1
|
Weian W, Yunxin Y, Ziyan W, Qianzhou J, Lvhua G. Gallic acid: design of a pyrogallol-containing hydrogel and its biomedical applications. Biomater Sci 2024; 12:1405-1424. [PMID: 38372381 DOI: 10.1039/d3bm01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyphenol hydrogels have garnered widespread attention due to their excellent adhesion, antioxidant, and antibacterial properties. Gallic acid (GA) is a typical derivative of pyrogallol that is used as a hydrogel crosslinker or bioactive additive and can be used to make multifunctional hydrogels with properties superior to those of widely studied catechol hydrogels. Furthermore, compared to polymeric tannic acid, gallic acid is more suitable for chemical modification, thus broadening its range of applications. This review focuses on multifunctional hydrogels containing GA, aiming to inspire researchers in future biomaterial design. We first revealed the interaction mechanisms between GA molecules and between GA and polymers, analyzed the characteristics GA imparts to hydrogels and compared GA hydrogels with hydrogels containing catechol. Subsequently, in this paper, various methods of integrating GA into hydrogels and the applications of GA in biomedicine are discussed, finally assessing the current limitations and future development potential of GA. In summary, GA, a natural small molecule polyphenol with excellent functionality and diverse interaction modes, has great potential in the field of biomedical hydrogels.
Collapse
Affiliation(s)
- Wu Weian
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Ye Yunxin
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Wang Ziyan
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Jiang Qianzhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Guo Lvhua
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| |
Collapse
|
2
|
Zhao Y, Huang C, Zhang Z, Hong J, Xu J, Sun X, Sun J. Sustained release of brimonidine from BRI@SR@TPU implant for treatment of glaucoma. Drug Deliv 2022; 29:613-623. [PMID: 35174743 PMCID: PMC8856066 DOI: 10.1080/10717544.2022.2039806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glaucoma is the leading cause of irreversible vision loss worldwide, and reduction of intraocular pressure (IOP) is the only factor that can be interfered to delay disease progression. As the first line and preferred method to treat glaucoma, eye drops have many shortcomings, such as low bioavailability, poor patient compliance, and unsustainable therapeutic effect. In this study, a highly efficient brimonidine (BRI) silicone rubber implant (BRI@SR@TPU implant) has been designed, prepared, characterized, and administrated for sustained relief of IOP to treat glaucoma. The in vitro BRI release from BRI@SR@TPU implants shows a sustainable release profile for up to 35 d, with decreased burst release and increased immediate drug concentration. The carrier materials are not cytotoxic to human corneal epithelial cells and conjunctival epithelial cells, and show good biocompatibility, which can be safely administrated into rabbit’s conjunctival sac. The BRI@SR@TPU implant sustainably released BRI and effectively reduced IOP for 18 d (72 times) compared to the commercial BRI eye drops (6 h). The BRI@SR@TPU implant is thus a promising noninvasive platform product for long-term IOP-reducing in patients with glaucoma and ocular hypertension.
Collapse
Affiliation(s)
- Yujin Zhao
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Zhutian Zhang
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiaxu Hong
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Farmanbordar H, Amini-Fazl MS, Mohammadi R. Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Amato R, Rossino MG, Cammalleri M, Timperio AM, Fanelli G, Dal Monte M, Pucci L, Casini G. The Potential of Lisosan G as a Possible Treatment for Glaucoma. Front Pharmacol 2021; 12:719951. [PMID: 34393798 PMCID: PMC8355587 DOI: 10.3389/fphar.2021.719951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Lisosan G (LG), a fermented powder obtained from whole grains, is a nutritional supplement containing a variety of metabolites with documented antioxidant properties. We have recently demonstrated that orally administered LG protects diabetic rodent retinas from oxidative stress, inflammation, apoptosis, blood-retinal barrier disruption, and functional damage. Here, we investigated whether LG may exert protective effects in a model of glaucoma and measured the amounts of selected LG components that reach the retina after oral LG administration. Six-month-old DBA/2J mice were given an aqueous LG solution in place of drinking water for 2 mo. During the 2 mo of treatment with LG, the intraocular pressure (IOP) was monitored and the retinal ganglion cell (RGC) functional activity was recorded with pattern-electroretinography (PERG). At the end of the 2-mo period, the expression of oxidative stress and inflammatory markers was measured with qPCR, and RGC survival or macroglial activation were assessed with immunofluorescence. Alternatively, LG was administered by gavage and the concentrations of four of the main LG components (nicotinamide, gallic acid, 4-hydroxybenzoic acid, and quercetin) were measured in the retinas in the following 24 h using mass spectrometry. LG treatment in DBA/2J mice did not influence IOP, but it affected RGC function since PERG amplitude was increased and PERG latency was decreased with respect to untreated DBA/2J mice. This improvement of RGC function was concomitant with a significant decrease of both oxidative stress and inflammation marker expression, of RGC loss, and of macroglial activation. All four LG metabolites were found in the retina, although with different proportions with respect to the amount in the dose of administered LG, and with different temporal profiles in the 24 h following administration. These findings are consistent with neuroenhancing and neuroprotective effects of LG in glaucoma that are likely to derive from its powerful antioxidant properties. The co-occurrence of different metabolites in LG may provide an added value to their beneficial effects and indicate LG as a basis for the potential treatment of a variety of retinal pathologies.
