1
|
Moulin S, Blachot-Minassian B, Kneppers A, Thomas A, Paradis S, Bultot L, Arnaud C, Pépin JL, Bertrand L, Mounier R, Belaidi E. Metformin protects the heart against chronic intermittent hypoxia through AMPK-dependent phosphorylation of HIF-1α. FEBS J 2025. [PMID: 40364612 DOI: 10.1111/febs.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Chronic intermittent hypoxia (IH), a major feature of obstructive sleep apnea syndrome (OSA), is associated with greater severity of myocardial infarction. In this study, we performed RNA sequencing of cardiac samples from mice exposed to IH, which reveals a specific transcriptomic signature of the disease, relative to mitochondrial remodeling and cell death. Corresponding to its activation under chronic IH, we stabilized the Hypoxia Inducible Factor-1α (HIF-1α) in cardiac cells in vitro and observed its association with an increased autophagic flux. In accordance, IH induced autophagy and mitophagy, which are decreased in HIF-1α+/- mice compared to wild-type animals, suggesting that HIF-1 plays a significant role in IH-induced mitochondrial remodeling. Next, we showed that the AMPK metabolic sensor, typically activated by mitochondrial stress, is inhibited after 3 weeks of IH in hearts. Therefore, we assessed the effect of metformin, an anti-diabetic drug and potent activator of AMPK, on myocardial response to ischemia-reperfusion (I/R) injury. Daily administration of metformin significantly decreases infarct size without any systemic beneficial effect on insulin resistance under IH conditions. The cardioprotective effect of metformin was lost in AMPKα2 knock-out mice, demonstrating that AMPKα2 isoform promotes metformin-induced cardioprotection in mice exposed to IH. Mechanistically, we found that metformin inhibits IH-induced mitophagy in myocardium and decreases HIF-1α nuclear expression in mice subjected to IH. In vitro experiments demonstrated that metformin induced HIF-1α phosphorylation, decreased its nuclear localization, and HIF-1 transcriptional activity. Collectively, these results identify the AMPKα2 metabolic sensor as a novel modulator of HIF-1 activity. Our data suggest that metformin could be considered as a cardioprotective drug in OSA patients independently of their metabolic status.
Collapse
Affiliation(s)
- Sophie Moulin
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
| | | | - Anita Kneppers
- Institut NeuroMyoGène, CNRS UMR 5261, INSERM U1315, Université Lyon 1, France
| | - Amandine Thomas
- Team Atherosclerosis, Thrombosis and Physical Activity, LIBM UR7424, Université Lyon 1, France
| | | | - Laurent Bultot
- Pole of Cardiovascular Research, UCLouvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Claire Arnaud
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
| | - Jean-Louis Pépin
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
- Cardiovascular and Respiratory Function Laboratory, Grenoble Alpes University Hospital, France
| | - Luc Bertrand
- Pole of Cardiovascular Research, UCLouvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Rémi Mounier
- Institut NeuroMyoGène, CNRS UMR 5261, INSERM U1315, Université Lyon 1, France
| | - Elise Belaidi
- HP2, Université Grenoble Alpes, INSERM, Laboratory HP2, France
- Institut NeuroMyoGène, CNRS UMR 5261, INSERM U1315, Université Lyon 1, France
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, Université Lyon 1, France
| |
Collapse
|
2
|
Kong Y, Luo Q, Zhang Q, Wei Q. Association of the body roundness index with new-onset cardiovascular disease in middle-aged and older adults with and without diabetes: evidence from the China Health and Retirement Longitudinal Study. Diabetol Metab Syndr 2025; 17:142. [PMID: 40296132 PMCID: PMC12036263 DOI: 10.1186/s13098-025-01705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Among noncommunicable diseases, cardiovascular disease (CVD) is the leading cause of mortality and morbidity. In China, diabetes is renowned for its high incidence rate, and the body roundness index (BRI) is an emerging indicator for assessing obesity, particularly abdominal obesity. High BRI may lead to new-onset CVD events. However, the relationships between the BRI and new-onset CVD in individuals with or without diabetes remain unclear. METHODS Data for this analysis were extracted from the China Health and Retirement Longitudinal Study (CHARLS). Our research utilized a cohort that was meticulously assessed over a period from 2011 to 2018, encompassing a comprehensive follow-up of 17,708 participants. Ultimately, this study focused on a subset of 6,737 individuals aged 45 years or older. Methodological approaches include Cox regression, Kaplan-Meier survival analysis, restricted cubic splines (RCS) analysis, receiver operating characteristic (ROC) curve analysis, subgroup analysis, and mediation analysis to explore the relationships of interest. RESULTS This study included 6,737 participants, all of whom were above the age of 45. Our findings revealed that within this demographic group, 1,481 (22.0%) patients experienced new-onset CVD. The Kaplan-Meier survival analysis further revealed that the group characterized by non-diabetes mellitus (Non-DM) had the lowest cumulative incidence of CVD compared with the diabetes mellitus (DM) group. Multivariate Cox regression revealed that in the fully adjusted model (Model 3) (HR = 1.122, 95% CI = 1.080 to 1.167), BRI was associated with the risk of CVD in the Non-DM group during the three-wave follow-up. RCS analysis revealed a positive, linear-like dose‒dependent relationship between BRI and new-onset CVD in Non-DM patients (P = 0.007, P for nonlinearity = 0.938). Smoking could affect the ability of the BRI to predict the incidence rate of CVD in the total population and in the population without diabetes (P interaction = 0.007). Moreover, the mediating effect of the BRI on new-onset CVD among diabetic patients was particularly pronounced in the long term, exceeding 4 years. CONCLUSIONS Our findings demonstrate a significant association between the BRI and CVD risk in non-diabetic individuals, with diabetes influencing the incidence and risk of new-onset CVD in middle-aged and elderly Chinese populations through the BRI playing a mediating role. As an obesity indicator, the BRI provides a valuable tool for early detection and intervention of CVD. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Youli Kong
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Luo
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Montebello A, Agius M, Grech M, Maniscalco N, Kenkovski I, Fava S. The relationship of plasma glucose, stress hyperglycaemia and glycated haemoglobin with intermediate-term mortality after acute myocardial infarction in patients with and without diabetes. Diabet Med 2025; 42:e70008. [PMID: 39917843 DOI: 10.1111/dme.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/23/2025]
Abstract
AIMS Admission hyperglycaemia is an adverse prognostic indicator in the setting of acute myocardial infarction. It is unclear if this is because of previously undiagnosed diabetes, due to admission plasma glucose being a marker of a greater stress hormone response and therefore a more severe event, or due to a detrimental effect of high blood glucose on the myocardium. METHODS We performed retrospective analysis of a cohort of 430 participants admitted with a diagnosis of acute myocardial infarction. We investigated the relation of admission plasma glucose, glycated haemoglobin, stress hyperglycaemia ratio and a novel parameter; the stress hyperglycaemia index, to mortality by Cox regression analyses. The stress hyperglycaemia index is the difference between the admission glucose and glucose estimated from HbA1c. RESULTS We included 430 participants who were followed for a median of 2.5 years. The stress hyperglycaemia index was associated with increased mortality in patients with diabetes in both univariate and multivariate analyses. Admission glucose was associated with mortality in subjects with diabetes in univariate analysis and after adjustment of age and sex, but not after adjusting for eGFR. There was no significant association between admission glucose and mortality in subjects without diabetes. HbA1c was not associated with mortality in either patient group in both univariate and multivariate analyses. CONCLUSION Our results suggest a possible detrimental effect of hyperglycaemia in the setting of an acute myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen Fava
- Mater Dei Hospital, Msida, Malta
- University of Malta Medical School, Msida, Malta
| |
Collapse
|
4
|
Zhang YF, Liu YX, Yang WX. Sodium-dependent glucose transporter 2 inhibitors improve heart function in patients with type 2 diabetes and heart failure. World J Cardiol 2025; 17:100886. [PMID: 39866214 PMCID: PMC11755127 DOI: 10.4330/wjc.v17.i1.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
This article discusses the study by Grubić Rotkvić et al on the mechanisms of action of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM) and heart failure (HF). T2DM and HF are highly comorbid, with a significantly increased prevalence of HF in patients with T2DM. SGLT2i exhibit potential in reducing hospitalization rates for HF and cardiovascular mortality through multiple mechanisms, including improving blood glucose control, promoting urinary sodium excretion, reducing sympathetic nervous system activity, lowering both preload and afterload on the heart, alleviating inflammation and oxidative stress, enhancing endothelial function, improving myocardial energy metabolism, and stabilizing cardiac ion homeostasis. Further research and clinical practice will help optimize the use of SGLT2i in HF patients.
