1
|
Kilicay E, Sahin B, Karahaliloglu Z, Celik E, Hazer B. siRNA-guided dual-targeting nanocarrier for breast cancer treatment. J Microencapsul 2025:1-22. [PMID: 40326369 DOI: 10.1080/02652048.2025.2490041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 04/03/2025] [Indexed: 05/07/2025]
Abstract
AIMS This study aimed to develop a thermoplastic polyurethane-oleic acid-based nanosystem (TPU-Ole NPs) incorporating siRNA and curcumin (CUR) to overcome multidrug resistance in breast cancer by silencing the c-myc gene. METHODS TPU-Ole and CUR-loaded NPs were prepared via solvent evaporation and coated with poly-L-lysine (PLL) for siRNA attachment. NPs were characterised by dynamic light scattering (DLS) for mean diameter, polydispersity index (PDI), and zeta potential (ZP). Encapsulation (EE) and loading efficiencies (LE) were measured by NanoDrop. Release (pH 5.0; 7.4) and storage stability (pH 7.4) were evaluated using the eppendorf method. siRNA binding was confirmed by agarose gel electrophoresis. Gene silencing and apoptosis were assessed by RT-PCR and flow cytometry. RESULTS Mean diameter, PDI, and ZP of NPs were 170 ± 2 nm, 0.011 ± 0.080, and -27.5 ± 0.11 mV. EE and LE were 75 ± 0.12 and 14.2 ± 0.06%. Sustained release and good stability were observed. CONCLUSION siRNA-CUR-NPs efficiently silenced c-myc and induced apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Ebru Kilicay
- Department of Medical Laboratory Techniques, Şabanözü Vocational School, Cankiri Karatekin University, Cankiri, Turkey
| | - Betul Sahin
- Department of Chemistry, Graduate School of Natural and Applied Sciences, Cankiri Karatekin University, Cankiri, Turkey
| | - Zeynep Karahaliloglu
- Biology Department, Faculty of Science and Arts, Aksaray University, Aksaray, Turkey
| | - Ekin Celik
- Medical Biology Department, Faculty of Medicine, Ahi Evran University, Kırşehir, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey
- Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
2
|
Yigit Erdem G, Goncu B, Atasoy S, Yildiz Uysal A, Dag S, Dag A. Multifunctional theranostic glyconanoprobes for synergistic eradication of breast cancer. J Mater Chem B 2025; 13:2150-2166. [PMID: 39791870 DOI: 10.1039/d4tb02550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Theranostic agents hold great promise for personalized medicine by combining diagnostic and therapeutic functions. Herein, two novel multifunctional theranostic glyconanoprobes targeting breast cancer were engineered for synergistic dual chemo-gene therapy and triple chemo-gene-photothermal therapy. Upconversion nanoparticles (UCNPs) were prepared and coated with a Dox-loaded glycopeptide polymer (P-Dox) to form UCNP@P-Dox for improving stability. UCNP@MP-Dox equipped for triple therapy was prepared by combining UCNP@P-Dox with magnetic (Fe3O4, M) nanoparticles with photothermal properties. To regulate the expression of the anti-apoptotic Bcl-2 protein, both UCNP@P-Dox and UCNP@MP-Dox were loaded with anti-Bcl-2 siRNA. Impressive photothermal efficiency and good MRI contrast were demonstrated in preliminary evaluations. Moreover, the UCNP@P-Dox/siRNA nanoprobe for dual therapy was shown in preclinical studies to significantly increase anti-tumor efficacy. In vivo experiments in tumor-induced mice showed nanoprobe accumulation in tumors and enhanced antitumor efficacy with combinatorial therapy over Dox and siRNA alone. This study demonstrates the tumor-targeting capability of multifunctional theranostic glyconanoprobes, establishing chemo-gene synergy as a potent therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Gulsah Yigit Erdem
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Beyza Goncu
- Department of Medical Services and Techniques, Vocational School of Health Services, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Sezen Atasoy
- Department of Biochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Ayfer Yildiz Uysal
- Department of Pathology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
| | - Serpil Dag
- Department of Pathology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
| | - Aydan Dag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Istanbul, Turkey.
- Pharmaceutical Application and Research Center, Bezmialem Vakif University, 34093, Istanbul, Turkey
| |
Collapse
|
3
|
Sai BM, Dinakar YH, Kumar H, Jain R, Kesharwani S, Kesharwani SS, Mudavath SL, Ramkishan A, Jain V. Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer. Ther Deliv 2024; 15:871-891. [PMID: 39320858 PMCID: PMC11498026 DOI: 10.1080/20415990.2024.2400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women globally. The difficulties with anticancer medications, such as ineffective targeting, larger doses, toxicity to healthy cells and side effects, have prompted attention to alternate approaches to address these difficulties. RNA interference by small interfering RNA (siRNA) is one such tactic. When compared with chemotherapy, siRNA has several advantages, including the ability to quickly modify and suppress the expression of the target gene and display superior efficacy and safety. However, there are known challenges and hurdles that limits their clinical translation. Decomposition by endonucleases, renal clearance, hydrophilicity, negative surface charge, short half-life and off-target effects of naked siRNA are obstacles that hinder the desired biological activity of naked siRNA. Nanoparticulate systems such as polymeric, lipid, lipid-polymeric, metallic, mesoporous silica nanoparticles and several other nanocarriers were used for effective delivery of siRNA and to knock down genes involved in breast cancer and triple-negative breast cancer. The focus of this review is to provide a comprehensive picture of various strategies utilized for delivering siRNA, such as combinatorial delivery, development of modified nanoparticles, smart nanocarriers and nanocarriers that target angiogenesis, cancer stem cells and metastasis of breast cancer.
