1
|
Khandal J, Dohare S, Dongsar TS, Gupta G, Alsayari A, Wahab S, Kesharwani P. Gelatin nanocarriers in oncology: A biocompatible strategy for targeted drug delivery. Int J Biol Macromol 2025; 310:143244. [PMID: 40250682 DOI: 10.1016/j.ijbiomac.2025.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Cancer persists as a formidable global health crisis, with conventional therapies often compromised by systemic toxicity, poor tumor specificity, and therapeutic resistance. Nanotechnology has emerged as a transformative approach, leveraging nanoscale materials to enhance drug bioavailability, enable targeted delivery, and mitigate off-target effects. Among these innovations, gelatin-based nanoparticles (GNPs), derived from collagen and endorsed by the FDA have garnered significant attention as biocompatible, biodegradable nanocarriers uniquely suited for oncology applications. GNPs address critical extracellular barriers such as inefficient tumor penetration, rapid clearance, and nonspecific biodistribution by capitalizing on gelatin's intrinsic advantages: low immunogenicity, tumor microenvironment responsiveness (pH, enzymes, redox gradients), and tunable surface functionalization. This review highlights the versatility of GNPs in overcoming these challenges through advanced strategies like ligand-mediated targeting, combinatorial therapies, and size-transformable systems that enhance tumor accumulation and therapeutic precision. Case studies across lung, breast, skin, liver, colorectal, brain, and head/neck cancers demonstrate GNPs' ability to reduce IC50 values by 2 to 4-fold, achieve >90 % apoptosis in malignant cells, and minimize damage to healthy tissues. Despite the challenges in translating gelatin-based nanocarriers from preclinical studies to clinical applications in cancer therapy, their promising preclinical performance highlights their potential as patient-centric platforms capable of advancing precision oncology. Further their adaptability, multifunctionality, and capacity for stimuli-responsive drug release underscore their potential to improve clinical outcomes, offering a targeted, low-toxicity paradigm for managing diverse malignancies.
Collapse
Affiliation(s)
- Jayesh Khandal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shubham Dohare
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
2
|
Chen Y, Zhang Y, Dai W, Xue Y, Li J, Zhang K, Tang R, Mao C, Wan M. Dual responsive drug-loaded nanomotor based on zwitterionic materials for the treatment of peritoneal metastatic cancer. J Colloid Interface Sci 2025; 679:868-878. [PMID: 39396462 DOI: 10.1016/j.jcis.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Innovative treatments for peritoneal metastatic cancer have attracted widespread attention from researchers. Here, we propose a drug-loaded nanomotor (PSBMA/l-Arg/DOX, PLD) based on zwitterionic materials for the treatment of peritoneal metastatic cancer through intraperitoneal injection. Zwitterionic polymer nanocarriers (PSBMA NPs) are obtained by radical polymerization with zwitterionic SBMA as the polymerization monomer and N,N'-Bis(acryloyl)cystamine (BAC) as the cross-linking agent. The zwitterionic substrate of this nanomotor has the ability to resist non-specific protein adsorption in ascites. The loaded l-arginine enables the nanomotor to have the ability to chemotaxis towards high concentrations of ROS/iNOS in tumors and be catalyzed to produce NO, achieving deep penetration into tumor tissue. Furthermore, the disulfide bond (SS) carried by the crosslinking agent used in the preparation of the nanomotor can respond to the high expression of reducing glutathione in the tumor microenvironment and undergo degradation, releasing a large amount of loaded drug DOX. Cell and animal disease model experiments confirme the good therapeutic effect of this drug-loaded nanomotor, providing new therapeutic concepts and strategies for the treatment of peritoneal metastatic cancer.
Collapse
Affiliation(s)
- Yidan Chen
- Thermotherapy Centre, Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Yao Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenjun Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiawei Li
- Thermotherapy Centre, Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Ke Zhang
- Thermotherapy Centre, Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Rongjun Tang
- Thermotherapy Centre, Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Shang J, Chen Y, Wang F, Yang J, Li Y, Yang L, Liu X, Zhong Z, Yue C, Zhou M. A Multifunctional MIL-101-NH 2(Fe) Nanoplatform for Synergistic Melanoma Therapy. Int J Nanomedicine 2025; 20:969-988. [PMID: 39867313 PMCID: PMC11766718 DOI: 10.2147/ijn.s502089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Background Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes. Methods In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH2(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG). MIL-101-NH2(Fe) was synthesized via a hydrothermal method. Drug release was evaluated under different pH conditions, and the photothermal effect was tested under near-infrared (NIR) laser irradiation. Hydroxyl radical and reactive oxygen species generation capacities were quantified. Cellular studies using B16F10 cells assessed cytotoxicity, cellular uptake, migration inhibition, and colony formation suppression. In vivo experiments in melanoma-bearing mice evaluated antitumor efficacy and systemic safety through tumor growth inhibition, histological analyses, and toxicity assessments. Results MIL@DOX@ICG exhibited a uniform octahedral structure with a particle size of approximately 139 nm and high drug loading efficiencies for DOX (33.70%) and ICG (30.59%). The nanoplatform demonstrated pH-responsive drug release and potent photothermal effects. The generation of hydroxyl radicals via the Fenton reaction and reactive oxygen species production under NIR laser irradiation by MIL@DOX@ICG were confirmed. In vitro assessments revealed significant cytotoxicity of MIL@DOX@ICG against B16F10 cells under NIR laser irradiation, with improved efficacy in inhibiting cell proliferation and migration. In vivo studies confirmed the superior antitumor efficacy of MIL@DOX@ICG + NIR treatment, synergistically harnessing chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy effects while maintaining excellent biocompatibility. Conclusion Our findings underscore the potential of MIL-101-NH2(Fe) nanoparticles as a versatile and effective platform for synergistic melanoma therapy, offering a promising strategy for overcoming the limitations of conventional treatment modalities.
Collapse
Affiliation(s)
- Jinlu Shang
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, Sichuan, 610400, People’s Republic of China
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yongjun Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Fangliang Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yi Li
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiuqiong Liu
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, Sichuan, 610400, People’s Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chaochi Yue
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| |
Collapse
|
4
|
Yuan J, Yang H, Huang W, Liu S, Zhang H, Zhang X, Peng X. Design strategies and applications of cyanine dyes in phototherapy. Chem Soc Rev 2025; 54:341-366. [PMID: 39576179 DOI: 10.1039/d3cs00585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cyanine dyes have been widely used in phototherapy in recent years due to their excellent optical properties and diverse modifiable structures. This review provides detailed descriptions of the basic structures of various cyanines and their derivatives as well as their optical properties. It summarizes the strategies for constructing cyanine dyes for phototherapy and discusses their structure-effect relationship. Furthermore, a comprehensive classification and summary of the applications of cyanine dyes in phototherapy are presented. Importantly, this review also addresses both the advances made in this field as well as the challenges that need to be overcome. We hope that these profound insights into phototherapy using cyanine dyes will facilitate the design of future systems for clinical applications based on these compounds.
Collapse
Affiliation(s)
- Jie Yuan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Hanxue Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Wenhui Huang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Shilong Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
- College of Materials Science and Engineering, Shenzhen University, Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
5
|
Li Z, Lan J, Liu L, Wang Y, Chen L, Zeng R, Gu D, Hu R, Zhang T, Ding Y. Versatile Thermo-Sensitive liposomes with HSP inhibition and Anti-Inflammation for synergistic Chemo-Photothermal to inhibit breast cancer metastasis. Int J Pharm 2024; 664:124583. [PMID: 39153642 DOI: 10.1016/j.ijpharm.2024.124583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Photothermal therapy (PTT) is a prospective therapeutic method for breast cancer. However, excess inflammatory response induced by PTT may aggravate tumor metastasis. Meanwhile, the overexpressed heat shock proteins (HSPs) by cancer cells can protect them from hyperthermia during PTT. Therefore, to attenuate the PTT-induced inflammation and inhibit tumor metastasis, a folate receptor-targeted thermo-sensitive liposome (BI-FA-LP) co-loading Berberine (BBR) and Indocyanine green (ICG) was developed. BI-FA-LP utilized enhanced permeability and retention (EPR) effect and FA receptor-mediated endocytosis to selectively accumulate at tumor, reducing off-target toxicity during the treatment. After targeting to the tumor site, BBR and ICG were released from BI-FA-LP upon laser irradiation, and ICG showed good photothermal performance, while BBR inhibited HSP70 and HSP90 expression during PTT, exerting chemo-photothermal synergetic anti-tumor effect. Moreover, BBR could suppress the PTT induced inflammation, thus inhibiting tumor metastasis and ameliorating tissue injury. Thus, this versatile liposome provided a new strategy to enhance PTT and anti-inflammatory effects for breast cancer treatment.
