1
|
Hermida A, Jedraszak G, Ader F, Maury P, Charron P, Gandjbakhch E. Systematic triplet expansion testing in patients with genetically negative Brugada syndrome. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2025:S1885-5857(25)00139-2. [PMID: 40350032 DOI: 10.1016/j.rec.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Affiliation(s)
- Alexis Hermida
- Cardiology, Arrhythmia, and Cardiac Stimulation Service, Amiens-Picardie University Hospital, Amiens, France; Hématopoïèse et immunologie, Unité de Recherche 4666, University of Picardie-Jules Verne, Amiens, France.
| | - Guillaume Jedraszak
- Hématopoïèse et immunologie, Unité de Recherche 4666, University of Picardie-Jules Verne, Amiens, France; Molecular Genetics Laboratory, Amiens-Picardie University Hospital, Amiens, France
| | - Flavie Ader
- Unité Pédagogique de Biochimie, Département des Sciences Biologiques et Médicales, UFR de Pharmacie-Faculté de Santé, Université Paris Cité, Paris, France; Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, DMU Biogem, Service de Biochimie Métabolique, AP-HP-Sorbonne Université, Pitié-Salpêtrière -Charles Foix, Paris, France; Unité de recherche sur les maladies cardiovasculaires et métaboliques (INSERM 1166), Sorbonne Université, Paris, France
| | | | - Philippe Charron
- Unité de recherche sur les maladies cardiovasculaires et métaboliques (INSERM 1166), Sorbonne Université, Paris, France; Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Assistance publique - Hôpitaux de Paris (AP-HP), Paris, France; Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital Paris, France; Department of Genetics and Referral center for cardiac hereditary cardiac diseases, Assistance Publique-Hôpitaux de Paris, Ambroise Paré Hospital, Boulogne-Billancourt, France
| | - Estelle Gandjbakhch
- Unité de recherche sur les maladies cardiovasculaires et métaboliques (INSERM 1166), Sorbonne Université, Paris, France; Institute of Cardiology and ICAN Institute for Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Assistance publique - Hôpitaux de Paris (AP-HP), Paris, France; Department of Genetics, Department of Cardiology, and Referral center for hereditary cardiac diseases, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital Paris, France
| |
Collapse
|
2
|
Vouloagkas I, Agbariah A, Zegkos T, Gossios TD, Tziomalos G, Parcharidou D, Didagelos M, Kamperidis V, Ziakas A, Efthimiadis GK. The many faces of SCN5A pathogenic variants: from channelopathy to cardiomyopathy. Heart Fail Rev 2025; 30:247-256. [PMID: 39465469 DOI: 10.1007/s10741-024-10459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The SCN5A gene encodes the alpha subunit of the cardiac sodium channel, which plays a fundamental role in the generation and propagation of the action potential in the heart muscle. During the past years our knowledge concerning the function of the cardiac sodium channel and the diseases caused by mutations of the SCN5A gene has grown. Although initially SCN5A pathogenic variants were mainly associated with channelopathies, increasing recent evidence suggests an association with structural heart disease in the form of heart muscle disease. The pathways leading to a cardiomyopathic phenotype remain unclear and require further elucidation. The aim of the present review is to provide a concise summary regarding the mechanisms through which SCN5A pathogenic variants result in heart disease, focusing in cardiomyopathy, highlighting along the way the complex role of the SCN5A gene at the intersection of cardiac excitability and contraction networks.
Collapse
Affiliation(s)
- Ioannis Vouloagkas
- Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Andrea Agbariah
- Department of Cardiology, Università Degli Studi Di Verona, Verona, Italy
| | - Thomas Zegkos
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Thomas D Gossios
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece.
| | - Georgios Tziomalos
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Despoina Parcharidou
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Matthaios Didagelos
- 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Vasileios Kamperidis
- 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Antonios Ziakas
- 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgios K Efthimiadis
- Cardiomyopathies Laboratory, 1st Aristotle University of Thessaloniki Cardiology Department, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
3
|
Nitschke L, Hu RC, Miller AN, Cooper TA. Rescue of Scn5a mis-splicing does not improve the structural and functional heart defects of a DM1 heart mouse model. Hum Mol Genet 2024; 33:1789-1799. [PMID: 39126705 PMCID: PMC11458005 DOI: 10.1093/hmg/ddae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Myotonic Dystrophy Type 1 (DM1) is an autosomal dominant multisystemic disorder for which cardiac features, including conduction delays and arrhythmias, are the second leading cause of disease mortality. DM1 is caused by expanded CTG repeats in the 3' untranslated region of the DMPK gene. Transcription of the expanded DMPK allele produces mRNAs containing long tracts of CUG repeats, which sequester the Muscleblind-Like family of RNA binding proteins, leading to their loss-of-function and the dysregulation of alternative splicing. A well-characterized mis-regulated splicing event in the DM1 heart is the increased inclusion of SCN5A exon 6A rather than the mutually exclusive exon 6B that normally predominates in adult heart. As previous work showed that forced inclusion of Scn5a exon 6A in mice recapitulates cardiac DM1 phenotypes, we tested whether rescue of Scn5a mis-splicing would improve the cardiac phenotypes in a DM1 heart mouse model. We generated mice lacking Scn5a exon 6A to force the expression of the adult SCN5A isoform including exon 6B and crossed these mice to our previously established CUG960 DM1 heart mouse model. We showed that correction Scn5a mis-splicing does not improve the DM1 heart conduction delays and structural changes induced by CUG repeat RNA expression. Interestingly, we found that in addition to Scn5a mis-splicing, Scn5a expression is reduced in heart tissues of CUG960 mice and DM1-affected individuals. These data indicate that Scn5a mis-splicing is not the sole driver of DM1 heart deficits and suggest a potential role for reduced Scn5a expression in DM1 cardiac disease.
Collapse
Affiliation(s)
- Larissa Nitschke
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Rong-Chi Hu
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Andrew N Miller
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
4
|
Politano L. Is Cardiac Transplantation Still a Contraindication in Patients with Muscular Dystrophy-Related End-Stage Dilated Cardiomyopathy? A Systematic Review. Int J Mol Sci 2024; 25:5289. [PMID: 38791328 PMCID: PMC11121328 DOI: 10.3390/ijms25105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
5
|
Pierre M, Djemai M, Chapotte-Baldacci CA, Pouliot V, Puymirat J, Boutjdir M, Chahine M. Cardiac involvement in patient-specific induced pluripotent stem cells of myotonic dystrophy type 1: unveiling the impact of voltage-gated sodium channels. Front Physiol 2023; 14:1258318. [PMID: 37791351 PMCID: PMC10544896 DOI: 10.3389/fphys.2023.1258318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a genetic disorder that causes muscle weakness and myotonia. In DM1 patients, cardiac electrical manifestations include conduction defects and atrial fibrillation. DM1 results in the expansion of a CTG transcribed into CUG-containing transcripts that accumulate in the nucleus as RNA foci and alter the activity of several splicing regulators. The underlying pathological mechanism involves two key RNA-binding proteins (MBNL and CELF) with expanded CUG repeats that sequester MBNL and alter the activity of CELF resulting in spliceopathy and abnormal electrical activity. In the present study, we identified two DM1 patients with heart conduction abnormalities and characterized their hiPSC lines. Two differentiation protocols were used to investigate both the ventricular and the atrial electrophysiological aspects of DM1 and unveil the impact of the mutation on voltage-gated ion channels, electrical activity, and calcium homeostasis in DM1 cardiomyocytes derived from hiPSCs. Our analysis revealed the presence of molecular hallmarks of DM1, including the accumulation of RNA foci and sequestration of MBNL1 in DM1 hiPSC-CMs. We also observed mis-splicing of SCN5A and haploinsufficiency of DMPK. Furthermore, we conducted separate characterizations of atrial and ventricular electrical activity, conduction properties, and calcium homeostasis. Both DM1 cell lines exhibited reduced density of sodium and calcium currents, prolonged action potential duration, slower conduction velocity, and impaired calcium transient propagation in both ventricular and atrial cardiomyocytes. Notably, arrhythmogenic events were recorded, including both ventricular and atrial arrhythmias were observed in the two DM1 cell lines. These findings enhance our comprehension of the molecular mechanisms underlying DM1 and provide valuable insights into the pathophysiology of ventricular and atrial involvement.
Collapse
Affiliation(s)
| | | | | | | | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Departments of Cell Biology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Mohamed Chahine
- CERVO Research Center, Quebec City, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
6
|
Leali M, Aimo A, Ricci G, Torri F, Todiere G, Vergaro G, Grigoratos C, Giannoni A, Aquaro GD, Siciliano G, Emdin M, Passino C, Barison A. Cardiac magnetic resonance findings and prognosis in type 1 myotonic dystrophy. J Cardiovasc Med (Hagerstown) 2023; 24:340-347. [PMID: 37129928 DOI: 10.2459/jcm.0000000000001476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cardiac involvement is a major determinant of prognosis in type 1 myotonic dystrophy (DM1), but limited information is available about myocardial remodeling and tissue changes. The aim of the study was to investigate cardiac magnetic resonance (CMR) findings and their prognostic significance in DM1. METHODS We retrospectively identified all DM1 patients referred from a neurology unit to our CMR laboratory from 2009 to 2020. RESULTS Thirty-four patients were included (aged 45 ± 12, 62% male individuals) and compared with 68 age-matched and gender-matched healthy volunteers (43 male individuals, age 48 ± 15 years). At CMR, biventricular and biatrial volumes were significantly smaller (all P < 0.05), as was left ventricular mass (P < 0.001); left ventricular ejection fraction (LVEF) and right ventricular ejection fraction (RVEF) were significantly lower (all P < 0.01). Five (15%) patients had a LVEF less than 50% and four (12%) a RVEF less than 50%. Nine patients (26%) showed mid-wall late gadolinium enhancement (LGE; 5 ± 2% of LVM), and 14 (41%) fatty infiltration. Native T1 in the interventricular septum (1041 ± 53 ms) was higher than for healthy controls (1017 ± 28 ms) and approached the upper reference limit (1089 ms); the extracellular volume was slightly increased (33 ± 2%, reference <30%). Over 3.7 years (2.0-5.0), 6 (18%) patients died of extracardiac causes, 5 (15%) underwent device implantation; 5 of 21 (24%) developed repetitive ventricular ectopic beats (VEBs) on Holter monitoring. LGE mass was associated with the occurrence of repetitive VEBs (P = 0.002). Lower LV stroke volume (P = 0.017), lower RVEF (P = 0.016), a higher LVMi/LVEDVI ratio (P = 0.016), fatty infiltration (P = 0.04), and LGE extent (P < 0.001) were associated with death. CONCLUSION DM1 patients display structural and functional cardiac abnormalities, with variable degrees of cardiac muscle hypotrophy, fibrosis, and fatty infiltration. Such changes, as evaluated by CMR, seem to be associated with the development of ventricular arrhythmias and a worse outcome.