Collapse
Affiliation(s)
- Yi-Fei Zhang
- Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Yu-Xiang Liu
- Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Wu-Xiao Yang
- Department of Cardiology, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China.
| |
Collapse
|
5
|
Berra C, Manfrini R, Bifari F, Cipponeri E, Ghelardi R, Centofanti L, Mortola U, Lunati E, Bucciarelli L, Cimino V, Folli F. Improved glycemic and weight control with Dulaglutide addition in SGLT2 inhibitor treated obese type 2 diabetic patients at high cardiovascular risk in a real-world setting. The AWARE-2 study. Pharmacol Res 2024; 210:107517. [PMID: 39613122 DOI: 10.1016/j.phrs.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
We evaluated the effects on glycemic control and body weight of a GLP1-RA in obese type 2 diabetic patients treated with SGLT2-inhibitors and other hypoglycemic agents and/or insulin, in a real-world setting. A cohort of 583 type 2 diabetic outpatients treated with a SGLT2 inhibitor and/or other anti-diabetic medications were examined. Because patients had suboptimal glycemic control, the GLP1-RA Dulaglutide was added to ongoing medications. At 6 months, 334 patients had a follow-up visit. Patients were classified in terms of cardiovascular risk (CVR) employing the ESC-EASD 2019 criteria, with the AWARE app. The study's primary endpoints were changes in: 1) HbA1c level, 2) BMI, and 3) body weight after six months of treatment. Secondary endpoints were evaluation of Dulaglutide addition in type 2 diabetic patients: 1) with more or less than ten years of T2DM; 2) more or less than 75 years of age and in different subgroups of CVR. In the 334 patients which had a 6 months follow-up visit, age was 65,9+9,8; 33.5 % (112) were females and 66.5 % (222) were males. After six months of Dulaglutide treatment, we found a significant reduction in HbA1c levels (8.0+10.5 mmol/mol; p<0.0001) and in body mass index (1.1+1.1 kg/m2; p<0.0001). Efficacy of Dulaglutide was not affected by different CVD risk categories, age and T2DM duration. This real world study provides evidence for significant reductions in HbA1c level, body mass index and body weight in obese type 2 diabetic patients who received add-on treatment with the weekly GLP-1RA, Dulaglutide.
Collapse
Affiliation(s)
- Cesare Berra
- Department of Endocrinology and Metabolic Diseases, IRCCS Multimedica, Milan, Italy.
| | - Roberto Manfrini
- Department of Endocrinology and Metabolic Diseases, IRCCS Multimedica, Milan, Italy; Departmental Unit of Diabetes and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy; Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Segrate, Italy
| | - Elisa Cipponeri
- Department of Endocrinology and Metabolic Diseases, IRCCS Multimedica, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Renata Ghelardi
- UOC Coordinamento e Integrazione Rete ASST Melegnano e della Martesana
| | - Lucia Centofanti
- Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Umberto Mortola
- Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy
| | - Elena Lunati
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Loredana Bucciarelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Vincenzo Cimino
- Department of Biomedical and Clinical Sciences L. Sacco Endocrinology and Diabetology, Milan, Italy
| | - Franco Folli
- Departmental Unit of Diabetes and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy; Endocrinology and Metabolism, Department of Health Science, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
6
|
Grootaert MOJ. Cell senescence in cardiometabolic diseases. NPJ AGING 2024; 10:46. [PMID: 39433786 PMCID: PMC11493982 DOI: 10.1038/s41514-024-00170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Cellular senescence has been implicated in many age-related pathologies including atherosclerosis, heart failure, age-related cardiac remodeling, diabetic cardiomyopathy and the metabolic syndrome. Here, we will review the characteristics of senescent cells and their endogenous regulators, and summarize the metabolic stressors that induce cell senescence. We will discuss the evidence of cell senescence in the onset and progression of several cardiometabolic diseases and the therapeutic potential of anti-senescence therapies.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Endocrinology, Diabetes and Nutrition, UCLouvain, Brussels, Belgium.
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Sorge M, Savoré G, Gallo A, Acquarone D, Sbroggiò M, Velasco S, Zamporlini F, Femminò S, Moiso E, Morciano G, Balmas E, Raimondi A, Nattenberg G, Stefania R, Tacchetti C, Rizzo AM, Corsetto P, Ghigo A, Turco E, Altruda F, Silengo L, Pinton P, Raffaelli N, Sniadecki NJ, Penna C, Pagliaro P, Hirsch E, Riganti C, Tarone G, Bertero A, Brancaccio M. An intrinsic mechanism of metabolic tuning promotes cardiac resilience to stress. EMBO Mol Med 2024; 16:2450-2484. [PMID: 39271959 PMCID: PMC11473679 DOI: 10.1038/s44321-024-00132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Defining the molecular mechanisms underlying cardiac resilience is crucial to find effective approaches to protect the heart. A physiologic level of ROS is produced in the heart by fatty acid oxidation, but stressful events can boost ROS and cause mitochondrial dysfunction and cardiac functional impairment. Melusin is a muscle specific chaperone required for myocardial compensatory remodeling during stress. Here we report that Melusin localizes in mitochondria where it binds the mitochondrial trifunctional protein, a key enzyme in fatty acid oxidation, and decreases it activity. Studying both mice and human induced pluripotent stem cell-derived cardiomyocytes, we found that Melusin reduces lipid oxidation in the myocardium and limits ROS generation in steady state and during pressure overload and doxorubicin treatment, preventing mitochondrial dysfunction. Accordingly, the treatment with the lipid oxidation inhibitor Trimetazidine concomitantly with stressful stimuli limits ROS accumulation and prevents long-term heart dysfunction. These findings disclose a physiologic mechanism of metabolic regulation in the heart and demonstrate that a timely restriction of lipid metabolism represents a potential therapeutic strategy to improve cardiac resilience to stress.