Collapse
Affiliation(s)
- Boya Manasa Sai
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Sharyu Kesharwani
- National Institute of Pharmaceutical Education & Research, Kolkata, West Bengal , 700054, India
| | | | - Shyam lal Mudavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ajmeer Ramkishan
- Central Drugs Standard Control Organization, East Zone, Kolkata, 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
4
|
Zhang L, Wang S, Wu GR, Yue H, Dong R, Zhang S, Yu Q, Yang P, Zhao J, Zhang H, Yu J, Yuan X, Xiong W, Yang X, Yong T, Wang CY. MBD2 facilitates tumor metastasis by mitigating DDB2 expression. Cell Death Dis 2023; 14:303. [PMID: 37142578 PMCID: PMC10160113 DOI: 10.1038/s41419-023-05804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Despite past extensive studies, the pathoetiologies underlying tumor metastasis remain poorly understood, which renders its treatment largely unsuccessful. The methyl-CpG-binding domain 2 (MBD2), a "reader" to interpret DNA methylome-encoded information, has been noted to be involved in the development of certain types of tumors, while its exact impact on tumor metastasis remains elusive. Herein we demonstrated that patients with LUAD metastasis were highly correlated with enhanced MBD2 expression. Therefore, knockdown of MBD2 significantly attenuated the migration and invasion of LUAD cells (A549 and H1975 cell lines) coupled with attenuated epithelial-mesenchymal transition (EMT). Moreover, similar results were observed in other types of tumor cells (B16F10). Mechanistically, MBD2 selectively bound to the methylated CpG DNA within the DDB2 promoter, by which MBD2 repressed DDB2 expression to promote tumor metastasis. As a result, administration of MBD2 siRNA-loaded liposomes remarkably suppressed EMT along with attenuated tumor metastasis in the B16F10 tumor-bearing mice. Collectively, our study indicates that MBD2 could be a promising prognostic marker for tumor metastasis, while administration of MBD2 siRNA-loaded liposomes could be a viable therapeutic approach against tumor metastasis in clinical settings.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Siyuan Wang
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Rao Wu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Huihui Yue
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Ruihan Dong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Qilin Yu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Ping Yang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Huilan Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, 200011, Shanghai, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
| |
Collapse
|
5
|
Kandasamy G, Maity D. Current Advancements in Self-assembling Nanocarriers-Based siRNA Delivery for Cancer Therapy. Colloids Surf B Biointerfaces 2022; 221:113002. [PMID: 36370645 DOI: 10.1016/j.colsurfb.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/01/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
Different therapeutic practices for treating cancers have significantly evolved to compensate and/or overcome the failures in conventional methodologies. The demonstrated potentiality in completely inhibiting the tumors and in preventing cancer relapse has made nucleic acids therapy (NAT)/gene therapy as an attractive practice. This has been made possible because NAT-based cancer treatments are highly focused on the fundamental mechanisms - i.e., silencing the expression of oncogenic genes responsible for producing abnormal proteins (via messenger RNAs (mRNAs)). However, the future clinical translation of NAT is majorly dependent upon the effective delivery of the exogenous nucleic acids (especially RNAs - e.g., short interfering RNAs (siRNAs) - herein called biological drugs). Moreover, nano-based vehicles (i.e., nanocarriers) are involved in delivering them to prevent degradation and undesired bioaccumulation while enhancing the stability of siRNAs. Herein, we have initially discussed about three major types of self-assembling nanocarriers (liposomes, polymeric nanoparticles and exosomes). Later, we have majorly reviewed recent developments in non-targeted/targeted nanocarriers for delivery of biological drugs (individual/dual) to silence the most important genes/mRNAs accountable for inducing protein abnormality. These proteins include polo-like kinase 1 (PLK1), survivin, vascular endothelial growth factor (VEGF), B-cell lymphoma/leukaemia-2 (Bcl-2) and multi-drug resistance (MDR). Besides, the consequent therapeutic effects on cancer growth, invasion and/or metastasis have also been discussed. Finally, we have comprehensively reviewed the improvements achieved in the cutting-edge cancer therapeutics while delivering siRNAs in combination with clinically approved chemotherapeutic drugs.
Collapse
|
6
|
Rachmale M, Rajput N, Jadav T, Sahu AK, Tekade RK, Sengupta P. Implication of metabolomics and transporter modulation based strategies to minimize multidrug resistance and enhance site-specific bioavailability: a needful consideration toward modern anticancer drug discovery. Drug Metab Rev 2022; 54:101-119. [PMID: 35254954 DOI: 10.1080/03602532.2022.2048007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Induction of drug-metabolizing enzymes and efflux transporters (DMET) through activation of pregnane x receptor (PXR) is the primary factor involved in almost all bioavailability and drug resistance-related problems of anticancer drugs. PXR is a transcriptional regulator of many metabolizing enzymes and efflux transporters proteins like p-glycoprotein (p-gp), multidrug resistant protein 1 and 2 (MRP 1 and 2), and breast cancer resistant protein (BCRP), etc. Several anticancer drugs are potent activators of PXR receptors and can modulate the gene expression of DMET proteins. Involvement of anticancer drugs in transcriptional regulation of DMET can prompt increased metabolism and efflux of their own or other co-administered drugs, which leads to poor site-specific bioavailability and increased drug resistance. In this review, we have discussed several novel strategies to evade drug-induced PXR activation and p-gp efflux including assessment of PXR ligand and p-gp substrate at early stages of drug discovery. Additionally, we have critically discussed the chemical structure and drug delivery-based approaches to avoid PXR binding and inhibit the p-gp activity of the drugs at their target sites.
Collapse
Affiliation(s)
- Megha Rachmale
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
7
|
Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, Hashemi M, Aref AR, Hamblin MR, Ang HL, Kumar AP, Zarrabi A, Samarghandian S. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sci 2022; 298:120463. [DOI: 10.1016/j.lfs.2022.120463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
8
|
Folic acid-conjugated pH-responsive poly(methacrylic acid) nanospheres for targeted delivery of anticancer drugs to breast cancer cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Hydrazided hyaluronan/cisplatin/indocyanine green coordination nanoprodrug for photodynamic chemotherapy in liver cancer. Carbohydr Polym 2022; 276:118810. [PMID: 34823812 DOI: 10.1016/j.carbpol.2021.118810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
It is still a huge challenge for concurrent highly efficient loading of chemotherapeutic agent and photosensitizer into single nanocarrier via stimuli-responsive linkages due to their different physicochemical properties and pharmacokinetics. Herein, based on the discovery of unique cisplatin-hydrazide and cisplatin-indocyanine green (ICG) coordination reactions, a multifunctional coordination nanoprodrug, cisplatin/ICG co-loaded hydrazided hyaluronan/bovine serum albumin (HBCI) nanoparticles, was developed by a desolvation-dual coordination process. The nanoprodrug exhibited ultrahigh drug loading efficiency and glutathione/NIR light dual-responsive drug release behavior. In vitro cellular studies demonstrated efficient internalization and apoptosis-inducing ability of the nanoprodrug in HepG2 cells. In vivo results confirmed the efficacious tumor accumulation and biosafety of HBCI nanoprodrug and synergistic effect of HBCI-based combined photodynamic chemotherapy on inhibiting tumor growth. Overall, this work not only provides a novel dual coordination approach for highly efficient loading of cisplatin and ICG but also verifies the therapeutic potential of HBCI nanoprodrug in combating hepatocellular carcinoma.
Collapse
|
10
|
Rizwanullah M, Ahmad MZ, Ghoneim MM, Alshehri S, Imam SS, Md S, Alhakamy NA, Jain K, Ahmad J. Receptor-Mediated Targeted Delivery of Surface-ModifiedNanomedicine in Breast Cancer: Recent Update and Challenges. Pharmaceutics 2021; 13:2039. [PMID: 34959321 PMCID: PMC8708551 DOI: 10.3390/pharmaceutics13122039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer therapeutic intervention continues to be ambiguous owing to the lack of strategies for targeted transport and receptor-mediated uptake of drugs by cancer cells. In addition to this, sporadic tumor microenvironment, prominent restrictions with conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells possess a big challenge to even otherwise optimal and efficacious breast cancer treatment strategies. Surface-modified nanomedicines can expedite the cellular uptake and delivery of drug-loaded nanoparticulate constructs through binding with specific receptors overexpressed aberrantly on the tumor cell. The present review elucidates the interesting yet challenging concept of targeted delivery approaches by exploiting different types of nanoparticulate systems with multiple targeting ligands to target overexpressed receptors of breast cancer cells. The therapeutic efficacy of these novel approaches in preclinical models is also comprehensively discussed in this review. It is concluded from critical analysis of related literature that insight into the translational gap between laboratories and clinical settings would provide the possible future directions to plug the loopholes in the process of development of these receptor-targeted nanomedicines for the treatment of breast cancer.