Collapse
Affiliation(s)
- Marco Leali
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giancarlo Todiere
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
| | - Giuseppe Vergaro
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | | | - Alberto Giannoni
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | - Claudio Passino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | - Andrea Barison
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| |
Collapse
|
7
|
Groh WJ, Bhakta D, Tomaselli GF, Aleong RG, Teixeira RA, Amato A, Asirvatham SJ, Cha YM, Corrado D, Duboc D, Goldberger ZD, Horie M, Hornyak JE, Jefferies JL, Kääb S, Kalman JM, Kertesz NJ, Lakdawala NK, Lambiase PD, Lubitz SA, McMillan HJ, McNally EM, Milone M, Namboodiri N, Nazarian S, Patton KK, Russo V, Sacher F, Santangeli P, Shen WK, Sobral Filho DC, Stambler BS, Stöllberger C, Wahbi K, Wehrens XHT, Weiner MM, Wheeler MT, Zeppenfeld K. 2022 HRS expert consensus statement on evaluation and management of arrhythmic risk in neuromuscular disorders. Heart Rhythm 2022; 19:e61-e120. [PMID: 35500790 DOI: 10.1016/j.hrthm.2022.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
This international multidisciplinary document is intended to guide electrophysiologists, cardiologists, other clinicians, and health care professionals in caring for patients with arrhythmic complications of neuromuscular disorders (NMDs). The document presents an overview of arrhythmias in NMDs followed by detailed sections on specific disorders: Duchenne muscular dystrophy, Becker muscular dystrophy, and limb-girdle muscular dystrophy type 2; myotonic dystrophy type 1 and type 2; Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B; facioscapulohumeral muscular dystrophy; and mitochondrial myopathies, including Friedreich ataxia and Kearns-Sayre syndrome, with an emphasis on managing arrhythmic cardiac manifestations. End-of-life management of arrhythmias in patients with NMDs is also covered. The document sections were drafted by the writing committee members according to their area of expertise. The recommendations represent the consensus opinion of the expert writing group, graded by class of recommendation and level of evidence utilizing defined criteria. The recommendations were made available for public comment; the document underwent review by the Heart Rhythm Society Scientific and Clinical Documents Committee and external review and endorsement by the partner and collaborating societies. Changes were incorporated based on these reviews. By using a breadth of accumulated available evidence, the document is designed to provide practical and actionable clinical information and recommendations for the diagnosis and management of arrhythmias and thus improve the care of patients with NMDs.
Collapse
Affiliation(s)
- William J Groh
- Ralph H. Johnson VA Medical Center and Medical University of South Carolina, Charleston, South Carolina
| | - Deepak Bhakta
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | - Anthony Amato
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Domenico Corrado
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Denis Duboc
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Minoru Horie
- Shiga University of Medical Sciences, Otsu, Japan
| | | | | | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jonathan M Kalman
- Royal Melbourne Hospital and University of Melbourne, Melbourne, Victoria, Australia
| | | | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, University College London, and St Bartholomew's Hospital London, London, United Kingdom
| | | | - Hugh J McMillan
- Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute, Bordeaux, France
| | | | | | | | | | - Claudia Stöllberger
- Second Medical Department with Cardiology and Intensive Care Medicine, Klinik Landstraße, Vienna, Austria
| | - Karim Wahbi
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | | | | | | | | |
Collapse
|
8
|
Mancino AS, Glass WG, Yan Y, Biggin PC, Bowie D. Spliced isoforms of the cardiac Nav1.5 channel modify channel activation by distinct structural mechanisms. J Gen Physiol 2022; 154:213074. [PMID: 35297947 PMCID: PMC8939363 DOI: 10.1085/jgp.202112906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Alternative splicing is an important cellular mechanism that fine tunes the gating properties of both voltage- and ligand-gated ion-channels. The cardiac voltage-gated sodium channel, Nav1.5, is subject to alternative splicing of the DI S3–S4 linker, which generates two types of channels with different activation properties. Here, we show that the gating differences between the adult (mH1) and neonatal (Nav1.5e) isoforms of Nav1.5 are mediated by two amino acid residues: Thr/Ser at position 207 and Asp/Lys at position 211. Electrophysiological experiments, in conjunction with molecular dynamics simulations, revealed that each residue contributes equally to the overall gating shifts in activation, but that the underlying structural mechanisms are different. Asp/Lys at position 211 acts through electrostatic interactions, whereas Thr/Ser at position 207 is predicted to alter the hydrogen bond network at the top of the S3 helix. These distinct structural mechanisms work together to modify movement of the voltage-sensitive S4 helix to bring about channel activation. Interestingly, mutation of the homologous Asp and Thr residues of the skeletal muscle isoform, Nav1.4, to Lys and Ser, respectively, confers a similar gating shift in channel activation, suggesting that these residues may fulfill a conserved role across other Nav channel family members.
Collapse
Affiliation(s)
- Adamo S Mancino
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - William G Glass
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yuhao Yan
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
9
|
In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms. PLoS Comput Biol 2022; 18:e1009918. [PMID: 35226669 PMCID: PMC8912908 DOI: 10.1371/journal.pcbi.1009918] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/10/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023] Open
Abstract
Reactivation of fetal-specific genes and isoforms occurs during heart failure. However, the underlying molecular mechanisms and the extent to which the fetal program switch occurs remains unclear. Limitations hindering transcriptome-wide analyses of alternative splicing differences (i.e. isoform switching) in cardiovascular system (CVS) tissues between fetal, healthy adult and heart failure have included both cellular heterogeneity across bulk RNA-seq samples and limited availability of fetal tissue for research. To overcome these limitations, we have deconvoluted the cellular compositions of 996 RNA-seq samples representing heart failure, healthy adult (heart and arteria), and fetal-like (iPSC-derived cardiovascular progenitor cells) CVS tissues. Comparison of the expression profiles revealed that reactivation of fetal-specific RNA-binding proteins (RBPs), and the accompanied re-expression of 1,523 fetal-specific isoforms, contribute to the transcriptome differences between heart failure and healthy adult heart. Of note, isoforms for 20 different RBPs were among those that reverted in heart failure to the fetal-like expression pattern. We determined that, compared with adult-specific isoforms, fetal-specific isoforms encode proteins that tend to have more functions, are more likely to harbor RBP binding sites, have canonical sequences at their splice sites, and contain typical upstream polypyrimidine tracts. Our study suggests that compared with healthy adult, fetal cardiac tissue requires stricter transcriptional regulation, and that during heart failure reversion to this stricter transcriptional regulation occurs. Furthermore, we provide a resource of cardiac developmental stage-specific and heart failure-associated genes and isoforms, which are largely unexplored and can be exploited to investigate novel therapeutics for heart failure. Heart failure is a chronic condition in which the heart does not pump enough blood. It has been shown that in heart failure, the adult heart reverts to a fetal-like metabolic state and oxygen consumption. Additionally, genes and isoforms that are expressed in the heart only during fetal development (i.e. not in the healthy adult heart) are turned on in heart failure. However, the underlying molecular mechanisms and the extent to which the switch to a fetal gene program occurs remains unclear. In this study, we initially characterized the differences between the fetal and adult heart transcriptomes (entire set of expressed genes and isoforms). We found that RNA binding proteins (RBPs), a family of genes that regulate multiple aspects of a transcript’s maturation, including transcription, splicing and post-transcriptional modifications, play a central role in the differences between fetal and adult heart tissues. We observed that many RBPs that are only expressed in the heart during fetal development become reactivated in heart failure, resulting in the expression of 1,523 fetal-specific isoforms. These findings suggest that reactivation of fetal-specific RBPs in heart failure drives a transcriptome-wide switch to expression of fetal-specific isoforms; and hence that RBPs could potentially serve as novel therapeutic targets.
Collapse
|
10
|
Gossios TD, Providencia R, Creta A, Segal OR, Nikolenko N, Turner C, Lopes LR, Wahbi K, Savvatis K. An overview of heart rhythm disorders and management in myotonic dystrophy type 1. Heart Rhythm 2021; 19:497-504. [PMID: 34843968 DOI: 10.1016/j.hrthm.2021.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 11/04/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common adult form of muscular dystrophy, presenting with a constellation of systemic findings secondary to a CTG triplet expansion of the noncoding region of the DMPK gene. Cardiac involvement is frequent, with conduction disease and supraventricular and ventricular arrhythmias being the most prevalent cardiac manifestations, often developing from a young age. The development of cardiac arrhythmias has been linked to increased morbidity and mortality, with sudden cardiac death well described. Strategies to mitigate risk of arrhythmic death have been developed. In this review, we outline the current knowledge on the pathophysiology of rhythm abnormalities in patients with myotonic dystrophy and summarize available knowledge on arrhythmic risk stratification. We also review management strategies from an electrophysiological perspective, attempting to underline the substantial unmet need to address residual arrhythmic risks for this population.
