1
|
Qi J, Zhao S, Chen J, Guo Q, Hong Y, Meng F. Facile fabrication of antibacterial membranes with human-friendly aloin for water purification. WATER RESEARCH 2025; 280:123515. [PMID: 40158287 DOI: 10.1016/j.watres.2025.123515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Currently, chemicals or nanoparticles are widely used for modifying membranes to improve their antifouling properties. However, the chemicals released, particularly during long-term water or wastewater filtration, are highly toxic to the environment and humans. Herein, an herb-inspired, green antibacterial membrane with exceptional sustainable antifouling properties was developed using aloin. The resultant membranes exhibited excellent bacterial inactivating efficiency because of the electrostatic interactions between the amine groups on the membrane and the bacterial cells, which contributed to cell deformation. The aloin molecules also significantly increased reactive oxygen species levels, causing oxidative damage to bacterial cells. Moreover, the functional decorative layer, which exhibited remarkable resistance to bacterial adhesion because of the abundant hydroxyl, carbonyl, and amino groups in aloin, endowed the as-prepared membranes with strong polarity, reducing bacterial adhesion and biofilm formation. When applied in a membrane bioreactor, the aloin-modified membranes demonstrated a > 27.0 % lower fouling rate than commercial microfiltration membranes. Overall, the successful fabrication strategy and material features described offer a green alternative for membrane development and provide new avenues for the design of healthcare materials such as wound dressings.
Collapse
Affiliation(s)
- Ji Qi
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Shanshan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Jian Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Qiwei Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yirong Hong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Liu L, Ye P, Pan J, Zhang Z, Zhou Z, Dai S, Luo Y, Yang P. Constructing a blood contact material surface with selective adhesion of multiple cells using TiO 2 photocatalytic oxidation of polydopamine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 65:102815. [PMID: 40157473 DOI: 10.1016/j.nano.2025.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/04/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
The effective measure to promoting endothelial repair is to construct a surface similar to that of normal vascular on blood contact materials. The construction of cell culture platform regulating platelets, endothelial cells (ECs) and Smooth muscle cells (SMCs) may provide more help to promote endothelial repair. In this work, a novel versatile cell research platform UV-P-PDA@TiO2 was constructed by magnetron sputtering and photoetching. The surface of UV-P-PDA@TiO2 was evaluated by materials science methods such as FTIR, Raman, Micro BCA and WCA, and cell culture was performed on the surface. These results indicated that UV-P-PDA@TiO2 platform regulated the cellular behavior of platelets, ECs, and SMCs, achieved selective adhesion, and exhibited orientation. The advantage of histocompatibility was demonstrated by in vivo tests that UV-P-PDA@TiO2 had pattern stability and inhibited tissue proliferation. Conceivably, the regulating the multicellular UV-P-PDA @ TiO2 culture platform may provide a versatile surface engineering strategy for biomaterials.
Collapse
Affiliation(s)
- Luying Liu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Pharmacy, Dezhou University, Dezhou 253023, PR China; Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Peng Ye
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jingmei Pan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zhongyu Zhang
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Pharmacy, Dezhou University, Dezhou 253023, PR China
| | - Ziqi Zhou
- Case School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, 44106-7207 Cleveland, OH, United States
| | - Sheng Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Yue Luo
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital University of Electronic Science and Technology of China, Chengdu 610064, PR China.
| | - Ping Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
3
|
Fan D, Liu X, Chen H. Endothelium-Mimicking Materials: A "Rising Star" for Antithrombosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53343-53371. [PMID: 39344055 DOI: 10.1021/acsami.4c12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advancement of antithrombotic materials has significantly mitigated the thrombosis issue in clinical applications involving various medical implants. Extensive research has been dedicated over the past few decades to developing blood-contacting materials with complete resistance to thrombosis. However, despite these advancements, the risk of thrombosis and other complications persists when these materials are implanted in the human body. Consequently, the modification and enhancement of antithrombotic materials remain pivotal in 21st-century hemocompatibility studies. Previous research indicates that the healthy endothelial cells (ECs) layer is uniquely compatible with blood. Inspired by bionics, scientists have initiated the development of materials that emulate the hemocompatible properties of ECs by replicating their diverse antithrombotic mechanisms. This review elucidates the antithrombotic mechanisms of ECs and examines the endothelium-mimicking materials developed through single, dual-functional and multifunctional strategies, focusing on nitric oxide release, fibrinolytic function, glycosaminoglycan modification, and surface topography modification. These materials have demonstrated outstanding antithrombotic performance. Finally, the review outlines potential future research directions in this dynamic field, aiming to advance the development of antithrombotic materials.