Collapse
Affiliation(s)
- Matteo Sorge
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy.
| | - Giulia Savoré
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Andrea Gallo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Davide Acquarone
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Mauro Sbroggiò
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Silvia Velasco
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Federica Zamporlini
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy
| | - Enrico Moiso
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, 48033, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Gabrielle Nattenberg
- Departments of Mechanical Engineering, Bioengineering, and Laboratory Medicine and Pathology, Institute for Stem Cell and Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Rachele Stefania
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, 20133, Italy
| | - Paola Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, 20133, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Emilia Turco
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Lorenzo Silengo
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, 48033, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Nathan J Sniadecki
- Departments of Mechanical Engineering, Bioengineering, and Laboratory Medicine and Pathology, Institute for Stem Cell and Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Torino, 10126, Italy
| | - Guido Tarone
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy.
| |
Collapse
|
8
|
Falcão-Pires I, Ferreira AF, Trindade F, Bertrand L, Ciccarelli M, Visco V, Dawson D, Hamdani N, Van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Abdellatif M, Van der Velden J, Cosentino N, Paldino A, Pompilio G, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on Myocardial Function. Eur J Heart Fail 2024; 26:1454-1479. [PMID: 38837573 DOI: 10.1002/ejhf.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbimortality in Europe and worldwide. CVD imposes a heterogeneous spectrum of cardiac remodelling, depending on the insult nature, that is, pressure or volume overload, ischaemia, arrhythmias, infection, pathogenic gene variant, or cardiotoxicity. Moreover, the progression of CVD-induced remodelling is influenced by sex, age, genetic background and comorbidities, impacting patients' outcomes and prognosis. Cardiac reverse remodelling (RR) is defined as any normative improvement in cardiac geometry and function, driven by therapeutic interventions and rarely occurring spontaneously. While RR is the outcome desired for most CVD treatments, they often only slow/halt its progression or modify risk factors, calling for novel and more timely RR approaches. Interventions triggering RR depend on the myocardial insult and include drugs (renin-angiotensin-aldosterone system inhibitors, beta-blockers, diuretics and sodium-glucose cotransporter 2 inhibitors), devices (cardiac resynchronization therapy, ventricular assist devices), surgeries (valve replacement, coronary artery bypass graft), or physiological responses (deconditioning, postpartum). Subsequently, cardiac RR is inferred from the degree of normalization of left ventricular mass, ejection fraction and end-diastolic/end-systolic volumes, whose extent often correlates with patients' prognosis. However, strategies aimed at achieving sustained cardiac improvement, predictive models assessing the extent of RR, or even clinical endpoints that allow for distinguishing complete from incomplete RR or adverse remodelling objectively, remain limited and controversial. This scientific statement aims to define RR, clarify its underlying (patho)physiologic mechanisms and address (non)pharmacological options and promising strategies to promote RR, focusing on the left heart. We highlight the predictors of the extent of RR and review the prognostic significance/impact of incomplete RR/adverse remodelling. Lastly, we present an overview of RR animal models and potential future strategies under pre-clinical evaluation.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ana Filipa Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Fábio Trindade
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, Brussels, Belgium
- WELBIO, Department, WEL Research Institute, Wavre, Belgium
| | - Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | | | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessia Paldino
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
9
|
Ratan Y, Rajput A, Pareek A, Pareek A, Kaur R, Sonia S, Kumar R, Singh G. Recent Advances in Biomolecular Patho-Mechanistic Pathways behind the Development and Progression of Diabetic Neuropathy. Biomedicines 2024; 12:1390. [PMID: 39061964 PMCID: PMC11273858 DOI: 10.3390/biomedicines12071390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic neuropathy (DN) is a neurodegenerative disorder that is primarily characterized by distal sensory loss, reduced mobility, and foot ulcers that may potentially lead to amputation. The multifaceted etiology of DN is linked to a range of inflammatory, vascular, metabolic, and other neurodegenerative factors. Chronic inflammation, endothelial dysfunction, and oxidative stress are the three basic biological changes that contribute to the development of DN. Although our understanding of the intricacies of DN has advanced significantly over the past decade, the distinctive mechanisms underlying the condition are still poorly understood, which may be the reason behind the lack of an effective treatment and cure for DN. The present study delivers a comprehensive understanding and highlights the potential role of the several pathways and molecular mechanisms underlying the etiopathogenesis of DN. Moreover, Schwann cells and satellite glial cells, as integral factors in the pathogenesis of DN, have been enlightened. This work will motivate allied research disciplines to gain a better understanding and analysis of the current state of the biomolecular mechanisms behind the pathogenesis of DN, which will be essential to effectively address every facet of DN, from prevention to treatment.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Rahul Kumar
- Baba Ragav Das Government Medical College, Gorakhpur 273013, Uttar Pradesh, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
10
|
Thakur MR, Nachane SS, Tupe RS. Alleviation of albumin glycation-induced diabetic cardiomyopathy by L-Arginine: Insights into Nrf-2 signaling. Int J Biol Macromol 2024; 264:130478. [PMID: 38428781 DOI: 10.1016/j.ijbiomac.2024.130478] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
In hyperglycemia, accelerated glycation and oxidative stress give rise to many diabetic complications, such as diabetic cardiomyopathy (DCM). Glycated human serum albumin (GHSA) has disturbed structural integrity and hampered functional capabilities. When GHSA accumulates around cardiac cells, Nrf-2 is dysregulated, aiding oxidative stress. L-Arginine (L-Arg) is prescribed to patients with diabetes and cardiovascular diseases. This research contributes to the mechanistic insights on antiglycation and antioxidant potential of L-Arg in alleviating DCM. HSA was glycated with methylglyoxal in the presence of L-Arg (20-640 mM). Structural and functional modifications of HSA were studied. L-Arg and HSA, GHSA interactions, and thermodynamics were determined by steady-state fluorescence. H9c2 cardiomyocytes were given treatments of GHSA-L-Arg along with the inhibitor of the receptor of AGEs. Cellular antioxidant levels, detoxification enzyme activities were measured. Gene, protein expressions, and immunofluorescence data examined the activation and nuclear translocation of Nrf-2 during glycation and oxidative stress. L-Arg protected HSA from glycation-induced structural and functional modifications. The binding affinity of L-Arg was more towards HSA (104 M-1). L-Arg, specifically at lower concentration (20 mM), upregulated Nrf-2 gene, protein expressions and facilitated its nuclear translocation by activating Nrf-2 signaling. The study concluded that L-Arg can be of therapeutic advantage in glycation-induced DCM and associated oxidative stress.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra State, India
| | - Sampada S Nachane
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra State, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra State, India.