Collapse
Affiliation(s)
- Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Laura Pucci
- National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA), Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Yeo J, Lee J, Lee S, Kim WJ. Polymeric Antioxidant Materials for Treatment of Inflammatory Disorders. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiwon Yeo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Junseok Lee
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- OmniaMed Co, Ltd Pohang 37673 Republic of Korea
| | - Sanggi Lee
- School of Interdisciplinary Bioscience and Bioengineering (I‐Bio) Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Won Jong Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- OmniaMed Co, Ltd Pohang 37673 Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I‐Bio) Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
6
|
Farmanbordar H, Amini-Fazl MS, Mohammadi R. pH-Sensitive silica-based core–shell nanogel prepared via RAFT polymerization: investigation of the core size effect on the release profile of doxorubicin. NEW J CHEM 2021. [DOI: 10.1039/d1nj03304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novelty of this work is the synthesis of a core–shell nanogel that is based on silica nanoparticles as the core with different sizes via RAFT polymerization and its application to drug delivery.
Collapse
Affiliation(s)
- Hassan Farmanbordar
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
8
|
Composite Hydrogel of Poly(acrylamide) and Starch as Potential System for Controlled Release of Amoxicillin and Inhibition of Bacterial Growth. J CHEM-NY 2020. [DOI: 10.1155/2020/5860487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Novel composite hydrogels of poly(acrylamide) (PAAm) and starch, at different ratios, were studied as potential platforms for controlled release of amoxicillin. The composite hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and swelling kinetic measurements. The morphology analysis revealed the presence of starch granules well embedded within the PAAm network. The increase in starch content increased the rate of water uptake and the swelling degree at equilibrium. The amoxicillin release kinetics was sensitive to pH and temperature conditions. The in vitro bacterial growth inhibition of antibiotic-loaded hydrogels was tested though disc diffusion assays with Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, and a carbapenemase producer Pseudomonas aeruginosa strain. The optimal release profile at physiological conditions and the powerful bacteria growth inhibition effects of amoxicillin-loaded hydrogels evidenced its potential for biomedical applications, particularly in oral administration and the local treatment of bacterial infections.
Collapse
|
9
|
Romero-Montero A, Del Valle LJ, Puiggalí J, Montiel C, García-Arrazola R, Gimeno M. Poly(gallic acid)-coated polycaprolactone inhibits oxidative stress in epithelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111154. [PMID: 32600735 DOI: 10.1016/j.msec.2020.111154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
Enzymatic mediated poly (gallic acid) (PGAL), a stable multiradical polyanion with helicoidal secondary structure and high antioxidant capacity, was successfully grafted to poly(ε-caprolactone) (PCL) using UV-photo induction. PCL films were prepared with several levels of roughness and subsequently grafted with PGAL (PCL-g-PGAL). The results on the full characterization of the produced materials by mechanical tests, surface morphology, and topography, thermal and crystallographic analyses, as well as wettability and cell protection activity against oxidative stress, were adequate for tissue regeneration. The in vitro biocompatibility was then assessed with epithelial-like cells showing excellent adhesion and proliferation onto the PCL-g-PGAL films, most importantly, PCL-g-PGAL displayed a good ability to protect cell cultures on their surface against reactive oxygen species. These biomaterials can consequently be considered as novel biocompatible and antioxidant films with high-responsiveness for biomedical or tissue engineering applications.