Collapse
Affiliation(s)
- Duanqi Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Jia Y, Zhao Y, Zhang H. Bioinspired Self-Adhesive Multifunctional Lubricated Coating for Biomedical Implant Applications. ACS APPLIED BIO MATERIALS 2024; 7:4307-4322. [PMID: 38954747 DOI: 10.1021/acsabm.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the realm of clinical applications, the concern surrounding biomedical device-related infections (BDI) is paramount. To mitigate the risk associated with BDI, enhancing surface characteristics such as lubrication and antibacterial efficacy is considered as a strategic approach. This study delineated the synthesis of a multifunctional copolymer, embodying self-adhesive, lubricating, and antibacterial properties, achieved through free radical polymerization and a carbodiimide coupling reaction. The copolymer was adeptly modified on the surface of stainless steel 316L (SS316L) substrates by employing a facile dip-coating technique. Comprehensive characterizations were performed by using an array of analytical techniques including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, optical interferometry, scanning electron microscopy, and atomic force microscopy. Nanoscale tribological assessments revealed a notable reduction in the value of the friction coefficient of the copolymer-coated SS316L substrates compared to bare SS316L samples. The coating demonstrated exceptional resistance to protein adsorption, as evidenced in protein contamination models employing bovine serum albumin and fibrinogen. The bactericidal efficacy of the copolymer-modified surfaces was significantly improved against pathogenic strains such as Staphylococcus aureus and Escherichia coli. Additionally, in vitro evaluations of blood compatibility and cellular compatibility underscored the remarkable anticoagulant performance and biocompatibility. Collectively, these findings indicated that the developed copolymer coating represented a promising candidate, with its facile modification approach, for augmenting lubrication and antifouling properties in the field of biomedical implant applications.
Collapse
Affiliation(s)
- Yiran Jia
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanlong Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongyu Zhang
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Gao Y, Bai S, Zhu K, Yuan X. Electrospun membranes of diselenide-containing poly(ester urethane)urea for in situ catalytic generation of nitric oxide. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1157-1176. [PMID: 38386369 DOI: 10.1080/09205063.2024.2319416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Nitric oxide (NO) plays an important role as a signalling molecule in the biological system. Organoselenium-coated or grafted biomaterials have the potential to achieve controlled NO release as they can catalyse decomposition of endogenous S-nitrosothiols to NO. However, such biomaterials are often challenged by the loss of the catalytic sites, which can affect the stability in tissue repair applications. In this work, we prepare a diselenide-containing poly(ester urethane)urea (SePEUU) polymer with Se-Se in the backbone, which is further electrospun into fibrous membranes by blending with poly(ester urethane)urea (PEUU) without diselenide bonds. The presence of catalytic sites in the main chain demonstrates stable and long-lasting NO catalytic activity, while the porous structure of the fibrous membranes ensures uniform distribution of the catalytic sites and better contact with the donor-containing solution. PEUU/SePEUU50 in 50/50 mass ratio has a physiologically adapted rate of NO release, with a sustained generation of NO after exposure to PBS at 37 °C for 30 d. PEUU/SePEUU50 has a low hemolysis and protein adsorption, with mechanical properties in the wet state matching those of natural vascular tissues. It can promote the adhesion and proliferation of human umbilical vein endothelial cells in vitro and control the proliferation of vascular smooth muscle cells in the presence of NO generation. This study exhibits the electrospun fibrous membranes have potential for utilizing as hemocompatible biomaterials for regeneration of blood-contacting tissues.