Collapse
Affiliation(s)
- Thomas D Gossios
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom.
| | - Rui Providencia
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Antonio Creta
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Oliver R Segal
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - Luis R Lopes
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom; Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London Hospital, London, United Kingdom
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
| | - Konstantinos Savvatis
- Inherited Cardiac Conditions Unit, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| |
Collapse
|
11
|
Tylock KM, Auerbach DS, Tang ZZ, Thornton CA, Dirksen RT. Biophysical mechanisms for QRS- and QTc-interval prolongation in mice with cardiac expression of expanded CUG-repeat RNA. J Gen Physiol 2021; 152:133632. [PMID: 31968060 PMCID: PMC7062505 DOI: 10.1085/jgp.201912450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, results from the expression of toxic gain-of-function transcripts containing expanded CUG-repeats. DM1 patients experience cardiac electrophysiological defects, including prolonged PR-, QRS-, and QT-intervals, that increase susceptibility to sudden cardiac death (SCD). However, the specific biophysical and molecular mechanisms that underlie the electrocardiograph (ECG) abnormalities and SCD in DM1 are unclear. Here, we addressed this issue using a novel transgenic mouse model that exhibits robust cardiac expression of expanded CUG-repeat RNA (LC15 mice). ECG measurements in conscious LC15 mice revealed significantly prolonged QRS- and corrected QT-intervals, but a normal PR-interval. Although spontaneous arrhythmias were not observed in conscious LC15 mice under nonchallenged conditions, acute administration of the sodium channel blocker flecainide prolonged the QRS-interval and unveiled an increased susceptibility to lethal ventricular arrhythmias. Current clamp measurements in ventricular myocytes from LC15 mice revealed significantly reduced action potential upstroke velocity at physiological pacing (9 Hz) and prolonged action potential duration at all stimulation rates (1–9 Hz). Voltage clamp experiments revealed significant rightward shifts in the voltage dependence of sodium channel activation and steady-state inactivation, as well as a marked reduction in outward potassium current density. Together, these findings indicate that expression of expanded CUG-repeat RNA in the murine heart results in reduced sodium and potassium channel activity that results in QRS- and QT-interval prolongation, respectively.
Collapse
Affiliation(s)
- Kevin M Tylock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - David S Auerbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY.,Department of Pharmacology, Upstate Medical University, Syracuse, NY
| | - Zhen Zhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
12
|
Mani I. Genome editing in cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:289-308. [PMID: 34127197 DOI: 10.1016/bs.pmbts.2021.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic modification at the molecular level in somatic cells, germline, and animal models requires for different purposes, such as introducing desired mutation, deletion of alleles, and insertion of novel genes in the genome. Various genome-editing tools are available to accomplish these alterations, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated (Cas) system. CRISPR-Cas system is an emerging technology, which is being used in biological and medical sciences, including in the cardiovascular field. It assists to identify the mechanism of various cardiovascular disease occurrence, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic cardiomyopathy (ACM). Furthermore, it has been advantages to edit various genes simultaneously and can also be used to treat and prevent several human diseases. This chapter explores the use of the scientific and therapeutic potential of a CRISPR-Cas system to edit the various cardiovascular disease-associated genes to understand the pathways involved in disease progression and treatment.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
13
|
Poulin H, Mercier A, Djemai M, Pouliot V, Deschenes I, Boutjdir M, Puymirat J, Chahine M. iPSC-derived cardiomyocytes from patients with myotonic dystrophy type 1 have abnormal ion channel functions and slower conduction velocities. Sci Rep 2021; 11:2500. [PMID: 33510259 PMCID: PMC7844414 DOI: 10.1038/s41598-021-82007-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac complications such as electrical abnormalities including conduction delays and arrhythmias are the main cause of death in individuals with Myotonic Dystrophy type 1 (DM1). We developed a disease model using iPSC-derived cardiomyocytes (iPSC-CMs) from a healthy individual and two DM1 patients with different CTG repeats lengths and clinical history (DM1-1300 and DM1-300). We confirmed the presence of toxic RNA foci and mis-spliced MBNL1/2 transcripts in DM1 iPSC-CMs. In DM1-1300, we identified a switch in the cardiac sodium channel SCN5A from the adult to the neonatal isoform. The down-regulation of adult SCN5A isoforms is consistent with a shift in the sodium current activation to depolarized potentials observed in DM1-1300. L-type calcium current density was higher in iPSC-CMs from DM1-1300, which is correlated with the overexpression of the CaV1.2 transcript and proteins. Importantly, INa and ICaL dysfunctions resulted in prolonged action potentials duration, slower velocities, and decreased overshoots. Optical mapping analysis revealed a slower conduction velocity in DM1-1300 iPSC-CM monolayers. In conclusion, our data revealed two distinct ions channels perturbations in DM1 iPSC-CM from the patient with cardiac dysfunction, one affecting Na+ channels and one affecting Ca2+ channels. Both have an impact on cardiac APs and ultimately on heart conduction.
Collapse
Affiliation(s)
- Hugo Poulin
- CERVO Brain Research Centre, Quebec, QC, Canada
| | | | | | | | - Isabelle Deschenes
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, New York, NY, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, New York, NY, USA
- Depatrment of Medicine, NYU School of Medicine, New York, NY, USA
| | - Jack Puymirat
- Unit of Human Genetics, Hôpital de l'Enfant-Jésus, CHU Research Center, Quebec, QC, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, Quebec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
14
|
Shimoyama T, Hayashi H, Suzuki F, Nishiyama Y, Miyamoto Y, Aiba T, Shimizu W, Kimura K. Idiopathic ventricular fibrillation and the V1764fsX1786 frameshift mutation of the SCN5A gene in a myotonic dystrophy type 1 patient. J Clin Neurosci 2020; 74:242-244. [DOI: 10.1016/j.jocn.2020.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/08/2020] [Indexed: 10/25/2022]
|
15
|
Gupta K, Kennelly MR, Siddappa AM. Congenital Myotonic Dystrophy and Brugada Syndrome: A Report of Two Cases. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e919867. [PMID: 31915326 PMCID: PMC6977606 DOI: 10.12659/ajcr.919867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Congenital myotonic dystrophy is a subtype of type 1 myotonic dystrophy presenting in the neonatal period. Cardiac involvement is commonly seen in patients with type 1 myotonic dystrophy beyond the neonatal period. Brugada syndrome is a conduction abnormality associated with a mutation in the sodium voltage-gated channel alpha subunit 5 (SCN5A) gene and has been described in adult patients with type 1 myotonic dystrophy. Two cases are presented of type 1 myotonic dystrophy in neonates, one who had family members with a confirmed diagnosis of Brugada syndrome. CASE REPORT Case 1: A female infant at 40 weeks gestational age, birth weight of 3,395 grams was born to a 40-year-old gravida 4, para 3 (G4P3) mother. The mother had previously been diagnosed with Brugada syndrome. Multiple family members were identified and diagnosed with type 1 myotonic dystrophy and Brugada syndrome. The infant is being monitored closely with a plan to perform genetic testing for Brugada syndrome if she develops cardiac conduction abnormalities. Case 2: A male infant at 37 weeks gestational age, with a birth weight of 2,900 grams, was born to a 24-year-old gravida 2, para 1 (G2P1) mother. He was admitted to the neonatal intensive care unit (NICU) secondary to poor respiratory effort and generalized hypotonia. Severe polyhydramnios was diagnosed during pregnancy. The mother had previously been diagnosed with type 1 myotonic dystrophy. CONCLUSIONS Infants with congenital myotonic dystrophy should be carefully monitored for both structural and conduction abnormalities of the heart, supported by genetic testing.
Collapse
Affiliation(s)
- Kunal Gupta
- Division of Neonatology, Department of Pediatrics, Hennepin County Medical Center (HCMC), Minneapolis, MN, USA
| | - Marie R Kennelly
- Department of Maternal-Fetal Medicine, Hennepin County Medical Center (HCMC), Minneapolis, MN, USA
| | - Ashajyothi M Siddappa
- Division of Neonatology, Department of Pediatrics, Hennepin County Medical Center (HCMC), Minneapolis, MN, USA
| |
Collapse
|
16
|
Pang PD, Alsina KM, Cao S, Koushik AB, Wehrens XHT, Cooper TA. CRISPR -Mediated Expression of the Fetal Scn5a Isoform in Adult Mice Causes Conduction Defects and Arrhythmias. J Am Heart Assoc 2019; 7:e010393. [PMID: 30371314 PMCID: PMC6404881 DOI: 10.1161/jaha.118.010393] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background The sodium channel, Nav1.5, encoded by SCN5A, undergoes developmentally regulated splicing from inclusion of exon 6A in the fetal heart to exon 6B in adults. These mutually exclusive exons differ in 7 amino acids altering the electrophysiological properties of the Nav1.5 channel. In myotonic dystrophy type 1, SCN5A is mis‐spliced such that the fetal pattern of exon 6A inclusion is detected in adult hearts. Cardiac manifestations of myotonic dystrophy type 1 include conduction defects and arrhythmias and are the second‐leading cause of death. Methods and Results This work aimed to determine the impact of SCN5A mis‐splicing on cardiac function. We used clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) to delete Scn5a exon 6B in mice, thereby redirecting splicing toward exon 6A. These mice exhibit prolonged PR and QRS intervals, slowed conduction velocity, extended action potential duration, and are highly susceptible to arrhythmias. Conclusions Our findings highlight a nonmutational pathological mechanism of arrhythmias and conduction defects as a result of mis‐splicing of the predominant cardiac sodium channel. Animals homozygous for the deleted exon express only the fetal isoform and have more‐severe phenotypes than heterozygotes that also express the adult isoform. This observation is directly relevant to myotonic dystrophy type 1, and possibly pathological arrhythmias, in which individuals differ with regard to the ratios of the isoforms expressed.