| |
Collapse
|
11
|
Kaur M, Misra S, Swarnkar P, Patel P, Das Kurmi B, Das Gupta G, Singh A. Understanding the role of hyperglycemia and the molecular mechanism associated with diabetic neuropathy and possible therapeutic strategies. Biochem Pharmacol 2023; 215:115723. [PMID: 37536473 DOI: 10.1016/j.bcp.2023.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Diabetic neuropathy is a neuro-degenerative disorder that encompasses numerous factors that impact peripheral nerves in the context of diabetes mellitus (DM). Diabetic peripheral neuropathy (DPN) is very prevalent and impacts 50% of diabetic patients. DPN is a length-dependent peripheral nerve lesion that primarily causes distal sensory loss, discomfort, and foot ulceration that may lead to amputation. The pathophysiology is yet to be fully understood, but current literature on the pathophysiology of DPN revolves around understanding various signaling cascades involving the polyol, hexosamine, protein-kinase C, AGE, oxidative stress, and poly (ADP ribose) polymerase pathways. The results of research have suggested that hyperglycemia target Schwann cells and in severe cases, demyelination resulting in central and peripheral sensitization is evident in diabetic patients. Various diagnostic approaches are available, but detection at an early stage remains a challenge. Traditional analgesics and opioids that can be used "as required" have not been the mainstay of treatment thus far. Instead, anticonvulsants and antidepressants that must be taken routinely over time have been the most common treatments. For now, prolonging life and preserving the quality of life are the ultimate goals of diabetes treatment. Furthermore, the rising prevalence of DPN has substantial consequences for occupational therapy because such therapy is necessary for supporting wellness, warding off other chronic-diseases, and avoiding the development of a disability; this is accomplished by engaging in fulfilling activities like yoga, meditation, and physical exercise. Therefore, occupational therapy, along with palliative therapy, may prove to be crucial in halting the onset of neuropathic-symptoms and in lessening those symptoms once they have occurred.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Sakshi Misra
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Priyanka Swarnkar
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga142001, Punjab, India.
| |
Collapse
|
12
|
Salau VF, Erukainure OL, Olofinsan KA, Msomi NZ, Ijomone OK, Islam MS. Ferulic acid mitigates diabetic cardiomyopathy via modulation of metabolic abnormalities in cardiac tissues of diabetic rats. Fundam Clin Pharmacol 2023; 37:44-59. [PMID: 35841183 PMCID: PMC10086938 DOI: 10.1111/fcp.12819] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 01/25/2023]
Abstract
Cardiovascular abnormalities have been reported as a major contributor of diabetic mortality. The protective effect of ferulic acid on diabetic cardiomyopathy in fructose-streptozotocin induced type 2 diabetes (T2D) rat model was elucidated in this study. Type 2 diabetic rats were treated by oral administration of low (150 mg/kg b.w) and high (300 mg/kg b.w) doses of ferulic acid. Metformin was used as the antidiabetic drug. Rats were humanely euthanized after 5 weeks of treatment, and their blood and hearts were collected. Induction of T2D depleted the levels of reduced glutathione, glycogen, and HDL-cholesterol and the activities of superoxide dismutase, catalase, ENTPDase, and 5'nucleotidase. It simultaneously triggered increase in the levels of malondialdehyde, total cholesterol, triglyceride, LDL-cholesterol, creatinine kinase-MB as well as activities of acetylcholinesterase, angiotensin converting enzyme (ACE), ATPase, glucose-6-phopsphatase, fructose-1,6-bisphophatase, glycogen phosphorylase, and lipase. T2D induction further revealed an obvious degeneration of cardiac muscle morphology. However, treatment with ferulic acid markedly reversed the levels and activities of these biomarkers with concomitant improvement in myocardium structural morphology, which had favorable comparison with the standard drug, metformin. Additionally, T2D induction led to the depletion of 40%, 75%, and 33% of fatty acids, fatty esters, and steroids, respectively, with concomitant generation of eicosenoic acid, gamolenic acid, and vitamin E. Ferulic acid treatment restored eicosanoic acid, 2-hydroxyethyl ester, with concomitant generation of 6-octadecenoic acid, (Z)-, cis-11-eicosenoic acid, tridecanedioic acid, octadecanoic acid, 2-hydroxyethyl ester, ethyl 3-hydroxytridecanoate, dipalmitin, cholesterol isocaproate, cholest-5-ene, 3-(1-oxobuthoxy)-, cholesta-3,5-diene. These results suggest the cardioprotective potential of ferulic acid against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | - Ochuko L Erukainure
- Department of Pharmacology, University of the Free State, Bloemfontein, South Africa
| | | | - Nontokozo Z Msomi
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Olayemi K Ijomone
- Department of Anatomy, University of Medical Sciences, Ondo City, Nigeria
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Dhar A, Venkadakrishnan J, Roy U, Vedam S, Lalwani N, Ramos KS, Pandita TK, Bhat A. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther Adv Cardiovasc Dis 2023; 17:17539447231210170. [PMID: 38069578 PMCID: PMC10710750 DOI: 10.1177/17539447231210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by structural and functional abnormalities in the myocardium affecting people with diabetes. Treatment of DCM focuses on glucose control, blood pressure management, lipid-lowering, and lifestyle changes. Due to limited therapeutic options, DCM remains a significant cause of morbidity and mortality in patients with diabetes, thus emphasizing the need to develop new therapeutic strategies. Ongoing research is aimed at understanding the underlying molecular mechanism(s) involved in the development and progression of DCM, including oxidative stress, inflammation, and metabolic dysregulation. The goal is to develope innovative pharmaceutical therapeutics, offering significant improvements in the clinical management of DCM. Some of these approaches include the effective targeting of impaired insulin signaling, cardiac stiffness, glucotoxicity, lipotoxicity, inflammation, oxidative stress, cardiac hypertrophy, and fibrosis. This review focuses on the latest developments in understanding the underlying causes of DCM and the therapeutic landscape of DCM treatment.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | | | - Utsa Roy
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Sahithi Vedam
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Nikita Lalwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT) 184311, India
| |
Collapse
|
14
|
Wentzel A, Duhuze Karera MG, Patterson AC, Waldman ZC, Schenk BR, Mabundo LS, DuBose CW, Horlyck-Romanovsky MF, Sumner AE. The Africans in America study demonstrates that subclinical cardiovascular risk differs by etiology of abnormal glucose tolerance. Sci Rep 2022; 12:16947. [PMID: 36216842 PMCID: PMC9551031 DOI: 10.1038/s41598-022-19917-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022] Open
Abstract