Collapse
Affiliation(s)
- Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| |
Collapse
|
11
|
Abdel-Bar HM, Walters AA, Lim Y, Rouatbi N, Qin Y, Gheidari F, Han S, Osman R, Wang JTW, Al-Jamal KT. An "eat me" combinatory nano-formulation for systemic immunotherapy of solid tumors. Theranostics 2021; 11:8738-8754. [PMID: 34522209 PMCID: PMC8419059 DOI: 10.7150/thno.56936] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Rational: Tumor immunogenic cell death (ICD), induced by certain chemotherapeutic drugs such as doxorubicin (Dox), is a form of apoptosis potentiating a protective immune response. One of the hallmarks of ICD is the translocation of calreticulin to the cell surface acting as an 'eat me' signal. This manuscript describes the development of a stable nucleic acid-lipid particles (SNALPs) formulation for the simultaneous delivery of ICD inducing drug (Dox) with small interfering RNA (siRNA) knocking down CD47 (siCD47), the dominant 'don't eat me' marker, for synergistic enhancement of ICD. Methods: SNALPs loaded with Dox or siCD47 either mono or combinatory platforms were prepared by ethanol injection method. The proposed systems were characterized for particle size, surface charge, entrapment efficiency and in vitro drug release. The ability of the SNALPs to preserve the siRNA integrity in presence of serum and RNAse were assessed over 48 h. The in vitro cellular uptake and gene silencing of the prepared SNALPs was assessed in CT26 cells. The immunological responses of the SNALPs were defined in vitro in terms of surface calreticulin expression and macrophage-mediated phagocytosis induction. In vivo therapeutic studies were performed in CT26 bearing mice where the therapeutic outcomes were expressed as tumor volume, expression of CD4 and CD8 as well as in vivo silencing. Results: The optimized SNALPs had a particle size 122 ±6 nm and an entrapment efficiency > 65% for both siRNA and Dox with improved serum stability. SNALPs were able to improve siRNA and Dox uptake in CT26 cells with enhanced cytotoxicity. siCD47 SNALPs were able to knockdown CD47 by approximately 70% with no interference from the presence of Dox. The siCD47 and Dox combination SNALPs were able to induce surface calreticulin expression leading to a synergistic effect on macrophage-mediated phagocytosis of treated cells. In a tumor challenge model, 50% of mice receiving siCD47 and Dox containing SNALPs were able to clear the tumor, while the remaining animals showed significantly lower tumor burden as compared to either monotreatment. Conclusion: Therefore, the combination of siCD47 and Dox in a particulate system showed potent anti-tumor activity which merits further investigation in future clinical studies.
Collapse
Affiliation(s)
- Hend Mohamed Abdel-Bar
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. box: 32958 Egypt
| | - Adam A Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Yau Lim
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Yue Qin
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Fatemeh Gheidari
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Shunping Han
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Rihab Osman
- Faculty of Pharmacy-Ain Shams University, Abbassia, Cairo, P.O. box: 11566 Egypt
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Khuloud T. Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
12
|
Sahu R, Pattanayak SP. Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets. Curr Gene Ther 2021; 20:237-258. [PMID: 32807051 DOI: 10.2174/1566523220999200731002408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India,Department of Pharmacy, Central University of South Bihar (Gaya), Bihar-824 236, India
| |
Collapse
|
13
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
14
|
Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021; 13:326. [PMID: 33802531 PMCID: PMC8001342 DOI: 10.3390/pharmaceutics13030326] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the major causes of death worldwide and its treatment remains very challenging. The effectiveness of cancer therapy significantly depends upon tumour-specific delivery of the drug. Nanoparticle drug delivery systems have been developed to avoid the side effects of the conventional chemotherapy. However, according to the most recent recommendations, future nanomedicine should be focused mainly on active targeting of nanocarriers based on ligand-receptor recognition, which may show better efficacy than passive targeting in human cancer therapy. Nevertheless, the efficacy of single-ligand nanomedicines is still limited due to the complexity of the tumour microenvironment. Thus, the NPs are improved toward an additional functionality, e.g., pH-sensitivity (advanced single-targeted NPs). Moreover, dual-targeted nanoparticles which contain two different types of targeting agents on the same drug delivery system are developed. The advanced single-targeted NPs and dual-targeted nanocarriers present superior properties related to cell selectivity, cellular uptake and cytotoxicity toward cancer cells than conventional drug, non-targeted systems and single-targeted systems without additional functionality. Folic acid and biotin are used as targeting ligands for cancer chemotherapy, since they are available, inexpensive, nontoxic, nonimmunogenic and easy to modify. These ligands are used in both, single- and dual-targeted systems although the latter are still a novel approach. This review presents the recent achievements in the development of single- or dual-targeted nanoparticles for anticancer drug delivery.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| |
Collapse
|
15
|
Pereira-Silva M, Jarak I, Santos AC, Veiga F, Figueiras A. Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. Eur J Pharm Sci 2020; 153:105461. [DOI: 10.1016/j.ejps.2020.105461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
|
16
|
Pereira-Silva M, Jarak I, Alvarez-Lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. J Control Release 2020; 323:442-462. [DOI: 10.1016/j.jconrel.2020.04.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/09/2023]
|
17
|
Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020; 160:136-169. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The clinical success of polypeptides as polymeric drugs, covered by the umbrella term "polymer therapeutics," combined with related scientific and technological breakthroughs, explain their exponential growth in the development of polypeptide-drug conjugates as therapeutic agents. A deeper understanding of the biology at relevant pathological sites and the critical biological barriers faced, combined with advances regarding controlled polymerization techniques, material bioresponsiveness, analytical methods, and scale up-manufacture processes, have fostered the development of these nature-mimicking entities. Now, engineered polypeptides have the potential to combat current challenges in the advanced drug delivery field. In this review, we will discuss examples of polypeptide-drug conjugates as single or combination therapies in both preclinical and clinical studies as therapeutics and molecular imaging tools. Importantly, we will critically discuss relevant examples to highlight those parameters relevant to their rational design, such as linking chemistry, the analytical strategies employed, and their physicochemical and biological characterization, that will foster their rapid clinical translation.
Collapse
Affiliation(s)
- Tetiana Melnyk
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Snežana Đorđević
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
18
|
Ghaffari M, Dehghan G, Baradaran B, Zarebkohan A, Mansoori B, Soleymani J, Ezzati Nazhad Dolatabadi J, Hamblin MR. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf B Biointerfaces 2019; 188:110762. [PMID: 31911391 DOI: 10.1016/j.colsurfb.2019.110762] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/25/2022]
Abstract
Co-delivery of therapeutic agents and small interfering RNA (siRNA) can be achieved by a suitable nanovehicle. In this work, the solubility and bioavailability of curcumin (Cur) were enhanced by entrapment in a polyamidoamine (PAMAM) dendrimer, and a polyplex was formed by grafting Bcl-2 siRNA onto the surface amine groups to produce PAMAM-Cur/Bcl-2 siRNA nanoparticles (NPs). The synthesized polyplex NPs had a particle size of ∼180 nm, and high Cur loading content of ∼82 wt%. Moreover, the PAMAM-Cur/Bcl-2 siRNA NPs showed more effective cellular uptake, and higher inhibition of tumor cell proliferation compared to PAMAM-Cur nanoformulation and free Cur, due to the combined effect of co-delivery of Cur and Bcl-2 siRNA. The newly described PAMAM-Cur/Bcl-2 siRNA polyplex NPs could be a promising co-delivery nanovehicle.
Collapse
Affiliation(s)
- Maryam Ghaffari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
19
|
Yan Y, Dong Y, Yue S, Qiu X, Sun H, Zhong Z. Dually Active Targeting Nanomedicines Based on a Direct Conjugate of Two Purely Natural Ligands for Potent Chemotherapy of Ovarian Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46548-46557. [PMID: 31763810 DOI: 10.1021/acsami.9b17223] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actively targeted nanomedicines have promised to revolutionize cancer treatment; however, their clinical translation has been limited by either low targetability, use of unsafe materials, or tedious fabrication. Here, we developed CD44 and folate receptor (FR) dually targeted nanoparticulate doxorubicin (HA/FA-NP-DOX) based on a direct conjugate of two purely natural ligands, hyaluronic acid and folic acid (FA), for safe, highly specific, and potent treatment of ovarian tumors in vivo. HA/FA-NP-DOX had a small size and high DOX loading, wherein the particle size decreased from 115, 93, to 89 nm with increasing degree of substitution of FA from 6.4, 8.5, to 11.1, while increased from 80, 93, to 103 nm with increasing DOX loading from 15.0, 23.1, to 31.4 wt %. Interestingly, HA/FA-NP-DOX exhibited excellent lyophilization redispersibility and long-term storage stability with negligible drug leakage while it released 91% of DOX in 48 h at pH 5.0. Cellular studies corroborated that HA/FA-NP-DOX possessed high selectivity to both CD44 and FR, resulting in strong killing of CD44- and FR-positive SKOV-3 ovarian cancer cells while low toxicity against CD44- and FR-negative L929 fibroblast cells. In vivo studies revealed a long elimination half-life of 5.6 h, an elevated tumor accumulation of 12.0% ID/g, and an effective inhibition of the SKOV-3 ovarian tumor for HA/FA-NP-DOX, leading to significant survival benefits over free DOX·HCl and phosphate-buffered saline controls. These dually targeted nanomedicines are simple and safe, providing a potentially translatable treatment for CD44- and FR-positive malignancies.
