell infiltration. Together, we presented a facile and useful approach to fabricate vascular grafts with superior graft performances, biomechanical properties, and blood compatibility. Grafts with artery-like compliance and flexibility have demonstrated improved implantation outcomes.
Collapse
Affiliation(s)
- Richard Johnson
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States
| | - Yonghui Ding
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States
| | - Naveen Nagiah
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States
| | - Eric Monnet
- Department of Clinical Sciences, Colorado State University, Fort Colins, CO, United States
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
31
|
Sales A, Picart C, Kemkemer R. Age-dependent migratory behavior of human endothelial cells revealed by substrate microtopography. Exp Cell Res 2018; 374:1-11. [PMID: 30342990 DOI: 10.1016/j.yexcr.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
Cell migration is part of many important in vivo biological processes and is influenced by chemical and physical factors such as substrate topography. Although the migratory behavior of different cell types on structured substrates has already been investigated, up to date it is largely unknown if specimen's age affects cell migration on structures. In this work, we investigated age-dependent migratory behavior of human endothelial cells from young (≤ 31 years old) and old (≥ 60 years old) donors on poly(dimethylsiloxane) microstructured substrates consisting of well-defined parallel grooves. We observed a decrease in cell migration velocity in all substrate conditions and in persistence length perpendicular to the grooves in cells from old donors. Nevertheless, in comparison to young cells, old cells exhibited a higher cell directionality along grooves of certain depths and a higher persistence time. We also found a systematic decrease of donor age-dependent responses of cell protrusions in orientation, velocity and length, all of them decreased in old cells. These observations lead us to hypothesize a possible impairment of actin cytoskeleton network and affected actin polymerization and steering systems, caused by aging.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | - Catherine Picart
- Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Ralf Kemkemer
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany; Reutlingen University, 72762 Reutlingen, Germany.
| |
Collapse
|
32
|
Cortella LRX, Cestari IA, Guenther D, Lasagni AF, Cestari IN. Endothelial cell responses to castor oil-based polyurethane substrates functionalized by direct laser ablation. ACTA ACUST UNITED AC 2017; 12:065010. [PMID: 28762961 DOI: 10.1088/1748-605x/aa8353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surface-induced thrombosis and lack of endothelialization are major drawbacks that hamper the widespread application of polyurethanes for the fabrication of implantable cardiovascular devices. Endothelialization of the blood-contacting surfaces of these devices may avoid thrombus formation and may be implemented by strategies that introduce micro and submicron patterns that favor adhesion and growth of endothelial cells. In this study, we used laser radiation to directly introduce topographical patterns in the low micrometer range on castor oil-based polyurethane, which is currently employed to fabricate cardiovascular devices. We have investigated cell adhesion, proliferation, morphology and alignment in response to these topographies. Reported results show that line-like and pillar-like patterns improved adhesion and proliferation rate of cultured endothelial cells. The line-like pattern with 1 μm groove periodicity was the most efficient to enhance cell adhesion and induced marked polarization and alignment. Our study suggests the viability of using laser radiation to functionalize PU-based implants by the introduction of specific microtopography to facilitate the development of a functional endothelium on target surfaces.