Collapse
Affiliation(s)
- Paul D Pang
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX.,2 Department of Pathology & Immunology Baylor College of Medicine Houston TX.,3 Integrative Molecular and Biomedical Sciences Program Baylor College of Medicine Houston TX
| | - Katherina M Alsina
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX.,3 Integrative Molecular and Biomedical Sciences Program Baylor College of Medicine Houston TX
| | - Shuyi Cao
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX
| | - Amrita B Koushik
- 2 Department of Pathology & Immunology Baylor College of Medicine Houston TX
| | - Xander H T Wehrens
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX.,3 Integrative Molecular and Biomedical Sciences Program Baylor College of Medicine Houston TX.,5 Department of Medicine Baylor College of Medicine Houston TX.,6 Department of Pediatrics Baylor College of Medicine Houston TX.,7 Center for Space Medicine Baylor College of Medicine Houston TX.,8 Cardiovascular Research Institute Baylor College of Medicine Houston TX
| | - Thomas A Cooper
- 1 Department of Molecular Physiology & Biophysics Baylor College of Medicine Houston TX.,2 Department of Pathology & Immunology Baylor College of Medicine Houston TX.,3 Integrative Molecular and Biomedical Sciences Program Baylor College of Medicine Houston TX.,4 Department of Molecular & Cellular Biology Baylor College of Medicine Houston TX.,8 Cardiovascular Research Institute Baylor College of Medicine Houston TX
| |
Collapse
|
17
|
Yamamoto T, Miura A, Itoh K, Takeshima Y, Nishio H. RNA sequencing reveals abnormal LDB3 splicing in sudden cardiac death. Forensic Sci Int 2019; 302:109906. [DOI: 10.1016/j.forsciint.2019.109906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023]
|
18
|
Hale MA, Johnson NE, Berglund JA. Repeat-associated RNA structure and aberrant splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194405. [PMID: 31323433 DOI: 10.1016/j.bbagrm.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Over 30 hereditary disorders attributed to the expansion of microsatellite repeats have been identified. Despite variant nucleotide content, number of consecutive repeats, and different locations in the genome, many of these diseases have pathogenic RNA gain-of-function mechanisms. The repeat-containing RNAs can form structures in vitro predicted to contribute to the disease through assembly of intracellular RNA aggregates termed foci. The expanded repeat RNAs within these foci sequester RNA binding proteins (RBPs) with important roles in the regulation of RNA metabolism, most notably alternative splicing (AS). These deleterious interactions lead to downstream alterations in transcriptome-wide AS directly linked with disease symptoms. This review summarizes existing knowledge about the association between the repeat RNA structures and RBPs as well as the resulting aberrant AS patterns, specifically in the context of myotonic dystrophy. The connection between toxic, structured RNAs and dysregulation of AS in other repeat expansion diseases is also discussed. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Melissa A Hale
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J Andrew Berglund
- The RNA Institute, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
19
|
Wahbi K, Furling D. Cardiovascular manifestations of myotonic dystrophy. Trends Cardiovasc Med 2019; 30:232-238. [PMID: 31213350 DOI: 10.1016/j.tcm.2019.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/25/2022]
Abstract
Patients with myotonic dystrophy, the most common neuromuscular dystrophy in adults, have a high prevalence of arrhythmic complications with increased cardiovascular mortality and high risk for sudden death. Sudden death prevention is central and relies on annual follow-up and prophylactic permanent pacing in patients with conduction defects on electrocardiogram and/or infrahisian blocks on electrophysiological study. Implantable cardiac defibrillator therapy may be indicated in patients with ventricular tachyarrhythmia.
Collapse
Affiliation(s)
- Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, Centre de Référence de Pathologie Neuromusculaire, Nord Est, Ile de France, Paris-Descartes, Sorbonne Paris Cité University, Cochin Hospital, 27 Rue du Faubourg Saint Jacques, 75679 Paris Cedex 14 Paris, France.
| | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
20
|
Korantzopoulos P, Bechlioulis A, Lakkas L, Naka KK. Brugada syndrome in a young patient with type 1 myotonic dystrophy requiring an implantable cardioverter defibrillator for primary prevention: a case report. Eur Heart J Case Rep 2019; 3:5519818. [PMID: 31449644 PMCID: PMC6601169 DOI: 10.1093/ehjcr/ytz086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/26/2019] [Accepted: 04/30/2019] [Indexed: 11/14/2022]
Abstract
Abstract
Background
Cardiac electrical disturbances represent the most frequent cardiac manifestations of myotonic dystrophy Type 1 (MD1). Limited data suggest that the prevalence of Brugada syndrome in MD1 may be increased compared to the general population.
Case summary
We report a case of a 22-year-old asymptomatic man with repolarization abnormalities in leads V1–V3 suggestive of Type III Brugada pattern. The patient had a family history of MD and incidents of sudden death in relatives. Drug-induced Brugada Type 1 syndrome was revealed after procainamide challenge. A ventricular stimulation study was positive since a polymorphic ventricular tachycardia was induced after two extrastimuli. The patient underwent implantation of a single chamber cardiac defibrillator (ICD). Eight months after the procedure he suffered an appropriate ICD shock due to rapid polymorphic ventricular tachycardia.
Discussion
Brugada syndrome is linked with MD1. Potential life-threatening arrhythmias may develop in the adult life of MD1 patients. Electrocardiographic surveillance and tailored invasive treatment with ICDs can prevent sudden cardiac death in this setting.
Collapse
Affiliation(s)
- Panagiotis Korantzopoulos
- 1st Department of Cardiology, University of Ioannina, Stavros Niarchos Avenue, Ioannina, Greece
- Laboratory of Pacing and Electrophysiology, 1st and 2nd Department of Cardiology, University Hospital of Ioannina, Greece
| | - Aris Bechlioulis
- Laboratory of Pacing and Electrophysiology, 1st and 2nd Department of Cardiology, University Hospital of Ioannina, Greece
- 2nd Department of Cardiology, University of Ioannina, Stavros Niarchos Avenue, Ioannina, Greece
| | - Lampros Lakkas
- 2nd Department of Cardiology, University of Ioannina, Stavros Niarchos Avenue, Ioannina, Greece
| | - Katerina K Naka
- 2nd Department of Cardiology, University of Ioannina, Stavros Niarchos Avenue, Ioannina, Greece
| |
Collapse
|
21
|
Wenninger S, Montagnese F, Schoser B. Core Clinical Phenotypes in Myotonic Dystrophies. Front Neurol 2018; 9:303. [PMID: 29770119 PMCID: PMC5941986 DOI: 10.3389/fneur.2018.00303] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) represent the most frequent multisystemic muscular dystrophies in adulthood. They are progressive, autosomal dominant diseases caused by an abnormal expansion of an unstable nucleotide repeat located in the non-coding region of their respective genes DMPK for DM1 and CNBP in DM2. Clinically, these multisystemic disorders are characterized by a high variability of muscular and extramuscular symptoms, often causing a delay in diagnosis. For both subtypes, many symptoms overlap, but some differences allow their clinical distinction. This article highlights the clinical core features of myotonic dystrophies, thus facilitating their early recognition and diagnosis. Particular attention will be given to signs and symptoms of muscular involvement, to issues related to respiratory impairment, and to the multiorgan involvement. This article is part of a Special Issue entitled “Beyond Borders: Myotonic Dystrophies—A European Perception.”
Collapse
Affiliation(s)
- Stephan Wenninger
- Friedrich-Baur-Institute, Klinikum der Universität München, Munich, Germany
| | | | - Benedikt Schoser
- Friedrich-Baur-Institute, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
22
|
Spitalieri P, Talarico RV, Caioli S, Murdocca M, Serafino A, Girasole M, Dinarelli S, Longo G, Pucci S, Botta A, Novelli G, Zona C, Mango R, Sangiuolo F. Modelling the pathogenesis of Myotonic Dystrophy type 1 cardiac phenotype through human iPSC-derived cardiomyocytes. J Mol Cell Cardiol 2018; 118:95-109. [PMID: 29551391 DOI: 10.1016/j.yjmcc.2018.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022]
Abstract
Myotonic Dystrophy type 1 (DM1) is a multisystemic disease, autosomal dominant, caused by a CTG repeat expansion in DMPK gene. We assessed the appropriateness of patient-specific induced pluripotent stem cell-derived cardiomyocytes (CMs) as a model to recapitulate some aspects of the pathogenetic mechanism involving cardiac manifestations in DM1 patients. Once obtained in vitro, CMs have been characterized for their morphology and their functionality. CMs DM1 show intranuclear foci and transcript markers abnormally spliced respect to WT ones, as well as several irregularities in nuclear morphology, probably caused by an unbalanced lamin A/C ratio. Electrophysiological characterization evidences an abnormal profile only in CMs DM1 such that the administration of antiarrythmic drugs to these cells highlights even more the functional defect linked to the disease. Finally, Atomic Force Measurements reveal differences in the biomechanical behaviour of CMs DM1, in terms of frequencies and synchronicity of the beats. Altogether the complex phenotype described in this work, strongly reproduces some aspects of the human DM1 cardiac phenotype. Therefore, the present study provides an in vitro model suggesting novel insights into the mechanisms leading to the development of arrhythmogenesis and dilatative cardiomyopathy to consider when approaching to DM1 patients, especially for the risk assessment of sudden cardiac death (SCD). These data could be also useful in identifying novel biomarkers effective in clinical settings and patient-tailored therapies.