Collapse
Affiliation(s)
- Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Wang
- Shanghai Children's Medical Center, Shanghai 200127, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruolu Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
He Y, Feng Y, Qiu D, Lin M, Jin H, Hu Z, Huang X, Ma S, He Y, Lai M, Jin W, Liu J. Regulation of IFP in solid tumours through acoustic pressure to enhance infiltration of nanoparticles of various sizes. J Drug Target 2024; 32:964-976. [PMID: 38884143 DOI: 10.1080/1061186x.2024.2367579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Numerous nanomedicines have been developed recently that can accumulate selectively in tumours due to the enhanced permeability and retention (EPR) effect. However, the high interstitial fluid pressure (IFP) in solid tumours limits the targeted delivery of nanomedicines. We were previously able to relieve intra-tumoural IFP by low-frequency non-focused ultrasound (LFNFU) through ultrasonic targeted microbubble destruction (UTMD), improving the targeted delivery of FITC-dextran. However, the accumulation of nanoparticles of different sizes and the optimal acoustic pressure were not evaluated. In this study, we synthesised Cy5.5-conjugated mesoporous silica nanoparticles (Cy5.5-MSNs) of different sizes using a one-pot method. The Cy5.5-MSNs exhibited excellent stability and biosafety regardless of size. MCF7 tumour-bearing mice were subjected to UTMD over a range of acoustic pressures (0.5, 0.8, 1.5 and 2.0 MPa), and injected intravenously with Cy5.5-MSNs. Blood perfusion, tumour IFP and intra-tumoural accumulation of Cy5.5-MSNs were analysed. Blood perfusion and IFP initially rose, and then declined, as acoustic pressure intensified. Furthermore, UTMD significantly enhanced the accumulation of differentially sized Cy5.5-MSNs in tumour tissues compared to that of the control group, and the increase was sevenfold higher at an acoustic pressure of 1.5 MPa. Taken together, UTMD enhanced the infiltration and accumulation of Cy5.5-MSNs of different sizes in solid tumours by reducing intra-tumour IFP.
Collapse
Affiliation(s)
- Yangcheng He
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yuyi Feng
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Danxai Qiu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - MinHua Lin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Hai Jin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Zhiwen Hu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Xue Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Suihong Ma
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Yan He
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Meiqi Lai
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Wenhui Jin
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Ultrasound, School of Medicine, The Second Affiliated Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Hao X, Tang Y, Zhang R, Wang Z, Gao M, Wei R, Zhao Y, Mu X, Lu Y, Zhou X. Cationized orthogonal triad as a photosensitizer with enhanced synergistic antimicrobial activity. Acta Biomater 2024; 178:287-295. [PMID: 38395101 DOI: 10.1016/j.actbio.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Single-molecule-based synergistic phototherapy holds great potential for antimicrobial treatment. Herein, we report an orthogonal molecular cationization strategy to improve the reactive oxygen species (ROS) and hyperthermia generation of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Cationic pyridine (Py) is introduced at the meso‑position of the asymmetric Cy7 with intramolecular charge transfer (ICT) to construct an atypical electron-transfer triad, which reduces ΔES1-S0, circumvents rapid charge recombination, and simultaneously enhances intersystem crossing (ISC) based on spin-orbit charge-transfer ISC (SOCT-ISC) mechanism. This unique molecular construction produces anti-Stokes luminescence (ASL) because the rotatable CN bond enriched in high vibrational-rotational energy levels improves hot-band absorption (HBA) efficiency. The obtained triad exhibits higher singlet oxygen quantum yield and photothermal conversion efficiency compared to indocyanine green (ICG) under irradiation above 800 nm. Cationization with Py enables the triad to target bacteria via intense electrostatic attractions, as well as biocidal property against a broad spectrum of bacteria in the dark. Moreover, the triad under irradiation can enhance biofilm eradication performance in vitro and statistically improve healing efficacy of MRSA-infected wound in mice. Thus, this work provides a simple but effective strategy to design small-molecule photosensitizers for synergistic phototherapy of bacterial infections. STATEMENT OF SIGNIFICANCE: We developed an orthogonal molecular cationization strategy to enhance the reactive oxygen species and thermal effects of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Specifically, cationic pyridine (Py) was introduced at the meso‑position of the asymmetric Cy7 to construct an atypical electron-transfer triad, which reduced ΔES1-S0, circumvented rapid charge recombination, and simultaneously enhanced intersystem crossing (ISC). This triad, with a rotatable CN bond, produced anti-Stokes luminescence due to hot-band absorption. The triad enhanced antimicrobial performance and statistically improved the healing efficacy of MRSA-infected wounds in mice. This site-specific cationization strategy may provide insights into the design of small molecule-based photosensitizers for synergistic phototherapy of bacterial infections.
Collapse
Affiliation(s)
- Xiaoying Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Tang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, PR China
| | - Zigeng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Min Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ran Wei
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yongxian Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xueluer Mu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
8
|
Lin TY, Jia JS, Luo WR, Lin XL, Xiao SJ, Yang J, Xia JW, Zhou C, Zhou ZH, Lin SJ, Li QW, Yang ZZ, Lei Y, Yang WQ, Shen HF, Huang SH, Wang SC, Chen LB, Yang YL, Xue SW, Li YL, Dai GQ, Zhou Y, Li YC, Wei F, Rong XX, Luo XJ, Zhao BX, Huang WH, Xiao D, Sun Y. ThermomiR-377-3p-induced suppression of Cirbp expression is required for effective elimination of cancer cells and cancer stem-like cells by hyperthermia. J Exp Clin Cancer Res 2024; 43:62. [PMID: 38419081 PMCID: PMC10903011 DOI: 10.1186/s13046-024-02983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold‑inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)‑like population. Moreover, hyperthermia substantially improved the sensitivity of radiation‑resistant NPC cells and CSC‑like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti‑tumor‑killing activity of hyperthermia against NPC cells and CSC‑like cells, whereas ectopic expression of Cirbp compromised tumor‑killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC‑like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Shuang Jia
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wei-Ren Luo
- Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiao-Lin Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Sheng-Jun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Jie Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Imaging, Central Hospital of Shaoyang, Shaoyang, 422000, China
| | - Jia-Wei Xia
- The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming, 650041, China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Zhi-Hao Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Jun Lin
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi-Wen Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Zhi Yang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Lei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Qing Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hong-Fen Shen
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shi-Hao Huang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sheng-Chun Wang
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Lin-Bei Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Lin Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Xue
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Long Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guan-Qi Dai
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zhou
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Chun Li
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Wei
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guang‑zhou, 510515, China
| | - Xiao-Jun Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Bing-Xia Zhao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wen-Hua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510000, China.
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524001, China.
| | - Dong Xiao
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangzhou Southern Medical Laboratory Animal Sci.&Tech. Co.,Ltd, Guangzhou, 510515, China.
- National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yan Sun
- Laboratory Animal Management Center, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Baghdasaryan A, Liu H, Ren F, Hsu R, Jiang Y, Wang F, Zhang M, Grigoryan L, Dai H. Intratumor injected gold molecular clusters for NIR-II imaging and cancer therapy. Proc Natl Acad Sci U S A 2024; 121:e2318265121. [PMID: 38261618 PMCID: PMC10835035 DOI: 10.1073/pnas.2318265121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Surgical resections of solid tumors guided by visual inspection of tumor margins have been performed for over a century to treat cancer. Near-infrared (NIR) fluorescence labeling/imaging of tumor in the NIR-I (800 to 900 nm) range with systemically administrated fluorophore/tumor-targeting antibody conjugates have been introduced to improve tumor margin delineation, tumor removal accuracy, and patient survival. Here, we show Au25 molecular clusters functionalized with phosphorylcholine ligands (AuPC, ~2 nm in size) as a preclinical intratumorally injectable agent for NIR-II/SWIR (1,000 to 3,000 nm) fluorescence imaging-guided tumor resection. The AuPC clusters were found to be uniformly distributed in the 4T1 murine breast cancer tumor upon intratumor (i.t.) injection. The phosphocholine coating afforded highly stealth clusters, allowing a high percentage of AuPC to fill the tumor interstitial fluid space homogeneously. Intra-operative surgical navigation guided by imaging of the NIR-II fluorescence of AuPC allowed for complete and non-excessive tumor resection. The AuPC in tumors were also employed as a photothermal therapy (PTT) agent to uniformly heat up and eradicate tumors. Further, we performed in vivo NIR-IIb (1,500 to 1,700 nm) molecular imaging of the treated tumor using a quantum dot-Annexin V (QD-P3-Anx V) conjugate, revealing cancer cell apoptosis following PTT. The therapeutic functionalities of AuPC clusters combined with rapid renal excretion, high biocompatibility, and safety make them promising for clinical translation.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Haoran Liu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - RuSiou Hsu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Mengzhen Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA94305
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA94305
| |
Collapse
|
10
|
Chen T, Yang J, Zhao H, Li D, Luo X, Fan Z, Ren B, Cai Y, Dong R. Ultrasound-propelled nanomotors for efficient cancer cell ferroptosis. J Mater Chem B 2024; 12:667-677. [PMID: 38063821 DOI: 10.1039/d3tb02041j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Ferroptosis is a non-apoptotic form of cell death that is dependent on the accumulation of intracellular iron that causes elevation of toxic lipid peroxides. Therefore, it is crucial to improve the levels of intracellular iron and reactive oxygen species (ROS) in a short time. Here, we first propose ultrasound (US)-propelled Janus nanomotors (Au-FeOx/PEI/ICG, AFPI NMs) to accelerate cellular internalization and induce cancer cell ferroptosis. This nanomotor consists of a gold-iron oxide rod-like Janus nanomotor (Au-FeOx, AF NMs) and a photoactive indocyanine green (ICG) dye on the surface. It not only exhibits accelerating cellular internalization (∼4-fold) caused by its attractive US-driven propulsion but also shows good intracellular motion behavior. In addition, this Janus nanomotor shows excellent intracellular ROS generation performance due to the synergistic effect of the "Fenton or Fenton-like reaction" and the "photochemical reaction". As a result, the killing efficiency of actively moving nanomotors on cancer cells is 88% higher than that of stationary nanomotors. Unlike previous passive strategies, this work is a significant step toward accelerating cellular internalization and inducing cancer-cell ferroptosis in an active way. These novel US-propelled Janus nanomotors with strong propulsion, efficient cellular internalization and excellent ROS generation are suitable as a novel cell biology research tool.