Abnormal-glucose tolerance (Abnl-GT) is due to an imbalance between β-cell function and insulin resistance (IR) and is a major risk factor in cardiovascular disease (CVD). In sub-Saharan Africa, β-cell failure is emerging as an important cause of Abnl-GT (Abnl-GT-β-cell-failure). Visceral adipose tissue (VAT) volume and hyperlipidemia are major contributors to CVD risk when Abnl-GT is due to IR (Abnl-GT-IR). Yet, the CVD profile associated with Abnl-GT-β-cell failure is unknown. Therefore, our goals in 450 African-born Blacks (Male: 65%; Age: 39 ± 10 years; BMI 28 ± 5 kg/m2), living in America were to: (1) determine Abnl-GT prevalence and etiology; (2) assess by Abnl-GT etiology, associations between four understudied subclinical CVD risk factors in Africans: (a) subclinical myocardial damage (high-sensitivity troponin T (hs-cTnT)); (b) neurohormonal regulation (N-terminal pro-Brain-natriuretic peptide (NT-proBNP)); (c) coagulability (fibrinogen); (d) inflammation (high-sensitivity C-reactive protein (hsCRP)), as well as HbA1c, Cholesterol/HDL ratio and VAT. Glucose tolerance status was determined by the OGTT. IR was defined by the threshold at the lowest quartile for the Matsuda Index (≤ 2.97). Abnl-GT-IR required both Abnl-GT and IR. Abnl-GT-β-cell-failure was defined as Abnl-GT without IR. VAT was assessed by CT-scan. For both the Abnl-GT-β-cell-failure and Abnl-GT-IR groups, four multiple regression models were performed for hs-cTnT; NT-proBNP; fibrinogen and hsCRP, as dependent variables, with the remaining three biomarkers and HbA1c, Cholesterol/HDL and VAT as independent variables. Abnl-GT occurred in 38% (170/450). In the Abnl-GT group, β-cell failure occurred in 58% (98/170) and IR in 42% (72/170). VAT and Cholesterol/HDL were significantly lower in Abnl-GT-β-cell-failure group vs the Abnl-GT-IR group (both P < 0.001). In the Abnl-GT-β-cell-failure group: significant associations existed between hscTnT, fibrinogen, hs-CRP, and HbA1c (all P < 0.05), and none with Cholesterol/HDL or VAT. In Abnl-GT-IR: hs-cTnT, fibrinogen and hsCRP significantly associated with Cholesterol/HDL (all P < 0.05) and NT-proBNP inversely related to fibrinogen, hsCRP, HbA1c, Cholesterol/HDL, and VAT (all P < 0.05). The subclinical CVD risk profile differed between Abnl-GT-β-cell failure and Abnl-GT-IR. In Abnl-GT-β-cell failure subclinical CVD risk involved subclinical-myocardial damage, hypercoagulability and increased inflammation, but not hyperlipidemia or visceral adiposity. For Abnl-GT-IR, subclinical CVD risk related to subclinical myocardial damage, neurohormonal dysregulation, inflammation associated with hyperlipidemia and visceral adiposity. ClinicalTrials.gov Identifier: NCT00001853.
Collapse
Affiliation(s)
- Annemarie Wentzel
- grid.94365.3d0000 0001 2297 5165Section on Ethnicity and Health, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA ,grid.25881.360000 0000 9769 2525Hypertension in Africa Research Team (HART), North-West University (NWU), Potchefstroom, North-West South Africa ,grid.25881.360000 0000 9769 2525South African Medical Research Council, Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, North-West South Africa
| | - M. Grace Duhuze Karera
- grid.94365.3d0000 0001 2297 5165Section on Ethnicity and Health, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165National Institute of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD USA ,grid.507436.30000 0004 8340 5635Institute of Global Health Equity Research, University of Global Health Equity, Kigali, Rwanda
| | - Arielle C. Patterson
- grid.94365.3d0000 0001 2297 5165Section on Ethnicity and Health, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Zoe C. Waldman
- grid.94365.3d0000 0001 2297 5165Section on Ethnicity and Health, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Blayne R. Schenk
- grid.94365.3d0000 0001 2297 5165Section on Ethnicity and Health, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Lilian S. Mabundo
- grid.94365.3d0000 0001 2297 5165Section on Ethnicity and Health, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Christopher W. DuBose
- grid.94365.3d0000 0001 2297 5165Section on Ethnicity and Health, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Margrethe F. Horlyck-Romanovsky
- grid.94365.3d0000 0001 2297 5165Section on Ethnicity and Health, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA ,grid.212340.60000000122985718Department of Health and Nutrition Sciences, Brooklyn College, City University of New York, New York, USA
| | - Anne E. Sumner
- grid.94365.3d0000 0001 2297 5165Section on Ethnicity and Health, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165National Institute of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
15
|
Leccisotti L, Cinti F, Sorice GP, D'Amario D, Lorusso M, Guzzardi MA, Mezza T, Gugliandolo S, Cocchi C, Capece U, Indovina L, Ferraro PM, Iozzo P, Crea F, Giordano A, Giaccari A. Dapagliflozin improves myocardial flow reserve in patients with type 2 diabetes: the DAPAHEART Trial: a preliminary report. Cardiovasc Diabetol 2022; 21:173. [PMID: 36057768 PMCID: PMC9440459 DOI: 10.1186/s12933-022-01607-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Cardiovascular (CV) outcome trials have shown that in patients with type 2 diabetes (T2D), treatment with sodium-glucose cotransporter-2 inhibitors (SGLT-2i) reduces CV mortality and hospital admission rates for heart failure (HF). However, the mechanisms behind these benefits are not fully understood. This study was performed to investigate the effects of the SGLT-2i dapagliflozin on myocardial perfusion and glucose metabolism in patients with T2D and stable coronary artery disease (coronary stenosis ≥ 30% and < 80%), with or without previous percutaneous coronary intervention (> 6 months) but no HF. Methods This was a single-center, prospective, randomized, double-blind, controlled clinical trial including 16 patients with T2D randomized to SGLT-2i dapagliflozin (10 mg daily) or placebo. The primary outcome was to detect changes in myocardial glucose uptake (MGU) from baseline to 4 weeks after treatment initiation by [(18)F]2-deoxy-2-fluoro-D-glucose (FDG) PET/CT during hyperinsulinemic euglycemic clamp. The main secondary outcome was to assess whether the hypothetical changes in MGU were associated with changes in myocardial blood flow (MBF) and myocardial flow reserve (MFR) measured by 13N-ammonia PET/CT. The study was registered at eudract.ema.europa.eu (EudraCT No. 2016-003614-27) and ClinicalTrials.gov (NCT 03313752). Results 16 patients were randomized to dapagliflozin (n = 8) or placebo (n = 8). The groups were well-matched for baseline characteristics (age, diabetes duration, HbA1c, renal and heart function). There was no significant change in MGU during euglycemic hyperinsulinemic clamp in the dapagliflozin group (2.22 ± 0.59 vs 1.92 ± 0.42 μmol/100 g/min, p = 0.41) compared with the placebo group (2.00 ± 0.55 vs 1.60 ± 0.45 μmol/100 g/min, p = 0.5). Dapagliflozin significantly improved MFR (2.56 ± 0.26 vs 3.59 ± 0.35 p = 0.006 compared with the placebo group 2.34 ± 0.21 vs 2.38 ± 0.24 p = 0.81; pint = 0.001) associated with a reduction in resting MBF corrected for cardiac workload (p = 0.005; pint = 0.045). A trend toward an increase in stress MBF was also detected (p = 0.054). Conclusions SGLT-2 inhibition increases MFR in T2D patients. We provide new insight into SGLT-2i CV benefits, as our data show that patients on SGLT-2i are more resistant to the detrimental effects of obstructive coronary atherosclerosis due to increased MFR, probably caused by an improvement in coronary microvascular dysfunction. Trial registration EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752 Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01607-4.