Collapse
Affiliation(s)
- Yong Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Shan Bai
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Liang Z, Chen Z, Zhu Z, Zhang Y, Niu W, Tan S, Wong HM, Li X, Li Q, Qiu H. Colloidal Phenol-Amine Coating on Implants for Improved Anti-Inflammation and Osteogenesis. ACS Biomater Sci Eng 2024; 10:365-376. [PMID: 38118128 DOI: 10.1021/acsbiomaterials.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Phenol-amine coatings have attracted significant attention in recent years owing to their adjustable composition and multifaceted biological functionalities. The current preparation of phenol-amine coatings, however, involves a chemical reaction within the solution or interface, resulting in lengthy preparation times and necessitating specific reaction conditions, such as alkaline environments and oxygen presence. The facile, rapid, and eco-friendly preparation of phenol-amine coatings under mild conditions continues to pose a challenge. In this study, we use a macromolecular phenol-amine, Tanfloc, to form a stable colloid under neutral conditions, which was then rapidly adsorbed on the titanium surface by electrostatic action and then spread and fused to form a continuous coating within several minutes. This nonchemical preparation process was rapid, mild, and free of chemical additives. The in vitro and in vivo results showed that the Tanfloc colloid fusion coating inhibited destructive inflammation, promoted osteogenesis, and enhanced osteointegration. These remarkable advantages of the colloidal phenol-amine fusion coating highlight the suitability of its future application in clinical practice.
Collapse
Affiliation(s)
- ZhaoJia Liang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZiRui Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - ZhongQing Zhu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - YaBing Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - WeiRui Niu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Shuang Tan
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hai Ming Wong
- Faculty of Dentistry, The Prince Philip Dental Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - XiangYang Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - QuanLi Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
- Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Shenzhen 518172, China
| | - Hua Qiu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
7
|
Zhao Y, Li J, Liu L, Wang Y, Ju Y, Zeng C, Lu Z, Xie D, Guo J. Zinc-Based Tannin-Modified Composite Microparticulate Scaffolds with Balanced Antimicrobial Activity and Osteogenesis for Infected Bone Defect Repair. Adv Healthc Mater 2023; 12:e2300303. [PMID: 36964976 DOI: 10.1002/adhm.202300303] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Indexed: 03/27/2023]
Abstract
Treatment of infected bone defects is a major clinical challenge; bioactive materials combining sufficient antimicrobial activity and favorable osteogenic ability are urgently needed. In this study, through a facile one-pot hydrothermal reaction of zinc acetate in the presence of tannic acid (TA), with or without silver nitrate (AgNO3 ), is used to synthesize a TA or TA and silver nanoparticles (Ag NPs) bulk-modified zinc oxide (ZnO) (ZnO-TA or ZnO-TA-Ag), which is further composited with zein to fabricate porous microparticulate scaffolds for infected bone defect repair. Bulk TA modification significantly improves the release rate of antibacterial metal ions (Zn2+ release rate is >100 times that of ZnO). Fast and long-lasting (>35 d) Zn2+ and Ag+ release guaranteed sufficient antibacterial capability and excellent osteogenic properties in promoting the osteogenic differentiation of bone marrow mesenchymal stem cells and endogenous citric acid production and mineralization and providing considerable immunomodulatory activity in promoting M2 polarization of macrophages. At the same time, synchronously-released TA could scavenge endogenous reactive oxygen species (ROS) and ROS produced by antibacterial metal ions, effectively balancing antibacterial activity and osteogenesis to sufficiently control infection while protecting the surrounding tissue from damage, thus effectively promoting infected bone defect repair.
Collapse
Affiliation(s)
- Yitao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jintao Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lingli Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yue Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yan Ju
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chun Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
8
|
A novel micropattern platform constructed by TiO 2 oxidation of PDA. Colloids Surf B Biointerfaces 2023; 223:113141. [PMID: 36682296 DOI: 10.1016/j.colsurfb.2023.113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/27/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Dopamine is a small molecule inspired by the dopamine motif of mussel foot proteins, and PDA is formed by the self-polymerization of dopamine. Under the UV-irradiation,PDA would be oxidized by reactive oxygen species (ROS) which were produced by photocatalytic reactions on TiO2 surfaces,thus regulating the adhesion behavior of endothelial cells (ECs) TiO2 inhibited platelet (Plt) adhesion after UV exposure. Polydopamine (PDA)-TiO2 micropatterns (P-PDA-TiO2) were prepared by magnetron sputtering and photolithography. This micropatterns successfully achieves selective adhesion of Plt and ECs. The selective adhesion of ECs disappears after vacuum reduction. In contrast to conventional cell patterning strategies, P-PDA-TiO2 can easily achieve pattern separation of ECs and Plts and provide a new concept for building complex blood-contacting devices.