Collapse
Affiliation(s)
- Yu Yan
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Yangyang Dong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
20
|
Farran B, Montenegro RC, Kasa P, Pavitra E, Huh YS, Han YK, Kamal MA, Nagaraju GP, Rama Raju GS. Folate-conjugated nanovehicles: Strategies for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110341. [PMID: 31761235 DOI: 10.1016/j.msec.2019.110341] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/02/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer theranostics represents a strategy that aims at combining diagnosis with therapy through the simultaneous imaging and targeted delivery of therapeutics to cancer cells. Recently, the folate receptor alpha has emerged as an attractive theranostic target due to its overexpression in multiple solid tumors and its great functional versatility. In fact, it can be incorporated into folate-conjugated nano-systems for imaging and drug delivery. Hence, it can be used along the line of personalized clinical strategies as both an imaging tool and a delivery method ensuring the selective transport of treatments to tumor cells, thus highlighting its theranostic qualities. In this review, we will explore these theranostic characteristics in detail and assess their clinical potential. We will also discuss the technological advances that have allowed the design of sophisticated folate-based nanocarriers harboring various chemical properties and suited for the transport of various therapeutic agents.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Raquel Carvalho Montenegro
- Biological Science Institute, Federal University of Para, Augusto Correa Avenue, 01 Guamá, Belém, Pará, Brazil
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP, 500004, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
21
|
Xu W, Wang J, Qian J, Hou G, Wang Y, Ji L, Suo A. NIR/pH dual-responsive polysaccharide-encapsulated gold nanorods for enhanced chemo-photothermal therapy of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109854. [DOI: 10.1016/j.msec.2019.109854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/16/2019] [Accepted: 06/01/2019] [Indexed: 12/25/2022]
|
22
|
Li F, Wang Y, Chen WL, Wang DD, Zhou YJ, You BG, Liu Y, Qu CX, Yang SD, Chen MT, Zhang XN. Co-delivery of VEGF siRNA and Etoposide for Enhanced Anti-angiogenesis and Anti-proliferation Effect via Multi-functional Nanoparticles for Orthotopic Non-Small Cell Lung Cancer Treatment. Am J Cancer Res 2019; 9:5886-5898. [PMID: 31534526 PMCID: PMC6735374 DOI: 10.7150/thno.32416] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Targeting tumor angiogenesis pathway via VEGF siRNA (siVEGF) has shown great potential in treating highly malignant and metastatic non-small cell lung cancer (NSCLC). However, anti-angiogenic monotherapy lacked sufficient antitumor efficacy which suffered from malignant tumor proliferation. Therefore, the combined application of siVEGF and chemotherapeutic agents for simultaneous targeting of tumor proliferation and angiogenesis has been a research hotspot to explore a promising NSCLC therapy regimen. Methods: We designed, for the first time, a rational therapy strategy via intelligently co-delivering siVEGF and chemotherapeutics etoposide (ETO) by multi-functional nanoparticles (NPs) directed against the orthotopic NSCLC. These NPs consisted of cationic liposomes loaded with siVEGF and ETO and then coated with versatile polymer PEGylated histidine-grafted chitosan-lipoic acid (PHCL). We then comprehensively evaluated the anti-angiogenic and anti-proliferation efficiency in the in vitro tumor cell model and in bioluminescent orthotopic lung tumor bearing mice model. Results: The NPs co-delivering siVEGF and ETO exhibited tailor-made surface charge reversal features in mimicking tumor extracellular environment with improved internal tumor penetration capacity and higher cellular internalization. Furthermore, these NPs with flexible particles size triggered by intracellular acidic environment and redox environment showed pinpointed and sharp intracellular cargo release guaranteeing adequate active drug concentration in tumor cells. Enhanced VEGF gene expression silencing efficacy and improved tumor cell anti-proliferation effect were demonstrated in vitro. In addition, the PHCL layer improved the stability of these NPs in neutral environment allowing enhanced orthotopic lung tumor targeting efficiency in vivo. The combined therapy by siVEGF and ETO co-delivered NPs for orthotopic NSCLC simultaneously inhibited tumor proliferation and tumor angiogenesis resulting in more significant suppression of tumor growth and metastasis than monotherapy. Conclusion: Combined application of siVEGF and ETO by the multi-functional NPs with excellent and on-demand properties exhibited the desired antitumor effect on the orthotopic lung tumor. Our work has significant potential in promoting combined anti-angiogenesis therapy and chemotherapy regimen for clinical NSCLC treatment.
Collapse
|
23
|
Pan J, Rostamizadeh K, Filipczak N, Torchilin VP. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules 2019; 24:E1035. [PMID: 30875934 PMCID: PMC6471357 DOI: 10.3390/molecules24061035] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are involved in the development of cancers and their effects on survival rate. Many are related to chemo-resistance of tumor cells. Thus, treatment with a single therapeutic agent is often inadequate for successful cancer therapy. Ideally, combination therapy inhibits tumor growth through multiple pathways by enhancing the performance of each individual therapy, often resulting in a synergistic effect. Polymeric nanoparticles prepared from block co-polymers have been a popular platform for co-delivery of combinations of drugs associated with the multiple functional compartments within such nanoparticles. Various polymeric nanoparticles have been applied to achieve enhanced therapeutic efficacy in cancer therapy. However, reported drug ratios used in such systems often vary widely. Thus, the same combination of drugs may result in very different therapeutic outcomes. In this review, we investigated polymeric co-delivery systems used in cancer treatment and the drug combinations used in these systems for synergistic anti-cancer effect. Development of polymeric co-delivery systems for a maximized therapeutic effect requires a deeper understanding of the optimal ratio among therapeutic agents and the natural heterogenicity of tumors.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Kobra Rostamizadeh
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Tan X, Fang Y, Ren Y, Li Y, Wu P, Yang X, Liu W. D-α-tocopherol polyethylene glycol 1000 succinate-modified liposomes with an siRNA corona confer enhanced cellular uptake and targeted delivery of doxorubicin via tumor priming. Int J Nanomedicine 2019; 14:1255-1268. [PMID: 30863058 PMCID: PMC6391153 DOI: 10.2147/ijn.s191858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Combination therapy employing siRNAs and antitumor drugs is a promising method for the treatment of solid tumors. However, regarding combined treatments involving siRNAs and chemotherapeutic reagents, most prior research has focused on the enhanced cytotoxicity against tumor cells conferred by downregulation of the targeted protein. PURPOSE We developed D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-modified cationic liposomes (LPs) to simultaneously deliver doxorubicin (Dox) and the Bcl-2 siRNA (siBcl-2) for synergistic chemotherapy. The co-loading of siBcl-2 onto the Dox-loaded cationic LPs (siBcl-2/Dox-TPGS-LPs) could promote cellular uptake, cytotoxicity against 3D H22 tumor spheroids, circulation in the blood, drug accumulation at tumor sites, and synergistic chemotherapy in vivo. METHODS The siBcl-2/Dox-TPGS-LPs were constructed by co-loading siBcl-2 onto the Dox-loaded TPGS-modified cationic LPs (Dox-TPGS-LPs), and Dox entrapment into the LPs was achieved using an ammonium sulfate gradient method. The antitumor effects of siBcl-2/Dox-TPGS-LPs were studied in murine hepatic carcinoma H22 cells, 3D H22 tumor spheroids, and H22 tumor-bearing mice. RESULTS Dynamic light scattering technique and transmission electron microscopy images revealed that siBcl-2 loaded onto the Dox-TPGS-LPs formed a prominent corona at an nitrogen to phosphorus (N/P) ratio of 4:1, resulting in particle size increase from 155 to 210 nm and a weak positive zeta potential (+12.5 mV). The siBcl-2/Dox-TPGS-LPs enhanced the cellular uptake of Dox, promoted toxicity against 3D H22 tumor spheroids via tumor priming, prolonged Dox circulation in the blood, and increased accumulation of Dox at tumor sites, thereby enhancing the cytotoxicity of Dox in vitro and its chemotherapeutic efficacy in vivo. CONCLUSION The siBcl-2/Dox-TPGS-LPs demonstrated a strong potential for application in synergistic chemotherapy. The co-loading of siRNAs both sensitized cells toward antitumor drugs by downregulating the expression level of a specific protein and influenced the pharmacokinetic behavior of the co-delivery system in vitro and in vivo.