Collapse
Affiliation(s)
- L R X Cortella
- Bioengineering Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Enéas de Carvalho Aguiar, 44, 05403-900-São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
33
|
Li J, Wu F, Zhang K, He Z, Zou D, Luo X, Fan Y, Yang P, Zhao A, Huang N. Controlling Molecular Weight of Hyaluronic Acid Conjugated on Amine-rich Surface: Toward Better Multifunctional Biomaterials for Cardiovascular Implants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30343-30358. [PMID: 28836435 DOI: 10.1021/acsami.7b07444] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The molecular weights (MWs) of hyaluronic acid (HA) in extracellular matrix secreted from both vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) play crucial roles in the cardiovascular physiology, as HA with appropriate MW influences important pathways of cardiovascular homeostasis, inhibits VSMC synthetic phenotype change and proliferation, inhibits platelet activation and aggregation, promotes endothelial monolayer repair and functionalization, and prevents inflammation and atherosclerosis. In this study, HA samples with gradients of MW (4 × 103, 1 × 105, and 5 × 105 Da) were prepared by covalent conjugation to a copolymerized film of polydopamine and hexamethylendiamine (PDA/HD) as multifunctional coatings (PDA/HD-HA) with potential to improve the biocompatibility of cardiovascular biomaterials. The coatings immobilized with high-MW-HA (PDA/HD-HA-2: 1 × 105 Da; PDA/HD-HA-3: 5 × 105 Da) exhibited a remarkable suppression of platelet activation/aggregation and thrombosis under 15 dyn/cm2 blood flow and simultaneously suppressed the adhesion and proliferation of VSMC and the adhesion, activation, and inflammatory cytokine release of macrophages. In particular, PDA/HD-HA-2 significantly enhanced VEC adhesion, proliferation, migration, and functional factors release, as well as the captured number of endothelial progenitor cells under dynamic condition. The in vivo results indicated that the multifunctional surface (PDA/HD-HA-2) created a favorable microenvironment of endothelial monolayer formation and functionalization for promoting reendothelialization and reducing restenosis of cardiovascular biomaterials.
Collapse
Affiliation(s)
- Jingan Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Feng Wu
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Kun Zhang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
- School of Life Science, Zhengzhou University , 100 Science Road, Zhengzhou 450001, P. R. China
- Center of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Zhengzhou University , 40 University Road, Zhengzhou 450052, P. R. China
| | - Zikun He
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Dan Zou
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Xiao Luo
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Yonghong Fan
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Ansha Zhao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| |
Collapse
|
34
|
Kaplan O, Hierlemann T, Krajewski S, Kurz J, Nevoralová M, Houska M, Riedel T, Riedelová Z, Zárubová J, Wendel HP, Brynda E. Low-thrombogenic fibrin-heparin coating promotes in vitro endothelialization. J Biomed Mater Res A 2017. [PMID: 28646555 DOI: 10.1002/jbm.a.36152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Long-term performance of implanted cardiovascular grafts can be ensured if living endothelium overgrows their surface. Surface modifications to implants are therefore being sought that can encourage endothelialization while preventing thrombus formation until the natural endothelium is formed. In the present study, heparin was covalently attached to a fibrin mesh grown from a polyvinyl chloride (PVC) substrate surface by the catalytic action of surface immobilized thrombin on a fibrinogen solution. The coating prevented platelet activation, thrombin generation and clot formation, and reduced inflammatory reactions when exposed to fresh human whole blood circulating in a Chandler loop model. In addition, in vitro seeded human umbilical vein and human saphenous vein endothelial cells showed considerably enhanced attachment and proliferation on the coating. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2995-3005, 2017.
Collapse
Affiliation(s)
- Ondřej Kaplan
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, CZ-162 06, Czech Republic
| | - Teresa Hierlemann
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Tuebingen, DE-72076, Germany
| | - Stefanie Krajewski
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Tuebingen, DE-72076, Germany
| | - Julia Kurz
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Tuebingen, DE-72076, Germany
| | - Martina Nevoralová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, CZ-162 06, Czech Republic
| | - Milan Houska
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, CZ-162 06, Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, CZ-162 06, Czech Republic
| | - Zuzana Riedelová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, CZ-162 06, Czech Republic
| | - Jana Zárubová
- Institute of Physiology of the Czech Academy of Sciences, Prague, CZ-142 20, Czech Republic
| | - Hans P Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, Clinical Research Laboratory, University Hospital Tuebingen, Tuebingen, DE-72076, Germany
| | - Eduard Brynda
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, CZ-162 06, Czech Republic
| |
Collapse
|
35
|
Affiliation(s)
- Daniel E. Heath
- Department of Chemical and Biomolecular Engineering; Particulate Fluids Processing Centre; The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
36
|
Gu H, Chen X, Yu Q, Liu X, Zhan W, Chen H, Brash JL. A multifunctional surface for blood contact with fibrinolytic activity, ability to promote endothelial cell adhesion and inhibit smooth muscle cell adhesion. J Mater Chem B 2017; 5:604-611. [DOI: 10.1039/c6tb02808j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multifunctional surface with fibrinolytic activity, the ability to promote endothelial cell and inhibit smooth muscle cell adhesion was realized.