Collapse
|
9
|
Luo Z, Ng G, Zhou Y, Boyer C, Chandrawati R. Polymeric Amines Induce Nitric Oxide Release from S-Nitrosothiols. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2200502. [PMID: 35789202 DOI: 10.1002/smll.202200502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Catalytic generation of nitric oxide (NO) from NO donors by nanomaterials has enabled prolonged NO delivery for various biomedical applications, but this approach requires laborious synthesis routes. In this study, a new class of materials, that is, polymeric amines including polyethyleneimine (PEI), poly-L-lysine, and poly(allylamine hydrochloride), is discovered to induce NO generation from S-nitrosothiols (RSNOs) at physiological conditions. Controlled NO generation can be readily achieved by tuning the concentration of the NO donors (RSNOs) and polymers, and the type and molecular weight of the polymers. Importantly, the mechanism of NO generation by these polymers is deciphered to be attributed to the nucleophilic reaction between primary amines on polymers and the SNO groups of RSNOs. The NO-releasing feature of the polymers can be integrated into a suite of materials, for example, simply by embedding PEI into poly(vinyl alcohol) (PVA) hydrogels. The functionality of the PVA/PEI hydrogels is demonstrated for Pseudomonas aeruginosa biofilm prevention with a ≈4 log reduction within 6 h. As NO has potential therapeutic implications in various diseases, the identification of polymeric amines to induce NO release will open new opportunities in NO-generating biomaterials for antibacterial, antiviral, anticancer, antithrombotic, and wound healing applications.
Collapse
Affiliation(s)
- Zijie Luo
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Gervase Ng
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Zhao Y, Wang H, Zhao W, Luo J, Zhao X, Zhang H. Bioinspired Self-Adhesive Lubricated Coating for the Surface Functionalization of Implanted Biomedical Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15178-15189. [PMID: 36468673 DOI: 10.1021/acs.langmuir.2c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lubrication property of implanted biomedical devices is of great significance as it affects the clinical performance owing to direct contact with soft tissues. In the present study, a bioinspired copolymer with dual functions of both self-adhesion and lubrication was synthesized with N-(3-aminopropyl) methacrylamide hydrochloride, gallic acid, and 3-[dimethyl-[2-(2-methylprop-2-enoyloxy) ethyl] azaniumyl] propane-1-sulfonate by free radical polymerization and a carbodiimide coupling reaction. The copolymer was further modified on the surface of poly(vinyl chloride) (PVC) samples using a simple dip-coating method and was characterized by different evaluations including Fourier transform infrared spectroscopy, the water contact angle, X-ray photoelectron spectroscopy, optical interferometry, and atomic force microscopy. Additionally, the results of a series of tribological tests at the microscopic level demonstrated that the friction coefficient of the copolymer-coated PVC samples was significantly reduced compared to that of the bare PVC samples. Furthermore, the pull out test at the macroscopic level was performed using copolymer-coated PVC catheters on a poly(dimethylsiloxane)-based test rig, and the result showed that the copolymer-coated PVC catheters were endowed with a greatly decreased and much more stable pull out force compared with that of the bare PVC catheters. In conclusion, the bioinspired self-adhesive lubricated coating developed herein may be applied as a universal and versatile method to enhance the lubrication performance of implanted biomedical devices.
Collapse
Affiliation(s)
- Yanlong Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Haimang Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Weiwei Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jing Luo
- Beijing Research Institute of Automation for Machinery Industry Co., Ltd., Beijing 100120, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Garren M, Maffe P, Melvin A, Griffin L, Wilson S, Douglass M, Reynolds M, Handa H. Surface-Catalyzed Nitric Oxide Release via a Metal Organic Framework Enhances Antibacterial Surface Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56931-56943. [PMID: 34818503 PMCID: PMC9728615 DOI: 10.1021/acsami.1c17248] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It has been previously demonstrated that metal nanoparticles embedded into polymeric materials doped with nitric oxide (NO) donor compounds can accelerate the release rate of NO for therapeutic applications. Despite the advantages of elevated NO surface flux for eradicating opportunistic bacteria in the initial hours of application, metal nanoparticles can often trigger a secondary biocidal effect through leaching that can lead to unfavorable cytotoxic responses from host cells. Alternatively, copper-based metal organic frameworks (MOFs) have been shown to stabilize Cu2+/1+ via coordination while demonstrating longer-term catalytic performance compared to their salt counterparts. Herein, the practical application of MOFs in NO-releasing polymeric substrates with an embedded NO donor compound was investigated for the first time. By developing composite thermoplastic silicon polycarbonate polyurethane (TSPCU) scaffolds, the catalytic effects achievable via intrapolymeric interactions between an MOF and NO donor compound were investigated using the water-stable copper-based MOF H3[(Cu4Cl)3(BTTri)8-(H2O)12]·72H2O (CuBTTri) and the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). By creating a multifunctional triple-layered composite scaffold with CuBTTri and SNAP, the surface flux of NO from catalyzed SNAP decomposition was found tunable based on the variable weight percent CuBTTri incorporation. The tunable NO surface fluxes were found to elicit different cytotoxic responses in human cell lines, enabling application-specific tailoring. Challenging the TSPCU-NO-MOF composites against 24 h bacterial growth models, the enhanced NO release was found to elicit over 99% reduction in adhered and over 95% reduction in planktonic methicillin-resistant Staphylococcus aureus, with similar results observed for Escherichia coli. These results indicate that the combination of embedded MOFs and NO donors can be used as a highly efficacious tool for the early prevention of biofilm formation on medical devices.
