1
|
Huang Q, Zhang Z, Huang Y, Wang T, Chen Y. Effect of retention time on renal function and kidney size in patients with indwelling DJ tubes. Sci Rep 2025; 15:16974. [PMID: 40374676 PMCID: PMC12081938 DOI: 10.1038/s41598-025-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/05/2025] [Indexed: 05/17/2025] Open
Abstract
The impact of DJ tube retention time on renal function has received scant attention from researchers. Nevertheless, there is a plethora of clinical evidence indicating that protracted stent retention can result in renal insufficiency, or even renal atrophy, which can consequently lead to loss of renal function or nephrectomy.A comprehensive review of the medical records of all patients who underwent DJ tube placement between 1 January 2010 and 1 September 2024 in our hospital was performed. Cases with a duration of DJ tube placement exceeding two years were selected for further analysis, as supported by previous studies. The final study population comprised 74 cases with indwelling DJ tubes for a minimum of two years. Renal size/glomerular width (PW) was measured on the basis of CT coronal scanning, and the mean value of PW and the rate of change of PW were calculated before the first placement of the DJ tube and at the last follow-up, respectively. Furthermore, the study recorded eGFR, serum creatinine (Scr), blood urea nitrogen (BUN), and blood uric acid (UA) at two time points: before and after DJ tube placement. The mean duration of indwelling DJ tubes was 67.94 ± 48.26 months in the unilateral DJ tube indwelling group (including isolated kidney cases) and 50.22 ± 29.65 months in the bilateral group. During the mean retention time of 67.94 ± 48.26 months, the mean PW change rates of unilateral DJ tube stented kidneys and healthy kidneys/unilateral kidneys were - 39.01 ± 26.1% and 16.52 ± 25.4%, respectively, which were statistically significant (P < 0.01). The mean rate of change in PW in the left and right sides of the bilateral DJ tube retention group was - 18.31 ± 36.3% over a mean retention time of 50.22 ± 29.65 months, which was statistically significant (P < 0.01). Furthermore, a statistically significant decrease of -37.81 ± 51.2% in eGFR was observed before and after bilateral DJ tube placement (P < 0.01). No statistically significant difference (P > 0.05) was observed in eGFR in the unilateral DJ tube placement group (including isolated kidney cases) and in Scr, BUN, and UA values in the unilateral and bilateral DJ tube placement groups before and after DJ tube placement. In the unilateral DJ tube-placement group, the duration of DJ tube placement exhibited a negative correlation with the rate of change in mean PW percentage (Pearson correlation coefficient r = -0.470, P = 0.002) and a positive correlation with the rate of change in eGFR (Pearson correlation coefficient r = 0.653, P < 0.01). Conversely, in the bilateral DJ tube retention group, DJ tube retention duration exhibited no significant correlation with the change in mean percentage of PW.However, it demonstrated a negative correlation with the rate of change in eGFR (Pearson correlation coefficient r = -0.443, P = 0.03). In patients with unilateral or bilateral indwelling DJ tubes, renal size may decrease over time despite the presence of an indwelling DJ tube, especially in patients with bilateral indwelling DJ tubes.
Collapse
Affiliation(s)
- Qianhao Huang
- Department of Urology, School of Medicine, The Key Laboratory of Urinary Tract Tumours and Calculi , The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Zhiyong Zhang
- Department of Urology, School of Medicine, The Key Laboratory of Urinary Tract Tumours and Calculi , The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
| | - Yifan Huang
- Department of Urology, School of Medicine, The Key Laboratory of Urinary Tract Tumours and Calculi , The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China
| | - Tao Wang
- Department of Urology, School of Medicine, The Key Laboratory of Urinary Tract Tumours and Calculi , The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China.
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China.
| | - Yuedong Chen
- Department of Urology, School of Medicine, The Key Laboratory of Urinary Tract Tumours and Calculi , The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China.
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
2
|
Setareyi R, Hatamian-Zarmi A, Mokhtari-Hosseini ZB, Kianirad S, Heidarian E, Abbasi-Malati S, Feizollahi N, Naji M. Biofabrication and evaluation of 3D printed and cast PCL / collagen-alginate hydrogel tubular scaffolds for urethral tissue engineering. Int J Biol Macromol 2025; 307:142143. [PMID: 40090646 DOI: 10.1016/j.ijbiomac.2025.142143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
The urethra is a fibromuscular tube that transports urine from the bladder to the exterior of the body. Congenital disorders and urethral wall strictures caused by traumatic injuries, infections, iatrogenic injuries, and tumor removals can impair urethral function. This research aimed to create a 3D printed scaffold of the urethra using casting and 3D printing techniques, and then the constructed scaffolds were characterized. The final scaffolds consisted of a 3D-printed mesh made of poly-ε-caprolactone (PCL) that was cast with a hybrid hydrogel of collagen-alginate and crosslinked. The swelling of hydrogels containing more alginate in the structure eventually led to the collapse of the hydrogel skeleton. The gradual increase in the compressive strength of the hydrogel scaffolds was consistent with the rise in alginate hydrogels. Rheological properties clearly showed shear-thinning behavior for samples containing more alginate. The viability of rat bladder smooth muscle cells in the CA82 hydrogel (collagen:alginate 8:2 v/v) was higher than in the CA37 hydrogel (collagen:alginate 3:7 v/v). In addition, the expression of functional genes of rat smooth muscle cells was improved in the CA82 hydrogel. The described method and fabricated scaffold could provide a promising approach for urethral reconstruction by tissue engineering.
Collapse
Affiliation(s)
- Rasool Setareyi
- Department of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Zahra-Beagom Mokhtari-Hosseini
- Department of Chemical Engineering, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran.
| | - Soheil Kianirad
- Department of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Ehsan Heidarian
- Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Abbasi-Malati
- Department of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Narjes Feizollahi
- Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Naji
- Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ma R, Zhou L, Jiang S, Zhao X, Ma R, Sun J, Xia L, Liu X, Wang X, Meng Q, Yu H, Li Y. Intelligent Bi-Dimensional Skin Biopsies of Rheumatoid Arthritis Based on Raman Spectral Imaging and Machine Learning. Anal Chem 2025; 97:7378-7387. [PMID: 40145299 DOI: 10.1021/acs.analchem.5c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases worldwide, characterized by its progressive and irreversible nature. Early diagnosis is crucial for delaying disease progression and optimizing treatment strategies. Existing diagnostic methods face limitations in asymptomatic screening and often rely on subjective judgment by experienced rheumatologists, restricting their application in early screening and clinical diagnosis. To address these challenges, we developed an innovative approach for intelligent bidimensional skin biopsies, employing Raman spectroscopy for direct spectral scanning and imaging of affected joint skin. This method enables preliminary RA diagnosis after a brief skin surface scan. It generates high-resolution three-dimensional Raman images of the affected skin within 13 min, providing rapid and reliable diagnostic support. Furthermore, Raman data are analyzed and classified using multiple artificial intelligence algorithms, such as naive Bayes, linear discriminant analysis, decision trees, k-nearest neighbors, random forests, and support vector machines, achieving high-accuracy RA differentiation. The design significantly enhances diagnostic precision and speed, enabling nonspecialists to accurately diagnose RA. Extensive experimental data validated the method's 100% diagnostic accuracy. This approach provides a novel and effective tool for early RA screening and demonstrates potential applications in other autoimmune and dermatological diseases.