Collapse
Affiliation(s)
- Alejandra Romero-Montero
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Luis J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Barcelona, Spain
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Carmina Montiel
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Roeb García-Arrazola
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico
| | - Miquel Gimeno
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 CDMX, Mexico.
| |
Collapse
|
10
|
Bhattacharyya SK, Dule M, Paul R, Dash J, Anas M, Mandal TK, Das P, Das NC, Banerjee S. Carbon Dot Cross-Linked Gelatin Nanocomposite Hydrogel for pH-Sensing and pH-Responsive Drug Delivery. ACS Biomater Sci Eng 2020; 6:5662-5674. [PMID: 33320568 DOI: 10.1021/acsbiomaterials.0c00982] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Delivery of therapeutics to the intestinal region bypassing the harsh acidic environment of the stomach has long been a research focus. On the other hand, monitoring a system's pH during drug delivery is a crucial diagnosis factor as the activity and release rate of many therapeutics depend on it. This study answered both of these issues by fabricating a novel nanocomposite hydrogel for intestinal drug delivery and near-neutral pH sensing at the same time. Gelatin nanocomposites (GNCs) with varying concentrations of carbon dots (CDs) were fabricated through simple solvent casting methods. Here, CDs served a dual role and simultaneously acted as a cross-linker and chromophore, which reduced the usage of toxic cross-linkers. The proposed GNC hydrogel sample acted as an excellent pH sensor in the near-neutral pH range and could be useful for quantitative pH measurement. A model antibacterial drug (cefadroxil) was used for the in vitro drug release study at gastric pH (1.2) and intestinal pH (7.4) conditions. A moderate and sustained drug release profile was noticed at pH 7.4 in comparison to the acidic medium over a 24 h study. The drug release profile revealed that the pH of the release medium and the percentage of CDs cross-linking influenced the drug release rate. Release data were compared with different empirical equations for the evaluation of drug release kinetics and found good agreement with the Higuchi model. The antibacterial activity of cefadroxil was assessed by the broth microdilution method and found to be retained and not hindered by the drug entrapment procedure. The cell viability assay showed that all of the hydrogel samples, including the drug-loaded GNC hydrogel, offered acceptable cytocompatibility and nontoxicity. All of these observations illustrated that GNC hydrogel could act as an ideal pH-monitoring and oral drug delivery system in near-neutral pH at the same time.
Collapse
Affiliation(s)
| | - Madhab Dule
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Raj Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Md Anas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Tarun Kumar Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Poushali Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Narayan Chandra Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.,Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Susanta Banerjee
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.,Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
11
|
Baino F, Kargozar S. Regulation of the Ocular Cell/Tissue Response by Implantable Biomaterials and Drug Delivery Systems. Bioengineering (Basel) 2020; 7:E65. [PMID: 32629806 PMCID: PMC7552708 DOI: 10.3390/bioengineering7030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/31/2023] Open
Abstract
Therapeutic advancements in the treatment of various ocular diseases is often linked to the development of efficient drug delivery systems (DDSs), which would allow a sustained release while maintaining therapeutic drug levels in the target tissues. In this way, ocular tissue/cell response can be properly modulated and designed in order to produce a therapeutic effect. An ideal ocular DDS should encapsulate and release the appropriate drug concentration to the target tissue (therapeutic but non-toxic level) while preserving drug functionality. Furthermore, a constant release is usually preferred, keeping the initial burst to a minimum. Different materials are used, modified, and combined in order to achieve a sustained drug release in both the anterior and posterior segments of the eye. After giving a picture of the different strategies adopted for ocular drug release, this review article provides an overview of the biomaterials that are used as drug carriers in the eye, including micro- and nanospheres, liposomes, hydrogels, and multi-material implants; the advantages and limitations of these DDSs are discussed in reference to the major ocular applications.