Collapse
Affiliation(s)
- Lucia Leccisotti
- UOC Di Medicina Nucleare, Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Francesca Cinti
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Gian Pio Sorice
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia.,Sezione Di Medicina Interna, Endocrinologia, Andrologia e Malattie Metaboliche, Dipartimento Dell'Emergenza E Dei Trapianti Di Organi (D.E.T.O.), Università Degli Studi Di Bari "Aldo Moro", Bari, Italia
| | - Domenico D'Amario
- UOC Di Cardiologia, Dipartimento Di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Margherita Lorusso
- UOC Di Medicina Nucleare, Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Maria Angela Guzzardi
- Istituto Di Fisiologia Clinica, Consiglio Nazionale Delle Ricerche (CNR), Pisa, Italia
| | - Teresa Mezza
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Shawn Gugliandolo
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Camilla Cocchi
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Umberto Capece
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Luca Indovina
- UOSD Fisica Medica E Radioprotezione, Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italia
| | - Pietro Manuel Ferraro
- U.O.S. Terapia Conservativa Della Malattia Renale Cronica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Patricia Iozzo
- Istituto Di Fisiologia Clinica, Consiglio Nazionale Delle Ricerche (CNR), Pisa, Italia
| | - Filippo Crea
- UOC Di Cardiologia, Dipartimento Di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Università Cattolica del Sacro Cuore, Rome, Italia
| | - Alessandro Giordano
- UOC Di Medicina Nucleare, Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia.
| | - Andrea Giaccari
- Centro Malattie Endocrine E Metaboliche, Dipartimento Di Scienze Mediche E Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italia.
| |
Collapse
|
16
|
Xi R, Wan Y, Yang L, Zhang J, Yang L, Yang S, Chai R, Mu F, Sun Q, Yan R, Wu Z, Li S. Investigating Celastrol's Anti-DCM Targets and Mechanisms via Network Pharmacology and Experimental Validation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7382130. [PMID: 35845929 PMCID: PMC9278495 DOI: 10.1155/2022/7382130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022]
Abstract
Methods Data from TCMSP and GEO databases were utilized to identify targets for Celastrol on DCM. The relationship between the major targets and conventional glycolipid metabolism was obtained with Spearman correlation analysis. Experiments on animals were conducted utilizing healthy control (HC), low-dose Celastrol interventions (CL), and no intervention groups (NC), all of which had 8 SD rats in each group. To study alterations in signaling molecules, RT-PCR was performed. Results There were 76 common targets and 5 major targets for Celastrol-DCM. Celastrol have been found to regulate AGE-RAGE, TNF, MAPK, TOLL-like receptors, insulin resistance, and other signaling pathways, and they are closely linked to adipocytokines, fatty acid metabolism, glycolipid biosynthesis, and glycosylphosphati-dylinositol biosynthesis on DCM. These five major targets have been found to regulate these pathways. Experiments on rats indicated that P38 MAPK was considerably elevated in the cardiac tissue from rats in the CL and NC groups compared to the HC group, and the difference was statistically significant (P < 0.01). Significant differences were seen between the CL and NC groups in P38 MAPK levels, with a statistical significance level of less than 0.05. Conclusion Celastrol may play a role in reversing energy remodeling, anti-inflammation, and oxidative stress via modulating p38 protein expression in the MAPK pathway, which have been shown in the treatment of DCM.
Collapse
Affiliation(s)
- Rui Xi
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongxin Wan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lihong Yang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingying Zhang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liu Yang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuai Yang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui Chai
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fengchen Mu
- Department of Vascular Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Qiting Sun
- Department of Nuclear Medicine, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi, China
| | - Rui Yan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Kleissl-Muir S, Rasmussen B, Owen A, Zinn C, Driscoll A. Low Carbohydrate Diets for Diabetic Cardiomyopathy: A Hypothesis. Front Nutr 2022; 9:865489. [PMID: 35529461 PMCID: PMC9069235 DOI: 10.3389/fnut.2022.865489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Elevated blood glucose levels, insulin resistance (IR), hyperinsulinemia and dyslipidemia the key aspects of type 2 diabetes mellitus (T2DM), contribute to the development of a certain form of cardiomyopathy. This cardiomyopathy, also known as diabetic cardiomyopathy (DMCM), typically occurs in the absence of overt coronary artery disease (CAD), hypertension or valvular disease. DMCM encompasses a variety of pathophysiological processes impacting the myocardium, hence increasing the risk for heart failure (HF) and significantly worsening outcomes in this population. Low fat (LF), calorie-restricted diets have been suggested as the preferred eating pattern for patients with HF. However, LF diets are naturally higher in carbohydrates (CHO). We argue that in an insulin resistant state, such as in DMCM, LF diets may worsen glycaemic control and promote further insulin resistance (IR), contributing to a physiological and functional decline in DMCM. We postulate that CHO restriction targeting hyperinsulinemia may be able to improve tissue and systemic IR. In recent years low carbohydrate diets (LC) including ketogenic diets (KD), have emerged as a safe and effective tool for the management of various clinical conditions such as T2DM and other metabolic disorders. CHO restriction achieves sustained glycaemic control, lower insulin levels and successfully reverses IR. In addition to this, its pleiotropic effects may present a metabolic stress defense and facilitate improvement to cardiac function in patients with HF. We therefore hypothesize that patients who adopt a LC diet may require less medications and experience improvements in HF-related symptom burden.