Collapse
Affiliation(s)
- Rongheng Ma
- Chinese Medicine Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Liping Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shuang Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Department of Nephrology, Hematology and Oncology, Harbin Chinese Medicine Hospital, No. 2 Xinglin Road, Harbin, Heilongjiang Province 150076, China
| | - Xiaojiao Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Ruiyao Ma
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jin Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Ling Xia
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xu Liu
- Department of Laboratory Medicine at The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150086, China
| | - Xiaoting Wang
- Department of Nephrology, Hematology and Oncology, Harbin Chinese Medicine Hospital, No. 2 Xinglin Road, Harbin, Heilongjiang Province 150076, China
| | - Qingyu Meng
- Chinese Medicine Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Huimin Yu
- Chinese Medicine Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Chinese Medicine Department, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Yang Li
- Chinese Medicine Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Ophthalmic Hospital, Harbin 150007, China
| |
Collapse
|
4
|
Caneparo C, Elia E, Chabaud S, Berthod F, Fradette J, Bolduc S. Correction of Significant Urethral Anomalies Using a Tissue-Engineered Human Urethral Substitute: Proof of Concept. Int J Mol Sci 2025; 26:1825. [PMID: 40076452 PMCID: PMC11899107 DOI: 10.3390/ijms26051825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025] Open
Abstract
Urethral reconstruction remains a challenge. Indeed, the use of oral mucosa, the reference biomaterial for urethroplasty, is associated with two main drawbacks: the limited availability of autologous tissues and potential short- and long-term complications, especially for patients with recurrences or severe anomalies. Therefore, the development of alternative approaches, such as urethral tissue engineering, is necessary. A new type of human urethral substitute devoid of exogenous biomaterials has been reconstructed in vitro. It presented sufficient mechanical strength and had histological and functional properties comparable to native tissues. These reconstructed tissues were implanted in vivo to repair hypospadias induced in tacrolimus-immunosuppressed rabbits via a two-stage urethroplasty. In the first stage, the distal part of the native urethra was removed, and a flat graft was implanted, leaving the urethra open proximally. Twelve weeks later, the graft was tubularized to create a neourethra, reproducing the usual clinical scenario. The results obtained for the experimental group were less effective than for the control group, with a success rate of 50% after excluding the animal affected by unwanted events unrelated to urethroplasty, and it is possible that the animal model or surgical technique used was not suitable and should be modified. Nevertheless, half of the urethral substitutes grafted on rabbits showed successful integration. These self-assembled artificial tissues represent promising substitutes for urethroplasty.
Collapse
Affiliation(s)
- Christophe Caneparo
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
| | - Elissa Elia
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
| | - François Berthod
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Julie Fradette
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Liu C, Rivera Ruiz A, Zhang Y, Zimmern P, Li Z. Emergent biotechnology applications in urology: a mini review. Front Bioeng Biotechnol 2025; 13:1539126. [PMID: 39968011 PMCID: PMC11832658 DOI: 10.3389/fbioe.2025.1539126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Technological advances have significantly impacted the field of urology, providing innovative solutions for diagnosis, treatment, and management of various urological disorders and diseases. This article highlights four groundbreaking technologies: whole-cell biosensors, optogenetic interventions for neuromodulation, bioengineered urinary bladder, and 3D bioprinting. Each technology plays a crucial role in enhancing patient care and improving clinical outcomes in urology. Advances in these fields underscore a shift towards precision diagnostics, personalized treatments, and enhanced regenerative strategies, ultimately aiming to enhance patient outcomes and address unmet clinical needs in urological diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Alejandro Rivera Ruiz
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Philippe Zimmern
- Department of Urology, The University of Texas Southwestern, Dallas, TX, United States
| | - Zhengwei Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- Department of Biomedical Sciences, The Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX, United States
| |
Collapse
|
6
|
Martinier I, Trichet L, Fernandes FM. Biomimetic tubular materials: from native tissues to a unifying view of new vascular, tracheal, gastrointestinal, oesophageal, and urinary grafts. Chem Soc Rev 2025; 54:790-826. [PMID: 39606835 DOI: 10.1039/d4cs00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Repairing tubular tissues-the trachea, the esophagus, urinary and gastrointestinal tracts, and the circulatory system-from trauma or severe pathologies that require resection, calls for new, more effective graft materials. Currently, the relatively narrow family of materials available for these applications relies on synthetic polymers that fail to reproduce the biological and physical cues found in native tissues. Mimicking the structure and the composition of native tubular tissues to elaborate functional grafts is expected to outperform the materials currently in use, but remains one of the most challenging goals in the field of biomaterials. Despite their apparent diversity, tubular tissues share extensive compositional and structural features. Here, we assess the current state of the art through a dual layer model, reducing each tissue to an inner epithelial layer and an outer muscular layer. Based on this model, we examine the current strategies developed to mimic each layer and we underline how each fabrication method stands in providing a biomimetic material for future clinical translation. The analysis provided here, addressed to materials chemists, biomaterials engineers and clinical staff alike, sets new guidelines to foster the elaboration of new biomimetic materials for effective tubular tissue repair.
Collapse
Affiliation(s)
- Isabelle Martinier
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Léa Trichet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| |
Collapse
|
7
|
Jin Y, Yang M, Zhao W, Liu M, Fang W, Wang Y, Gao G, Wang Y, Fu Q. Scaffold-based tissue engineering strategies for urethral repair and reconstruction. Biofabrication 2024; 17:012003. [PMID: 39433068 DOI: 10.1088/1758-5090/ad8965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.
Collapse
Affiliation(s)
- Yangwang Jin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States of America
| | - Meng Liu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Yuhui Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, People's Republic of China
| |
Collapse
|
8
|
Hu Y, Li L, Li Q, Pan S, Feng G, Lan X, Jiao J, Zhong L, Sun L. A biomimetic tri-phasic scaffold with spatiotemporal patterns of gastrodin to regulate hierarchical tissue-based vascular regeneration. Bioact Mater 2024; 38:512-527. [PMID: 38798891 PMCID: PMC11126808 DOI: 10.1016/j.bioactmat.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Clinical use of small-diameter vascular grafts remains a challenging issue in neovessel regeneration in view of thrombosis and intimal hyperplasia. Developing a vascular graft with structure and function similar to those of the native vessels necessitates a major direction of vascular tissue regeneration. Thus, this study sought to design and fabricate a range of tri-phasic scaffolds (0, 2, and 5 wt% gastrodin-polyurethane (PU)) with spatiotemporally defined structure and gastrodin-release for regulating the highly coordinated processes in growth of the intima and media. While the small pores of inner layer guided infiltration of human umbilical vein endothelial cells (HUVECs), the bigger pores of medial layer could offer smooth muscle cell (SMC)-friendly habitat, and external fibers conferred adequate mechanical properties. Correspondingly, spatial distribution and differential regulation of key proteins in HUVECs and SMCs were mediated by hierarchical release of gastrodin, of which rapid release in inner layer elicited enhanced HUVEC proliferation and migration against those of the SMC via activated endothelial nitric oxide synthase (eNOS) and heat shock protein 70 (HSP70) signal. Of note, superior anti-coagulation was reflected in 2 wt% gastrodin-PU ex vivo extracorporeal blood circulation experiment. After in vivo implantation for 12 weeks, there was no formation of obvious thrombosis and intimal hyperplasia in 2 wt% gastrodin-PU. The scaffold maintained high patency and improved vascular remodeling, including the formation of thin endothelialization in lumen and dense extracellular matrix deposition in medial layer. Taken together, the results demonstrate the positive function of hierarchical releasing system that responded to tri-phasic structure, which not only suppressed intimal thickening but also tightly controlled tissue regeneration.