Collapse
Affiliation(s)
- Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - John L. Brash
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
37
|
Bedair TM, ElNaggar MA, Joung YK, Han DK. Recent advances to accelerate re-endothelialization for vascular stents. J Tissue Eng 2017; 8:2041731417731546. [PMID: 28989698 PMCID: PMC5624345 DOI: 10.1177/2041731417731546] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/19/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are considered as one of the serious diseases that leads to the death of millions of people all over the world. Stent implantation has been approved as an easy and promising way to treat cardiovascular diseases. However, in-stent restenosis and thrombosis remain serious problems after stent implantation. It was demonstrated in a large body of previously published literature that endothelium impairment represents a major factor for restenosis. This discovery became the driving force for many studies trying to achieve an optimized methodology for accelerated re-endothelialization to prevent restenosis. Thus, in this review, we summarize the different methodologies opted to achieve re-endothelialization, such as, but not limited to, manipulation of surface chemistry and surface topography.
Collapse
Affiliation(s)
- Tarek M Bedair
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Mahmoud A ElNaggar
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
38
|
Abstract
Surface functionalization via molecular design has been a key approach to incorporate new functionalities into existing biomaterials for biomedical application. Mussel-inspired polydopamine (PDA) has aroused great interest as a new route to the functionalization of biomaterials, due to its simplicity and material independency in deposition, favorable interactions with cells, and strong reactivity for secondary functionalization. Herein, this review attempts to highlight the recent findings and progress of PDA in bio-surface functionalization for biomedical applications. The efforts made to elucidate the polymerization mechanism, PDA structure, and the preparation parameters have been discussed. Interactions between PDA coatings and the various cell types involved in different biomedical applications including general cell adhesion, bone regeneration, blood compatibility, and antimicrobial activity have also been highlighted. A brief discussion of post-functionalization of PDA and nanostructured PDA is also provided.
Collapse
Affiliation(s)
- Y.H. Ding
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - M. Floren
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
- Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - W. Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
39
|
Greiner AM, Sales A, Chen H, Biela SA, Kaufmann D, Kemkemer R. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1620-1641. [PMID: 28144512 PMCID: PMC5238670 DOI: 10.3762/bjnano.7.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 10/04/2016] [Indexed: 05/21/2023]
Abstract
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
- now at: Pforzheim University, School of Engineering, Tiefenbronner Strasse 65, 75175 Pforzheim, Germany
| | - Adria Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hao Chen
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Dieter Kaufmann
- Universitätsklinikum Ulm, Institut für Humangenetik, Albert Einstein Allee 11, 89070 Ulm, Germany
| | - Ralf Kemkemer
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Reutlingen University, Faculty of Applied Chemistry, Alteburgstrasse 150, 72762 Reutlingen, Germany
| |
Collapse
|
40
|
Liu J, Zheng B, Wang P, Wang X, Zhang B, Shi Q, Xi T, Chen M, Guan S. Enhanced in Vitro and in Vivo Performance of Mg-Zn-Y-Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17842-17858. [PMID: 27331417 DOI: 10.1021/acsami.6b05038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bioabsorbable magnesium alloys are becoming prominent as temporary functional implants, as they avoid the risks generated by permanent metallic implants such as persistent inflammation and late restenosis. Nevertheless, the overfast corrosion of Mg alloys under physiological conditions hinders their wider application as medical implant materials. Here we investigate a simple one-step process to introduce a cross-linked 3-amino-propyltrimethoxysilane (APTES) silane physical barrier layer on the surface of Mg-Zn-Y-Nd alloys prior to electrostatic spraying with rapamycin-eluting poly(lactic-co-glycolic acid) (PLGA) layer. Surface microstructure was characterized by scanning electron microscope and Fourier transform infrared spectroscopy. Nanoscratch test verified the superior adhesion strength of PLGA coating in the group pretreated with APTES. Electrochemical tests combined with long-term immersion results suggested that the preferable in vitro anticorrosion behavior could be achieved by dense APTES barrier. Cell morphology and proliferation data demonstrated that APTES pretreated group resulted in remarkably preferable compatibility for both human umbilical vein endothelial cells and vascular smooth muscle cells. On the basis of excellent in vitro mechenical property, the animal study on the APTES pretreated Mg-Zn-Y-Nd stent implanted into porcine coronary arteries confirmed benign tissue compatibility as well as re-endothelialization without thrombogenesis or in-stent restenosis at six-month followup.