Collapse
Affiliation(s)
- Ting Chen
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jie Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - He Zhao
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Dajian Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Xiaoyong Luo
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Zhiyu Fan
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Biye Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yuepeng Cai
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Renfeng Dong
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Khalili Najafabad B, Attaran N, Barati M, Mohammadi Z, Mahmoudi M, Sazgarnia A. Cobalt ferrite nanoparticle for the elimination of CD133+CD44 + and CD44 +CD24 -, in breast and skin cancer stem cells, using non-ionizing treatments. Heliyon 2023; 9:e19893. [PMID: 37810832 PMCID: PMC10556613 DOI: 10.1016/j.heliyon.2023.e19893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Cancer stem cells (CSCs) are the most challenging issue in cancer treatment, because of their high resistance mechanisms, that can cause tumor recurrence after common cancer treatments such as drug and radiation based therapies, and the insufficient efficiency of common treatments in CSCs removal and the recurrence of tumors after these treatments, it is essential to consider other methods, including non-ionizing treatments likes light-based treatments and magnetic hyperthermia (MHT). Method and material After synthesis, characterization and investigation, the toxicity of novel on A375 and MAD-MB-231 cell lines, magnetic hyperthermia and light-based treatments were applied. MTT assay and flow cytometry was employed to determine cell survival. the influence of combination therapy on CD44 + CD24-and CD133 + CD44+ cell population, Comparison and evaluation of combination treatments was done respectively using Combination Indices (CIs). Result The final nanoparticle has a high efficiency in producing hydroxyl radicals and generating heat in MHT. According to CIs, we can conclude that combined using of light-based treatment and MHT in the presence of final synthesized nanoparticle have synergistic effect and a high ability to reduce the population of stem cells in both cell lines compared to single treatments. Conclusion In this study a novel multi-functional nanoplatform acted well in dual and triple combined treatments, and showed a good performance in the eradication of CSCs, in A375 and MAD-MB-231 cell lines.
Collapse
Affiliation(s)
- Bahareh Khalili Najafabad
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan, University of Medical Science, Bojnurd, Iran
| | - Zahra Mohammadi
- Radiological Technology Department of Actually Paramedical Sciences, Babol University of Medical Science, Babol, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Yuwen L, Xiao H, Lu P, Chen X, Li J, Xiu W, Gan S, Yang D, Wang L. Amylase degradation enhanced NIR photothermal therapy and fluorescence imaging of bacterial biofilm infections. Biomater Sci 2023; 11:630-640. [PMID: 36484349 DOI: 10.1039/d2bm01570f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective treatment of bacterial biofilm-related infections is a great challenge for the medical community. During the formation of biofilms, bacteria excrete extracellular polymeric substances (EPS), including polysaccharides, proteins, nucleic acids, etc., to encapsulate themselves and form a "fort-like" structure, which greatly reduces the efficiency of therapeutic agents. Herein, we prepared a nanoagent (MnO2-amylase-PEG-ICG nanosheets, MAPI NSs) with biofilm degradation capability for efficient photothermal therapy and fluorescence imaging of methicillin-resistant Staphylococcus aureus (MRSA) biofilm infections. MAPI NSs were constructed by sequentially modifying α-amylase, polyethylene glycol (PEG), and indocyanine green (ICG) on manganese dioxide nanosheets (MnO2 NSs). Experimental results exhibited that MAPI NSs could accumulate in infected tissues after intravenous injection, degrade in the acidic biofilm microenvironment, and release the loaded ICG for near-infrared (NIR) fluorescence imaging of the infected tissues. Importantly, MAPI NSs could efficiently eliminate MRSA biofilm infections in mice by α-amylase enhanced photothermal therapy. In addition, MAPI NSs exhibited neglectable toxicity towards mice. Given the superior properties of MAPI NSs, the enzyme-degradation enhanced therapeutic strategy presented in this work offers a promising solution for effectively combating biofilm infectious diseases.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Huayu Xiao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Pei Lu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xiaolong Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jianguang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Weijun Xiu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Siyu Gan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
13
|
Ni Z, Hu J, Ye Z, Wang X, Shang Y, Liu H. Indocyanine Green Performance Enhanced System for Potent Photothermal Treatment of Bacterial Infection. Mol Pharm 2022; 19:4527-4537. [PMID: 35143213 DOI: 10.1021/acs.molpharmaceut.1c00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The instability in solution and aggregation-induced self-quenching of indocyanine green (ICG) have weakened its fluorescence and photothermal properties, thus inhibiting its application in practice. In this study, the cationic and anionic liposomes containing ICG were prepared based on 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-glycerol (DPPG), respectively. Molecular dynamics (MD) simulations demonstrate that ICG molecules are better distributed in the membranes of cationic DOTAP-based liposomes, leading to a superior fluorescence and photothermal performance. The liposomal ICG also shows the physical and photothermal stability during irradiation and long-term storage. On this basis, the prepared DOTAP-based liposomal ICG was encapsulated in the self-healing hydrogel formed by guar gum through the borate/diol interaction. The proposed liposomal ICG-loaded hydrogel can not only convert near-infrared (NIR) light into heat effectively but also repair itself without external assistance, which will realize potent photothermal therapy (PTT) against bacterial infection and provide the possibility for meeting the rapidly growing needs of modern medicine.
Collapse
Affiliation(s)
- Zhuoyao Ni
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiong Wang
- Department of Dermatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Ni Z, Hu J, Zhu H, Shang Y, Chen D, Chen Y, Liu H. In situ formation of a near-infrared controlled dual-antibacterial platform. NEW J CHEM 2022. [DOI: 10.1039/d1nj05028a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An in situ formed antibacterial platform was designed for near-infrared controlled pharmacotherapy and photothermal therapy of drug-resistant bacteria.
Collapse
Affiliation(s)
- Zhuoyao Ni
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Zhu
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Daijie Chen
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | | | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Tropism of Extracellular Vesicles and Cell-Derived Nanovesicles to Normal and Cancer Cells: New Perspectives in Tumor-Targeted Nucleic Acid Delivery. Pharmaceutics 2021; 13:pharmaceutics13111911. [PMID: 34834326 PMCID: PMC8621453 DOI: 10.3390/pharmaceutics13111911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
The main advantage of extracellular vesicles (EVs) as a drug carrier system is their low immunogenicity and internalization by mammalian cells. EVs are often considered a cell-specific delivery system, but the production of preparative amounts of EVs for therapeutic applications is challenging due to their laborious isolation and purification procedures. Alternatively, mimetic vesicles prepared from the cellular plasma membrane can be used in the same way as natural EVs. For example, a cytoskeleton-destabilizing agent, such as cytochalasin B, allows the preparation of membrane vesicles by a series of centrifugations. Here, we prepared cytochalasin-B-inducible nanovesicles (CINVs) of various cellular origins and studied their tropism in different mammalian cells. We observed that CINVs derived from human endometrial mesenchymal stem cells exhibited an enhanced affinity to epithelial cancer cells compared to myeloid, lymphoid or neuroblastoma cancer cells. The dendritic cell-derived CINVs were taken up by all studied cell lines with a similar efficiency that differed from the behavior of DC-derived EVs. The ability of cancer cells to internalize CINVs was mainly determined by the properties of recipient cells, and the cellular origin of CINVs was less important. In addition, receptor-mediated interactions were shown to be necessary for the efficient uptake of CINVs. We found that CINVs, derived from late apoptotic/necrotic cells (aCINVs) are internalized by in myelogenous (K562) 10-fold more efficiently than CINVs, and interact much less efficiently with melanocytic (B16) or epithelial (KB-3-1) cancer cells. Finally, we found that CINVs caused a temporal and reversible drop of the rate of cell division, which restored to the level of control cells with a 24 h delay.