Collapse
Affiliation(s)
- Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Maffe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Alyssa Melvin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lauren Griffin
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sarah Wilson
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Melissa Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Li P, Jin D, Dou J, Wang L, Wang Y, Jin X, Han X, Kang IK, Yuan J, Shen J, Yin M. Nitric oxide-releasing poly(ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts. Int J Biol Macromol 2021; 189:516-527. [PMID: 34450147 DOI: 10.1016/j.ijbiomac.2021.08.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Rapid endothelialization and regulation of smooth muscle cell proliferation are crucial for small-diameter vascular grafts to address poor compliance, thromboembolism, and intimal hyperplasia, and achieve revascularization. As a gaseous signaling molecule, nitric oxide (NO) regulates cardiovascular homeostasis, inhibits blood clotting and intimal hyperplasia, and promotes the growth of endothelial cells. Due to the instability and burst release of small molecular NO donors, a novel biomacromolecular donor has generated increasing interest. In the study, a low toxic NO donor of S-nitrosated keratin (KSNO) was first synthesized and then coelectrospun with poly(ε-caprolactone) to afford NO-releasing small-diameter vascular graft. PCL/KSNO graft was capable to generate NO under the catalysis of ascorbic acid (Asc), so the graft selectively elevated adhesion and growth of human umbilical vein endothelial cells (HUVECs), while inhibited the proliferation of human aortic smooth muscle cells (HASMCs) in the presence of Asc. In addition, the graft displayed significant antibacterial properties and good blood compatibility. Animal experiments showed that the biocomposite graft could inhibit thrombus formation and preserve normal blood flow via single rabbit carotid artery replacement for 1 month. More importantly, a complete endothelium was observed on the lumen surface. Taken together, PCL/KSNO small-diameter vascular graft has potential applications in vascular tissue engineering with rapid endothelialization and vascular remolding.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yanfang Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xingxing Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 702-701, South Korea
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, PR China.
| |
Collapse
|
13
|
Wang K, Shang T, Zhang L, Zhou L, Liu C, Fu Y, Zhao Y, Li X, Wang J. Application of a Reactive Oxygen Species-Responsive Drug-Eluting Coating for Surface Modification of Vascular Stents. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35431-35443. [PMID: 34304556 DOI: 10.1021/acsami.1c08880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stent implantation is the primary method used to treat coronary heart disease. However, it is associated with complications such as restenosis and late thrombosis. Despite surface modification being an effective way to improve the biocompatibility of stents, the current research studies are not focused on changes in the vascular microenvironment at the implantation site. In the present study, an adaptive drug-loaded coating was constructed on the surface of vascular stent materials that can respond to oxidative stress at the site of vascular lesions. Two functional molecules, epigallocatechin gallate (EGCG) and cysteine hydrochloride, were employed to fabricate a coating on the surface of 316L stainless steel. In addition, the coating was used as a drug carrier to load pitavastatin calcium. EGCG has antioxidant activity, and pitavastatin calcium can inhibit smooth muscle cell proliferation. Therefore, EGCG and pitavastatin calcium provided a synergistic anti-inflammatory effect. Moreover, the coating was cross-linked using disulfide bonds, which accelerated the release of the drug in response to reactive oxygen species. A positive correlation was observed between the rate of drug release and the degree of oxidative stress. Collectively, this drug-loaded oxidative stress-responsive coating has been demonstrated to significantly inhibit inflammation, accelerate endothelialization, and reduce the risk of restenosis of vascular stents in vivo.