Collapse
Affiliation(s)
- Yingrui Hu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650101, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Shilin Pan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guangli Feng
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Xiaoqian Lan
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650032, China
| | - Jianlin Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lianmei Zhong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lin Sun
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 650101, China
| |
Collapse
|
9
|
Booth D, Afshari R, Ghovvati M, Shariati K, Sturm R, Annabi N. Advances in 3D bioprinting for urethral tissue reconstruction. Trends Biotechnol 2024; 42:544-559. [PMID: 38057169 PMCID: PMC11669461 DOI: 10.1016/j.tibtech.2023.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Urethral conditions affect children and adults, increasing the risk of urinary tract infections, voiding and sexual dysfunction, and renal failure. Current tissue replacements differ from healthy urethral tissues in structural and mechanical characteristics, causing high risk of postoperative complications. 3D bioprinting can overcome these limitations through the creation of complex, layered architectures using materials with location-specific biomechanical properties. This review highlights prior research and describes the potential for these emerging technologies to address ongoing challenges in urethral tissue engineering, including biomechanical and structural mismatch, lack of individualized repair solutions, and inadequate wound healing and vascularization. In the future, the integration of 3D bioprinting technology with advanced biomaterials, computational modeling, and 3D imaging could transform personalized urethral surgical procedures.
Collapse
Affiliation(s)
- Daniel Booth
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaavian Shariati
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Renea Sturm
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Elia E, Caneparo C, McMartin C, Chabaud S, Bolduc S. Tissue Engineering for Penile Reconstruction. Bioengineering (Basel) 2024; 11:230. [PMID: 38534504 DOI: 10.3390/bioengineering11030230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The penis is a complex organ with a development cycle from the fetal stage to puberty. In addition, it may suffer from either congenital or acquired anomalies. Penile surgical reconstruction has been the center of interest for many researchers but is still challenging due to the complexity of its anatomy and functionality. In this review, penile anatomy, pathologies, and current treatments are described, including surgical techniques and tissue engineering approaches. The self-assembly technique currently applied is emphasized since it is considered promising for an adequate tissue-engineered penile reconstructed substitute.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Catherine McMartin
- Division of Urology, Department of Surgery, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Division of Urology, Department of Surgery, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| |
Collapse
|
12
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
13
|
Cheng Q, Zhang L, Zhang J, Zhou X, Wu B, Wang D, Wei T, Shafiq M, Li S, Zhi D, Guan Y, Wang K, Kong D. Decellularized Scaffolds with Double-Layer Aligned Microchannels Induce the Oriented Growth of Bladder Smooth Muscle Cells: Toward Urethral and Ureteral Reconstruction. Adv Healthc Mater 2023; 12:e2300544. [PMID: 37638600 DOI: 10.1002/adhm.202300544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/27/2023] [Indexed: 08/29/2023]
Abstract
There is a great clinical need for regenerating urinary tissue. Native urethras and ureters have bidirectional aligned smooth muscle cells (SMCs) layers, which plays a pivotal role in micturition and transporting urine and inhibiting reflux. Thus far, urinary scaffolds have not been designed to induce the native-mimicking aligned arrangement of SMCs. In this study, a tubular decellularized extracellular matrix (dECM) with an intact internal layer and bidirectional aligned microchannels in the tubular wall, which is realized by the subcutaneous implantation of a template, followed by the removal of the template, and decellularization, is engineered. The dense and intact internal layer effectively increases the leakage pressure of the tubular dECM scaffolds. Rat-derived dECM scaffolds with three different sizes of microchannels are fabricated by tailoring the fiber diameter of the templates. The rat-derived dECM scaffolds exhibiting microchannels of ≈65 µm show suitable mechanical properties, good ability to induce the bidirectional alignment and growth of human bladder SMCs, and elevated higher functional protein expression in vitro. These data indicate that rat-derived tubular dECM scaffolds manifesting double-layer aligned microchannels may be promising candidates to induce the native-mimicking regeneration of SMCs in urethra and ureter reconstruction.
Collapse
Affiliation(s)
- Quhan Cheng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Linli Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Boyu Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dezheng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shengbin Li
- Department of Urology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Guan
- Department of Urology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Farzamfar S, Richer M, Rahmani M, Naji M, Aleahmad M, Chabaud S, Bolduc S. Biological Macromolecule-Based Scaffolds for Urethra Reconstruction. Biomolecules 2023; 13:1167. [PMID: 37627232 PMCID: PMC10452429 DOI: 10.3390/biom13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Urethral reconstruction strategies are limited with many associated drawbacks. In this context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure. However, most of the used tissues in clinical practices are non-specialized grafts that finally fail to prevent urine leakage. Tissue engineering has offered novel solutions to address this dilemma. In this technology, scaffolding biomaterials characteristics are of prime importance. Biological macromolecules are naturally derived polymers that have been extensively studied for various tissue engineering applications. This review discusses the recent advances, applications, and challenges of biological macromolecule-based scaffolds in urethral reconstruction.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
15
|
Meuwese RT, Versteeg EM, van Drongelen J, de Hoog D, Bouwhuis D, Vandenbussche FP, van Kuppevelt TH, Daamen WF. A collagen plug with shape memory to seal iatrogenic fetal membrane defects after fetoscopic surgery. Bioact Mater 2023; 20:463-471. [PMID: 35800408 PMCID: PMC9249610 DOI: 10.1016/j.bioactmat.2022.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 12/04/2022] Open
Abstract
Iatrogenic preterm premature rupture of fetal membranes (iPPROM) after fetal surgery remains a strong trigger for premature birth. As fetal membrane defects do not heal spontaneously and amniotic fluid leakage and chorioamniotic membrane separation may occur, we developed a biocompatible, fetoscopically-applicable collagen plug with shape memory to prevent leakage. This plug expands directly upon employment and seals fetal membranes, hence preventing amniotic fluid leakage and potentially iPPROM. Lyophilized type I collagen plugs were given shape memory and crimped to fit through a fetoscopic cannula (Ø 3 mm). Expansion of the plug was examined in phosphate buffered saline (PBS). Its sealing capacity was studied ex vivo using human fetal membranes, and in situ in a porcine bladder model. The crimped plug with shape memory expanded and tripled in diameter within 1 min when placed into PBS, whereas a crimped plug without shape memory did not. In both human fetal membranes and porcine bladder, the plug expanded in the defect, secured itself and sealed the defect without membrane rupture. In conclusion, collagen plugs with shape memory are promising as medical device for rapid sealing of fetoscopic defects in fetal membranes at the endoscopic entry point. Shape memory can be given to collagen plugs to rapidly expand in aqueous fluids. Within 1 min in aqueous fluid, collagen plugs with shape memory triple in diameter. Collagen plugs with shape memory show potency to seal fetal membrane defects.