Collapse
|
16
|
Zhang LY, Yang X, Wang SB, Chen H, Pan HY, Hu ZM. Membrane Derived Vesicles as Biomimetic Carriers for Targeted Drug Delivery System. Curr Top Med Chem 2021; 20:2472-2492. [PMID: 32962615 DOI: 10.2174/1568026620666200922113054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/25/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are membrane vesicles (MVs) playing important roles in various cellular and molecular functions in cell-to-cell signaling and transmitting molecular signals to adjacent as well as distant cells. The preserved cell membrane characteristics in MVs derived from live cells, give them great potential in biological applications. EVs are nanoscale particulates secreted from living cells and play crucial roles in several important cellular functions both in physiological and pathological states. EVs are the main elements in intercellular communication in which they serve as carriers for various endogenous cargo molecules, such as RNAs, proteins, carbohydrates, and lipids. High tissue tropism capacity that can be conveniently mediated by surface molecules, such as integrins and glycans, is a unique feature of EVs that makes them interesting candidates for targeted drug delivery systems. The cell-derived giant MVs have been exploited as vehicles for delivery of various anticancer agents and imaging probes and for implementing combinational phototherapy for targeted cancer treatment. Giant MVs can efficiently encapsulate therapeutic drugs and deliver them to target cells through the membrane fusion process to synergize photodynamic/photothermal treatment under light exposure. EVs can load diagnostic or therapeutic agents using different encapsulation or conjugation methods. Moreover, to prolong the blood circulation and enhance the targeting of the loaded agents, a variety of modification strategies can be exploited. This paper reviews the EVs-based drug delivery strategies in cancer therapy. Biological, pharmacokinetics and physicochemical characteristics, isolation techniques, engineering, and drug loading strategies of EVs are discussed. The recent preclinical and clinical progresses in applications of EVs and oncolytic virus therapy based on EVs, the clinical challenges and perspectives are discussed.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Hong Chen
- Department of Stomatology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou
Medical College, Hangzhou 310014, China
| | - Hong-Ying Pan
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China,Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Zhi-Ming Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China,Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
17
|
Chen X, Zou J, Zhang K, Zhu J, Zhang Y, Zhu Z, Zheng H, Li F, Piao JG. Photothermal/matrix metalloproteinase-2 dual-responsive gelatin nanoparticles for breast cancer treatment. Acta Pharm Sin B 2021; 11:271-282. [PMID: 33532192 PMCID: PMC7838055 DOI: 10.1016/j.apsb.2020.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023] Open
Abstract
The chemotherapy combined with photothermal therapy has been a favorable approach for the treatment of breast cancer. In present study, nanoparticles with the characteristics of photothermal/matrix metalloproteinase-2 (MMP-2) dual-responsive, tumor targeting, and size-variability were designed for enhancing the antitumor efficacy and achieving "on-demand" drug release markedly. Based on the thermal sensitivity of gelatin, we designed a size-variable gelatin nanoparticle (GNP) to encapsulate indocyanine green (ICG) and doxorubicin (DOX). Under an 808 nm laser irradiation, GNP-DOX/ICG responded photothermally and swelled in size from 71.58 ± 4.28 to 160.80 ± 9.51 nm, which was beneficial for particle retention in the tumor sites and release of the loaded therapeutics. Additionally, GNP-DOX/ICG showed a size reduction of the particles to 33.24 ± 4.11 nm and further improved drug release with the degradation of overexpressed MMP-2 in tumor. In the subsequently performed in vitro experiments, it was confirmed that GNP-DOX/ICG could provide a therapeutic effect that was enhanced and synergistic. Consequently, GNP-DOX/ICG could efficiently suppress the growth of 4T1 tumor in vivo. In conclusion, this study may provide a promising strategy in the rational design of drug delivery nanosystems based on gelatin for chemo-photothermal therapy to achieve synergistically enhanced therapeutic efficacy against breast cancer.
Collapse
Affiliation(s)
- Xiaojie Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiafeng Zou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ke Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jingjing Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yue Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhihong Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
18
|
Husni P, Shin Y, Kim JC, Kang K, Lee ES, Youn YS, Rusdiana T, Oh KT. Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Biomedicines 2020; 8:E618. [PMID: 33339198 PMCID: PMC7765596 DOI: 10.3390/biomedicines8120618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
The use of photo-based nanomedicine in imaging and therapy has grown rapidly. The property of light in converting its energy into different forms has been exploited in the fields of optical imaging (OI) and phototherapy (PT) for diagnostic and therapeutic applications. The development of nanotechnology offers numerous advantages to overcome the challenges of OI and PT. Accordingly, in this review, we shed light on common photosensitive agents (PSAs) used in OI and PT; these include fluorescent and bioluminescent PSAs for OI or PT agents for photodynamic therapy (PDT) and photothermal therapy (PTT). We also describe photo-based nanotechnology systems that can be used in photo-based diagnostics and therapies by using various polymeric systems.
Collapse
Affiliation(s)
- Patihul Husni
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Yuseon Shin
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Jae Chang Kim
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Kioh Kang
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| |
Collapse
|
19
|
Sim T, Lim C, Hoang NH, Shin Y, Kim JC, Park JY, Her J, Lee ES, Youn YS, Oh KT. An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy. Pharmaceutics 2020; 12:E839. [PMID: 32887273 PMCID: PMC7558381 DOI: 10.3390/pharmaceutics12090839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Combination therapy is considered to be a promising strategy for improving the therapeutic efficiency of cancer treatment. In this study, an on-demand pH-sensitive nanocluster (NC) system was prepared by the encapsulation of gold nanorods (AuNR) and doxorubicin (DOX) by a pH-sensitive polymer, poly(aspartic acid-graft-imidazole)-PEG, to enhance the therapeutic effect of chemotherapy and photothermal therapy. At pH 6.5, the NC systems formed aggregated structures and released higher drug amounts while sustaining a stable nano-assembly, structured with less systemic toxicity at pH 7.4. The NC could also increase antitumor efficacy as a result of improved accumulation and release of DOX from the NC system at pHex and pHen with locally applied near-infrared light. Therefore, an NC system would be a potent strategy for on-demand combination treatment to target tumors with less systemic toxicity and an improved therapeutic effect.
Collapse
Affiliation(s)
- Taehoon Sim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Chaemin Lim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Ngoc Ha Hoang
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Yuseon Shin
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Jae Chang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - June Yong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Jaewon Her
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea;
| | - Kyung Taek Oh
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (T.S.); (C.L.); (N.H.H.); (Y.S.); (J.C.K.); (J.Y.P.); (J.H.)
| |
Collapse
|
20
|
Gomzikova MO, Aimaletdinov AM, Bondar OV, Starostina IG, Gorshkova NV, Neustroeva OA, Kletukhina SK, Kurbangaleeva SV, Vorobev VV, Garanina EE, Persson JL, Jeyapalan J, Mongan NP, Khaiboullina SF, Rizvanov AA. Immunosuppressive properties of cytochalasin B-induced membrane vesicles of mesenchymal stem cells: comparing with extracellular vesicles derived from mesenchymal stem cells. Sci Rep 2020; 10:10740. [PMID: 32612100 PMCID: PMC7330035 DOI: 10.1038/s41598-020-67563-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles derived from mesenchymal stem cells (MSCs) represent a novel approach for regenerative and immunosuppressive therapy. Recently, cytochalasin B-induced microvesicles (CIMVs) were shown to be effective drug delivery mediators. However, little is known about their immunological properties. We propose that the immunophenotype and molecular composition of these vesicles could contribute to the therapeutic efficacy of CIMVs. To address this issue, CIMVs were generated from murine MSC (CIMVs-MSCs) and their cytokine content and surface marker expression determined. For the first time, we show that CIMVs-MSCs retain parental MSCs phenotype (Sca-1+, CD49e+, CD44+, CD45−). Also, CIMVs-MSCs contained a cytokine repertoire reflective of the parental MSCs, including IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12(p40), IL-13, IL-17, CCL2, CCL3, CCL4, CCL5, CCL11, G-CSF, GM-CSF and TNF-α. Next, we evaluated the immune-modulating properties of CIMVs-MSCs in vivo using standard preclinical tests. MSCs and CIMVs-MSCs reduced serum levels of anti-sheep red blood cell antibody and have limited effects on neutrophil and peritoneal macrophage activity. We compared the immunomodulatory effect of MSCs, CIMVs and EVs. We observed no immunosuppression in mice pretreated with natural EVs, whereas MSCs and CIMVs-MSCs suppressed antibody production in vivo. Additionally, we have investigated the biodistribution of CIMVs-MSCs in vivo and demonstrated that CIMVs-MSCs localized in liver, lung, brain, heart, spleen and kidneys 48 h after intravenous injection and can be detected 14 days after subcutaneous and intramuscular injection. Collectively our data demonstrates immunomodulatory efficacy of CIMVs and supports their further preclinical testing as an effective therapeutic delivery modality.