Collapse
Affiliation(s)
| | - Bodil Rasmussen
- School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
- Centre for Quality and Patient Safety, School of Nursing and Midwifery, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
- The Centre for Quality and Patient Safety, Institute of Health Transformation -Western Health Partnership, Western Health, St Albans, VIC, Australia
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark and Steno Diabetes Centre, Odense, Denmark
| | - Alice Owen
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Caryn Zinn
- Human Potential Centre, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Andrea Driscoll
- School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
- Centre for Quality and Patient Safety, School of Nursing and Midwifery, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
19
|
Nguyen ML, Sachdev V, Burklow TR, Li W, Startzell M, Auh S, Brown RJ. Leptin Attenuates Cardiac Hypertrophy in Patients With Generalized Lipodystrophy. J Clin Endocrinol Metab 2021; 106:e4327-e4339. [PMID: 34223895 PMCID: PMC8530723 DOI: 10.1210/clinem/dgab499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Lipodystrophy syndromes are rare disorders of deficient adipose tissue, low leptin, and severe metabolic disease, affecting all adipose depots (generalized lipodystrophy, GLD) or only some (partial lipodystrophy, PLD). Left ventricular (LV) hypertrophy is common (especially in GLD); mechanisms may include hyperglycemia, dyslipidemia, or hyperinsulinemia. OBJECTIVE Determine effects of recombinant leptin (metreleptin) on cardiac structure and function in lipodystrophy. METHODS Open-label treatment study of 38 subjects (18 GLD, 20 PLD) at the National Institutes of Health before and after 1 (N = 27), and 3 to 5 years (N = 23) of metreleptin. Outcomes were echocardiograms, blood pressure (BP), triglycerides, A1c, and homeostasis model assessment of insulin resistance. RESULTS In GLD, metreleptin lowered triglycerides (median [interquartile range] 740 [403-1239], 138 [88-196], 211 [136-558] mg/dL at baseline, 1 year, 3-5 years, P < .0001), A1c (9.5 ± 3.0, 6.5 ± 1.6, 6.5 ± 1.9%, P < .001), and HOMA-IR (34.1 [15.2-43.5], 8.7 [2.4-16.0], 8.9 [2.1-16.4], P < .001). Only HOMA-IR improved in PLD (P < .01). Systolic BP decreased in GLD but not PLD. Metreleptin improved cardiac parameters in patients with GLD, including reduced posterior wall thickness (9.8 ± 1.7, 9.1 ± 1.3, 8.3 ± 1.7 mm, P < .01), and LV mass (140.7 ± 45.9, 128.7 ± 37.9, 110.9 ± 29.1 g, P < .01), and increased septal e' velocity (8.6 ± 1.7, 10.0 ± 2.1, 10.7 ± 2.4 cm/s, P < .01). Changes remained significant after adjustment for BP. In GLD, multivariate models suggested that reduced posterior wall thickness and LV mass index correlated with reduced triglycerides and increased septal e' velocity correlated with reduced A1c. No changes in echocardiographic parameters were seen in PLD. CONCLUSION Metreleptin attenuated cardiac hypertrophy and improved septal e' velocity in GLD, which may be mediated by reduced lipotoxicity and glucose toxicity. The applicability of these findings to leptin-sufficient populations remains to be determined.
Collapse
Affiliation(s)
- My-Le Nguyen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vandana Sachdev
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas R Burklow
- NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wen Li
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan Startzell
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sungyoung Auh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: Rebecca J. Brown, National Institute of Diabetes and Digestive and Kidney Diseases, Building 10, Room 6-5940, 10 Center Dr., Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Kapelouzou A, Katsimpoulas M, Kontogiannis C, Lidoriki I, Georgiopoulos G, Kourek C, Papageorgiou C, Mylonas KS, Dritsas S, Charalabopoulos A, Cokkinos DV. A High-Cholesterol Diet Increases Toll-like Receptors and Other Harmful Factors in the Rabbit Myocardium: The Beneficial Effect of Statins. Curr Issues Mol Biol 2021; 43:818-830. [PMID: 34449561 PMCID: PMC8928938 DOI: 10.3390/cimb43020059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND A high-cholesterol diet (HCD) induces vascular atherosclerosis through vascular inflammatory and immunological processes via TLRs. The aim of this study is to investigate the mRNA expression of TLRs and other noxious biomarkers expressing inflammation, fibrosis, apoptosis, and cardiac dysfunction in the rabbit myocardium during (a) high-cholesterol diet (HCD), (b) normal diet resumption and (c) fluvastatin or rosuvastatin treatment. METHODS Forty-eight male rabbits were randomly divided into eight groups (n = 6/group). In the first experiment, three groups were fed with HCD for 1, 2 and 3 months. In the second experiment, three groups were fed with HCD for 3 months, followed by normal chow for 1 month and administration of fluvastatin or rosuvastatin for 1 month. Control groups were fed with normal chow for 90 and 120 days. The whole myocardium was removed; total RNA was isolated from acquired samples, and polymerase chain reaction, reverse transcription PCR and quantitative real-time PCR were performed. RESULTS mRNA of TLRs 2, 3, 4 and 8; interleukin-6; TNF-a; metalloproteinase-2; tissue inhibitor of metalloproteinase-1; tumor protein 53; cysteinyl aspartate specific proteinase-3; and brain natriuretic peptide (BNP) increased in HCD. Statins but not resumption of a normal diet decreased levels of these biomarkers and increased levels of antifibrotic factors. CONCLUSIONS HCD increases the levels of TLRs; inflammatory, fibrotic and apoptotic factors; and BNP in the rabbit myocardium. Atherogenic diets adversely affect the myocardium at a molecular level and are reversed by statins.