Collapse
Affiliation(s)
- Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
12
|
Sun R, Zhang A, Ge Y, Gou J, Yin T, He H, Wang Y, Zhang G, Kong J, Shang L, Tao X, Zhang Y, Tang X. Ultra-small-size Astragaloside-IV loaded lipid nanocapsules eye drops for the effective management of dry age-related macular degeneration. Expert Opin Drug Deliv 2020; 17:1305-1320. [PMID: 32538226 DOI: 10.1080/17425247.2020.1783236] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Age-related macular degeneration (AMD) is a major cause of severe visual loss in elderly people. The treatments for dry AMD (dAMD) are severely limited so far. In this work, we aim to develop an eye drop to protect retinal functions against oxidative stress and apoptosis for improving dAMD management. Methods Astragaloside-IV (ASIV) was prepared into phospholipid complex and loaded into three sizes (20, 50 and 90 nm) of ASIV lipid nanocapsules (ASIV-LNCs). The penetration and distribution of LNCs were investigated. DAMD mice model was induced by NaIO3, and therapeutic effect was evaluated by electroretinography (ERG), histological examination, apoptosis and ROS detection. Results The ocular penetration and pharmacokinetic studies corroborated the feasibility of the LNCs to reach the fundus, and ultra-small-size LNCs (ASIV-LNCs-20) had the best delivery effect. ASIV-LNCs-20 was able to decrease ROS production and reduce the apoptosis rate from 5.12% to 0.533%. ERG and H&E staining results confirmed ASIV-LNCs-20 had a good protective effect on the morphology and function of the retina. Conclusions These results suggest that ASIV-LNCs can be a promising therapy approach for dAMD, and this research also offers new possibilities for further applications of LNCs as a drug delivery system for other eye diseases. Abbreviations AMD: Age-related macular degeneration;AREDS Age-related eye disease study; ASIV: Astragaloside-IV;AUC: Area under the concentration-time curve; dAMD: Dry age-related macular degeneration; DHE: Dihydroethidium; DL: Drug Loading; DLS: Dynamic light scattering; DSC: Differential scanning calorimetry; EE: Entrapment efficiency; ELSD: Evaporative light scattering detector; ERG: Electroretinographic; H&E: Hematoxylin and Eosin; I.S.: Internal standard; LB: Langmuir-Blodgett; LNCs: Lipid nanocapsules; MCT: Medium-chain triacylglycerol; ONL: Outer nuclear layer; OPL: Outer plexiform layer; PDI: Polydispersity index; PR: Photoreceptor;ROS: Reactive oxygen species; RPE: Retinal pigment epithelium; TEM: Transmission electron microscope; wAMD: Wet age-related macular degeneration.
Collapse
Affiliation(s)
- Rong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Anan Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Ying Ge
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd ., Shandong, PR China
| | - Jun Kong
- Ophthalmology, The Fourth Affiliated Hospital of China Medical University , Shenyang, Liaoning, PR China
| | | | - Xiumei Tao
- NKD Pharma Co., Ltd ., Beijing, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China.,Lunan Pharmaceutical Group Co., Ltd ., Shandong, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| |
Collapse
|
13
|
UTMD inhibit EMT of breast cancer through the ROS/miR-200c/ZEB1 axis. Sci Rep 2020; 10:6657. [PMID: 32313093 PMCID: PMC7170845 DOI: 10.1038/s41598-020-63653-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
As a potential drug/gene delivery system, the ultrasound-targeted microbubble destruction (UTMD) system can be used as a vehicle as well as increasing the permeability of biological barriers to enhance the effect of tumor treatment. However, the effect of UTMD in the tumor EMT process is unknown. In this study, we aimed to investigate the potential and mechanism of UTMD induced oxidative stress in inhibiting EMT of breast cancer. Human breast MDA231 cells were treated with microbubble (MB), ultrasound (US) and UTMD, respectively. The generation of oxidative stress, the levels of miR-200c, ZEB1 and vimentin, and the numbers of migratory cells were evaluated quantitatively and qualitatively by the measurement of intracellular reactive oxygen species (ROS), qRT-PCR, western blot assay, and transwell assay. Then, to evaluate the role of UTMD-induced oxidative stress and miR-200c in the epithelial-mesenchymal transition (EMT) inhibition, the ROS scavenger N-acetyl-L-cysteine (NAC) and miR-200c inhibitor were used before UTMD treatment. We found that UTMD induced oxidative stress, upregulated the expression of miR-200c, downregulated the expression of ZEB1 and vimentin and suppressed the MDA231 cell migration. The addition of NAC and miR-200c inhibitor had an opposite impact on the expression of miR-200c and ZEB1, thus hindered the effects of UTMD on MDA231 cells EMT. In conclusion, UTMD can inhibit the EMT characteristics of MDA231 cells. The mechanism may be related to the regulation of the miR-200c/ZEB1 axis through the generation of ROS induced by UTMD, which may provide a new strategy to prevent the tumor cells EMT under UTMD treatment.