Collapse
Affiliation(s)
- Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China,
| | - Yan Fang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China,
| | - Yuanyuan Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China,
| | - Yinghuan Li
- School of Pharmaceutical Sciences, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Capital Medical University, Beijing 100069, People's Republic of China
| | - Peicheng Wu
- School of Biosciences and Biopharmaceuticals, Institute of Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China,
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China,
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China,
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China,
| |
Collapse
|
25
|
Zhang S, Liu Y, Derakhshanfar S, He W, Huang Q, Dong S, Rao J, Luo G, Zhong W, Liao W, Shi M, Xing M. Polymer Self-Assembled BMSCs with Cancer Tropism and Programmed Homing. Adv Healthc Mater 2018; 7:e1800118. [PMID: 30345648 DOI: 10.1002/adhm.201800118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/09/2018] [Indexed: 11/05/2022]
Abstract
Targeted therapy can improve the accuracy of diagnosis and treatment in the field of cancer management. Cellular surface engineering can enhance cell functions via mounting functional molecules onto cellular membranes. A novel amphiphilic hyperbranched polymer (AHP) conjugated with oleic acid (OA) and tumor-targeted ligand folic acid (FA) is employed. The lipophilic chain can self-assemble and infuse with the cytomembrane of bone marrow mesenchymal stem cells (BMSCs) with the end of FA left on the outside for targeting. The polymer tailored BMSCs can enhance tumor tropism in gastric cancer. BMSCs are characterized by the low immunogenicity and tumor tropism, which makes them promising targeting carriers. Regarding the integrated advantages of these two vectors, it is demonstrated that the functional amphiphilic AHP-OA-FA enhances the tumor tropism of BMSCs. Flow cytometry, standard MTT assay, and wound-healing assay show that AHP-OA-FA has no influence on CD expression, proliferative capacity, and cell motility of BMSCs, respectively. Furthermore, in vitro transwell assay and ex vivo fluorescence image verify that AHP-OA-FA enhances tumor tropism of BMSCs compared to BMSCs and AHP-OA-Rhodamine B-BMSCs. Finally, histological analysis demonstrates that AHP-OA-FA causes no damage to major organs. The results of this study suggest that living BMSCs self-assembled with a polymer might be a promising vehicle for targeted delivery to cancer cells.
Collapse
Affiliation(s)
- Shuyi Zhang
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Yuqing Liu
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical University Guangzhou 510006 China
- Burns InstituteSouthwest Hospital Chongqing 400038 China
| | - Soroosh Derakhshanfar
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Wanming He
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Qiong Huang
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Shumin Dong
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Jinjun Rao
- Key Laboratory of New Drug Screening of Guangdong ProvinceSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou 510006 China
| | - Gao‐Xing Luo
- Burns InstituteSouthwest Hospital Chongqing 400038 China
| | - Wen Zhong
- Department of Biosystem EngineeringUniversity of Manitoba Winnipeg R3T 5V6 Canada
| | - Wangjun Liao
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Min Shi
- Department of OncologyNanfang HospitalSouthern Medical University Guangzhou 510006 China
| | - Malcolm Xing
- Department of Plastic and Aesthetic SurgeryNanfang HospitalSouthern Medical University Guangzhou 510006 China
- Burns InstituteSouthwest Hospital Chongqing 400038 China
- Department of Mechanical EngineeringDepartment of Biochemistry and Medical GeneticsUniversity of Manitoba Winnipeg R3T 5V6 Canada
| |
Collapse
|
26
|
Synergistic co-delivery of doxorubicin and melittin using functionalized magnetic nanoparticles for cancer treatment: loading and in vitro release study by LC-MS/MS. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1226-S1235. [PMID: 30450981 DOI: 10.1080/21691401.2018.1536063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, citric acid-functionalized Fe3O4 magnetic nanoparticles (CA-MNPs) were prepared via a coprecipitation method and were fully characterized. Doxorubicin (DOX) and melittin (MEL), as anticancer agents, were loaded onto CA-MNPs surface through electrostatic interactions with the aim to achieve an effective co-delivery system for cancer therapy. The loading efficiency and in vitro release profiles of DOX and MEL were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The MS/MS step was performed in the selected reaction monitoring (SRM) mode which enabled simultaneous quantification of the analytes with high specificity and sensitivity. An excellent loading efficiency of about 100% was achieved for DOX and MEL in a drug to nanocarrier ratio of 1:10. The in vitro release of the drugs from CA-MNPs was evaluated for 8 h at pH 7.4, 5.5 and 4.5. The experimental results revealed that the release behaviour of both of the anticancer agents was strongly pH-dependent and significantly enhanced at pH 4.5. The in vitro MTT assay on MCF-7 breast cancer cell line exhibited a synergistic effect between DOX and MEL which led to substantially greater antitumor efficacy, compared to single administration of these anticancer agents at equivalent doses. The results indicated that the co-delivery system of (DOX/MEL)-loaded CA-MNPs is highly capable to be used in magnetically targeted cancer therapy.