Collapse
Affiliation(s)
- Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
| | - Michalis Katsimpoulas
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
- Attiko Hospital Animal, 19002 Athens, Greece
| | - Christos Kontogiannis
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Irene Lidoriki
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Georgios Georgiopoulos
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Christos Kourek
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Christos Papageorgiou
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Konstantinos S. Mylonas
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Spyridon Dritsas
- Second Department of Surgery, Aretaieio Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Alexandros Charalabopoulos
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Dennis V. Cokkinos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
| |
Collapse
|
21
|
Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, Vetrano E, Rinaldi L, Sasso FC. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med (Lausanne) 2021; 8:695792. [PMID: 34277669 PMCID: PMC8279779 DOI: 10.3389/fmed.2021.695792] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Individuals with diabetes mellitus (DM) disclose a higher incidence and a poorer prognosis of heart failure (HF) than non-diabetic people, even in the absence of other HF risk factors. The adverse impact of diabetes on HF likely reflects an underlying “diabetic cardiomyopathy” (DM–CMP), which may by exacerbated by left ventricular hypertrophy and coronary artery disease (CAD). The pathogenesis of DM-CMP has been a hot topic of research since its first description and is still under active investigation, as a complex interplay among multiple mechanisms may play a role at systemic, myocardial, and cellular/molecular levels. Among these, metabolic abnormalities such as lipotoxicity and glucotoxicity, mitochondrial damage and dysfunction, oxidative stress, abnormal calcium signaling, inflammation, epigenetic factors, and others. These disturbances predispose the diabetic heart to extracellular remodeling and hypertrophy, thus leading to left ventricular diastolic and systolic dysfunction. This Review aims to outline the major pathophysiological changes and the underlying mechanisms leading to myocardial remodeling and cardiac functional derangement in DM-CMP.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
22
|
Lejeune S, Roy C, Slimani A, Pasquet A, Vancraeynest D, Vanoverschelde JL, Gerber BL, Beauloye C, Pouleur AC. Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort. Cardiovasc Diabetol 2021; 20:48. [PMID: 33608002 PMCID: PMC7893869 DOI: 10.1186/s12933-021-01242-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome, with several underlying etiologic and pathophysiologic factors. The presence of diabetes might identify an important phenotype, with implications for therapeutic strategies. While diabetes is associated with worse prognosis in HFpEF, the prognostic impact of glycemic control is yet unknown. Hence, we investigated phenotypic differences between diabetic and non-diabetic HFpEF patients (pts), and the prognostic impact of glycated hemoglobin (HbA1C). Methods We prospectively enrolled 183 pts with HFpEF (78 ± 9 years, 38% men), including 70 (38%) diabetics (type 2 diabetes only). They underwent 2D echocardiography (n = 183), cardiac magnetic resonance (CMR) (n = 150), and were followed for a combined outcome of all-cause mortality and first HF hospitalization. The prognostic impact of diabetes and glycemic control were determined with Cox proportional hazard models, and illustrated by adjusted Kaplan Meier curves. Results Diabetic HFpEF pts were younger (76 ± 9 vs 80 ± 8 years, p = 0.002), more obese (BMI 31 ± 6 vs 27 ± 6 kg/m2, p = 0.001) and suffered more frequently from sleep apnea (18% vs 7%, p = 0.032). Atrial fibrillation, however, was more frequent in non-diabetic pts (69% vs 53%, p = 0.028). Although no echocardiographic difference could be detected, CMR analysis revealed a trend towards higher LV mass (66 ± 18 vs 71 ± 14 g/m2, p = 0.07) and higher levels of fibrosis (53% vs 36% of patients had ECV by T1 mapping > 33%, p = 0.05) in diabetic patients. Over 25 ± 12 months, 111 HFpEF pts (63%) reached the combined outcome (24 deaths and 87 HF hospitalizations). Diabetes was a significant predictor of mortality and hospitalization for heart failure (HR: 1.72 [1.1–2.6], p = 0.011, adjusted for age, BMI, NYHA class and renal function). In diabetic patients, lower levels of glycated hemoglobin (HbA1C < 7%) were associated with worse prognosis (HR: 2.07 [1.1–4.0], p = 0.028 adjusted for age, BMI, hemoglobin and NT-proBNP levels). Conclusion Our study highlights phenotypic features characterizing diabetic patients with HFpEF. Notably, they are younger and more obese than their non-diabetic counterpart, but suffer less from atrial fibrillation. Although diabetes is a predictor of poor outcome in HFpEF, intensive glycemic control (HbA1C < 7%) in diabetic patients is associated with worse prognosis.
Collapse
Affiliation(s)
- Sibille Lejeune
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Clotilde Roy
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Alisson Slimani
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Agnès Pasquet
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - David Vancraeynest
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Jean-Louis Vanoverschelde
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Bernhard L Gerber
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Christophe Beauloye
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium
| | - Anne-Catherine Pouleur
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc and Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Cardiovascular Division, Université Catholique de Louvain, Avenue Hippocrate, 10, 1200, Brussels, Belgium.
| |
Collapse
|
23
|
Ferté L, Marino A, Battault S, Bultot L, Van Steenbergen A, Bol A, Cumps J, Ginion A, Koepsell H, Dumoutier L, Hue L, Horman S, Bertrand L, Beauloye C. New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. Am J Physiol Heart Circ Physiol 2021; 320:H838-H853. [PMID: 33416451 PMCID: PMC8082801 DOI: 10.1152/ajpheart.00736.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/10/2023]
Abstract
Although sodium glucose cotransporter 1 (SGLT1) has been identified as one of the major SGLT isoforms expressed in the heart, its exact role remains elusive. Evidence using phlorizin, the most common inhibitor of SGLTs, has suggested its role in glucose transport. However, phlorizin could also affect classical facilitated diffusion via glucose transporters (GLUTs), bringing into question the relevance of SGLT1 in overall cardiac glucose uptake. Accordingly, we assessed the contribution of SGLT1 in cardiac glucose uptake using the SGLT1 knockout mouse model, which lacks exon 1. Glucose uptake was similar in cardiomyocytes isolated from SGLT1-knockout (Δex1KO) and control littermate (WT) mice either under basal state, insulin, or hyperglycemia. Similarly, in vivo basal and insulin-stimulated cardiac glucose transport measured by micro-PET scan technology did not differ between WT and Δex1KO mice. Micromolar concentrations of phlorizin had no impact on glucose uptake in either isolated WT or Δex1KO-derived cardiomyocytes. However, higher concentrations (1 mM) completely inhibited insulin-stimulated glucose transport without affecting insulin signaling nor GLUT4 translocation independently from cardiomyocyte genotype. Interestingly, we discovered that mouse and human hearts expressed a shorter slc5a1 transcript, leading to SGLT1 protein lacking transmembrane domains and residues involved in glucose and sodium bindings. In conclusion, cardiac SGLT1 does not contribute to overall glucose uptake, probably due to the expression of slc5a1 transcript variant. The inhibitory effect of phlorizin on cardiac glucose uptake is SGLT1-independent and can be explained by GLUT transporter inhibition. These data open new perspectives in understanding the role of SGLT1 in the heart.NEW & NOTEWORTHY Ever since the discovery of its expression in the heart, SGLT1 has been considered as similar as the intestine and a potential contributor to cardiac glucose transport. For the first time, we have demonstrated that a slc5a1 transcript variant is present in the heart that has no significant impact on cardiac glucose handling.
Collapse
Affiliation(s)
- Laura Ferté
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alice Marino
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Sylvain Battault
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Laurent Bultot
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Anne Van Steenbergen
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Anne Bol
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Cumps
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius von Sachs Institute, University of Würzburg, Würzburg, Germany
| | - Laure Dumoutier
- Médecine Expérimentale, Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Louis Hue
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|