Collapse
|
16
|
Xuan Z, Zachar V, Pennisi CP. Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering. Int J Mol Sci 2022; 23:14074. [PMID: 36430557 PMCID: PMC9697333 DOI: 10.3390/ijms232214074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Urethral stricture is a common urinary tract disorder in men that can be caused by iatrogenic causes, trauma, inflammation, or infection and often requires reconstructive surgery. The current therapeutic approach for complex urethral strictures usually involves reconstruction with autologous tissue from the oral mucosa. With the goal of overcoming the lack of sufficient autologous tissue and donor site morbidity, research over the past two decades has focused on cell-based tissue-engineered substitutes. While the main focus has been on autologous cells from the penile tissue, bladder, and oral cavity, stem cells from sources such as adipose tissue and urine are competing candidates for future urethral regeneration due to their ease of collection, high proliferative capacity, maturation potential, and paracrine function. This review addresses the sources, advantages, and limitations of cells for tissue engineering in the urethra and discusses recent approaches to improve cell survival, growth, and differentiation by mimicking the mechanical and biophysical properties of the extracellular environment.
Collapse
Affiliation(s)
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
17
|
Ogawa N, Imamura T, Minagawa T, Ogawa T, Ishizuka O. Autologous Bilayered Adipose-Derived Mesenchymal Cell-Gelatin Sheets Reconstruct Ureters in Rabbits. Tissue Eng Part A 2022; 28:855-866. [PMID: 35850515 DOI: 10.1089/ten.tea.2022.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Repair of ureteral defects or strictures due to disease or trauma is usually dependent upon surgery that often requires either reoperation or an alternative treatment. By taking advantage of tissue engineering and regenerative techniques, it may be possible to define new approaches to ureteral repair. In this study, we fabricated autologous bilayered adipose-derived mesenchymal cell (AMC)-gelatin sheets and transplanted them into rabbits to replace surgically excised ureteral segments. AMCs harvested from abdominal adipose tissues of female New Zealand White rabbits were cultured on collagen-coated dishes and labeled with PKH26, a red fluorescent dye, for later identification. Monolayers of the cultured PKH26-labeled AMCs were detached and applied to gelatin hydrogel sheets. Two gelatin sheets were then united with the AMC monolayers apposed together, forming a bilayered AMC-gelatin sheet. Following each partial ureterectomy, a bilayered autologous AMC-gelatin sheet was transplanted, joining the proximal and distal ends of the remaining the ureter (n=9). Control animals underwent the same procedure except that the transplant was achieved with a bilayered acellular-gelatin sheet (n=9). At 4 and 8 weeks after transplantation, the proximal regions of ureters treated with the control bilayered acellular-gelatin sheets exhibited flexures and dilations, which are not characteristic of unoperated ureters. In contrast, the bilayered AMC-gelatin sheet transplanted rabbits did not have ureteral flexures or dilations. About midway between the proximal and distal ends, both the control and experimental reconstructed ureteral walls had smooth muscle layers; however, those in the experimental reconstructed ureteral walls were significantly thicker and better organized than those in the control reconstructed ureteral walls. Some AMCs differentiated into smooth muscle marker-positive cells. The experimental ureteral walls contained smooth muscle cells derived from the PKH26-labeled AMCs and others that were derived through migration and differentiation of cells from the remaining proximal and distal ends of the original ureter. In addition, the lumina of the 8-week reconstructed ureteral tissues in experimental rabbits did not show histological strictures as seen in the control ureters. These results suggest that the bilayered AMC-gelatin sheets have the potential to replace defective tissues and/or reconstruct damaged ureters.
Collapse
Affiliation(s)
- Noriyuki Ogawa
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, 3-1-1, Asahi, Matsumoto, Japan, 390-8621;
| | - Tetsuya Imamura
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, Matsumoto, Nagano, Japan;
| | - Tomonori Minagawa
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, Matsumoto, Nagano, Japan;
| | - Teruyuki Ogawa
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, Matsumoto, Nagano, Japan;
| | - Osamu Ishizuka
- Shinshu University Graduate School of Medicine School of Medicine, 34808, Department of Urology, Matsumoto, Nagano, Japan;
| |
Collapse
|
18
|
Zhao Y, Liu Y, Dai Y, Yang L, Chen G. Application of 3D Bioprinting in Urology. MICROMACHINES 2022; 13:mi13071073. [PMID: 35888890 PMCID: PMC9321242 DOI: 10.3390/mi13071073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022]
Abstract
Tissue engineering is an emerging field to create functional tissue components and whole organs. The structural and functional defects caused by congenital malformation, trauma, inflammation or tumor are still the major clinical challenges facing modern urology, and the current treatment has not achieved the expected results. Recently, 3D bioprinting has gained attention for its ability to create highly specialized tissue models using biological materials, bridging the gap between artificially engineered and natural tissue structures. This paper reviews the research progress, application prospects and current challenges of 3D bioprinting in urology tissue engineering.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China
| | - Yuebai Liu
- Department of Education and Training, Sichuan Cancer Hospital, Chengdu 610000, China;
| | - Yi Dai
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
| | - Luo Yang
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| | - Guo Chen
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610000, China
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| |
Collapse
|
19
|
Tissue Engineering and Regenerative Medicine in Pediatric Urology: Urethral and Urinary Bladder Reconstruction. Int J Mol Sci 2022; 23:ijms23126360. [PMID: 35742803 PMCID: PMC9224288 DOI: 10.3390/ijms23126360] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
In the case of pediatric urology there are several congenital conditions, such as hypospadias and neurogenic bladder, which affect, respectively, the urethra and the urinary bladder. In fact, the gold standard consists of a urethroplasty procedure in the case of urethral malformations and enterocystoplasty in the case of urinary bladder disorders. However, both surgical procedures are associated with severe complications, such as fistulas, urethral strictures, and dehiscence of the repair or recurrence of chordee in the case of urethroplasty, and metabolic disturbances, stone formation, urine leakage, and chronic infections in the case of enterocystoplasty. With the aim of overcoming the issue related to the lack of sufficient and appropriate autologous tissue, increasing attention has been focused on tissue engineering. In this review, both the urethral and the urinary bladder reconstruction strategies were summarized, focusing on pediatric applications and evaluating all the biomaterials tested in both animal models and patients. Particular attention was paid to the capability for tissue regeneration in dependence on the eventual presence of seeded cell and growth factor combinations in several types of scaffolds. Moreover, the main critical features needed for urinary tissue engineering have been highlighted and specifically focused on for pediatric application.