Collapse
|
14
|
Jalili C, Abdolmaleki A, Roshankhah S, Salahshoor MR. Effects of gallic acid on rat testopathy following morphine administration: an experimental study. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.15171/jhp.2020.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: Morphine (MOR) as a psychoactive agent in the opium family causes free radicals accumulation which leads to failure in spermatogenesis. Gallic acid (GA), a polyphenolic acid, is found in various plants with antioxidant, anti-fungal, anti-viral, and anti-allergic activities. The purpose of this study was to evaluate the effects of GA against MOR-induced damage to the reproductive parameter of rats. Methods: Sixty-four male Wistar rats (8 weeks, 220-250 g) were categorized into 8 groups by random (n=8/each); normal control and MOR control groups; GA groups (5, 10, 20 mg/kg) and MOR + GA groups (5, 10, 20 mg/kg). Treatments were administered intraperitoneally (i.p), daily for 4 weeks. The sperm parameters, spermatogenesis index (SI), total antioxidant capacity, testosterone level, and seminiferous tube diameter (STD) were assessed. Results: All sperm parameters reduced significantly in the MOR control group than to the normal control group (P < 0.01). All parameters were significantly improved in GA and GA + MOR treatment groups compared to the MOR control group (P < 0.01). Conclusion: MOR caused a detrimental effect on male reproductive parameters. Also, no significant modifications were observed in all doses of GA treatments in comparison with the normal control group. GA compensates the toxic effect of MOR on reproductive parameters. Hence, GA administration is beneficial in MOR users.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Abdolmaleki
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shiva Roshankhah
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Salahshoor
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Nguyen DD, Luo L, Lai J. Dendritic Effects of Injectable Biodegradable Thermogels on Pharmacotherapy of Inflammatory Glaucoma-Associated Degradation of Extracellular Matrix. Adv Healthc Mater 2019; 8:e1900702. [PMID: 31746141 DOI: 10.1002/adhm.201900702] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/25/2019] [Indexed: 01/01/2023]
Abstract
The development of advanced drug delivery systems with extensively sustained release and multiple functions is highly imperative for effective attenuation of the degradation of ocular extracellular matrix that is associated with inflammatory glaucoma. Here, the generation of amine-terminated polyamidoamine dendrimers in an injectable biodegradable thermogel is demonstrated to be important for achieving prolonged drug release profiles and potent anti-inflammatory effects. Among various generations (Gx, x = 0, 1, 3, 5), third-generation G3 is proved as the most effective material for optimizing the synergistic effects of gelatin and poly(N-isopropylacrylamide) and generating a thermogel with the highest biodegradation resistance, the best drug encapsulation/extended-release performance, and the best ability to reduce the elevated expression of inflammatory molecules. A pharmacotherapy based on intracameral injection of thermogels coloaded with pilocarpine and ascorbic acid results in effective alleviation of progressive glaucoma owing to the anti-inflammatory activity and long-acting drug release (above a therapeutic level of 10 µg mL-1 over 80 days) of thermogels, which simultaneously suppress inflammation and stimulate regeneration of stromal collagen and retinal laminin. These findings on the dendritic effects of rationally designed injectable biomaterials with potent anti-inflammatory effects and controlled drug release demonstrate great promise of their use for pharmacological treatment of progressive glaucoma.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Graduate Institute of Biomedical EngineeringChang Gung University Taoyuan 33302 Taiwan ROC
| | - Li‐Jyuan Luo
- Graduate Institute of Biomedical EngineeringChang Gung University Taoyuan 33302 Taiwan ROC
| | - Jui‐Yang Lai
- Graduate Institute of Biomedical EngineeringChang Gung University Taoyuan 33302 Taiwan ROC
- Department of OphthalmologyChang Gung Memorial Hospital, Linkou Taoyuan 33305 Taiwan ROC
- Department of Materials EngineeringMing Chi University of Technology New Taipei City 24301 Taiwan ROC
| |
Collapse
|
16
|
Xingqi W, Yong Z, Xing L, Yang W, Jie H, Rongfeng H, Shuangying G, Xiaoqin C. Cubic and hexagonal liquid crystal gels for ocular delivery with enhanced effect of pilocarpine nitrate on anti-glaucoma treatment. Drug Deliv 2019; 26:952-964. [PMID: 31544551 PMCID: PMC6764361 DOI: 10.1080/10717544.2019.1667451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The objective of this work was to investigate phytantriol-based liquid crystal (LC) gels including cubic (Q2) and hexagonal (H2) phase for ocular delivery of pilocarpine nitrate (PN) to treat glaucoma. The gels were produced by a vortex method and confirmed by crossed polarized light microscopy, small-angle X-ray scattering, and rheological measurements. Moreover, the release behaviors and permeation results of PN from the gels were estimated using in vitro studies. Finally, the anti-glaucoma effect of LC gels was evaluated by in vivo animal experiments. The inner structure of the gels was Pn3m-type Q2 and H2 phase, and both of them showed pseudoplastic fluid properties based on characterization techniques. In vitro release profiles suggested that PN could be sustainably released from LC gels within 48 h. Compared with eye drops, Q2 and H2 gel produces a 5.25-fold and 6.23-fold increase in the Papp value (p < .05), respectively, leading to a significant enhancement of corneal penetration. Furthermore, a good biocompatibility and longer residence time on precorneal for LC gels confirmed by in vivo animal experiment. Pharmacokinetic studies showed that LC gels could maintain PN concentration in aqueous humor for at least 12 h after administration and remarkably improve the bioavailability of drug. Additionally, in vivo pharmacodynamics studies indicated that LC gels had a more significant intraocular pressure-lowering and miotic effect compared to eye drops. These research findings hinted that LC gels would be a promising pharmaceutical strategy for ocular application to enhance the efficacy of anti-glaucoma.