Collapse
|
27
|
Zhou M, Zhang X, Xu X, Chen X, Zhang X. Doxorubicin@Bcl-2 siRNA Core@Shell Nanoparticles for Synergistic Anticancer Chemotherapy. ACS APPLIED BIO MATERIALS 2018; 1:289-297. [DOI: 10.1021/acsabm.8b00065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mengjiao Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu, PR China
| | - Xiujuan Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu, PR China
| | - Xiuzhen Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu, PR China
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, United Kingdom
| | - Xiaohong Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu, PR China
| |
Collapse
|
28
|
Liu C, Liu T, Liu Y, Zhang N. Evaluation of the potential of a simplified co-delivery system with oligodeoxynucleotides as a drug carrier for enhanced antitumor effect. Int J Nanomedicine 2018; 13:2435-2445. [PMID: 29719392 PMCID: PMC5916381 DOI: 10.2147/ijn.s155135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background We previously developed a simple effective system based on oligodeoxynucleotides with CGA repeating units (CGA-ODNs) for Dox and siRNA intracellular co-delivery. Methods In the present study, the in vitro cytotoxicity, gene transfection and in vivo safety of the co-delivery system were further characterized and discussed. Results Compared with poly(ethyleneimine) (PEI), both CGA-ODNs and the pH-sensitive targeted coating, o-carboxymethyl-chitosan (CMCS)-poly(ethylene glycol) (PEG)-aspargine-glycine-arginine (NGR) (CMCS-PEG-NGR, CPN) showed no obvious cytotoxicity in 72 h. The excellent transfection capability of CPN coated Dox and siRNA co-loaded nanoparticles (CPN-PDR) was confirmed by real-time PCR and Western blot analysis. It was calculated that there was no significant difference in silencing efficiency among Lipo/siRNA, CPN-modified siRNA-loaded nanoparticles (CPN-PR) and CPN-PDR. Furthermore, CPN-PDR was observed to be significantly much more toxic than Dox- and CPN-modified Dox-loaded nanoparticles (CPN-PD), implying their higher antitumor potential. Both hemolysis tests and histological assessment implied that CPN-PDR was safe for intravenous injection with nontoxicity and good biocompatibility in vitro and in vivo. Conclusion The results indicated that CPN-PDR could be a potentially promising co-delivery carrier for enhanced antitumor therapy.
Collapse
Affiliation(s)
- Chunxi Liu
- Department of Pharmacy, Qilu Hospital, Shandong University, Ji'nan, China
| | - Tingxian Liu
- School of Pharmaceutical Science, Shandong University, Ji'nan, China
| | - Yongjun Liu
- School of Pharmaceutical Science, Shandong University, Ji'nan, China
| | - Na Zhang
- School of Pharmaceutical Science, Shandong University, Ji'nan, China
| |
Collapse
|
29
|
Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Combinational drug delivery using nanocarriers for breast cancer treatments: A review. J Biomed Mater Res A 2018; 106:2272-2283. [PMID: 29577607 DOI: 10.1002/jbm.a.36410] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/17/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
Abstract
Breast cancer (BC) is the most common cancer in women that requires special attention due to low response to conventional treatments. The common method for treating cancer (especially BC) is applying a single anticancer agent, however, due to some disadvantages including cytotoxicity, side effects, and multidrug resistance, the efficiency and application of this method are limited. To overcome these challenges, the combinational delivery of anticancer drugs (including chemical agents, genetic materials, etc.) has been introduced. To increase the efficacy of this new method, several nanocarriers including inorganic nanoparticles (such as, magnetic nanoparticles, silica nanoparticles, etc.) and organic ones (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles) have been used. Based on the literature, combinational delivery using nanocarriers showed promising results in the treatment of BC. In this review, combination regimens for the treatment of BC, nanocarriers containing combinations of pharmaceutical agents (including small molecule chemotherapeutic, biological, and gene therapy agents) as an opportunity to overcome chemotherapy challenges and, finally, examples of these formulations have been presented. This review aims to provide a better understanding of these increasingly important new methods of cancer treatment and the main issues and key considerations for a rational design of nanocarriers used in combinational delivery of different synergistic anticancer agents. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2272-2283, 2018.
Collapse
Affiliation(s)
- Nafise Olov
- Polymer and Color Engineering Department, Amirkabir University of Technology, 424 Hafez-Avenue, 15875-4413, Tehran, Iran
| | - Shadab Bagheri-Khoulenjani
- Polymer and Color Engineering Department, Amirkabir University of Technology, 424 Hafez-Avenue, 15875-4413, Tehran, Iran
| | - Hamid Mirzadeh
- Polymer and Color Engineering Department, Amirkabir University of Technology, 424 Hafez-Avenue, 15875-4413, Tehran, Iran
| |
Collapse
|
30
|
Huang S, Liu Y, Xu X, Ji M, Li Y, Song C, Duan S, Hu Y. Triple therapy of hepatocellular carcinoma with microRNA-122 and doxorubicin co-loaded functionalized gold nanocages. J Mater Chem B 2018; 6:2217-2229. [PMID: 32254562 DOI: 10.1039/c8tb00224j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A combination of different therapy strategies has great potential to efficaciously treat malignant tumors, by virtue of their synergetic effects. Herein, a co-delivery system based on gold nanocages (AuNCs) was designed to deliver both doxorubicin (DOX) and microRNA-122 mimic (miR-122) for an enhanced cancer therapy. DOX was loaded into the AuNCs and miR-122 was condensed onto the surface of the functionalized AuNCs by an electrostatic interaction. Polyethyleneglycol (PEG) and hyaluronic acid (HA) were also introduced to the co-delivery system for targeted drug delivery. We evaluated the cellular uptake, biodistribution and anti-tumor effect in vitro and in vivo. Our results demonstrated an effective delivery of DOX and miR-122 into tumor cells and the tumor tissue. Importantly, the triple therapy, namely the combination of chemotherapy, gene therapy and photothermal therapy, mediated by this multifunctional drug delivery system, exhibited better anti-tumor effect than any single therapy, both in vitro and in vivo. Additionally, this drug delivery system caused insignificant toxicity to the major organs and had no obvious effect on the body weight of the mice. It could be concluded that multifunctional AuNCs are promising as a co-delivery vector for an enhanced anti-tumor effect.
Collapse
Affiliation(s)
- Shengnan Huang
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Qiu J, Zhang H, Wang Z, Liu D, Liu S, Han W, Regenstein JM, Geng L. The antitumor effect of folic acid conjugated-Auricularia auricular polysaccharide-cisplatin complex on cervical carcinoma cells in nude mice. Int J Biol Macromol 2018; 107:2180-2189. [DOI: 10.1016/j.ijbiomac.2017.10.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/06/2017] [Accepted: 10/14/2017] [Indexed: 01/18/2023]
|
33
|
Chen L, Qian M, Zhang L, Xia J, Bao Y, Wang J, Guo L, Li Y. Co-delivery of doxorubicin and shRNA of Beclin1 by folate receptor targeted pullulan-based multifunctional nanomicelles for combinational cancer therapy. RSC Adv 2018; 8:17710-17722. [PMID: 35542072 PMCID: PMC9080481 DOI: 10.1039/c8ra01679h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Doxorubicin (DOX) is a widely-used effective antitumor agent. However, its clinical application is limited due to its side effects including anti-apoptotic defense of cancer cells caused by DOX-induced autophagy and deleterious effects in normal tissues. Therefore, in this study, a new folate (FA)-decorated amphiphilic bifunctional pullulan-based copolymer (named as FPDP) was developed as an efficient nano-carrier for the co-delivery of DOX and short hairpin RNA of Beclin1, a pivotal autophage-related gene, to enhance the anticancer effect of DOX by the blockade of the Beclin1 protein mediated autophagy process. In FPDP molecules, pullulan was modified with lipophilic desoxycholic acid for the formation of micelles, the introduced low molecular weight (1 kDa) branched polyethylenimine (PEI) was for shBeclin1 delivery, and folate (FA) was employed as the tumor-targeting group. FPDP micelles demonstrated an average diameter of 161.9 nm, good biocompatibility, applicable storage stability, excellent loading capacities for both DOX and shBeclin1 and a sustained drug release profile. In vitro cell culture experiments demonstrated that the uptake amount of FPDP/DOX micelles in folate receptor positive (FR+) HeLa cells was more than that in folate receptor negative (FR−) HepG2 cells, leading to significantly higher cytotoxicity against FR+ HeLa cells. The simultaneous co-delivery of shBeclin1 and DOX to HeLa cells with FPDP micelles led to efficient reduction in the expression level of Beclin1 as well as synergistic cell apoptotic induction. Furthermore, in vivo studies revealed superior antitumor efficacy of tumor-targeted FPDP/DOX/shBeclin1 in comparison with non-FR-targeted PDP micelles and free DOX. These results highlighted that co-delivery of DOX and shRNA of Beclin1 with FPDP micelles has the potential to overcome the limitations of DOX in clinical cancer therapy. New folate receptor targeted nano-micelles enhanced the anticancer effect of doxorubicin by shBeclin1 with the blockade of the autophagy process.![]()