Collapse
Affiliation(s)
- Paola Spitalieri
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Rosa V Talarico
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | | | - Michela Murdocca
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | | - Sabina Pucci
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Annalisa Botta
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Novelli
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Cristina Zona
- I.R.C.C.S. S. Lucia, Rome, Italy; Dept of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Federica Sangiuolo
- Dept of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
23
|
Kalra S, Montanaro F, Denning C. Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies? J Neuromuscul Dis 2018; 3:309-332. [PMID: 27854224 PMCID: PMC5123622 DOI: 10.3233/jnd-150133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscular dystrophies (MDs) are clinically and molecularly a highly heterogeneous group of single-gene disorders that primarily affect striated muscles. Cardiac disease is present in several MDs where it is an important contributor to morbidity and mortality. Careful monitoring of cardiac issues is necessary but current management of cardiac involvement does not effectively protect from disease progression and cardiac failure. There is a critical need to gain new knowledge on the diverse molecular underpinnings of cardiac disease in MDs in order to guide cardiac treatment development and assist in reaching a clearer consensus on cardiac disease management in the clinic. Animal models are available for the majority of MDs and have been invaluable tools in probing disease mechanisms and in pre-clinical screens. However, there are recognized genetic, physiological, and structural differences between human and animal hearts that impact disease progression, manifestation, and response to pharmacological interventions. Therefore, there is a need to develop parallel human systems to model cardiac disease in MDs. This review discusses the current status of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC) to model cardiac disease, with a focus on Duchenne muscular dystrophy (DMD) and myotonic dystrophy (DM1). We seek to provide a balanced view of opportunities and limitations offered by this system in elucidating disease mechanisms pertinent to human cardiac physiology and as a platform for treatment development or refinement.
Collapse
Affiliation(s)
- Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Department of Molecular Neurosciences, University College London - Institute of Child Health, London, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
24
|
|
25
|
Ismail H, Raynor E, Zimetbaum P. Neuromuscular Disorders and the Role of the Clinical Electrophysiologist. JACC Clin Electrophysiol 2017; 3:1069-1079. [PMID: 29759488 DOI: 10.1016/j.jacep.2017.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/09/2017] [Accepted: 04/09/2017] [Indexed: 02/06/2023]
Abstract
Cardiac involvement is common and may be the presenting or predominant manifestation in a variety of neuromuscular disorders, most notably the inherited muscle disorders, or muscular dystrophies. Cardiac manifestations of the neuromuscular disorders result from pathological involvement of the myocardium and the cardiac conduction system, with resulting cardiomyopathy or rhythm disturbances including supraventricular arrhythmias, life-threatening ventricular arrhythmias, and sudden cardiac death. Many of these neuromuscular disorders are rare and may be unrecognized by even experienced specialists in internal and cardiovascular medicine. Furthermore, the initial cardiac manifestations in these patients are often asymptomatic. The goal of this investigation is to review the scope of cardiac conduction defects and rhythm disturbances in these disorders and to propose some practical recommendations for arrhythmia monitoring and management of these patients.
Collapse
Affiliation(s)
- Haisam Ismail
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Peter Zimetbaum
- Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| |
Collapse
|
26
|
Locati ET, Bagliani G, Padeletti L. Normal Ventricular Repolarization and QT Interval: Ionic Background, Modifiers, and Measurements. Card Electrophysiol Clin 2017; 9:487-513. [PMID: 28838552 DOI: 10.1016/j.ccep.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The QT interval on surface electrocardiogram represents the sum of depolarization and repolarization process of the ventricles. The ventricular recovery process, reflected by ST segment and T wave, mainly depends on the transmembrane outward transport of potassium ions to reestablish the endocellular electronegativity. Outward potassium channels represent a heterogeneous family of ionic carriers, whose global kinetics is modulated by heart rate and autonomic nervous activity. Several cardiac and noncardiac drugs and disease conditions, and several mutations of genes encoding ionic channels, generating distinct genetic channellopathies, may affect the ventricular repolarization, provoke QT interval prolongation and shortening, and increase the susceptibility to ventricular arrhythmias.
Collapse
Affiliation(s)
- Emanuela T Locati
- Electrophysiology Unit, Cardiology Division, Cardiovascular Department, ASST GOM Niguarda Hospital, Piazza Ospedale Maggiore, 3, 20162 Milano, Italy.
| | - Giuseppe Bagliani
- Arrhythmology Unit, Cardiology Department, Foligno General Hospital, Via Massimo Arcamone, 06034 Foligno (PG), Italy; Cardiovascular Diseases Department, University of Perugia, Piazza Menghini 1, 06129 Perugia Italy
| | - Luigi Padeletti
- Heart and Vessels Department, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy; IRCCS Multimedica, Cardiology Department, Via Milanese, 300, 20099 Sesto San Giovanni, Italy
| |
Collapse
|
27
|
Dysregulation of mRNA Localization and Translation in Genetic Disease. J Neurosci 2017; 36:11418-11426. [PMID: 27911744 DOI: 10.1523/jneurosci.2352-16.2016] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/21/2022] Open
Abstract
RNA-binding proteins (RBPs) acting at various steps in the post-transcriptional regulation of gene expression play crucial roles in neuronal development and synaptic plasticity. Genetic mutations affecting several RBPs and associated factors lead to diverse neurological symptoms, as characterized by neurodevelopmental and neuropsychiatric disorders, neuromuscular and neurodegenerative diseases, and can often be multisystemic diseases. We will highlight the physiological roles of a few specific proteins in molecular mechanisms of cytoplasmic mRNA regulation, and how these processes are dysregulated in genetic disease. Recent advances in computational biology and genomewide analysis, integrated with diverse experimental approaches and model systems, have provided new insights into conserved mechanisms and the shared pathobiology of mRNA dysregulation in disease. Progress has been made to understand the pathobiology of disease mechanisms for myotonic dystrophy, spinal muscular atrophy, and fragile X syndrome, with broader implications for other RBP-associated genetic neurological diseases. This gained knowledge of underlying basic mechanisms has paved the way to the development of therapeutic strategies targeting disease mechanisms.
Collapse
|
28
|
Chou CC, Chang PC, Wei YC, Lee KY. Optical Mapping Approaches on Muscleblind-Like Compound Knockout Mice for Understanding Mechanistic Insights Into Ventricular Arrhythmias in Myotonic Dystrophy. J Am Heart Assoc 2017; 6:JAHA.116.005191. [PMID: 28416514 PMCID: PMC5533016 DOI: 10.1161/jaha.116.005191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac arrhythmias are common causes of death in patients with myotonic dystrophy (dystrophia myotonica [DM]). Evidence shows that atrial tachyarrhythmia is an independent risk factor for sudden death; however, the relationship is unclear. Methods and Results Control wild‐type (Mbnl1+/+; Mbnl2+/+) and DM mutant (Mbnl1−/−; Mbnl2+/−) mice were generated by crossing double heterozygous knockout (Mbnl1+/−; Mbnl2+/−) mice. In vivo electrophysiological study and optical mapping technique were performed to investigate mechanisms of ventricular tachyarrhythmias. Transmission electron microscopy scanning was performed for myocardium ultrastructural analysis. DM mutant mice were more vulnerable to anesthesia medications and program electrical pacing: 2 of 12 mice had sudden apnea and cardiac arrest during premedication of general anesthesia; 9 of the remaining 10 had atrial tachycardia and/or atrioventricular block, but none of the wild‐type mice had spontaneous arrhythmias; and 9 of 10 mice had pacing‐induced ventricular tachyarrhythmias, but only 1 of 14 of the wild‐type mice. Optical mapping studies revealed prolonged action potential duration, slower conduction velocity, and steeper conduction velocity restitution curves in the DM mutant mice than in the wild‐type group. Spatially discordant alternans was more easily inducible in DM mutant than wild‐type mice. Transmission electron microscopy showed disarranged myofibrils with enlarged vacuole‐occupying mitochondria in the DM mutant group. Conclusions This DM mutant mouse model presented with clinical myofibril ultrastructural abnormality and cardiac arrhythmias, including atrial tachyarrhythmias, atrioventricular block, and ventricular tachyarrhythmias. Optical mapping studies revealed prolonged action potential duration and slow conduction velocity in the DM mice, leading to vulnerability of spatially discordant alternans and ventricular arrhythmia induction to pacing.
Collapse
Affiliation(s)
- Chung-Chuan Chou
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Cheng Chang
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
29
|
Pérez-Riera AR, Baranchuk A, Zhang L, Barbosa-Barros R, de Abreu LC, Brugada P. Myotonic dystrophy and Brugada syndrome: A common pathophysiologic pathway? J Electrocardiol 2017; 50:513-517. [PMID: 28389016 DOI: 10.1016/j.jelectrocard.2017.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Indexed: 11/18/2022]
Abstract
Type 1 myotonic dystrophy (DM1) is a hereditary neuromuscular disease affecting multiple organs in human adults. Here we report a 42-year-old man diagnosed with DM1. Having a history of progressive muscular weakness and gradual loss of visual acuity, he was referred to us by his ophthalmologist for risk assessment of undergoing cataract surgery. Cardiology workup revealed type 1 Brugada ECG pattern, positive late potentials and inducible ventricular fibrillation in an electrophysiology study. Literature review revealed that those ECG changes may be observed in DM1, suggesting that DM1 and Brugada syndrome may share a common pathophysiologic pathway.