Collapse
Affiliation(s)
- M O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008. .,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia, 117997.
| | - A M Aimaletdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - O V Bondar
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - I G Starostina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - N V Gorshkova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - O A Neustroeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - S K Kletukhina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - S V Kurbangaleeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - V V Vorobev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - E E Garanina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008
| | - J L Persson
- Department of Translational Medicine, Lund University, 205 02, Malmö, Sweden.,Department of Molecular Biology, Umeå University, Umeå, 901 87, USA
| | - J Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
| | - N P Mongan
- Department of Translational Medicine, Lund University, 205 02, Malmö, Sweden.,Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave., New York, NY, 10065, USA
| | - S F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008.,Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - A A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia, 420008. .,M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia, 117997.
| |
Collapse
|
21
|
Wu M, Mei T, Lin C, Wang Y, Chen J, Le W, Sun M, Xu J, Dai H, Zhang Y, Xue C, Liu Z, Chen B. Melanoma Cell Membrane Biomimetic Versatile CuS Nanoprobes for Homologous Targeting Photoacoustic Imaging and Photothermal Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16031-16039. [PMID: 32186357 DOI: 10.1021/acsami.9b23177] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Modulating the surface properties of nanoparticles (NPs) is an important approach to accomplish immune escape, prolonged the blood retention time, and enhance the ability of targeted drug delivery. The camouflage of cancer cell membrane onto nanoparticles has been proved to be an ideal approach to enhance active targeting ability of NPs. Herein, we isolated the membrane of melanoma cells to coat doxorubicin (DOX) and indocyanine green (ICG)-loaded hollow copper sulfide NPs (ID-HCuSNP@B16F10) for targeted photothermal therapy, photoacoustic imaging, and chemotherapy. A remarkable in vitro anticancer effect after irradiation and homologous targeting can be observed in B16F10 cells after the treatment of ID-HCuSNP@B16F10. Moreover, ID-HCuSNP@B16F10 exhibits excellent photothermal effect in melanoma animal models and achieves a high tumor ablation rate. This biomimetic system can realize high drug loading efficiency, enhanced targeting ability, and ideal antitumor efficiency.
Collapse
Affiliation(s)
- Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Tianxiao Mei
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Chenyu Lin
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingyao Chen
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Wenjun Le
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Mengyan Sun
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jianguo Xu
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Haiying Dai
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yifan Zhang
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Chunyu Xue
- Department of Plastic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Bingdi Chen
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
22
|
Excitation Transfer in Hybrid Nanostructures of Colloidal Ag 2S/TGA Quantum Dots and Indocyanine Green J-Aggregates. J Fluoresc 2020; 30:581-589. [PMID: 32236787 DOI: 10.1007/s10895-020-02521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
The regularities of the electron excitations exchange in hybrid associates of colloidal Ag2S quantum dots, passivated with thioglycolic acid (Ag2S/TGA QDs) with an average size of 2.2 and 3.7 nm with Indocyanine Green J-aggregates (ICG) were studied in this work by methods of absorption and luminescence spectroscopy. It was shown that IR luminescence sensitization of Ag2S/TGA QDs with an average size of 3.7 nm in the region of 1040 nm is possible due to non-radiative resonance energy transfer from Ag2S/TGA QDs with an average size of 2.2 nm and luminescence peak at 900 nm using ICG J-aggregate as an exciton bridge. The sensitization efficiency is 0.33. This technique provides a transition from the first therapeutic window (NIR-I, 700-950 nm) to the second (NIR-II, 1000-1700 nm). It can allow high to increase the imaging in vivo resolution.
Collapse
|
23
|
Pan Q, Tian J, Zhu H, Hong L, Mao Z, Oliveira JM, Reis RL, Li X. Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomater Sci Eng 2020; 6:2175-2185. [DOI: 10.1021/acsbiomaterials.0c00163] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qianqian Pan
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P. R. China
- Zhejiang Financial College, No. 118 Xueyuan Street, Hangzhou, Zhejiang 310018, P. R. China
| | - Jingjun Tian
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P. R. China
| | - Huihui Zhu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P. R. China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Xiao Li
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P. R. China
| |
Collapse
|
24
|
Cao Z, Cheng S, Wang X, Pang Y, Liu J. Camouflaging bacteria by wrapping with cell membranes. Nat Commun 2019; 10:3452. [PMID: 31388002 PMCID: PMC6684626 DOI: 10.1038/s41467-019-11390-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria have been extensively utilized for bioimaging, diagnosis and therapy given their unique characteristics including genetic manipulation, rapid proliferation and disease site targeting specificity. However, clinical translation of bacteria for these applications has been largely restricted by their unavoidable side effects and low treatment efficacies. Engineered bacteria for biomedical applications ideally need to generate only a low inflammatory response, show slow elimination by macrophages, low accumulation in normal organs, and almost unchanged inherent bioactivities. Here we describe a set of stealth bacteria, cell membrane coated bacteria (CMCB), meeting these requirement. Our findings are supported by evaluation in multiple mice models and ultimately demonstrate the potential of CMCB to serve as efficient tumor imaging agents. Stealth bacteria wrapped up with cell membranes have the potential for a myriad of bacterial-mediated biomedical applications. The use of engineered bacteria for biomedical applications is limited by side effects such as inflammatory response. Here the authors engineer cell membrane coated bacteria as in vivo tumor imaging agents, and show that these generate a lower inflammatory response and reduced macrophage clearance.
Collapse
Affiliation(s)
- Zhenping Cao
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Shanshan Cheng
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Xinyue Wang
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China.
| | - Jinyao Liu
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China.