Collapse
Affiliation(s)
- Lili Chen
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- School of Life Science and Biotechnology
| | - Ming Qian
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Liuwei Zhang
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jing Xia
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Yongming Bao
- School of Life Science and Biotechnology
- Dalian University of Technology
- Dalian
- P. R. China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- School of Life Science and Biotechnology
| | - Lianying Guo
- Department of Environmental Health and Toxicology
- School of Public Health
- Dalian Medical University
- Dalian
- P. R. China
| | - Yachen Li
- Department of Environmental Health and Toxicology
- School of Public Health
- Dalian Medical University
- Dalian
- P. R. China
| |
Collapse
|
34
|
Xu W, Qian J, Hou G, Suo A, Wang Y, Wang J, Sun T, Yang M, Wan X, Yao Y. Hyaluronic Acid-Functionalized Gold Nanorods with pH/NIR Dual-Responsive Drug Release for Synergetic Targeted Photothermal Chemotherapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36533-36547. [PMID: 28975790 DOI: 10.1021/acsami.7b08700] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tumor-targeted delivery of photothermal agent and controlled release of concomitant chemotherapeutic drug are two key factors for combined photothermal chemotherapy. Herein, we developed a pH/near-infrared (NIR) dual-triggered drug release nanoplatform based on hyaluronic acid (HA)-functionalized gold nanorods (GNRs) for actively targeted synergetic photothermal chemotherapy of breast cancer. Targeting folate (FA), dopamine, and adipic acid dihydrazide triconjugated HA was first synthesized and used to decorate GNRs via Au-catechol bonds, and then an anticarcinogen doxorubicin (DOX) was conjugated onto HA moieties via an acid-labile hydrazone linkage, resulting in multifunctional nanoparticles GNRs-HA-FA-DOX. The nanoparticles exhibited excellent stability and had a pH and NIR dual-responsive drug release behavior. In vitro studies showed that the nanoparticles could be efficiently internalized into breast cancer MCF-7 cells and kill them under NIR irradiation in a synergistic fashion via inducing cell apoptosis. Pharmacokinetics and biodistribution studies in tumor-bearing mice indicated that the nanoparticles had a long blood circulation with a half-life of 2.4 h and exhibited a high accumulation of 11.3% in tumor site. The tumors of mice treated with combined chemotherapy and photothermal therapy were completely suppressed without obvious systemic toxicity after 20 d of treatment. These results demonstrated a great potential of GNRs-HA-FA-DOX nanoparticles for targeted synergistic therapy of breast cancer.
Collapse
Affiliation(s)
- Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Guanghui Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061, China
| | - Yaping Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Jinlei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Tiantian Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Ming Yang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Xueli Wan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | - Yu Yao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061, China
| |
Collapse
|
35
|
Wang M, Wang J, Li B, Meng L, Tian Z. Recent advances in mechanism-based chemotherapy drug-siRNA pairs in co-delivery systems for cancer: A review. Colloids Surf B Biointerfaces 2017; 157:297-308. [DOI: 10.1016/j.colsurfb.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
|
36
|
Zhao Z, Lou S, Hu Y, Zhu J, Zhang C. A Nano-in-Nano Polymer-Dendrimer Nanoparticle-Based Nanosystem for Controlled Multidrug Delivery. Mol Pharm 2017; 14:2697-2710. [PMID: 28704056 DOI: 10.1021/acs.molpharmaceut.7b00219] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Codelivery of multiple chemotherapeutics with different action mechanisms is a promising strategy for cancer treatment. In this study, we developed a novel polymer-dendrimer hybrid nanoparticle-based nanosystem for efficient and controlled codelivery of two model chemotherapeutics, doxorubicin (DOX) and paclitaxel (PTX). The nanosystem was characterized to have a nano-in-nano structure with a size of around 150 nm. The model drugs could feasibly be loaded into the nanosystem ratiometrically with high drug-loading contents by controlling the feeding drug ratios. Also, the model drugs could be released from the nanosystem following a sequential release manner-specifically, quick PTX release and sustained DOX release. Acidic pH was found to enhance the release of both drugs. Moreover, the nanosystem was taken up by cancer cells rapidly and efficiently, and the delivered drugs could release sustainably and efficiently in cells to reach their action targets. In vitro cytotoxicity results demonstrated that, by optimizing drug ratios, the dual-drug-loaded nanosystem could result in better antitumor efficacy than the single-drug-loaded nanosystem or free dual-drug combination. Furthermore, the dual-drug-loaded nanosystem could induce significant changes in both the nucleus and tubulin patterns synergistically. All data suggest that the nano-in-nano polymer-dendrimer hybrid nanoparticle-based nanosystem is a promising candidate to achieve controlled multidrug delivery for effective combination cancer therapy.
Collapse
Affiliation(s)
- Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Song Lou
- Department of Biological Systems Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Yun Hu
- Department of Biological Systems Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Jie Zhu
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| |
Collapse
|
37
|
Skoulas D, Christakopoulos P, Stavroulaki D, Santorinaios K, Athanasiou V, Iatrou H. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment. Polymers (Basel) 2017; 9:208. [PMID: 30970886 PMCID: PMC6432035 DOI: 10.3390/polym9060208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP) of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000⁻2017.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Dimitra Stavroulaki
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Varvara Athanasiou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| |
Collapse
|
38
|
Abstract
Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy.
Collapse
|
39
|
Bottai G, Truffi M, Corsi F, Santarpia L. Progress in nonviral gene therapy for breast cancer and what comes next? Expert Opin Biol Ther 2017; 17:595-611. [DOI: 10.1080/14712598.2017.1305351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Giulia Bottai
- Oncology Experimental Therapeutics, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milan), Italy
| | - Marta Truffi
- Laboratory of Nanomedicine, Department of Biomedical and Clinical Sciences University of Milan, “Luigi Sacco” Hospital, Milano, Italy
| | - Fabio Corsi
- Laboratory of Nanomedicine, Surgery Division, Department of Biomedical and Clinical Sciences University of Milan, “Luigi Sacco” Hospital, Milan, Italy
| | - Libero Santarpia
- Oncology Experimental Therapeutics, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milan), Italy
| |
Collapse
|
40
|
de Mello LJ, Souza GRR, Winter E, Silva AH, Pittella F, Creczynski-Pasa TB. Knockdown of antiapoptotic genes in breast cancer cells by siRNA loaded into hybrid nanoparticles. NANOTECHNOLOGY 2017; 28:175101. [PMID: 28230534 DOI: 10.1088/1361-6528/aa6283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tumorigenesis is related to an imbalance in controlling mechanisms of apoptosis. Expression of the genes BCL-2 and BCL-xL results in the promotion of cell survival by inhibiting apoptosis. Thus, a novel approach to suppress antiapoptotic genes is the use of small interfering RNA (siRNA) in cancer cells. However, there are some limitations for the application of siRNA such as the need for vectors to pass the cell membrane and deliver the nucleic acid. In this study CaP-siRNA-PEG-polyanion hybrid nanoparticles were developed to promote siRNA delivery to cultured human breast cancer cells (MCF-7) in order to evaluate whether the silencing of antiapoptotic genes BCL-2 and BCL-xL by siRNA would increase cancer cell death. After 48 h of incubation the expression of BCL-2 and BCL-xL genes decreased to 49% and 23%, respectively. The siRNA sequence used induced cancer cell death at a concentration of 200 nM siRNA after 72 h of incubation. As the targeted proteins are related to the resistance to chemotherapeutic drugs, the nanocarriers systems were also tested in the presence of doxorubicin (DOX). The results showed a significant reduction in the CC50 of the DOX, after silencing the antiapoptotic genes. In addition, an increase in apoptotic cell counts for both incubations conditions was observed as well. In conclusion, silencing antiapoptotic genes such as BCL-2 and BCL-xL through the use of siRNA carried by hybrid nanoparticles showed to be effective in vitro, and presents a promising strategy for pre-clinical analysis, especially when combined with DOX against breast cancer.