Collapse
Affiliation(s)
- Wang Xingqi
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine , Hefei , People's Republic of China
| | - Zhang Yong
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine , Hefei , People's Republic of China
| | - Li Xing
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine , Hefei , People's Republic of China
| | - Wang Yang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine , Hefei , People's Republic of China
| | - Huang Jie
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine , Hefei , People's Republic of China
| | - Hu Rongfeng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine , Hefei , People's Republic of China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine , Hefei , People's Republic of China
| | - Gui Shuangying
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine , Hefei , People's Republic of China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine , Hefei , People's Republic of China
| | - Chu Xiaoqin
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine , Hefei , People's Republic of China.,Institute of Pharmaceutics, Anhui Academy of Chinese Medicine , Hefei , People's Republic of China
| |
Collapse
|
17
|
Amination degree of gelatin is critical for establishing structure-property-function relationships of biodegradable thermogels as intracameral drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:897-909. [DOI: 10.1016/j.msec.2019.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 01/01/2019] [Accepted: 01/11/2019] [Indexed: 12/17/2022]
|
18
|
Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers. Carbohydr Polym 2018; 197:375-384. [DOI: 10.1016/j.carbpol.2018.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 12/30/2022]
|
19
|
Bakravi A, Ahamadian Y, Hashemi H, Namazi H. Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21938] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Asghar Bakravi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Yashar Ahamadian
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Hamed Hashemi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN); Tabriz University of Medical Science; Tabriz Iran
| |
Collapse
|
20
|
Luo LJ, Lai JY. Epigallocatechin Gallate-Loaded Gelatin-g-Poly(N-Isopropylacrylamide) as a New Ophthalmic Pharmaceutical Formulation for Topical Use in the Treatment of Dry Eye Syndrome. Sci Rep 2017; 7:9380. [PMID: 28839279 PMCID: PMC5571197 DOI: 10.1038/s41598-017-09913-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 11/09/2022] Open
Abstract
Given that biodegradable in situ gelling delivery systems may have potential applications in the design of ophthalmic pharmaceutical formulations, this study, for the first time, aims to develop gelatin-g-poly(N-isopropylacrylamide) (GN) carriers for topical epigallocatechin gallate (EGCG) administration in the treatment of dry eye disease (DED). By temperature triggered sol-gel phase transition of copolymers, EGCG-loaded GN was prepared at 32 °C and characterized by FTIR, NMR, and HPLC analyses. Results of WST-1 and live/dead assays showed that GN materials have good compatibility with corneal epithelial cells. Gradual biodegradation of delivery carriers allowed sustained release of EGCG without drug toxicity. Anti-inflammatory and antioxidant activity studies also indicated effective therapeutic drug levels at each time point within 3 days of release. In a rabbit dry eye model, corneal epithelial defects was ameliorated by treatment with single-dose administration of EGCG-containing GN. Furthermore, drug molecules released from carrier materials could prevent further tear evaporation and loss of mucin-secreting goblet cells in diseased animals. Our findings suggest that GN carrier is responsible for enhanced pharmacological efficacy of topically instilled EGCG, thereby demonstrating the benefits of using biodegradable in situ gelling delivery system to overcome the drawbacks of limited dry eye relief associated with eye drop dosage form.
Collapse
Affiliation(s)
- Li-Jyuan Luo
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan, ROC
| | - Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan, ROC. .,Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, ROC. .,Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC.