Collapse
Affiliation(s)
- Kebing Wang
- Key Laboratory of Advanced Technology for Materials of Education Ministry and School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tengda Shang
- Key Laboratory of Advanced Technology for Materials of Education Ministry and School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lu Zhang
- Key Laboratory of Advanced Technology for Materials of Education Ministry and School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lei Zhou
- Key Laboratory of Advanced Technology for Materials of Education Ministry and School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Changqi Liu
- Key Laboratory of Advanced Technology for Materials of Education Ministry and School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yudie Fu
- Key Laboratory of Advanced Technology for Materials of Education Ministry and School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuancong Zhao
- Key Laboratory of Advanced Technology for Materials of Education Ministry and School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Li
- Key Laboratory of Advanced Technology for Materials of Education Ministry and School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jin Wang
- Key Laboratory of Advanced Technology for Materials of Education Ministry and School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
14
|
Liu L, Shi H, Yu H, Yan S, Luan S. The recent advances in surface antibacterial strategies for biomedical catheters. Biomater Sci 2021; 8:4095-4108. [PMID: 32555809 DOI: 10.1039/d0bm00659a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As one of the most common hospital-acquired infections, catheter-related infections (CRIs) which are caused by microbial colonization lead to increasing morbidity and mortality of patients and life threat for medical staffs. In this case, a variety of efforts have been made to design functional materials to limit bacterial colonization and biofilm formation. In this review, we focus on the recent advances in surface modification strategies of biomedical catheters used to prevent CRIs. The tests for the evaluation of the performances of modified catheters are listed. Future prospects of surface antibacterial strategies for biomedical catheters are also outlined.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai 264210, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Chen J, Dai S, Liu L, Maitz MF, Liao Y, Cui J, Zhao A, Yang P, Huang N, Wang Y. Photo-functionalized TiO 2 nanotubes decorated with multifunctional Ag nanoparticles for enhanced vascular biocompatibility. Bioact Mater 2021; 6:45-54. [PMID: 32817912 PMCID: PMC7417617 DOI: 10.1016/j.bioactmat.2020.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
Titanium dioxide (TiO2) has a long history of application in blood contact materials, but it often suffers from insufficient anticoagulant properties. Recently, we have revealed the photocatalytic effect of TiO2 also induces anticoagulant properties. However, for long-term vascular implant devices such as vascular stents, besides anticoagulation, also anti-inflammatory, anti-hyperplastic properties, and the ability to support endothelial repair, are desired. To meet these requirements, here, we immobilized silver nanoparticles (AgNPs) on the surface of TiO2 nanotubes (TiO2-NTs) to obtain a composite material with enhanced photo-induced anticoagulant property and improvement of the other requested properties. The photo-functionalized TiO2-NTs showed protein-fouling resistance, causing the anticoagulant property and the ability to suppress cell adhesion. The immobilized AgNPs increased the photocatalytic activity of TiO2-NTs to enhances its photo-induced anticoagulant property. The AgNP density was optimized to endow the TiO2-NTs with anti-inflammatory property, a strong inhibitory effect on smooth muscle cells (SMCs), and low toxicity to endothelial cells (ECs). The in vivo test indicated that the photofunctionalized composite material achieved outstanding biocompatibility in vasculature via the synergy of photo-functionalized TiO2-NTs and the multifunctional AgNPs, and therefore has enormous potential in the field of cardiovascular implant devices. Our research could be a useful reference for further designing of multifunctional TiO2 materials with high vascular biocompatibility.