Collapse
|
20
|
Vazquez-Vazquez FC, Chavarria-Bolaños D, Ortiz-Magdaleno M, Guarino V, Alvarez-Perez MA. 3D-Printed Tubular Scaffolds Decorated with Air-Jet-Spun Fibers for Bone Tissue Applications. Bioengineering (Basel) 2022; 9:bioengineering9050189. [PMID: 35621467 PMCID: PMC9137720 DOI: 10.3390/bioengineering9050189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
The fabrication of instructive materials to engineer bone substitute scaffolds is still a relevant challenge. Current advances in additive manufacturing techniques make possible the fabrication of 3D scaffolds with even more controlled architecture at micro- and submicrometric levels, satisfying the relevant biological and mechanical requirements for tissue engineering. In this view, integrated use of additive manufacturing techniques is proposed, by combining 3D printing and air-jet spinning techniques, to optimize the fabrication of PLA tubes with nanostructured fibrous coatings for long bone defects. The physicochemical characterization of the 3D tubular scaffolds was performed by scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, profilometry, and mechanical properties. In vitro biocompatibility was evaluated in terms of cell adhesion, proliferation, and cell–material interactions, by using human fetal osteoblasts to validate their use as a bone growth guide. The results showed that 3D-printed scaffolds provide a 3D architecture with highly reproducible properties in terms of mechanical and thermal properties. Moreover, nanofibers are collected onto the surface, which allows forming an intricate and interconnected network that provides microretentive cues able to improve adhesion and cell growth response. Therefore, the proposed approach could be suggested to design innovative scaffolds with improved interface properties to support regeneration mechanisms in long bone treatment.
Collapse
Affiliation(s)
- Febe Carolina Vazquez-Vazquez
- Laboratorio de Materiales Dentales, DEPeI, School of Dentistry, Circuito Exterior, s/n, Ciudad Universitaria, Mexico City 04510, Mexico;
| | | | - Marine Ortiz-Magdaleno
- Faculty of Stomatology, Autonomous University of San Luis Potosi, San Luis Potosi 78000, Mexico;
| | - Vincenzo Guarino
- IPCB/CNR, Institute of Polymers, Composites and Biomaterials, Consiglio Nazionale delle Ricerche, Mostra D’Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Naples, Italy
- Correspondence: or
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, DEPeI, School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n C.P., Mexico City 04510, Mexico;
| |
Collapse
|
21
|
Davies JA, Elhendawi M, Palakkan AA, Sallam M. Renal engineering: strategies to address the problem of the ureter. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100334. [PMID: 36644495 PMCID: PMC7614056 DOI: 10.1016/j.cobme.2021.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Current techniques for making renal organoids generate tissues that show function when transplanted into a host, but they have no ureter through which urine can drain. There are at least 4 possible strategies for adding a ureter: connecting to ta host ureter; inducing an engineered kidney to make a ureter; making a stem-cell derived ureter; and replacement of only damaged cortex and outer medulla, using remaining host calyces, pelvis and ureter. Here we review progress: local BMP4 can induce a collecting duct tubule to become a ureter; a urothelial tube can be produced directly from pluripotent cells, and connect to the collecting duct system of a renal organoid; it is possible to graft ES cell-derived ureters into host kidney rudiments and see connection, smooth muscle development and spontaneous contraction, but this has not yet been achieved with all components being derived from ES cells. Remaining problems are discussed.
Collapse
Affiliation(s)
- Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XB, UK
- Centre for Mammalian Synthetic Biology, University of Edinburgh, CH Waddington Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| | - Mona Elhendawi
- Deanery of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XB, UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Anwar A Palakkan
- Deanery of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XB, UK
| | - May Sallam
- Deanery of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh EH8 9XB, UK
- Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
22
|
Niu Y, Stadler FJ, Yang X, Deng F, Liu G, Xia H. HA-coated collagen nanofibers for urethral regeneration via in situ polarization of M2 macrophages. J Nanobiotechnology 2021; 19:283. [PMID: 34551762 PMCID: PMC8456673 DOI: 10.1186/s12951-021-01000-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022] Open
Abstract
In situ tissue engineering utilizes the regenerative potential of the human body to control cell function for tissue regeneration and has shown considerable prospect in urology. However, many problems are still to be understood, especially the interactions between scaffolds and host macrophages at the wound site and how these interactions direct tissue integration and regeneration. This study was designed to evaluate the efficacy of hyaluronic acid (HA) functionalized collagen nanofibers in modulating the pro-healing phenotype expression of macrophages for urethral regeneration. Tubular HA-collagen nanofibers with HA-coating were prepared by coaxial electrospinning. The formation of a thin HA-coating atop each collagen nanofiber endowed its nanofibrous mats with higher anisotropic wettability and mechanical softness. The macrophages growing on the surface of HA-collagen nanofibers showed an elongated shape, while collagen nanofibers' surface exhibited a pancake shape. Immunofluorescence and ELISA analysis showed that elongation could promote the expression of M2 phenotype marker and reduce the secretion of inflammatory cytokines. In vivo experiments showed that tubular HA-collagen nanofibers significantly facilitate male puppy urethral regeneration after injury. In the regenerated urethra bridged by tubular HA-collagen nanofibers, anti-inflammatory M2 macrophages are recruited to the surface of the scaffold, which can promote angiogenesis and endogenous urothelial progenitor cell proliferation.
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Florian J Stadler
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xu Yang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Fuming Deng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
23
|
Niu Y, Galluzzi M. Hyaluronic Acid/Collagen Nanofiber Tubular Scaffolds Support Endothelial Cell Proliferation, Phenotypic Shape and Endothelialization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2334. [PMID: 34578649 PMCID: PMC8471775 DOI: 10.3390/nano11092334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
In this study, we designed and synthetized artificial vascular scaffolds based on nanofibers of collagen functionalized with hyaluronic acid (HA) in order to direct the phenotypic shape, proliferation, and complete endothelization of mouse primary aortic endothelial cells (PAECs). Layered tubular HA/collagen nanofibers were prepared using electrospinning and crosslinking process. The obtained scaffold is composed of a thin inner layer and a thick outer layer that structurally mimic the layer the intima and media layers of the native blood vessels, respectively. Compared with the pure tubular collagen nanofibers, the surface of HA functionalized collagen nanofibers has higher anisotropic wettability and mechanical flexibility. HA/collagen nanofibers can significantly promote the elongation, proliferation and phenotypic shape expression of PAECs. In vitro co-culture of mouse PAECs and their corresponding smooth muscle cells (SMCs) showed that the luminal endothelialization governs the biophysical integrity of the newly formed extracellular matrix (e.g., collagen and elastin fibers) and structural remodeling of SMCs. Furthermore, in vitro hemocompatibility assays indicated that HA/collagen nanofibers have no detectable degree of hemolysis and coagulation, suggesting their promise as engineered vascular implants.
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
24
|
Biomechanical-Structural Correlation of Chordae tendineae in Animal Models: A Pilot Study. Animals (Basel) 2021; 11:ani11061678. [PMID: 34199922 PMCID: PMC8230186 DOI: 10.3390/ani11061678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The Chordae tendineae are part of the atrioventricular apparatus. They are mainly responsible for the mechanical functions of heart valves. Degenerative mitral valve disease is the most common heart disease in dogs and is responsible for about 75% of cases of heart failure. One of the complications of this disease is Chordae tendineae rupture. It is clinically relevant to better understand the biomechanical and structural properties of CT in order to begin further studies about biomarkers suggesting an episode of CT rupture. Such an episode leads to acute pulmonary oedema and worsens the clinical status of the patient. Information about the biomechanical and structural properties of healthy CT and CT affected by the degenerative process are essential in understanding how CT behave in an in vivo environment. Abstract The mitral valve apparatus is a complex structure consisting of the mitral ring, valve leaflets, papillary muscles and Chordae tendineae (CT). The latter are mainly responsible for the mechanical functions of the valve. Our study included investigations of the biomechanical and structural properties of CT collected from canine and porcine hearts, as there are no studies about these properties of canine CT. We performed a static uniaxial tensile test on CT samples and a histopathological analysis in order to examine their microstructure. The results were analyzed to clarify whether the changes in mechanical persistence of Chordae tendineae are combined with the alterations in their structure. This study offers clinical insight for future research, allowing for an understanding of the process of Chordae tendineae rupture that happens during degenerative mitral valve disease—the most common heart disease in dogs.