| |
Collapse
|
25
|
Wu M, Le W, Mei T, Wang Y, Chen B, Liu Z, Xue C. Cell membrane camouflaged nanoparticles: a new biomimetic platform for cancer photothermal therapy. Int J Nanomedicine 2019; 14:4431-4448. [PMID: 31354269 PMCID: PMC6588714 DOI: 10.2147/ijn.s200284] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022] Open
Abstract
Targeted drug delivery by nanoparticles (NPs) is an essential technique to achieve the ideal therapeutic effect for cancer. However, it requires large amounts of work to imitate the biomarkers on the surface of the cell membrane and cannot fully retain the bio-function and interactions among cells. Cell membranes have been studied to form biomimetic NPs to achieve functions like immune escape, targeted drug delivery, and immune modulation, which inherit the ability to interact with the in vivo environments. Currently, erythrocyte, leukocyte, mesenchymal stem cell, cancer cell and platelet have been applied in coating photothermal agents and anti-cancer drugs to achieve increased photothermal conversion efficiency and decreased side effects in cancer ablation. In this review, we discuss the recent development of cell membrane-coated NPs in the application of photothermal therapy and cancer targeting. The underlying biomarkers of cell membrane-coated nanoparticles (CMNPs) are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Minliang Wu
- Department of Plastic Surgery,Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Wenjun Le
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai200092, People’s Republic of China
| | - Tianxiao Mei
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai200092, People’s Republic of China
| | - Yuchong Wang
- Department of Plastic Surgery,Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Bingdi Chen
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai200092, People’s Republic of China
| | - Zhongmin Liu
- Institute for Regenerative Medicine and Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai200092, People’s Republic of China
| | - Chunyu Xue
- Department of Plastic Surgery,Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| |
Collapse
|
26
|
Cherukula K, Uthaman S, Park IK. "Navigate-dock-activate" anti-tumor strategy: Tumor micromilieu charge-switchable, hierarchically activated nanoplatform with ultrarapid tumor-tropic accumulation for trackable photothermal/chemotherapy. Theranostics 2019; 9:2505-2525. [PMID: 31131050 PMCID: PMC6525992 DOI: 10.7150/thno.33280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/19/2019] [Indexed: 11/05/2022] Open
Abstract
The delivery of therapeutics into tumors remains a challenge in nanoparticle-mediated drug delivery. However, effective therapies such as photothermal therapy (PTT) are limited by quick systemic clearance and non-specific biodistribution. Anti-tumor strategies tailored to accommodate both tumor accumulation/retention and cellular internalization under a single platform would be a promising strategy. This work demonstrates a hierarchical activating strategy that would exhibit enhanced circulation and rapid tumor-tropism as well as facilitate tumor penetration, followed by tumor-specific drug release to realize trackable photothermal/chemotherapy. Methods: We engineered a lithocholic acid-conjugated disulfide-linked polyethyleneimine micelle (LAPMi) loaded with paclitaxel (LAPMi-PTX, L), followed by the electrostatic adsorption of indocyanine green (ICG, I) on LAPMI-PTX and subsequently coated them with thermosensitive DPPC and DSPE-PEG-NH2 lipids (L), producing Lipid/ICG/LAPMi-PTX (LIL-PTX) nanoparticles (NPs). The characteristics of NPs, including physicochemical characterization, photothermal & pH responsiveness, cell uptake, tumor spheroid penetration, anti-tumor efficacy and hierarchical activation of LIL-PTX NPs were investigated in vitro and in vivo by using CT26 cell line. The anti-metastatic potential of LIL-PTX NPs were demonstrated using 4T1 orthotopic tumor model. Results: The NPs synthesized possessed charge switchability in the mildly acidic pH, and were laser- and pH-responsive. Dual stimuli-responsive nature of LIL-PTX NPs improved the disposition of therapeutics to the tumor, reflected by enhanced intracellular uptake, tumor spheroid penetration and in vitro cytotoxicity studies. LIL-PTX NPs readily switched its surface charge from neutral to positive upon reaching the tumor milieu, thus resulting in rapid tumor tropism and accumulation. Under near-infrared laser irradiation, the thermosensitive lipids on LIL-PTX NPs were deshielded, and the tumor-penetrating LAPMi-PTX was subsequently exposed to the tumor milieu, thus resulting in enhanced intracellular internalization. Next, LAPMi-PTX evaded the endo-lysosomes, thereby releasing the PTX through the degradation of LAPMi mediated by intracellular GSH in the tumor. LIL-PTX NPs significantly improved the therapy by eradicating primary tumors completely and suppressing their subsequent lung metastasis. Conclusion: The improved therapeutic index is due to enhanced passive targeting by rapid tumor-tropic accumulation and tumor penetration by laser-driven exposure of LAPMi, thereby improving the therapeutic delivery for image-guided photothermal/chemotherapy.
Collapse
|
27
|
Yang R, Hou M, Gao Y, Zhang L, Xu Z, Kang Y, Xue P. Indocyanine green-modified hollow mesoporous Prussian blue nanoparticles loading doxorubicin for fluorescence-guided tri-modal combination therapy of cancer. NANOSCALE 2019; 11:5717-5731. [PMID: 30865744 DOI: 10.1039/c8nr10430a] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hollow mesoporous structures with interior cavities and expanded surface area have attracted considerable interest as drug delivery systems. In this study, a multifunctional nanotheranostic agent was developed by conjugating indocyanine green (ICG) and loading doxorubicin (DOX) onto the surfaces or within the cavities of hollow mesoporous Prussian blue (HMPB) nanoparticles, known as HMPB@PEI/ICG/DOX or simply HPID NPs, which were investigated as phototheranostic agents for in vivo fluorescence imaging and light-induced chemotherapy, photothermal therapy (PTT) and photodynamic therapy (PDT). These original HPID NPs exhibited strong near infrared (NIR) absorbance, reactive oxygen species (ROS) yield, and controlled chemotherapeutic drug release behavior. After intravenous injection of HPID NPs, highly efficient solid tumor ablation effects were observed in 4T1 tumor-bearing mouse models under NIR laser irradiation. Additionally, there was insignificant low-term toxicity or damage to normal tissues, as evidenced by histopathological and hemocompatibility analyses, suggesting that this agent has reliable biosafety for systemic applications. Taken together, the results of this study suggest that HPID NPs can produce tumor-specific and stimuli-triggered theranostic effects under tri-modal combination therapy. These HPID NPs advantageously provide traceable accumulation and activation and therefore could be a capable mediator in nanomedicines for eliminating solid tumors.
Collapse
Affiliation(s)
- Ruihao Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Y, Zhang H, Mao Z, Gao C. ROS-Responsive Nanoparticles for Suppressing the Cytotoxicity and Immunogenicity Caused by PM2.5 Particulates. Biomacromolecules 2019; 20:1777-1788. [DOI: 10.1021/acs.biomac.9b00174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Zou H, Zhu J, Huang DS. Cell membrane capsule: a novel natural tool for antitumour drug delivery. Expert Opin Drug Deliv 2019; 16:251-269. [PMID: 30742557 DOI: 10.1080/17425247.2019.1581762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chemotherapy plays an important role in antitumour therapy, but causes serious adverse reactions. So, drug delivery system (DDS) with cell-targeting ability is an important method to reduce adverse reactions while ensuring the effectiveness of chemotherapy. Synthetic drug carriers and DDSs based on cells have proven safety and efficacy, but they also have many deficiencies or limitations. Cell membrane capsules (CMCs), which are based on extracellular vesicles (EVs), are a promising biomimetic DDS that retains some cell membrane channels and cytoplasmic functions, with escape macrophage phagocytosis. AREAS COVERED The EVs for constructing CMCs can be prepared by natural secretion, chemical-induced budding, nanofilter membrane extrusion and similar methods and are isolated and purified by a variety of methods such as centrifugation and liquid chromatography. CMCs can target the tumour cells either spontaneously or through targeting modifications using proteins or aptamers to actively target the tumour cells. CMCs can be directly wrapped with chemicals, photosensitizers, RNA, proteins and other ingredients, or they can be loaded with antitumour agent-loaded synthetic nanoparticles, which are delivered to the target cells to play a specific role. EXPERT OPINION This review describes the concept, function, characteristics, origins, and manufacturing methods of CMCs and their application in antitumour therapy.
Collapse
Affiliation(s)
- Hai Zou
- a Clinical Research Institute , Zhejiang Provincial People's Hospital , Hangzhou , China.,b Department of Cardiology , Zhejiang Provincial People's Hospital , Hangzhou , PR China.,c People's Hospital of Hangzhou Medical College , Hangzhou , Zhejiang Province , China.,d Medical College , Hangzhou , China
| | - Jing Zhu
- c People's Hospital of Hangzhou Medical College , Hangzhou , Zhejiang Province , China.,d Medical College , Hangzhou , China.,e Department of Reproductive Endocrinology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Dong-Sheng Huang
- c People's Hospital of Hangzhou Medical College , Hangzhou , Zhejiang Province , China.,f Department of Hepatobiliary Surgery , Zhejiang Provincial People's Hospital , Hangzhou , China
| |
Collapse
|
30
|
Wu L, Lin B, Yang H, Chen J, Mao Z, Wang W, Gao C. Enzyme-responsive multifunctional peptide coating of gold nanorods improves tumor targeting and photothermal therapy efficacy. Acta Biomater 2019; 86:363-372. [PMID: 30660006 DOI: 10.1016/j.actbio.2019.01.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 11/30/2022]
Abstract
It is well known that stealth coating effectively extends the circulation lifetime of nanomaterials in blood, which favors systemic delivery but also limits their cellular internalization and in turn prevents efficient tumor-targeting and accumulation. In this study, we address this dilemma by developing an enzyme-responsive zwitterionic stealth peptide coating capable of responding to matrix metalloproteinase-9 (MMP-9) which is overexpressed in tumor microenvironment. The peptide consists of a cell-penetrating Tat sequence, an MMP-9 cleavable sequence, and a zwitterionic antifouling sequence. Using this coating to protect photothermal gold nanorods (AuNRs), we found that responsive AuNRs showed both satisfactory systemic circulation lifetime and significantly enhanced cellular uptake in tumors, resulting in clearly improved photothermal therapeutic efficacy in mouse models. These results suggest that multifunctional peptide coated AuNRs sensitive to MMP-9 are promising nanomaterials, conferring both extended systemic circulation and enhanced tumor tissue accumulation, for more specific and efficient tumor therapy. STATEMENT OF SIGNIFICANCE: It is well known that stealth coating effectively extends the circulation lifetime of nanomaterials in blood, which favors systemic delivery but also limits their cellular internalization and in turn prevents efficient tumor-targeting and accumulation. In this study, we address this dilemma by developing an enzyme-responsive zwitterionic stealth peptide coating capable of responding to matrix metalloproteinase-9 (MMP-9) which is overexpressed in tumor microenvironment. The peptide consists of a cell-penetrating Tat sequence, an MMP-9 cleavable sequence, and a zwitterionic antifouling sequence. Using this coating to protect photothermal gold nanorods (AuNRs), we found that responsive AuNRs showed both satisfactory systemic circulation lifetime and significantly enhanced cellular uptake in tumors, resulting in clearly improved photothermal therapeutic efficacy in mouse models.