Collapse
Affiliation(s)
- Jiang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, No.29 of Wangjiang Road, Wuhou District, Chengdu, Sichuan, 610064, China
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Sheng Dai
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Luying Liu
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Manfred F. Maitz
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden, 01069, Germany
| | - Yuzhen Liao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Jiawei Cui
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Ansha Zhao
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab. for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, NO.111 of the North 1st Section of Second Ring Road, Chengdu, 610031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No.29 of Wangjiang Road, Wuhou District, Chengdu, Sichuan, 610064, China
| |
Collapse
|
16
|
Qiu H, Tu Q, Gao P, Li X, Maitz MF, Xiong K, Huang N, Yang Z. Phenolic-amine chemistry mediated synergistic modification with polyphenols and thrombin inhibitor for combating the thrombosis and inflammation of cardiovascular stents. Biomaterials 2020; 269:120626. [PMID: 33418199 DOI: 10.1016/j.biomaterials.2020.120626] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Antithrombogenicity, anti-inflammation, and rapid re-endothelialization are central requirements for the long-term success of cardiovascular stents. In this work, a plant-inspired phenolic-amine chemistry strategy was developed to combine the biological functions of a plant polyphenol, tannic acid (TA), and the thrombin inhibitor bivalirudin (BVLD) for tailoring the desired multiple surface functionalities of cardiovascular stents. To realize the synergistic modification of TA and BVLD on a stent surface, an amine-bearing coating of plasma polymerized allylamine was firstly prepared on the stent surface, followed by the sequential conjugation of TA and BVLD in alkaline solution based on phenolic-amine chemistry (i.e., Michael addition reaction). TA and BVLD were successfully immobilized onto the stent surface with considerable amounts of 330 ± 12 and 930 ± 80 ng/cm2, respectively. The abundant phenolic hydroxyl groups of TA imparted the stent with ability to suppress inflammation. Meanwhile, BVLD provided an antithrombogenic and endothelial-friendly microenvironment. As a result, the combined functions of the TA and BVLD facilitate the rapid stent re-endothelialization for reduced intimal hyperplasia in vivo, and may be a promising strategy to address the clinical complications associated with restenosis and late stent thrombosis.
Collapse
Affiliation(s)
- Hua Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Peng Gao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiangyang Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Manfred F Maitz
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden, 01069, Germany
| | - Kaiqin Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
17
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
18
|
Yang T, Zelikin AN, Chandrawati R. Enzyme Mimics for the Catalytic Generation of Nitric Oxide from Endogenous Prodrugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907635. [PMID: 32372556 DOI: 10.1002/smll.201907635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The highly diverse biological roles of nitric oxide (NO) in both physiological and pathophysiological processes have prompted great interest in the use of NO as a therapeutic agent in various biomedical applications. NO can exert either protective or deleterious effects depending on its concentration and the location where it is delivered or generated. This double-edged attribute, together with the short half-life of NO in biological systems, poses a major challenge to the realization of the full therapeutic potential of this molecule. Controlled release strategies show an admirable degree of precision with regard to the spatiotemporal dosing of NO but are disadvantaged by the finite NO deliverable payload. In turn, enzyme-prodrug therapy techniques afford enhanced deliverable payload but are troubled by the inherent low stability of natural enzymes, as well as the requirement to control pharmacokinetics for the exogenous prodrugs. The past decade has seen the advent of a new paradigm in controlled delivery of NO, namely localized bioconversion of the endogenous prodrugs of NO, specifically by enzyme mimics. These early developments are presented, successes of this strategy are highlighted, and possible future work on this avenue of research is critically discussed.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Alexander N Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
19
|
Li X, Liu J, Yang T, Qiu H, Lu L, Tu Q, Xiong K, Huang N, Yang Z. Mussel-inspired "built-up" surface chemistry for combining nitric oxide catalytic and vascular cell selective properties. Biomaterials 2020; 241:119904. [PMID: 32109705 DOI: 10.1016/j.biomaterials.2020.119904] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Specific selectivity of vascular cells and antithrombogenicity are crucial factors for the long-term success of vascular implants. In this work, a novel concept of mussel-inspired "built-up" surface chemistry realized by sequential stacking of a copper-dopamine network basement, followed by a polydopamine layer is introduced to facilitate the combination of nitric oxide (NO) catalysis and vascular cell selectivity. The resultant "built-up" film allowed easy manipulation of the content of copper ions and the density of catechol/quinone groups, facilitating the multifunctional surface engineering of vascular devices. For example, the chelated copper ions in the copper-dopamine network endow a functionalized vascular stent with a durable release of NO via catalytic decomposition of endogenous S-nitrosothiol. Meanwhile, the catechol/quinone groups on the film surface allow the facile, secondary grafting of the REDV peptide to develop a selectivity for vascular cells, as a supplement to the functions of NO. As a result, the functionalized vascular stent perfectly combines the functions of NO and REDV, showing excellent antithrombotic properties and competitive selectivity toward the endothelial cells over the smooth muscle cells, hence impressively promotes re-endothelialization and improves anti-restenosis in vivo. Therefore, the first mussel-inspired "built-up" surface chemistry can be a promising candidate for the engineering of multifunctional surfaces.