Collapse
|
25
|
Tarabanis C, Miranda-Nieves D, Ferrante T, Haller CA, Chaikof EL. Standardized User-Independent Confocal Microscopy Image Acquisition and Analysis for Thickness Measurements of Microscale Collagen Scaffolds. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-6. [PMID: 33785078 DOI: 10.1017/s1431927621000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to accurately and precisely measure the thickness of biomaterial constructs is critical for characterizing both specific dimensional features and related mechanical properties. However, in the absence of a standardized approach for thickness measurements, a variety of imaging modalities have been employed, which have been associated with varying limits of accuracy, particularly for ultrathin hydrated structures. Electron microscopy (EM), a commonly used modality, yields thickness values for extensively processed and nonhydrated constructs, potentially resulting in overestimated mechanical properties, including elastic modulus and ultimate tensile strength. Confocal laser scanning microscopy (CLSM) has often been used as a nondestructive imaging alternative. However, published CLSM-derived image analysis protocols use arbitrary signal intensity cutoffs and provide minimal information regarding thickness variability across imaged surfaces. To address the aforementioned limitations, we present a standardized, user-independent CLSM image acquisition and analysis approach developed as a custom ImageJ macro and validated with collagen-based scaffolds. In the process, we also quantify thickness discrepancies in collagen-based scaffolds between CLSM and EM techniques, further illustrating the need for improved strategies. Employing the same image acquisition protocol, we also demonstrate that this approach can be used to estimate the surface roughness of the same scaffolds without the use of specialized instrumentation.
Collapse
Affiliation(s)
- Constantine Tarabanis
- Department of Surgery, Beth Israel Deaconess Medical Center, Center for Life Sciences, 3 Blackfan Circle, Boston, MA02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA02115, USA
| | - David Miranda-Nieves
- Department of Surgery, Beth Israel Deaconess Medical Center, Center for Life Sciences, 3 Blackfan Circle, Boston, MA02115, USA
- Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA02139, USA
- Wyss Institute for Biologically Inspired Engineering of Harvard University, 3 Blackfan Circle, Boston, MA02115, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering of Harvard University, 3 Blackfan Circle, Boston, MA02115, USA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Center for Life Sciences, 3 Blackfan Circle, Boston, MA02115, USA
- Wyss Institute for Biologically Inspired Engineering of Harvard University, 3 Blackfan Circle, Boston, MA02115, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Center for Life Sciences, 3 Blackfan Circle, Boston, MA02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA02115, USA
- Program in Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA02139, USA
- Wyss Institute for Biologically Inspired Engineering of Harvard University, 3 Blackfan Circle, Boston, MA02115, USA
| |
Collapse
|
26
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|
27
|
Vasyutin I, Butnaru D, Lyundup A, Timashev P, Vinarov A, Kuznetsov S, Atala A, Zhang Y. Frontiers in urethra regeneration: current state and future perspective. Biomed Mater 2021; 16. [PMID: 32503009 DOI: 10.1088/1748-605x/ab99d2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Despite the positive achievements attained, the treatment of male urethral strictures and hypospadiases still remains a challenge, particularly in cases of severe urethral defects. Complications and the need for additional interventions in such cases are common. Also, shortage of autologous tissue for graft harvesting and significant morbidity in the location of harvesting present problems and often lead to staged treatment. Tissue engineering provides a promising alternative to the current sources of grafts for urethroplasty. Since the first experiments in urethral substitution with tissue engineered grafts, this topic in regenerative medicine has grown remarkably, as many different types of tissue-engineered grafts and approaches in graft design have been suggested and testedin vivo. However, there have been only a few clinical trials of tissue-engineered grafts in urethral substitution, involving hardly more than a hundred patients overall. This indicates that the topic is still in its inception, and the search for the best graft design is continuing. The current review focuses on the state of the art in urethral regeneration with tissue engineering technology. It gives a comprehensive overview of the components of the tissue-engineered graft and an overview of the steps in graft development. Different cell sources, types of scaffolds, assembling approaches, options for vascularization enhancement and preclinical models are considered.
Collapse
Affiliation(s)
- Igor Vasyutin
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Denis Butnaru
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Alexey Lyundup
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Peter Timashev
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Andrey Vinarov
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Sergey Kuznetsov
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way NE, Winston-Salem, NC 27101, United States of America
| | - Yuanyuan Zhang
- Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia.,Wake Forest Institute for Regenerative Medicine, 391 Technology Way NE, Winston-Salem, NC 27101, United States of America
| |
Collapse
|
28
|
Parfenov VA, Koudan EV, Krokhmal AA, Annenkova EA, Petrov SV, Pereira FDAS, Karalkin PA, Nezhurina EK, Gryadunova AA, Bulanova EA, Sapozhnikov OA, Tsysar SA, Liu K, Oosterwijk E, van Beuningen H, van der Kraan P, Granneman S, Engelkamp H, Christianen P, Kasyanov V, Khesuani YD, Mironov VA. Biofabrication of a Functional Tubular Construct from Tissue Spheroids Using Magnetoacoustic Levitational Directed Assembly. Adv Healthc Mater 2020; 9:e2000721. [PMID: 32809273 DOI: 10.1002/adhm.202000721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Indexed: 12/15/2022]
Abstract
In traditional tissue engineering, synthetic or natural scaffolds are usually used as removable temporal support, which involves some biotechnology limitations. The concept of "scaffield" approach utilizing the physical fields instead of biomaterial scaffold has been proposed recently. In particular, a combination of intense magnetic and acoustic fields can enable rapid levitational bioassembly of complex-shaped 3D tissue constructs from tissue spheroids at low concentration of paramagnetic agent (gadolinium salt) in the medium. In the current study, the tissue spheroids from human bladder smooth muscle cells (myospheres) are used as building blocks for assembling the tubular 3D constructs. Levitational assembly is accomplished at low concentrations of gadolinium salts in the high magnetic field at 9.5 T. The biofabricated smooth muscle constructs demonstrate contraction after the addition of vasoconstrictive agent endothelin-1. Thus, hybrid magnetoacoustic levitational bioassembly is considered as a new technology platform in the emerging field of formative biofabrication. This novel technology of scaffold-free, nozzle-free, and label-free bioassembly opens a unique opportunity for rapid biofabrication of 3D tissue and organ constructs with complex geometry.