| |
Collapse
|
21
|
Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions. Acta Biomater 2017; 55:396-409. [PMID: 28363786 DOI: 10.1016/j.actbio.2017.03.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/07/2017] [Accepted: 03/27/2017] [Indexed: 01/19/2023]
Abstract
In vivo behavior of hydrogel-based biomaterials is very important for rational design of hydrogels for various biomedical applications. Herein, we developed a facile method for in situ fabrication of radiopaque hydrogel. An iodinated functional diblock copolymer of poly(ethylene glycol) and aliphatic polyester was first synthesized by coupling the hydroxyl end of the diblock copolymer with 2,3,5-triiodobenzoic acid (TIB) and then a radiopaque thermoreversible hydrogel was obtained by mixing it with the virgin diblock copolymer. A concentrated aqueous solution of the copolymer blend was injectable at room temperature and spontaneously turned into an in situ hydrogel at body temperature after injection. The introduction of TIB moieties affords the capacity of X-ray opacity, enabling in vivo visualization of the hydrogel using Micro-CT. A rat model with cecum and abdominal defects was utilized to evaluate the efficacy of the radiopaque hydrogel in the prevention of post-operative adhesions, and a significant reduction of the post-operative adhesion formation was confirmed. Meanwhile, the maintenance of the radiopaque hydrogel in the abdomen after administration was non-destructively detected via Micro-CT scanning. The reconstructed three-dimensional images showed that the radiopaque hydrogel with an irregular morphology was located on the injured abdominal wall. The time-dependent profile of the volume of the radiopaque hydrogel determined by Micro-CT imaging was well consistent with the trend obtained from the dissection observation. Therefore, the radiopaque thermoreversible hydrogel can serve as a potential visualized biomedical implant and this practical mixing approach is also useful for further extension into the in vivo monitoring of other biomaterials. STATEMENT OF SIGNIFICANCE While a variety of biomaterials have been extensively studied, it is rare to monitor in vivo degradation and medical efficacy of a material after being implanted deeply into the body. Herein, the radiopaque thermoreversible hydrogel developed by us not only holds desirable performance on the prevention of post-operative abdominal adhesions, but also allows non-invasive monitoring of its in vivo degradation with CT imaging in a real-time, quantitative and three-dimensional manner. The methodology based on CT imaging provides important insights into the in vivo fate of the hydrogel after being deeply implanted into mammals for different biomedical applications and significantly reduces the amount of animals sacrificed.
Collapse
|
22
|
Chitosan- g -poly( N -isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration. Eur J Pharm Biopharm 2017; 113:140-148. [DOI: 10.1016/j.ejpb.2016.11.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/27/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022]
|
23
|
Abstract
Sustained-release drug delivery systems that replace the need for daily glaucoma medications will improve outcomes for those who are nonadherent and reduce the inconvenience of having to take medications on a recurring basis.The objective is to estimate uptake (i.e., demand) for a new technology that delivers sustained-release glaucoma medication and to investigate how uptake varies by product attributes, physician recommendations, peer adoption (i.e., percentage of patients seen in a clinic using the new technology), and patient characteristics.In a web-enabled discrete-choice experiment survey, glaucoma patients in the United States were asked to choose between continuing eye drop use or purchasing the new delivery system. In a cross-sectional web-enabled survey, ophthalmologists were asked their likelihood of recommending the new technology based on product and patient characteristics.Study participants were 500 glaucoma patients who were on topical administration of daily eye drops and 155 ophthalmologists who practice in the US.Main outcomes were predicted uptake for patients and likelihood of recommending a new drug delivery system for ophthalmologists. Logistic models were used to analyze the choice data.Uptake was estimated to be 18% at an annual cost of $1000 and to be 24% when the cost was $500. A physician's recommendation increased uptake by 6% to 12%, whereas an increase in peer adoption from 5% to 50% increased uptake by 3% to 7%. Patients aged ≥ 65 and those with lower income were more likely to remain on eye drops. Physicians were more likely to recommend a product if the interval between administrations is 6 months or longer and when long-term safety and efficacy data are available. They were less likely to recommend it to patients with lower income and no adherence problems.Results suggest a significant interest in an injectable solution or other sustained-release alternatives to daily eye drops. However, in this survey, patient uptake was greatly influenced by out-of-pocket cost and the interval between treatment administrations. Few physicians were willing to recommend sustained-release technology if the treatment interval was less than 3 months.
Collapse
Affiliation(s)
- Semra Ozdemir
- Health Services and Systems Research Programme, Duke-NUS Medical School
| | - Tina T. Wong
- Glaucoma Department, Singapore National Eye Centre, Singapore
| | | | | |
Collapse
|
24
|
In vivo Pharmacological Evaluations of Pilocarpine-Loaded Antioxidant-Functionalized Biodegradable Thermogels in Glaucomatous Rabbits. Sci Rep 2017; 7:42344. [PMID: 28186167 PMCID: PMC5301226 DOI: 10.1038/srep42344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
To alleviate oxidative stress-induced ocular hypertension, grafting of antioxidant molecules to drug carriers enables a dual-function mechanism to effectively treat glaucomatous intraocular pressure (IOP) dysregulation. Providing potential application for intracameral administration of antiglaucoma medications, this study, for the first time, aims to examine in vivo pharmacological efficacy of pilocarpine-loaded antioxidant-functionalized biodegradable thermogels in glaucomatous rabbits. A series of gallic acid (GA)-grafted gelatin-g-poly(N-isopropylacrylamide) (GN) polymers were synthesized via redox reactions at 20-50 °C. Our results showed that raising redox radical initiation reaction temperature maximizes GA grafting level, antioxidant activity, and water content at 40 °C. Meanwhile, increase in overall hydrophilicity of GNGA carriers leads to fast polymer degradation and early pilocarpine depletion in vivo, which is disadvantageous to offer necessary pharmacological performance at prolonged time. By contrast, sustained therapeutic drug concentrations in aqueous humor can be achieved for long-term (i.e., 28 days) protection against corneal aberration and retinal injury after pilocarpine delivery using dual-function optimized carriers synthesized at 30 °C. The GA-functionalized injectable hydrogels are also found to contribute significantly to enhancement of retinal antioxidant defense system and preservation of histological structure and electrophysiological function, thereby supporting the benefits of drug-containing antioxidant biodegradable thermogels to prevent glaucoma development.