Collapse
Affiliation(s)
- Liming Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Bingyi Lin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Weilin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HM. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: A review. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2019; 8:1497-1509. [DOI: 10.1016/j.jmrt.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Chen J, Li X, Zhao X, Wu Q, Zhu H, Mao Z, Gao C. Doxorubicin-conjugated pH-responsive gold nanorods for combined photothermal therapy and chemotherapy of cancer. Bioact Mater 2018; 3:347-354. [PMID: 29992194 PMCID: PMC6035373 DOI: 10.1016/j.bioactmat.2018.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer chemotherapy can be hindered by drug resistance which leads to lower drug efficiency. Here, we have developed a drug delivery system that tethers doxorubicin to the surface of gold nanorods via a pH-sensitive linkage (AuNRs@DOX), for a combined photothermal and chemical therapy for cancer. First, AuNRs@DOX is ingested by HepG2 liver cancer cells. After endocytosis, the acidic pH triggers the release of doxorubicin, which leads to chemotherapeutic effects. The gold nanorods are not only carriers of DOX, but also photothermal conversion agents. In the presence of an 808 nm near-infrared laser, AuNRs@DOX significantly enhance the cytotoxicity of doxorubicin via the photothermal effect, which induces elevated apoptosis of hepG2 cancer cells, leading to better therapeutic effects in vitro and in vivo.
Collapse
Affiliation(s)
- Jin Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Xiao Li
- The Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - QianQian Wu
- The Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Huihui Zhu
- The Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
33
|
Li X, Zhao X, Pardhi D, Wu Q, Zheng Y, Zhu H, Mao Z. Folic acid modified cell membrane capsules encapsulating doxorubicin and indocyanine green for highly effective combinational therapy in vivo. Acta Biomater 2018; 74:374-384. [PMID: 29734009 DOI: 10.1016/j.actbio.2018.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
A combination of chemotherapy and phototherapy has emerged as a promising strategy for cancer treatment. To achieve effective combinational therapy of cancer with reduced toxicity, it is highly desirable to improve the targeting of chemotherapeutic and near-infrared photosensitizers to enhance their accumulation in tumor. Here we report a novel tumor targeting cell membrane capsule (CMC), originate from living cells, to load doxorubicin hydrochloride (DOX) and indocyanine green (ICG), for combinational photo-chemotherapy against cancer. As a result, folic acid modified CMC (CMC-FA, with a diameter about 200 nm and a FA density of 0.4 molecule/nm2) showed 3-4 fold higher cell uptake by cancer cells in vitro and 2.3 times higher accumulation in mouse cancer xenografts in vivo than pristine CMC. DOX and ICG with therapeutically significant concentrations can be sequentially encapsulated into CMC-FA by temporary permeating the plasma membranes with high efficiency. The systematic administration of cancer targeting CMC-FA loaded with DOX and ICG could significantly inhibit tumor growth in mouse xenografts in the presence of a near-infrared light at 808 nm, without noticeable toxicity. These findings suggest that cancer targeting CMC may have considerable benefits in drug delivery and combinational cancer therapy. STATEMENT OF SIGNIFICANCE A combination of chemotherapy and photothermal/photodynamic therapy has emerged as a promising strategy for cancer therapy. In current study, a novel cancer targeting cell membrane capsule (CMC-FA), originate from living cells and surface modified with folic acid, was developed to load doxorubicin hydrochloride (DOX) and indocyanine green (ICG), for combinational photo-chemotherapy against cancer. The systematic administration of drug loaded CMC-FA can significantly inhibit tumor growth in mouse xenografts in the presence of a near-infrared light at 808 nm, without noticeable toxicity. This study provides a simple and robust strategy to develop biocompatible therapeutic cell membrane capsules, holds strong translational potential in precise cancer treatment.
Collapse
Affiliation(s)
- Xiao Li
- The Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dinesh Pardhi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qianqian Wu
- The Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Yong Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huihui Zhu
- The Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
34
|
Wang B, Lin W, Mao Z, Gao C. Near-infrared light triggered photothermal therapy and enhanced photodynamic therapy with a tumor-targeting hydrogen peroxide shuttle. J Mater Chem B 2018; 6:3145-3155. [PMID: 32254349 DOI: 10.1039/c8tb00476e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Hypoxia, defined as inadequate oxygen supply at the tissue level, is a common pathological condition in the tumor microenvironment of certain solid tumors, leading to the limited efficiency of oxygen-dependent photodynamic therapy (PDT). To overcome this problem, tumor-targeting oxygen self-carrying nanoparticles are developed for photothermal therapy (PTT) and enhanced PDT to completely eradicate solid tumors. Hydrogen peroxide (H2O2) is a strong oxidant that can release oxygen in the presence of a catalyst or when being heated. The core-shell poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are obtained by a double emulsion method: the hydrophilic H2O2/poly(vinylpyrrolidone) complex as an oxygen source and hydrophobic IR780 as a PTT/PDT agent are encapsulated into the core and shell of the NPs respectively. The tumor binding molecule, folic acid, is conjugated onto the surface of obtained PLGA NPs to enabling efficient cell uptake and tumor targeting. Once the PLGA-FA/IR780-H2O2 NPs are ingested by HepG2 cells, they can induce the photothermal effect and reactive oxygen species (ROS) are released to kill cancer cells under an 808 nm laser irradiation. The encapsulated H2O2 can supply additional oxygen and in turn significantly enhance the PDT effect. This innovative nanoplatform has exhibited excellent antitumor efficiency, verified vividly by the in vitro and in vivo assays, and may serve as a versatile platform for future cancer therapy.
Collapse
Affiliation(s)
- Bing Wang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | | | | |
Collapse
|
35
|
Gomzikova M, Kletukhina S, Kurbangaleeva S, Rizvanov A. Evaluation of Cytochalasin B-Induced Membrane Vesicles Fusion Specificity with Target Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7053623. [PMID: 29850552 PMCID: PMC5911325 DOI: 10.1155/2018/7053623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Abstract
Extracellular vesicles (EV) represent a promising vector system for biomolecules and drug delivery due to their natural origin and participation in intercellular communication. As the quantity of EVs is limited, it was proposed to induce the release of membrane vesicles from the surface of human cells by treatment with cytochalasin B. Cytochalasin B-induced membrane vesicles (CIMVs) were successfully tested as a vector for delivery of dye, nanoparticles, and a chemotherapeutic. However, it remained unclear whether CIMVs possess fusion specificity with target cells and thus might be used for more targeted delivery of therapeutics. To answer this question, CIMVs were obtained from human prostate cancer PC3 cells. The diameter of obtained CIMVs was 962,13 ± 140,6 nm. We found that there is no statistically significant preference in PC3 CIMVs fusion with target cells of the same type. According to our observations, the greatest impact on CIMVs entry into target cells is by the heterophilic interaction of CIMV membrane receptors with the surface proteins of target cells.
Collapse
|
36
|
Zhang N, Li M, Sun X, Jia H, Liu W. NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery. Biomaterials 2018; 159:25-36. [DOI: 10.1016/j.biomaterials.2018.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/08/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022]
|
37
|
Wang Y, Liu X, Deng G, Sun J, Yuan H, Li Q, Wang Q, Lu J. Se@SiO 2-FA-CuS nanocomposites for targeted delivery of DOX and nano selenium in synergistic combination of chemo-photothermal therapy. NANOSCALE 2018; 10:2866-2875. [PMID: 29367975 DOI: 10.1039/c7nr09237g] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, a versatile tumor-targeted and multi-stimuli-responsive drug delivery vehicle (Se particle@porous silica-folic acid-copper sulfide/doxorubicin (Se@SiO2-FA-CuS/DOX)) was fabricated for combined photothermal therapy with chemotherapy in cancer treatment. Due to excellent targeting ability, the Se@SiO2-FA-CuS/DOX nanocomposites actively accumulated in tumor tissues and thus provided photothermal therapy under NIR irradiation and chemotherapy through the release of DOX and Se. Owing to the synergistic effect of chemotherapy (Se and DOX) and photothermal therapy, the Se@SiO2-FA-CuS/DOX nanocomposites could efficiently inhibit cancer cells both in vitro and in vivo and even completely eliminate tumors. Moreover, as the toxicity of DOX could be reduced by Se, the treatment using Se@SiO2-FA-CuS/DOX nanocomposites exhibited no appreciable adverse reactions. Thus, the Se@SiO2-FA-CuS/DOX nanocomposites have great potential as a multifunctional nanoplatform in future clinical applications.