Collapse
Affiliation(s)
- Vladislav A. Parfenov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
- A. A. Baikov Institute of Metallurgy and Material Science Russian Academy of Sciences Moscow 119334 Russia
| | - Elizaveta V. Koudan
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Alisa A. Krokhmal
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Elena A. Annenkova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Stanislav V. Petrov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | | | - Pavel A. Karalkin
- P. A. Hertsen Moscow Oncology Research Center National Medical Research Radiological Center Moscow 125284 Russia
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow 119991 Russia
| | - Elizaveta K. Nezhurina
- P. A. Hertsen Moscow Oncology Research Center National Medical Research Radiological Center Moscow 125284 Russia
| | - Anna A. Gryadunova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Elena A. Bulanova
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Oleg A. Sapozhnikov
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Sergey A. Tsysar
- Department of Physics Lomonosov Moscow State University Moscow 119991 Russia
| | - Kaizheng Liu
- Department of Urology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Egbert Oosterwijk
- Department of Urology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Henk van Beuningen
- Department of Experimental Rheumatology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Peter van der Kraan
- Department of Experimental Rheumatology Radboud University Medical Center Nijmegen 9102 The Netherlands
| | - Sanne Granneman
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Hans Engelkamp
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Peter Christianen
- High Field Magnet Laboratory (HFML‐EMFL) Radboud University Toernooiveld 7 Nijmegen 9010 The Netherlands
| | - Vladimir Kasyanov
- Riga Stradins University Riga LV‐1007 Latvia
- Riga Technical University Riga LV‐1658 Latvia
| | - Yusef D. Khesuani
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
| | - Vladimir A. Mironov
- Laboratory for Biotechnological Research “3D Bioprinting Solutions” Moscow 115409 Russia
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) Moscow 119991 Russia
| |
Collapse
|
29
|
Seetharam Bhat KR, Moschovas MC, Patel VR, Ko YH. The robot-assisted ureteral reconstruction in adult: A narrative review on the surgical techniques and contemporary outcomes. Asian J Urol 2020; 8:38-49. [PMID: 33569271 PMCID: PMC7859418 DOI: 10.1016/j.ajur.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Despite the rapid increase in the use of robotic surgery in urology, the majority of ureteric reconstruction procedures are still performed using laparoscopic or open approaches. This is primarily due to uncertainty regarding the advantages of robotic approaches over conventional ones, and the unique difficulty in identifying the specific area of interest due to the lack of tactile feedback from the current robotic systems. However, with the potential benefits of minimal invasiveness, several pioneering reports have been published on robotic surgery in urology. By reviewing the literature on this topic, we aimed to summarize the techniques, considerations, and consistent findings regarding robotic ureteral reconstruction in adults. Robotic applications for ureteral surgery have been primarily reported for pediatric urology, especially in the context of relieving a congenital obstruction in the ureteral pelvic junction. However, contemporary studies have also consistently demonstrated that robotic surgery could be a reliable option for malignant, iatrogenic, and traumatic conditions, which generally occur in adult patients. Nevertheless, the lack of comparative studies on heterogeneous hosts and disease conditions make it difficult to determine the benefit of the robotic approach over the conventional approach in the general population; thus, qualified prospective trials are needed for wider acceptance. However, contemporary reports have demonstrated that the robotic approach could be an alternative option for ureteral construction, even in the absence of haptic feedback, which can be compensated by various surgical techniques and enhanced three-dimensional visualization.
Collapse
Affiliation(s)
| | - Marcio Covas Moschovas
- Department of Urology, AdventHealth Global Robotics Institute, Celebration, FL, United States
| | - Vipul R Patel
- Department of Urology, AdventHealth Global Robotics Institute, Celebration, FL, United States
| | - Young Hwii Ko
- Department of Urology, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
30
|
Mathews DAP, Baird A, Lucky M. Innovation in Urology: Three Dimensional Printing and Its Clinical Application. Front Surg 2020; 7:29. [PMID: 32582760 PMCID: PMC7282341 DOI: 10.3389/fsurg.2020.00029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) printing allows rapid prototyping of novel equipment as well as the translation of medical imaging into tangible replicas of patient-specific anatomy. The technology has emerged as a versatile medium for innovation in medicine but with ever-expanding potential uses, does 3D printing represent a valuable adjunct to urological practice? We present a concise systematic review of articles on 3D printing within urology, outlining proposed benefits and the limitations in evidence supporting its utility. We review publications prior to December 2019 using guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. Of 117 identified articles, 67 are included highlighting key areas of research as the use of patient-specific models for patient education, surgical planning, and surgical training. Further novel applications included printed surgical tools, patient-specific surgical guides, and bioprinting of graft tissues. We conclude to justify its adoption within standard practice, further research is required demonstrating that use of 3D printing can produce; direct and measurable improvements in patient experience, consistent evidence of superior surgical outcomes or simulation which surpasses existing means' both in fidelity and enhancement of surgical skills. Although exploration of 3D printing's urological applications remains nascent, the seemingly limitless scope for innovation and collaborative design afforded by the technology presents undeniable value as a resource and assures a place at the forefront of future advances.
Collapse
Affiliation(s)
| | - Andrew Baird
- Aintree University Hospital, Liverpool, United Kingdom
| | - Marc Lucky
- Aintree University Hospital, Liverpool, United Kingdom
| |
Collapse
|
31
|
Liu G, Fu M, Li F, Fu W, Zhao Z, Xia H, Niu Y. Tissue-engineered PLLA/gelatine nanofibrous scaffold promoting the phenotypic expression of epithelial and smooth muscle cells for urethral reconstruction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110810. [PMID: 32279818 DOI: 10.1016/j.msec.2020.110810] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/31/2023]
Abstract
The repair and regeneration of tissues using tissue-engineered scaffolds represent the ultimate goal of regenerative medicine. Despite rapid developments in the field, urethral tissue engineering methods are still insufficient to replicate natural urethral tissue because the bioactivity of existing scaffolds is inefficient, especially for large tissue defects, which require large tissue-engineered scaffolds. Here, we describe the efficiency of gelatine-functionalized, tubular nanofibrous scaffolds of poly(l-lactic acid) (PLLA) in regulating the phenotypic expression of epithelial cells (ECs) and smooth muscle cells (SMCs) for urethral reconstruction. Flexible PLLA/gelatine tubular nanofibrous scaffolds with hierarchical architecture were fabricated by electrospinning. The PLLA/gelatine nanofibrous scaffold exhibited enhanced hydrophilicity and significantly promoted the adhesion, oriented elongation, and proliferation of New Zealand rabbit autologous ECs and SMCs simultaneously. Compared with pure PLLA nanofibrous scaffold, PLLA/gelatine nanofibrous scaffolds upregulated the expression of keratin (AE1/AE3) in ECs and actin (α-SMA) in SMCs as well as the synthesis of elastin. Three months of in vivo scaffold replacement of New Zealand rabbit urethras indicated that a tubular cellularized PLLA/gelatine nanofibrous scaffold maintained urethral patency and facilitated oriented SMC remodeling, lumen epithelialization, and angiogenesis. Our observations showed the synergistic effects of nano-morphology and biochemical clues in the design of biomimetic scaffolds, which can effectively promote urethral regeneration.
Collapse
Affiliation(s)
- Guochang Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Ming Fu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhang Zhao
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Yuqing Niu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
32
|
The current state of tissue engineering in the management of hypospadias. Nat Rev Urol 2020; 17:162-175. [DOI: 10.1038/s41585-020-0281-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
|
33
|
Culenova M, Bakos D, Ziaran S, Bodnarova S, Varga I, Danisovic L. Bioengineered Scaffolds as Substitutes for Grafts for Urethra Reconstruction. MATERIALS (BASEL, SWITZERLAND) 2019; 12:3449. [PMID: 31652498 PMCID: PMC6829564 DOI: 10.3390/ma12203449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022]
Abstract
Urethral defects originating from congenital malformations, trauma, inflammation or carcinoma still pose a great challenge to modern urology. Recent therapies have failed many times and have not provided the expected results. This negatively affects patients' quality of life. By combining cells, bioactive molecules, and biomaterials, tissue engineering can provide promising treatment options. This review focused on scaffold systems for urethra reconstruction. We also discussed different technologies, such as electrospinning and 3D bioprinting which provide great possibility for the preparation of a hollow structure with well-defined architecture.