Collapse
Affiliation(s)
- Xiangyang Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingxia Liu
- Physical Education Department, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tong Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hua Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lei Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Kaiqing Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Zhilu Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
20
|
Ding L, Wang Y, Xiong J, Lu H, Zeng M, Zhu P, Ma H. Plant-Inspired Layer-by-Layer Self-Assembly of Super-Hydrophobic Coating for Oil Spill Cleanup. Polymers (Basel) 2019; 11:E2047. [PMID: 31835501 PMCID: PMC6960575 DOI: 10.3390/polym11122047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/28/2019] [Accepted: 11/21/2019] [Indexed: 01/20/2023] Open
Abstract
A versatile, facile, energy-saving, low-cost and plant-inspired self-assembly strategy was used to prepare super-hydrophobic coating in this study. Concretely, an appealing super-hydrophobicity surface was obtained by designing a molecular building block phytic acid (PA)-Fe (III) complex to anchor the substrate and hydrophobic thiol groups (HT). The facile and green modification method can be applied to variety of substrates. The as-prepared PA-Fe (III)-HT coated melamine composite sponge possesses both super-hydrophobic and superlipophilicity property. Moreover, it displays superior efficiency to separate the oil-water mixture and splendid oil spill cleanup.
Collapse
Affiliation(s)
- Liping Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Yanqing Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Jinxin Xiong
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Huiying Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Mingjian Zeng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Peng Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| | - Haiyan Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China; (L.D.); (J.X.); (H.L.); (M.Z.)
| |
Collapse
|
21
|
Xie Y, Zeng Z, Fan Y, Zhang Y, Liu J, Li W, Weng Y. Selective endothelialization and alleviation of neointimal hyperplasia by functionalizing the Ti-O surface with l-selenocystine and KREDVC. Colloids Surf B Biointerfaces 2019; 180:168-176. [DOI: 10.1016/j.colsurfb.2019.04.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/24/2019] [Accepted: 04/16/2019] [Indexed: 01/20/2023]
|
22
|
Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun 2019; 10:1487. [PMID: 30940814 PMCID: PMC6445137 DOI: 10.1038/s41467-019-09351-2] [Citation(s) in RCA: 481] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/04/2019] [Indexed: 11/08/2022] Open
Abstract
Adhesive hydrogels have gained popularity in biomedical applications, however, traditional adhesive hydrogels often exhibit short-term adhesiveness, poor mechanical properties and lack of antibacterial ability. Here, a plant-inspired adhesive hydrogel has been developed based on Ag-Lignin nanoparticles (NPs)triggered dynamic redox catechol chemistry. Ag-Lignin NPs construct the dynamic catechol redox system, which creates long-lasting reductive-oxidative environment inner hydrogel networks. This redox system, generating catechol groups continuously, endows the hydrogel with long-term and repeatable adhesiveness. Furthermore, Ag-Lignin NPs generate free radicals and trigger self-gelation of the hydrogel under ambient environment. This hydrogel presents high toughness for the existence of covalent and non-covalent interaction in the hydrogel networks. The hydrogel also possesses good cell affinity and high antibacterial activity due to the catechol groups and bactericidal ability of Ag-Lignin NPs. This study proposes a strategy to design tough and adhesive hydrogels based on dynamic plant catechol chemistry.
Collapse
|
23
|
Song Q, Li L, Xiong K, Tian W, Lu J, Wang J, Huang N, Tu Q, Yang Z. A facile dopamine-mediated metal-catecholamine coating for therapeutic nitric oxide gas interface-catalytic engineering of vascular devices. Biomater Sci 2019; 7:3741-3750. [DOI: 10.1039/c9bm00017h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A facile copper-dopamine coating with possibility of continuously generating NO from endogenous RSNOs was constructed on vascular stent for inhibiting coagulation and selectively promoting endothelial cells while inhibiting smooth muscle cell.
Collapse
Affiliation(s)
- Qiang Song
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Long Li
- Institute of Environmental Engineering Technology
- China Institute for Radiation Protection
- Taiyuan
- China
| | - Kaiqin Xiong
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Wenjie Tian
- Cardiology Department
- Sichuan Provincial People's Hospital & Sichuan Academy of Medical Sciences
- Chengdu
- China
| | - Jing Lu
- Anesthesiology Department
- Sichuan Provincial People's Hospital & Sichuan Academy of Medical Sciences
- Chengdu
- China
| | - Jin Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Nan Huang
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Qiufen Tu
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| | - Zhilu Yang
- Key Lab. of Advanced Technology for Materials of Education Ministry
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu
- China
| |
Collapse
|