Collapse
Affiliation(s)
- Yeying Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xue P, Yang R, Sun L, Li Q, Zhang L, Xu Z, Kang Y. Indocyanine Green-Conjugated Magnetic Prussian Blue Nanoparticles for Synchronous Photothermal/Photodynamic Tumor Therapy. NANO-MICRO LETTERS 2018; 10:74. [PMID: 30417006 PMCID: PMC6208784 DOI: 10.1007/s40820-018-0227-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/08/2018] [Indexed: 05/06/2023]
Abstract
Indocyanine green (ICG) is capable of inducing a photothermal effect and the production of cytotoxic reactive oxygen species for cancer therapy. However, the major challenge in applying ICG molecules for antitumor therapy is associated with their instability in aqueous conditions and rapid clearance from blood circulation, which causes insufficient bioavailability at the tumor site. Herein, we conjugated ICG molecules with Prussian blue nanoparticles enclosing a Fe3O4 nanocore, which was facilitated by cationic polyethyleneimine via electrostatic adsorption. The nanocarrier-loaded ICG formed stable aggregates that enhanced cellular uptake and prevented fluorescence quenching. Moreover, the strong superparamagnetism of the Fe3O4 core in the obtained nanocomposites further improved cellular internalization of the drugs guided by a localized magnetic field. The therapeutic efficacy of this nanoplatform was evaluated using tumor models established in nude mice, which demonstrated remarkable tumor ablation in vivo due to strong photothermal/photodynamic effects. This study provides promising evidence that this multifunctional nanoagent might function as an efficient mediator for combining photothermal and photodynamic cancer therapy.
Collapse
Affiliation(s)
- Peng Xue
- Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, People's Republic of China.
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, People's Republic of China.
| | - Ruihao Yang
- Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, People's Republic of China
| | - Lihong Sun
- Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, People's Republic of China
| | - Qian Li
- Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Zhigang Xu
- Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, People's Republic of China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, People's Republic of China
| | - Yuejun Kang
- Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, People's Republic of China.
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
39
|
Yuan Z, Yu S, Cao F, Mao Z, Gao C, Ling J. Near-infrared light triggered photothermal and photodynamic therapy with an oxygen-shuttle endoperoxide of anthracene against tumor hypoxia. Polym Chem 2018. [DOI: 10.1039/c8py00289d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel oxygen self-carrying nanoparticles based on substituted diphenyl anthracene and IR780 were developed against tumor hypoxia.
Collapse
Affiliation(s)
- Zheng Yuan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shan Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Fangyi Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
40
|
Cho SH, Kim A, Shin W, Heo MB, Noh HJ, Hong KS, Cho JH, Lim YT. Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel. Int J Nanomedicine 2017; 12:2607-2620. [PMID: 28408827 PMCID: PMC5383084 DOI: 10.2147/ijn.s133078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Injectable and stimuli-responsive hydrogels have attracted attention in molecular imaging and drug delivery because encapsulated diagnostic or therapeutic components in the hydrogel can be used to image or change the microenvironment of the injection site by controlling various stimuli such as enzymes, temperature, pH, and photonic energy. In this study, we developed a novel injectable and photoresponsive composite hydrogel composed of anticancer drugs, imaging contrast agents, bio-derived collagen, and multifaceted anionic polypeptide, poly (γ-glutamic acid) (γ-PGA). By the introduction of γ-PGA, the intrinsic temperature-dependent phase transition behavior of collagen was modified to a low viscous sol state at room temperature and nonflowing gel state around body temperature. The modified temperature-dependent phase transition behavior of collagen/γ-PGA hydrogels was also evaluated after loading of near-infrared (NIR) fluorophore, indocyanine green (ICG), which could transform absorbed NIR photonic energy into thermal energy. By taking advantage of the abundant carboxylate groups in γ-PGA, cationic-charged doxorubicin (Dox) and hydrophobic MnFe2O4 magnetic nanoparticles were also incorporated successfully into the collagen/γ-PGA hydrogels. By illumination of NIR light on the collagen/γ-PGA/Dox/ICG/MnFe2O4 hydrogels, the release kinetics of Dox and magnetic relaxation of MnFe2O4 nanoparticles could be modulated. The experimental results suggest that the novel injectable and NIR-responsive collagen/γ-PGA hydrogels developed in this study can be used as a theranostic platform after loading of various molecular imaging probes and therapeutic components.
Collapse
Affiliation(s)
- Sun-Hee Cho
- SKKU Advanced Institute of Nanotechnology (SAINT)
| | - Ahreum Kim
- SKKU Advanced Institute of Nanotechnology (SAINT)
| | - Woojung Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon
| | - Min Beom Heo
- SKKU Advanced Institute of Nanotechnology (SAINT)
| | | | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju.,Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jee-Hyun Cho
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju.,Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT).,School of Chemical Engineering, Sungkyunkwan University, Suwon
| |
Collapse
|
41
|
Zhu H, Chen Y, Yan FJ, Chen J, Tao XF, Ling J, Yang B, He QJ, Mao ZW. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Acta Biomater 2017; 50:534-545. [PMID: 28027959 DOI: 10.1016/j.actbio.2016.12.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Gold nanorods (AuNRs) are suitable candidates for photothermal therapy in vivo, because of their excellent ability to transfer near-infrared (NIR) light into heat. However, appropriate surface should be generated on AuNRs before their in vivo application because of the low colloidal stability in complicate biological environment and relatively strong toxicity compared to their pristine stabilizer cetyltrimethylammonium bromide. In the current study, polysarcosine (PS), a non-ionic hydrophilic polypeptoid whose structure is similar to polypeptides, bearing repeating units of natural α-amino acid, was used to stabilize AuNRs due to its excellent hydrophilicity and biocompatibility. Polysarcosine with optimized molecular weight was synthesized and used to modify AuNRs by traditional ligand exchange. The grafting of PS on AuNRs was evidenced by fourier transform infrared (FTIR) spectroscopy and the alternation of surface zeta potential. The polysarcosine coated AuNRs (Au@PS) showed good stabilities in wide pH range and simulated physiological buffer with the ligand competition of dithiothreitol (DTT). The Au@PS NRs had neglectable cytotoxicity and showed efficient ablation of tumor cells in vitro. Moreover, Au@PS NRs had a longer circulation time in body that resulted in a higher accumulation in solid tumors after intravenous injection, compared to AuNRs capped with polyethylene glycol (PEG). Photothermal therapy in vivo demonstrated that the tumors were completely destroyed by single-time irradiation of NIR laser after one-time injection of the polysarcosine capped AuNRs. The Au@PS NRs did not cause obvious toxicity in vivo, suggesting promising potential in cancer therapy. STATEMENT OF SIGNIFICANCE In current study, polysarcosine (PS), a non-ionic hydrophilic polypeptoid whose structure is similar to polypeptides, bearing repeating units of natural α-amino acid, was used to stabilize AuNRs due to its excellent hydrophilicity and biocompatibility. The polysarcosine coated AuNRs (Au@PS) showed good stabilities in wide pH range and simulated physiological buffer. The Au@PS NRs had very low cytotoxicity and showed high efficacy for the ablation of cancer cells in vitro. Moreover, Au@PS NRs had a longer circulation time in blood that led to a higher accumulation in tumors after intravenous injection, compared to AuNRs capped with polyethylene glycol (PEG). In vivo photothermal therapy showed that tumors were completely cured without reoccurrence by one-time irradiation of NIR laser after a single injection of the polysarcosine modified AuNRs.
Collapse
|
42
|
Zhang W, Jiang P, Chen J, Zhu C, Mao Z, Gao C. Application of melatonin-loaded poly(N-isopropylacrylamide) hydrogel particles to reduce the toxicity of airborne pollutes to RAW264.7 cells. J Colloid Interface Sci 2017; 490:181-189. [DOI: 10.1016/j.jcis.2016.11.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/14/2023]
|
43
|
Shrestha S, Mao Z, Fedutik Y, Gao C. Influence of titanium dioxide nanorods with different surface chemistry on the differentiation of rat bone marrow mesenchymal stem cells. J Mater Chem B 2016; 4:6955-6966. [DOI: 10.1039/c6tb02149b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, four kinds of TiO2 nanorods (TiO2 NRs), with similar aspect ratios but different surface functional groups, i.e. amines (–NH2), carboxyl groups (–COOH) and poly(ethylene glycol) (–PEG), were used to study their interaction with rat bone marrow stem cells (MSCs).
Collapse
Affiliation(s)
- Surakshya Shrestha
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | | | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|