Collapse
Affiliation(s)
- Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Dusan Bakos
- International Centre for Applied Research and Sustainable Technology, Jamnickeho 19, 841 04 Bratislava, Slovakia.
| | - Stanislav Ziaran
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia.
| | - Simona Bodnarova
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 9, 042 00 Kosice, Slovakia.
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia.
| |
Collapse
|
34
|
Adamowicz J, Kuffel B, Van Breda SV, Pokrwczynska M, Drewa T. Reconstructive urology and tissue engineering: Converging developmental paths. J Tissue Eng Regen Med 2019; 13:522-533. [DOI: 10.1002/term.2812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/23/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative MedicineCollegium Medicum Nicolaus Copernicus University Bydgoszcz Poland
| | - Blazej Kuffel
- Chair of Urology, Department of Regenerative MedicineCollegium Medicum Nicolaus Copernicus University Bydgoszcz Poland
| | | | - Marta Pokrwczynska
- Chair of Urology, Department of Regenerative MedicineCollegium Medicum Nicolaus Copernicus University Bydgoszcz Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative MedicineCollegium Medicum Nicolaus Copernicus University Bydgoszcz Poland
| |
Collapse
|
35
|
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 2019; 18:24. [PMID: 30885217 PMCID: PMC6423854 DOI: 10.1186/s12938-019-0647-0] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Collagen, the most abundant extracellular matrix protein in animal kingdom belongs to a family of fibrous proteins, which transfer load in tissues and which provide a highly biocompatible environment for cells. This high biocompatibility makes collagen a perfect biomaterial for implantable medical products and scaffolds for in vitro testing systems. To manufacture collagen based solutions, porous sponges, membranes and threads for surgical and dental purposes or cell culture matrices, collagen rich tissues as skin and tendon of mammals are intensively processed by physical and chemical means. Other tissues such as pericardium and intestine are more gently decellularized while maintaining their complex collagenous architectures. Tissue processing technologies are organized as a series of steps, which are combined in different ways to manufacture structurally versatile materials with varying properties in strength, stability against temperature and enzymatic degradation and cellular response. Complex structures are achieved by combined technologies. Different drying techniques are performed with sterilisation steps and the preparation of porous structures simultaneously. Chemical crosslinking is combined with casting steps as spinning, moulding or additive manufacturing techniques. Important progress is expected by using collagen based bio-inks, which can be formed into 3D structures and combined with live cells. This review will give an overview of the technological principles of processing collagen rich tissues down to collagen hydrolysates and the methods to rebuild differently shaped products. The effects of the processing steps on the final materials properties are discussed especially with regard to the thermal and the physical properties and the susceptibility to enzymatic degradation. These properties are key features for biological and clinical application, handling and metabolization.
Collapse
Affiliation(s)
- Michael Meyer
- Research Institute for Leather and Plastic Sheeting, Meissner Ring 1-5, 09599, Freiberg, Germany.
| |
Collapse
|
36
|
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol 2018; 37:464-491. [PMID: 30447877 DOI: 10.1016/j.tibtech.2018.10.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.
Collapse
Affiliation(s)
- Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tiantian Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Lina Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
37
|
Versteegden LRM, Ter Meer M, Lomme RMLM, van der Vliet JA, Schultze Kool LJ, van Kuppevelt TH, Daamen WF. Self-expandable tubular collagen implants. J Tissue Eng Regen Med 2018; 12:1494-1498. [PMID: 29704312 PMCID: PMC6032829 DOI: 10.1002/term.2685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 02/25/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Collagen has been extensively used as a biomaterial, yet for tubular organ repair, synthetic polymers or metals (e.g., stents) are typically used. In this study, we report a novel type of tubular implant solely consisting of type I collagen, suitable to self-expand in case of minimal invasive implantation. Potential benefits of this collagen scaffold over conventional materials include improved endothelialization, biodegradation over time, and possibilities to add bioactive components to the scaffold, such as anticoagulants. Implants were prepared by compression of porous scaffolds consisting of fibrillar type I collagen (1.0-2.0% (w/v)). By applying carbodiimide cross-linking to the compressed scaffolds in their opened position, entropy-driven shape memory was induced. The scaffolds were subsequently crimped and dried around a guidewire. Upon exposure to water, crimped scaffolds deployed within 15-60 s (depending on the collagen concentration used), thereby returning to the original opened form. The scaffolds were cytocompatible as assessed by cell culture with human primary vascular endothelial and smooth muscle cells. Compression force required to compress the open scaffolds increased with collagen content from 16 to 32 mN for 1.0% to 2.0% (w/v) collagen scaffolds. In conclusion, we report the first self-expandable tubular implant consisting of solely type I collagen that may have potential as a biological vascular implant.
Collapse
Affiliation(s)
- Luuk R M Versteegden
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Marja Ter Meer
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Roger M L M Lomme
- Department of Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - J Adam van der Vliet
- Department of Surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - Leo J Schultze Kool
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2017; 6:35-44. [PMID: 29066225 DOI: 10.1016/j.sxmr.2017.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In this review, we discuss major advancements and common challenges in constructing and regenerating a neo-urinary conduit (NUC). First, we focus on the need for regenerating the urothelium, the hallmark the urine barrier, unique to urinary tissues. Second, we focus on clinically feasible scaffolds based on decellularized matrices and molded collagen that are currently of great research interest. AIM To discuss the major advancements in constructing a tissue-engineered NUC (TE-NUC) and the challenges involved in their successful clinical translation. METHODS A comprehensive search of peer-reviewed literature from PubMed and Google Scholar on subjects related to urothelium regeneration, decellularized tissue matrices, and collagen scaffolds was conducted. MAIN OUTCOME MEASURE We evaluated the main biological and mechanical functions of urinary tissues, the need for TE implants to create a urinary diversion, the reasons for their failures in clinical settings, and the applications of decellularized tissue matrices and collagen-based molded scaffolds in their regeneration. RESULTS It is necessary to create a urine barrier that prevents urine leakage into the stroma that can cause failure of the graft. Despite the regeneration potential of the urothelium, the limited supply of healthy urothelial cells in patients with bladder cancer remains a major challenge. In this context, alternative strategies, such as transdifferentiation of cells into urothelium or engineered scaffolds based on decellularized tissues and molded collagen with robust urine barrier properties, are active areas of research. CONCLUSION There is an immediate need for developing a functional TE-NUC that can improve the quality of life of patients with bladder cancer. It is possible to achieve a TE-NUC by bioengineering an implant that has appropriate biological and mechanical properties to store and transport urine. We anticipate that future advancements in urothelium regeneration and material design will lead us closer to successful neo-urinary tissue constructs. Singh A, Bivalacqua TJ, Sopko N. Urinary Tissue Engineering: Challenges and Opportunities. Sex Med Rev 2018;6:35-44.
Collapse
|