Collapse
Affiliation(s)
- Jing Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Bo Zheng
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Pei Wang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Xingang Wang
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Bin Zhang
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Qiuping Shi
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Tingfei Xi
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
- Shenzhen Research Institute, Peking University , Shenzhen 518055, China
| | - Ming Chen
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450002, China
| |
Collapse
|
41
|
Chang H, Hu M, Zhang H, Ren KF, Li BC, Li H, Wang LM, Lei WX, Ji J. Improved Endothelial Function of Endothelial Cell Monolayer on the Soft Polyelectrolyte Multilayer Film with Matrix-Bound Vascular Endothelial Growth Factor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14357-14366. [PMID: 27223460 DOI: 10.1021/acsami.6b01870] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Endothelialization on the vascular implants is of great importance for prevention of undesired postimplantation symptoms. However, endothelial dysfunction of regenerated endothelial cell (EC) monolayer has been frequently observed, leading to severe complications, such as neointimal hyperplasia, late thrombosis, and neoatherosclerosis. It has significantly impeded long-term success of the therapy. So far, very little attention has been paid on endothelial function of EC monolayer. Bioinspired by the microenvironment of the endothelium in a blood vessel, this study described a soft polyelectrolyte multilayer film (PEM) through layer-by-layer assembly of poly(l-lysine) (PLL) and hyaluronan (HA). The (PLL/HA) PEM was chemically cross-linked and further incorporated with vascular endothelial growth factor. It demonstrated that this approach could promote EC adhesion and proliferation, further inducing formation of EC monolayer. Further, improved endothelial function of the EC monolayer was achieved as shown with the tighter integrity, higher production of nitric oxide, and expression level of endothelial function related genes, compared to EC monolayers on traditional substrates with high stiffness (e.g., glass, tissue culture polystyrene, and stainless steel). Our findings highlighted the influence of substrate stiffness on endothelial function of EC monolayer, giving a new strategy in the surface design of vascular implants.
Collapse
Affiliation(s)
- Hao Chang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Mi Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - He Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Bo-Chao Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Huan Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Li-Mei Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Wen-Xi Lei
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
42
|
Lamichhane S, Anderson JA, Remund T, Sun H, Larson MK, Kelly P, Mani G. Responses of endothelial cells, smooth muscle cells, and platelets dependent on the surface topography of polytetrafluoroethylene. J Biomed Mater Res A 2016; 104:2291-304. [PMID: 27119260 DOI: 10.1002/jbm.a.35763] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 11/09/2022]
Abstract
In this study, the effect of different structures (flat, expanded, and electrospun) of polytetrafluoroethylene (PTFE) on the interactions of endothelial cells (ECs), smooth muscle cells (SMCs), and platelets was investigated. In addition, the mechanisms that govern the interactions between ECs, SMCs, and platelets with different structures of PTFE were discussed. The surface characterizations showed that the different structures of PTFE have the same surface chemistry, similar surface wettability and zeta potential, but uniquely different surface topography. The viability, proliferation, morphology, and phenotype of ECs and SMCs interacted with different structures of PTFE were investigated. Expanded PTFE (ePTFE) provided a relatively better surface for the growth of ECs. In case of SMC interactions, although all the different structures of PTFE inhibited SMC growth, a maximum inhibitory effect was observed for ePTFE. In case of platelet interactions, the electrospun PTFE provided a better surface for preventing the adhesion and activation of platelets. Thus, this study demonstrated that the responses of ECs, SMCs, and platelets strongly dependent on the surface topography of the PTFE. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2291-2304, 2016.