Collapse
Affiliation(s)
- Andrés Ricardo Pérez-Riera
- Design of Studies and Scientific Writing Laboratory at the ABC School of Medicine, Santo André, São Paulo, Brazil.
| | - Adrian Baranchuk
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Li Zhang
- Lankenau Medical Center and Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | - Raimundo Barbosa-Barros
- Coronary Center of the Hospital de Messejana Dr. Carlos Alberto Studart Gomes, Fortaleza, CE, Brazil
| | - Luiz Carlos de Abreu
- Design of Studies and Scientific Writing Laboratory at the ABC School of Medicine, Santo André, São Paulo, Brazil
| | - Pedro Brugada
- Department of Cardiology, Heart Rhythm Management Center, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
30
|
Wahbi K, Babuty D, Probst V, Wissocque L, Labombarda F, Porcher R, Bécane HM, Lazarus A, Béhin A, Laforêt P, Stojkovic T, Clementy N, Dussauge AP, Gourraud JB, Pereon Y, Lacour A, Chapon F, Milliez P, Klug D, Eymard B, Duboc D. Incidence and predictors of sudden death, major conduction defects and sustained ventricular tachyarrhythmias in 1388 patients with myotonic dystrophy type 1. Eur Heart J 2017; 38:751-758. [PMID: 27941019 DOI: 10.1093/eurheartj/ehw569] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/03/2016] [Indexed: 08/27/2023] Open
Abstract
AIMS To describe the incidence and identify predictors of sudden death (SD), major conduction defects and sustained ventricular tachyarrhythmias (VTA) in myotonic dystrophy type 1 (DM1). METHODS AND RESULTS We retrospectively enrolled 1388 adults with DM1 referred to six French medical centres between January 2000 and October 2013. We confirmed their vital status, classified all deaths, and determined the incidence of major conduction defects requiring permanent pacing and sustained VTA. We searched for predictors of overall survival, SD, major conduction defects, and sustained VTA by Cox regression analysis. Over a median 10-year follow-up, 253 (18.2%) patients died, 39 (3.6%) suddenly. Analysis of the cardiac rhythm at the time of the 39 SD revealed sustained VTA in 9, asystole in 5, complete atrioventricular block in 1 and electromechanical dissociation in two patients. Non-cardiac causes were identified in the five patients with SD who underwent autopsies. Major conduction defects developed in 143 (19.3%) and sustained VTA in 26 (2.3%) patients. By Cox regression analysis, age, family history of SD and left bundle branch block were independent predictors of SD, while age, male sex, electrocardiographic conduction abnormalities, syncope, and atrial fibrillation were independent predictors of major conduction defects; non-sustained VTA was the only predictor of sustained VTA. CONCLUSIONS SD was a frequent mode of death in DM1, with multiple mechanisms involved. Major conduction defects were by far more frequent than sustained VTA, whose only independent predictor was a personal history of non-sustained VTA. ClinicalTrials.gov no: NCT01136330.
Collapse
Affiliation(s)
- Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
- APHP, Centre de Référence de pathologie neuromusculaire Paris-Est, Myology Institute, Neurology Department, Pitié-Salpêtrière Hospital, Paris, France
- Inserm, UMRS 974, Paris, France
| | - Dominique Babuty
- Cardiology Department, Université François Rabelais, CHU Tours, France
| | - Vincent Probst
- INSERM, UMR1087, Université de Nantes, L'Institut du Thorax, CHU de Nantes, CIC, Centre de référence pour la prise en charge des maladies rythmiques héréditaires de Nantes, Nantes, France
| | | | | | - Raphaël Porcher
- INSERM U1153, 1 Place du Parvis Notre Dame, 75004 Paris, France; Université Paris Descartes - Sorbonne Paris Cité, Paris, France; Centre d'Epidémiologie Clinique, Hôpital Hôtel-Dieu, APHP, Paris, France
| | - Henri Marc Bécane
- APHP, Centre de Référence de pathologie neuromusculaire Paris-Est, Myology Institute, Neurology Department, Pitié-Salpêtrière Hospital, Paris, France
| | | | - Anthony Béhin
- APHP, Centre de Référence de pathologie neuromusculaire Paris-Est, Myology Institute, Neurology Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Pascal Laforêt
- APHP, Centre de Référence de pathologie neuromusculaire Paris-Est, Myology Institute, Neurology Department, Pitié-Salpêtrière Hospital, Paris, France
- Pierre et Marie Curie-Paris 6 University, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence de pathologie neuromusculaire Paris-Est, Myology Institute, Neurology Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Nicolas Clementy
- Cardiology Department, Université François Rabelais, CHU Tours, France
| | - Aurélie Pattier Dussauge
- INSERM, UMR1087, Université de Nantes, L'Institut du Thorax, CHU de Nantes, CIC, Centre de référence pour la prise en charge des maladies rythmiques héréditaires de Nantes, Nantes, France
- Laboratoire d'Explorations Fonctionnelles, CHU de Nantes, Nantes, France
| | - Jean Baptiste Gourraud
- INSERM, UMR1087, Université de Nantes, L'Institut du Thorax, CHU de Nantes, CIC, Centre de référence pour la prise en charge des maladies rythmiques héréditaires de Nantes, Nantes, France
| | - Yann Pereon
- Centre de Référence des Maladies Neuromusculaires Rares de l'Enfant et de l'Adulte Nantes-Angers, CHU de Nantes, Nantes, France
| | - Arnaud Lacour
- Clinique neurologique et centre de référence des maladies rares neuromusculaires, hôpital Roger-Salengro, CHRU de Lille, rue Emile-Laine, Lille, France
| | - Françoise Chapon
- Centre de compétences des pathologies neuromusculaires, CHU de Caen, Caen, France
| | | | - Didier Klug
- Cardiologie A, University Hospital, Lille, France
| | - Bruno Eymard
- APHP, Centre de Référence de pathologie neuromusculaire Paris-Est, Myology Institute, Neurology Department, Pitié-Salpêtrière Hospital, Paris, France
- Pierre et Marie Curie-Paris 6 University, Paris, France
| | - Denis Duboc
- APHP, Cochin Hospital, Cardiology Department, Paris-Descartes, Sorbonne Paris Cité University, Paris, France
- APHP, Centre de Référence de pathologie neuromusculaire Paris-Est, Myology Institute, Neurology Department, Pitié-Salpêtrière Hospital, Paris, France
- Inserm, UMRS 974, Paris, France
| |
Collapse
|
31
|
Acket B, Lepage B, Maury P, Arne-Bes MC, Cintas P. Chloride channel dysfunction study in myotonic dystrophy type 1 using repeated short exercise tests. Muscle Nerve 2016; 54:104-9. [DOI: 10.1002/mus.25003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Blandine Acket
- Service de Neurologie; Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan; 1 Place Baylac 31059 Toulouse France
| | - Benoit Lepage
- Clinical Epidemiology Unit; Centre Hospitalier Universitaire de Toulouse; Faculté de Médecine de Purpan Toulouse France
| | - Philippe Maury
- Federation of Cardiology; Centre Hospitalier Universitaire de Toulouse, Hôpital Rangueil; Toulouse France
| | - Marie-Christine Arne-Bes
- Service de Neurologie; Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan; 1 Place Baylac 31059 Toulouse France
| | - Pascal Cintas
- Service de Neurologie; Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan; 1 Place Baylac 31059 Toulouse France
| |
Collapse
|
32
|
Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun 2016; 7:11067. [PMID: 27063795 PMCID: PMC4831019 DOI: 10.1038/ncomms11067] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy. Patients with myotonic dystrophy (MD) suffer from severe cardiac issues of unknown aetiology. Freyermuth et al. show that fatal changes in cardiac electrophysiological properties in humans and mice with MD may arise from misregulation of the alternative splicing of the cardiac Na+ channel SCN5A transcript, resulting in expression of its fetal form.
Collapse
|
33
|
Atrial flutter in myotonic dystrophy type 1: Patient characteristics and clinical outcome. Neuromuscul Disord 2016; 26:227-33. [DOI: 10.1016/j.nmd.2016.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 01/28/2016] [Indexed: 11/22/2022]
|
34
|
Loussouarn G, Sternberg D, Nicole S, Marionneau C, Le Bouffant F, Toumaniantz G, Barc J, Malak OA, Fressart V, Péréon Y, Baró I, Charpentier F. Physiological and Pathophysiological Insights of Nav1.4 and Nav1.5 Comparison. Front Pharmacol 2016; 6:314. [PMID: 26834636 PMCID: PMC4712308 DOI: 10.3389/fphar.2015.00314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Mutations in Nav1.4 and Nav1.5 α-subunits have been associated with muscular and cardiac channelopathies, respectively. Despite intense research on the structure and function of these channels, a lot of information is still missing to delineate the various physiological and pathophysiological processes underlying their activity at the molecular level. Nav1.4 and Nav1.5 sequences are similar, suggesting structural and functional homologies between the two orthologous channels. This also suggests that any characteristics described for one channel subunit may shed light on the properties of the counterpart channel subunit. In this review article, after a brief clinical description of the muscular and cardiac channelopathies related to Nav1.4 and Nav1.5 mutations, respectively, we compare the knowledge accumulated in different aspects of the expression and function of Nav1.4 and Nav1.5 α-subunits: the regulation of the two encoding genes (SCN4A and SCN5A), the associated/regulatory proteins and at last, the functional effect of the same missense mutations detected in Nav1.4 and Nav1.5. First, it appears that more is known on Nav1.5 expression and accessory proteins. Because of the high homologies of Nav1.5 binding sites and equivalent Nav1.4 sites, Nav1.5-related results may guide future investigations on Nav1.4. Second, the analysis of the same missense mutations in Nav1.4 and Nav1.5 revealed intriguing similarities regarding their effects on membrane excitability and alteration in channel biophysics. We believe that such comparison may bring new cues to the physiopathology of cardiac and muscular diseases.
Collapse
Affiliation(s)
- Gildas Loussouarn
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Damien Sternberg
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France; Sorbonne Universités, Université Pierre-et-Marie-Curie, UMR S1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225Paris, France; Institut du Cerveau et de la Moelle Épinière, ICMParis, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Centres de Référence des Canalopathies Musculaires et des Maladies Neuro-musculaires Paris-EstParis, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital de la Pitié Salpêtrière, Service de Biochimie Métabolique, Unité de Cardiogénétique et MyogénétiqueParis, France
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U1127Paris, France; Sorbonne Universités, Université Pierre-et-Marie-Curie, UMR S1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225Paris, France; Institut du Cerveau et de la Moelle Épinière, ICMParis, France
| | - Céline Marionneau
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Francoise Le Bouffant
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Gilles Toumaniantz
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Julien Barc
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Olfat A Malak
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Véronique Fressart
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital de la Pitié Salpêtrière, Service de Biochimie Métabolique, Unité de Cardiogénétique et Myogénétique Paris, France
| | - Yann Péréon
- Centre Hospitalier Universitaire de Nantes, Centre de Référence Maladies Neuromusculaires Nantes-AngersNantes, France; Atlantic Gene Therapies - Biotherapy Institute for Rare DiseasesNantes, France
| | - Isabelle Baró
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France
| | - Flavien Charpentier
- Institut National de la Santé et de la Recherche Médicale, UMR 1087, l'Institut du ThoraxNantes, France; Centre National de la Recherche Scientifique, UMR 6291Nantes, France; Université de NantesNantes, France; Centre Hospitalier Universitaire de Nantes, l'Institut du ThoraxNantes, France
| |
Collapse
|
35
|
Finsterer J, Stöllberger C, Maeztu C. Sudden cardiac death in neuromuscular disorders. Int J Cardiol 2016; 203:508-15. [DOI: 10.1016/j.ijcard.2015.10.176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/25/2015] [Accepted: 10/24/2015] [Indexed: 12/31/2022]
|
36
|
Dlamini Z, Tshidino SC, Hull R. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases. Int J Mol Sci 2015; 16:27171-90. [PMID: 26580598 PMCID: PMC4661875 DOI: 10.3390/ijms161126017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/06/2015] [Accepted: 08/17/2015] [Indexed: 01/23/2023] Open
Abstract
Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.