Collapse
Affiliation(s)
- Leônidas João de Mello
- Post-graduation Course in Biochemistry, Federal University of Santa Catarina, Rua Pio Duarte Silva, 241, 88037-000 Florianópolis-SC-, Brazil. Biology Department, Federal Institute of Education, Science and Technology, Rua Mauro Ramos, 89020-300 Florianópolis-SC, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Suo A, Qian J, Xu M, Xu W, Zhang Y, Yao Y. Folate-decorated PEGylated triblock copolymer as a pH/reduction dual-responsive nanovehicle for targeted intracellular co-delivery of doxorubicin and Bcl-2 siRNA. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:659-672. [PMID: 28482576 DOI: 10.1016/j.msec.2017.03.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 12/21/2022]
Abstract
Co-delivery of chemotherapeutic drug and small interfering RNA (siRNA) within a single nanovehicle has emerged as a promising combination therapy approach to treating cancers because of their synergistic effect. Nanocarrier delivery systems with low cytotoxicity and high efficiency are needed for such a purpose. In this study, a novel folate-conjugated PEGylated cationic triblock copolymer, poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine) (PAH-b-PDMAPMA-b-PAH), was synthesized and evaluated as a stimuli-sensitive vehicle for the targeted co-delivery of doxorubicin (DOX) and Bcl-2 siRNA into breast cancer MCF-7 cells. The synthetic process of the PEGylated triblock copolymer involved sequential reversible addition-fragmentation chain transfer polymerization, PEGylation and removal of tert-butoxy carbamate protecting groups. Folate-conjugated and/or -unconjugated poly(ethylene glycol) segments were grafted onto PAH-b-PDMAPMA-b-PAH via a reduction-sensitive disulfide linkage. The synthetic polymers were characterized by 1H NMR and gel permeation chromatography. The PEGylated triblock copolymer could chemically conjugate DOX onto PAH blocks via pH-responsive hydrazone bonds and simultaneously complex negatively charged Bcl-2 siRNA with cationic PDMAPMA blocks through electrostatic interactions at N/P ratios≥32:1 to form multifunctional nanomicelleplexes. The nanomicelleplexes exhibited spherical shape, possessed a positively charged surface with a zeta potential of +22.5mV and had a desirable and uniform particle size of 187nm. In vitro release studies revealed that the nanomicelleplexes could release DOX and Bcl-2 siRNA in a reduction and pH dual-sensitive manner and the payload release was significantly enhanced in a reductive acidic environment mimicking the endosomes/lysosomes of cancer cells compared to under physiology conditions. Furthermore, the release of both DOX and siRNA was found to follow Higuchi kinetic model. Confocal laser scanning microscopy, flow cytometry and MTT analyses confirmed that, compared with folate-undecorated nanomicelleplexes, folate-decorated nanomicelleplexes could more effectively co-deliver DOX and Bcl-2 siRNA into MCF-7 cells and showed a stronger cell-killing effect. The pristine PEGylated triblock copolymer exhibited good cytocompatibility. Moreover, co-delivery of DOX and Bcl-2 siRNA achieved a significant synergistic antitumor efficacy. These findings suggested that the folate-decorated PEGylated cationic triblock copolymer might be a promising vehicle for targeted intracellular co-delivery of DOX and siRNA in MCF-7 cells, representing a potential clinical combination therapy for breast cancer treatment.
Collapse
Affiliation(s)
- Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Minghui Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaping Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Yao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
42
|
Bar-Zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist Updat 2017; 31:15-30. [PMID: 28867241 DOI: 10.1016/j.drup.2017.05.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Polymers in the Co-delivery of siRNA and Anticancer Drugs for the Treatment of Drug-resistant Cancers. Top Curr Chem (Cham) 2017; 375:24. [DOI: 10.1007/s41061-017-0113-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
|
44
|
Well-defined star polymers for co-delivery of plasmid DNA and imiquimod to dendritic cells. Acta Biomater 2017; 48:378-389. [PMID: 27989922 DOI: 10.1016/j.actbio.2016.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/08/2016] [Accepted: 10/26/2016] [Indexed: 12/30/2022]
Abstract
Co-delivery of antigen-encoding plasmid DNA (pDNA) and immune-modulatory molecules has importance in advancing gene-based immunotherapy and vaccines. Here novel star polymer nanocarriers were synthesized for co-delivery of pDNA and imiquimod (IMQ), a poorly soluble small-molecule adjuvant, to dendritic cells. Computational modeling and experimental results revealed that the polymers formed either multimolecular or unimolecular core-shell-type micelles in water, depending on the nature of the outer hydrophilic shell. Micelles loaded with both IMQ and pDNA were able to release IMQ in response to intracellular pH of the endo-lysosome and transfect mouse dendritic cells (DC2.4 line) in vitro. Importantly, IMQ-loaded micelle/pDNA complexes displayed much enhanced transfection efficiency than IMQ-free complexes. These results demonstrate the feasibility of co-delivery of pDNA and IMQ to antigen-presenting cells by multifunctional polymer nanocarriers with potential use in gene-based vaccine approaches.
Collapse
|
45
|
Chen L, Ji F, Bao Y, Xia J, Guo L, Wang J, Li Y. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:418-429. [DOI: 10.1016/j.msec.2016.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/01/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023]
|
46
|
Zhao J, Han F, Zhao P, Wen X, Lin C. Dextranated poly(urethane amine)s designed for systemic gene delivery in ovarian cancer therapy. J Mater Chem B 2017; 5:6119-6127. [DOI: 10.1039/c7tb01641g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dextranated poly(urethane amine)s can be designed for robust ovarian cancer gene therapy.
Collapse
Affiliation(s)
- Jie Zhao
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| | - Fei Han
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| | - Peng Zhao
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| | - Xuejun Wen
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| | - Chao Lin
- Institute for Translational Medicine
- Shanghai East Hospital
- Institute for Biomedical Engineering and Nanoscience
- Tongji University School of Medicine
- Shanghai
| |
Collapse
|
47
|
Pradhan L, Srivastava R, Bahadur D. Enhanced anticancer efficacy of folate-grafted lipid modified dual drug loaded nanoassemblies to reduce drug resistance in ovarian cancer. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/6/065005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, Vicent MJ. Polypeptide-Based Conjugates as Therapeutics: Opportunities and Challenges. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600316] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/02/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Oleksandr Zagorodko
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Juan José Arroyo-Crespo
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Vicent J. Nebot
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
- Polypeptide Therapeutic Solutions SL; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| |
Collapse
|
49
|
Pereira P, Barreira M, Queiroz JA, Veiga F, Sousa F, Figueiras A. Smart micelleplexes as a new therapeutic approach for RNA delivery. Expert Opin Drug Deliv 2016; 14:353-371. [DOI: 10.1080/17425247.2016.1214567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Castillo RR, Colilla M, Vallet-Regí M. Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin Drug Deliv 2016; 14:229-243. [DOI: 10.1080/17425247.2016.1211637] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rafael R. Castillo
- Departamento de Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
- Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Montserrat Colilla
- Departamento de Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
- Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química Inorgánica y Bioinorgánica. Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
- Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|