Collapse
Affiliation(s)
- Sujan Lamichhane
- Biomedical Engineering Program, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota, 57107
| | - Jordan A Anderson
- Biomedical Engineering Program, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota, 57107
| | - Tyler Remund
- Sanford Research, 2301 East 60th Street North, Sioux Falls, South Dakota, 57104
| | - Hongli Sun
- Biomedical Engineering Program, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota, 57107
| | - Mark K Larson
- Department of Biology, Augustana University, 2001 S. Summit Avenue, Sioux Falls, South Dakota, 57197
| | - Patrick Kelly
- Sanford Health, 1305 West 18th Street, Sioux Falls, South Dakota, 57105
| | - Gopinath Mani
- Biomedical Engineering Program, The University of South Dakota, 4800 N. Career Avenue, Sioux Falls, South Dakota, 57107
| |
Collapse
|
43
|
Komez A, Baran ET, Erdem U, Hasirci N, Hasirci V. Construction of a patterned hydrogel-fibrous mat bilayer structure to mimic choroid and Bruch's membrane layers of retina. J Biomed Mater Res A 2016; 104:2166-77. [DOI: 10.1002/jbm.a.35756] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Aylin Komez
- Middle East Technical University (METU) Graduate Department of Biotechnology; Ankara 06800 Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials & Tissue Engineering; Ankara 06800 Turkey
| | - Erkan T. Baran
- BIOMATEN, METU Center of Excellence in Biomaterials & Tissue Engineering; Ankara 06800 Turkey
| | - Uzeyir Erdem
- Department of Ophthalmology; Gulhane Military Medical Faculty; Etlik Ankara 06018 Turkey
| | - Nesrin Hasirci
- Middle East Technical University (METU) Graduate Department of Biotechnology; Ankara 06800 Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials & Tissue Engineering; Ankara 06800 Turkey
- METU, Department of Chemistry; Ankara 06800 Turkey
| | - Vasif Hasirci
- Middle East Technical University (METU) Graduate Department of Biotechnology; Ankara 06800 Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials & Tissue Engineering; Ankara 06800 Turkey
- Department of Biological Sciences; Ankara 06800 Turkey
| |
Collapse
|
44
|
Zhang Y, Du X, Hu D, Zhang J, Zhou Y, Min G, Lang M. Combined Chemical Groups and Topographical Nanopattern on the Poly(ε-Caprolactone) Surface for Regulating Human Foreskin Fibroblasts Behavior. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7720-7728. [PMID: 26950754 DOI: 10.1021/acsami.6b01361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface chemistry and substrate topography could contribute significantly to providing a biochemical and topographical cues for governing the fate of cells on the cell-material interface. However, the synergies between these two properties have not been exploited extensively for biomaterial design. Herein, we achieved spatial-controlled patterning of chemical groups on the poly(ε-caprolactone) (PCL) surface by elegant UV-nanoimprint lithography (UN-NIL). The introduction of chemical groups on the PCL surface was developed by our newly 6-benzyloxycarbonylmethyl-ε-caprolactone (BCL) monomer, which not only solved the lack of functional groups along the PCL chain but also retained the original favorable properties of PCL materials. The synergetic effect of the chemical groups and nanopatterns on the human foreskin fibroblasts (HFFs) behaviors was evaluated in detail. The results revealed that the patterned functional PCL surfaces could induce enhanced cell adhesion and proliferation, further trigger changes in HFFs morphology, orientation and collagen secretion. Taken together, this study provided a method for straightforward fabrication of reactive PCL surfaces with topographic patterns by one-step process, and they would facilitate PCL as potential candidate for cell cultivation and tissue engineering.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , No 130, Meilong Road, Shanghai, 200237, China
- Shanghai Nanotechnology Promotion Center , Shanghai, 200237, China
| | - Xiaolin Du
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , No 130, Meilong Road, Shanghai, 200237, China
| | - Dan Hu
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology , Shanghai, 200237, China
| | - Jing Zhang
- Shanghai Nanotechnology Promotion Center , Shanghai, 200237, China
| | - Yan Zhou
- The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology , Shanghai, 200237, China
| | - Guoquan Min
- Shanghai Nanotechnology Promotion Center , Shanghai, 200237, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , No 130, Meilong Road, Shanghai, 200237, China
| |
Collapse
|