Collapse
Affiliation(s)
- Zodwa Dlamini
- Research, Innovation and Engagements, Mangosuthu University of Technology, Durban 4026, South Africa.
| | - Shonisani C Tshidino
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Polokwane 0727, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, Department of Life and Consumer Sciences, Florida Science Campus, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
37
|
Lipscombe D, Pan JQ, Schorge S. Tracks through the genome to physiological events. Exp Physiol 2015; 100:1429-40. [PMID: 26053180 PMCID: PMC5008151 DOI: 10.1113/ep085129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022]
Abstract
New Findings What is the topic of this review? We discuss tools available to access genome‐wide data sets that harbour cell‐specific, brain region‐specific and tissue‐specific information on exon usage for several species, including humans. In this Review, we demonstrate how to access this information in genome databases and its enormous value to physiology. What advances does it highlight? The sheer scale of protein diversity that is possible from complex genes, including those that encode voltage‐gated ion channels, is vast. But this choice is critical for a complete understanding of protein function in the most physiologically relevant context.
Many proteins of great interest to physiologists and neuroscientists are structurally complex and located in specialized subcellular domains, such as neuronal synapses and transverse tubules of muscle. Genes that encode these critical signalling molecules (receptors, ion channels, transporters, enzymes, cell adhesion molecules, cell–cell interaction proteins and cytoskeletal proteins) are similarly complex. Typically, these genes are large; human Dystrophin (DMD) encodes a cytoskeletal protein of muscle and it is the largest naturally occurring gene at a staggering 2.3 Mb. Large genes contain many non‐coding introns and coding exons; human Titin (TTN), which encodes a protein essential for the assembly and functioning of vertebrate striated muscles, has over 350 exons and consequently has an enormous capacity to generate different forms of Titin mRNAs that have unique exon combinations. Functional and pharmacological differences among protein isoforms originating from the same gene may be subtle but nonetheless of critical physiological significance. Standard functional, immunological and pharmacological approaches, so useful for characterizing proteins encoded by different genes, typically fail to discriminate among splice isoforms of individual genes. Tools are now available to access genome‐wide data sets that harbour cell‐specific, brain region‐specific and tissue‐specific information on exon usage for several species, including humans. In this Review, we demonstrate how to access this information in genome databases and its enormous value to physiology.
Collapse
Affiliation(s)
- Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | | |
Collapse
|
38
|
Rakocevic-Stojanovic V, Peric S, Basta I, Dobricic V, Ralic V, Kacar A, Peric M, Novakovic I. Variability of multisystemic features in myotonic dystrophy type 1--lessons from Serbian registry. Neurol Res 2015; 37:939-44. [PMID: 26184384 DOI: 10.1179/1743132815y.0000000068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a rare disease. Creating registry for such a disease is of outstanding importance since it provides us with a full spectrum of the disorder. AIM To assess variability of different multisystemic features in a large cohort of patients with DM1. PATIENTS AND METHOD Data from the Serbian registry for myotonic dystrophies were used in the study. Final number of included DM1 subjects was 275. RESULTS Registry included 53.8% of male patients. Age at enrollment was 47.2 ± 9.9 years, mean disease duration 20.4 ± 9.9 years, and mean CTG repeats number 598.3 ± 269.8.Progression of muscle weakness was pretty slow, slower in proximal than distal muscles, and slower in arms than in legs. Severe ECG abnormality was found in 25.0% of patients and pacemaker was implanted in 9.5%. Lens opacities were observed in 83.5% of DM1 patients and 35.3% had ocular hypotony. Metabolic disturbances were very common, while 19.5% of patients had hypokalemia and 37.8% hypochloremia. Sterility was found in 20.5% of males and 4.1% of females. Cholelithiasis was found in 36.4% of patients and constipation in 29.9%. CONCLUSIONS We defined the most common characteristics of our DM1 patients and observed some treatable symptoms that have been neglected previously. Certain findings deserve further investigations in terms of their causes and consequences. Besides this, presented data analysis directs us to make further improvements of the registry.
Collapse
|
39
|
Bissay V, Van Malderen SCH, Keymolen K, Lissens W, Peeters U, Daneels D, Jansen AC, Pappaert G, Brugada P, De Keyser J, Van Dooren S. SCN4A variants and Brugada syndrome: phenotypic and genotypic overlap between cardiac and skeletal muscle sodium channelopathies. Eur J Hum Genet 2015; 24:400-7. [PMID: 26036855 DOI: 10.1038/ejhg.2015.125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/03/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022] Open
Abstract
SCN5A mutations involving the α-subunit of the cardiac voltage-gated muscle sodium channel (NaV1.5) result in different cardiac channelopathies with an autosomal-dominant inheritance such as Brugada syndrome. On the other hand, mutations in SCN4A encoding the α-subunit of the skeletal voltage-gated sodium channel (NaV1.4) cause non-dystrophic myotonia and/or periodic paralysis. In this study, we investigated whether cardiac arrhythmias or channelopathies such as Brugada syndrome can be part of the clinical phenotype associated with SCN4A variants and whether patients with Brugada syndrome present with non-dystrophic myotonia or periodic paralysis and related gene mutations. We therefore screened seven families with different SCN4A variants and non-dystrophic myotonia phenotypes for Brugada syndrome and performed a neurological, neurophysiological and genetic work-up in 107 Brugada families. In the families with an SCN4A-associated non-dystrophic myotonia, three patients had a clinical diagnosis of Brugada syndrome, whereas we found a remarkably high prevalence of myotonic features involving different genes in the families with Brugada syndrome. One Brugada family carried an SCN4A variant that is predicted to probably affect function, one family suffered from a not genetically confirmed non-dystrophic myotonia, one family was diagnosed with myotonic dystrophy (DMPK gene) and one family had a Thomsen disease myotonia congenita (CLCN1 variant that affects function). Our findings and data suggest a possible involvement of SCN4A variants in the pathophysiological mechanism underlying the development of a spontaneous or drug-induced type 1 electrocardiographic pattern and the occurrence of malignant arrhythmias in some patients with Brugada syndrome.
Collapse
Affiliation(s)
- Véronique Bissay
- Department of Neurology, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sophie C H Van Malderen
- Department of Cardiology, Heart Rhythm Management Center, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Electrophysiology, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Kathelijn Keymolen
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Willy Lissens
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Uschi Peeters
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Dorien Daneels
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Anna C Jansen
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gudrun Pappaert
- Department of Cardiology, Heart Rhythm Management Center, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pedro Brugada
- Department of Cardiology, Heart Rhythm Management Center, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacques De Keyser
- Department of Neurology, Center for Neurosciences, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Sonia Van Dooren
- Center for Medical Genetics, Reproduction and Genetics; Genetics and Regenerative Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
40
|
Dixon DM, Choi J, El-Ghazali A, Park SY, Roos KP, Jordan MC, Fishbein MC, Comai L, Reddy S. Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Sci Rep 2015; 5:9042. [PMID: 25761764 PMCID: PMC4356957 DOI: 10.1038/srep09042] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 02/02/2015] [Indexed: 01/05/2023] Open
Abstract
Cardiac dysfunction is a prominent cause of mortality in myotonic dystrophy I (DM1), a disease where expanded CUG repeats bind and disable the muscleblind-like family of splice regulators. Deletion of muscleblind-like 1 (Mbnl1ΔE2/ΔE2) in 129 sv mice results in QRS, QTc widening, bundle block and STc narrowing at 2–4 months of age. With time, cardiac function deteriorates further and at 6 months, decreased R wave amplitudes, sinus node dysfunction, cardiac hypertrophy, interstitial fibrosis, multi-focal myocardial fiber death and calcification manifest. Sudden death, where no end point illness is overt, is observed at a median age of 6.5 and 4.8 months in ~67% and ~86% of male and female Mbnl1ΔE2/ΔE2 mice, respectively. Mbnl1 depletion results in the persistence of embryonic splice isoforms in a network of cardiac RNAs, some of which have been previously implicated in DM1, regulating sodium and calcium currents, Scn5a, Junctin, Junctate, Atp2a1, Atp11a, Cacna1s, Ryr2, intra and inter cellular transport, Clta, Stx2, Tjp1, cell survival, Capn3, Sirt2, Csda, sarcomere and cytoskeleton organization and function, Trim55, Mapt, Pdlim3, Pdlim5, Sorbs1, Sorbs2, Fhod1, Spag9 and structural components of the sarcomere, Myom1, Tnnt2, Zasp. Thus this study supports a key role for Mbnl1 loss in the initiation of DM1 cardiac disease.