Collapse
|
25
|
Luo LJ, Lai JY. The role of alkyl chain length of monothiol-terminated alkyl carboxylic acid in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) carriers for antiglaucoma drug delivery. Acta Biomater 2017; 49:344-357. [PMID: 27890728 DOI: 10.1016/j.actbio.2016.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
To improve ocular bioavailability and extend pharmacological response, this study aims to investigate the role of alkyl chain length of monothiol-terminated alkyl carboxylic acids in the synthesis, characterization, and application of gelatin-g-poly(N-isopropylacrylamide) (GN) biodegradable in situ gelling carriers for antiglaucoma drug delivery. In the presence of mercaptoacetic acid (MAA), mercaptopropionic acid (MPA), mercaptobutyric acid (MBA), or mercaptohexanoic acid (MHA) as a chain transfer agent, the carboxylic end-capped poly(N-isopropylacrylamide) samples were prepared by free radical polymerization technique. Our results showed that with increasing alkyl chain length, the hydrophobicity of thermo-responsive polymer segments significantly increased, mainly due to an increase in CH stretching frequencies. In addition, the greater hydrophobic association favored the decrease in both phase transition temperature and weight loss of GN copolymers, thereby accelerating their temperature-triggered gelation process and retarding the degradation progress under physiological conditions. The benefits from these features allowed the pilocarpine carriers to increase drug payload and extend drug release. Irrespective of carbon number of monothiol-terminated alkyl carboxylic acid, the synthesized GN materials exhibited high tolerance to corneal endothelial cells without any evidence of inhibited proliferation, viability loss, inflammatory stimulation, and functional abnormality, indicating good biocompatibility. Results of clinical observations and histological examinations demonstrated that the therapeutic efficacies in treating glaucomatous damage are in response to in vivo drug release profiles from various intracamerally injected GN carriers. The research findings suggest the influence of alkyl chain length of chain transfer agent-mediated polymer hydrophobicity and degradability on pharmacological bioavailability and action of pilocarpine in a glaucomatous rabbit model. STATEMENT OF SIGNIFICANCE Considering that glaucoma is a chronic disease that requires long-term medical therapy to preserve vision in patients, it is highly desirable to augment pharmacological bioavailability and govern release profile by tuning the properties of drug delivery carriers. For the first time, the present study provide striking evidence that the alkyl chain length of monothiol-terminated alkyl carboxylic acid related to the synthesis of biodegradable in situ gelling copolymers plays a key role in molecular functionalization of intracameral delivery systems for ocular administration and controlled release of antiglaucoma medications. The therapeutic efficacies in treating glaucomatous damage are in response to in vivo pilocarpine release profiles modulated by the carbon number of thermo-responsive polymer segment-mediated carrier hydrophobicity and degradability.
Collapse
|
26
|
Chou SF, Luo LJ, Lai JY, Ma DHK. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1145-1155. [PMID: 27987671 DOI: 10.1016/j.msec.2016.11.105] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 02/04/2023]
Abstract
Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure-property relationship without compromising in vitro and in vivo biocompatibility of electrospun gelatin nanofibers for future ophthalmic applications.
Collapse
Affiliation(s)
- Shih-Feng Chou
- Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Li-Jyuan Luo
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC; Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC; Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC.
| | - David Hui-Kang Ma
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| |
Collapse
|
27
|
Rwei P, Alex Gong CS, Luo LJ, Lin MB, Lai JY, Liu HL. In vitro investigation of ultrasound-induced oxidative stress on human lens epithelial cells. Biochem Biophys Res Commun 2017; 482:954-960. [DOI: 10.1016/j.bbrc.2016.11.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022]
|