Collapse
Affiliation(s)
- Donald M Dixon
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jongkyu Choi
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ayea El-Ghazali
- 1] Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA [2] Department of Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sun Young Park
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth P Roos
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Maria C Jordan
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Lucio Comai
- Department of Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sita Reddy
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
41
|
Zimmer T, Haufe V, Blechschmidt S. Voltage-gated sodium channels in the mammalian heart. Glob Cardiol Sci Pract 2014; 2014:449-63. [PMID: 25780798 PMCID: PMC4355518 DOI: 10.5339/gcsp.2014.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
Mammalian species express nine functional voltage-gated Na(+) channels. Three of them, the cardiac-specific isoform Nav1.5 and the neuronal isoforms Nav1.8 and Nav1.9, are relatively resistant to the neurotoxin tetrodotoxin (TTX; IC50 ≥ 1 μM). The other six isoforms are highly sensitive to TTX with IC50 values in the nanomolar range. These isoforms are expressed in the central nervous system (Nav1.1, Nav1.2, Nav1.3, Nav1.6), in the skeletal muscle (Nav1.4), and in the peripheral nervous system (Nav1.6, Nav1.7). The isoform Nav1.5, encoded by the SCN5A gene, is responsible for the upstroke of the action potential in the heart. Mutations in SCN5A are associated with a variety of life-threatening arrhythmias, like long QT syndrome type 3 (LQT3), Brugada syndrome (BrS) or cardiac conduction disease (CCD). Previous immunohistochemical and electrophysiological assays demonstrated the cardiac expression of neuronal and skeletal muscle Na(+) channels in the heart of various mammals, which led to far-reaching speculations on their function. However, when comparing the Na(+) channel mRNA patterns in the heart of various mammalian species, only minute quantities of transcripts for TTX-sensitive Na(+) channels were detectable in whole pig and human hearts, suggesting that these channels are not involved in cardiac excitation phenomena in higher mammals. This conclusion is strongly supported by the fact that mutations in TTX-sensitive Na(+) channels were associated with epilepsy or skeletal muscle diseases, rather than with a pathological cardiac phenotype. Moreover, previous data from TTX-intoxicated animals and from cases of human tetrodotoxication showed that low TTX dosages caused at most little alterations of both the cardiac output and the electrocardiogram. Recently, genome-wide association studies identified SCN10A, the gene encoding Nav1.8, as a determinant of cardiac conduction parameters, and mutations in SCN10A have been associated with BrS. These novel findings opened a fascinating new research area in the cardiac ion channel field, and the on-going debate on how SCN10A/Nav1.8 affects cardiac conduction is very exciting.
Collapse
Affiliation(s)
- Thomas Zimmer
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Kollegiengasse 9, 07743 Jena, Germany
| | | | - Steve Blechschmidt
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, Kollegiengasse 9, 07743 Jena, Germany
| |
Collapse
|
42
|
Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1. Neuromuscul Disord 2014; 25:308-20. [PMID: 25613807 DOI: 10.1016/j.nmd.2014.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 11/21/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common neuromuscular disorder and is associated with cardiac conduction defects. However, the mechanisms of cardiac arrhythmias in DM1 are unknown. We tested the hypothesis that abnormalities in the cardiac sodium current (INa) are involved, and used a transgenic mouse model reproducing the expression of triplet expansion observed in DM1 (DMSXL mouse). The injection of the class-I antiarrhythmic agent flecainide induced prominent conduction abnormalities and significantly lowered the radial tissular velocities and strain rate in DMSXL mice compared to WT. These abnormalities were more pronounced in 8-month-old mice than in 3-month-old mice. Ventricular action potentials recorded by standard glass microelectrode technique exhibited a lower maximum upstroke velocity [dV/dt](max) in DMSXL. This decreased [dV/dt](max) was associated with a 1.7 fold faster inactivation of INa in DMSXL myocytes measured by the whole-cell patch-clamp technique. Finally in the DMSXL mouse, no mutation in the Scn5a gene was detected and neither cardiac fibrosis nor abnormalities of expression of the sodium channel protein were observed. Therefore, alterations in the sodium current markedly contributed to electrical conduction block in DM1. This result should guide pharmaceutical and clinical research toward better therapy for the cardiac arrhythmias associated with DM1.
Collapse
|
43
|
Prevalence of type 1 Brugada ECG pattern after administration of Class 1C drugs in patients with type 1 myotonic dystrophy: Myotonic dystrophy as a part of the Brugada syndrome. Heart Rhythm 2014; 11:1721-7. [PMID: 25016148 DOI: 10.1016/j.hrthm.2014.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Both type 1 myotonic dystrophy (MD1) and Brugada syndrome (BrS) may be complicated by conduction disturbances and sudden death. Spontaneous BrS has been observed in MD1 patients, but the prevalence of drug-induced BrS in MD1 is unknown. OBJECTIVE The purpose of this study was to prospectively assess the prevalence of type 1 ST elevation as elicited during pharmacologic challenge with Class 1C drugs in a subgroup of MD1 patients and to further establish correlations with ECG and electrophysiologic variables and prognosis. METHODS From a group of unselected 270 MD1 patients, ajmaline or flecainide drug challenge was performed in a subgroup of 44 patients (27 men, median age 43 years) with minor depolarization/repolarization abnormalities suggestive of possible BrS. The presence of type 1 ST elevation after drug challenge was correlated to clinical, ECG, and electrophysiologic variables. RESULTS Eight of 44 patients (18%) presented with BrS after drug challenge. BrS was seen more often in men (26% vs 6%, P = .09) and was related to younger age (35 vs 48 years, P = .07). BrS was not correlated to symptoms, baseline ECG, HV interval, results of signal-averaged ECG, or abnormalities on ambulatory recordings. MD1 patients with BrS had longer corrected QT intervals, greater increase in PR interval after drug challenge, and higher rate of inducible ventricular arrhythmias (62% vs 21%, P = .03). Twelve patients were implanted with a pacemaker and 5 with an implantable cardioverter-defibrillator. Significant bradycardia did not occur in any patients, and malignant ventricular arrhythmia never occurred during median 7-year follow-up (except 1 hypokalemia-related ventricular fibrillation). CONCLUSION BrS is elicited by a Class 1 drug in 18% of MD1 patients presenting with minor depolarization/repolarization abnormalities at baseline, but the finding seems to be devoid of a prognostic role.
Collapse
|
44
|
Pambrun T, Bortone A, Bois P, Degand B, Patri S, Mercier A, Chahine M, Chatelier A, Coisne D, Amiel A. Unmasked Brugada pattern by ajmaline challenge in patients with myotonic dystrophy type 1. Ann Noninvasive Electrocardiol 2014; 20:28-36. [PMID: 24943134 DOI: 10.1111/anec.12168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) generates missplicing of the SCN5A gene, encoding the cardiac sodium channel (Nav 1.5). Brugada syndrome, which partly results from Nav 1.5 dysfunction and causes increased VF occurrence, can be unmasked by ajmaline. We aimed to investigate the response to ajmaline challenge in DM1 patients and its potential impact on their sudden cardiac death risk stratification. METHODS Among 36 adult DM1 patients referred to our institution, electrophysiological study and ajmaline challenge were performed in 12 patients fulfilling the following criteria: (1) PR interval >200 ms or QRS duration >100 ms; (2) absence of complete left bundle branch block; (3) absence of permanent ventricular pacing; (4) absence of implantable cardioverter-defibrillator (ICD); (5) preserved left-ventricular ejection fraction >50%; and (6) absence of severe muscular impairment. Of note, DM1 patients with ajmaline-induced Brugada pattern (BrP) were screened for SCN5A. RESULTS In all the 12 patients studied, the HV interval was <70 ms. A BrP was unmasked in three patients but none carried an SCN5A mutation. Ajmaline-induced sustained ventricular tachycardia occurred in one patient with BrP, who finally received an ICD. The other patients did not present any cardiac event during the entire follow-up (15 ± 4 months). CONCLUSION Our study is the first to describe a high prevalence of ajmaline-induced BrP in DM1 patients. The indications, the safety, and the implications of ajmaline challenge in this particular setting need to be determined by larger prospective studies.
Collapse
Affiliation(s)
- Thomas Pambrun
- Cardiology Department, University Hospital of Poitiers, Poitiers, France; Cardiology Department, Les Franciscaines Private Hospital, Nîmes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol Basis Dis 2014; 1852:594-606. [PMID: 24882752 DOI: 10.1016/j.bbadis.2014.05.019] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. However, it is now clear that additional pathogenic mechanism like changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy; Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
46
|
Myotonic dystrophy type 1 mimics and exacerbates Brugada phenotype induced by Nav1.5 sodium channel loss-of-function mutation. Heart Rhythm 2014; 11:1393-400. [PMID: 24768612 DOI: 10.1016/j.hrthm.2014.04.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1), a muscular dystrophy due to CTG expansion in the DMPK gene, can cause cardiac conduction disorders and sudden death. These cardiac manifestations are similar to those observed in loss-of-function SCN5A mutations, which are also responsible for Brugada syndrome (BrS). OBJECTIVE The purpose of this study was to investigate DM1 effects on clinical expression of a loss-of-function SCN5A mutation causing BrS. METHODS We performed complete clinical evaluation, including ajmaline test, in 1 family combining DM1 and BrS. We screened the known BrS susceptibility genes. We characterized an SCN5A mutation using whole-cell patch-clamp experiments associated with cell surface biotinylation. RESULTS The proband, a 15-year-old female, was a survivor of out-of-hospital cardiac arrest with ventricular fibrillation. She combined a DMPK CTG expansion from the father's side and an SCN5A mutation (S910L) from the mother's side. S910L is a trafficking defective mutant inducing a dominant negative effect when transfected with wild-type Nav1.5. This loss-of-function SCN5A mutation caused a Brugada phenotype during the mother's ajmaline test. Surprisingly, in the father, a DM1 patient without SCN5A mutation, ajmaline also unmasked a Brugada phenotype. Furthermore, association of both genetic abnormalities in the proband exacerbated the response to ajmaline with a massive conduction defect. CONCLUSION Our study is the first to describe the deleterious effect of DM1 on clinical expression of a loss-of-function SCN5A mutation and to show a provoked BrS phenotype in a DM1 patient. The modification of the ECG pattern by ajmaline supports the hypothesis of a link between DM1 and Nav1.5 loss of -function.
Collapse
|
47
|
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Physiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine at University of California at Los Angeles
| | - Yibin Wang
- Departments of Anesthesiology, Physiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine at University of California at Los Angeles
| |
Collapse
|