1
|
Wang C, Yang J, Yuan J, Wang X, Li Q, Ren C, Zhi X, Lv X, Liu K, Zhao X, Li Y. Role of circadian transcription factor REV-ERB in cardiovascular diseases: a review. Front Cardiovasc Med 2025; 12:1516279. [PMID: 40255337 PMCID: PMC12006074 DOI: 10.3389/fcvm.2025.1516279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/24/2025] [Indexed: 04/22/2025] Open
Abstract
Circadian rhythm, or the biological clock, is an intrinsic timing system present in organisms that operates on a cycle of approximately 24 h. Nearly every cell in the human body adheres to a specific circadian rhythm, governing various biological processes essential for overall health. REV-ERB, a key circadian clock-regulating gene, plays a crucial role in maintaining the precision of these rhythms. This gene influences many downstream targets associated with diverse pathophysiological processes, including metabolism, autophagy, immunity, inflammation, and aging across multiple organs. REV-ERB specifically impacts cardiac systolic function by regulating myocardial energy metabolism. In contemporary society, health and well-being are increasingly challenged by disruptions to the biological clock, such as night shifts, late-night activities, and jet lag. These disruptions often lead to circadian rhythm disorders, which are now being increasingly linked to heart diseases. This review explored the potential role of REV-ERB in the cardiovascular system. Beyond its role in circadian rhythm regulation, REV-ERB could significantly influence physiological and pathological processes related to cardiovascular health, including atherosclerosis, myocardial ischemia/reperfusion injury, and heart failure. Mechanistically, REV-ERB could regulate glucose and lipid metabolism, inflammation, autophagy, ferroptosis, and mitochondrial function. The review highlighted the protective roles and underlying mechanisms of REV-ERB in cardiovascular diseases, suggesting that multidisciplinary research may provide a basis for breakthroughs in REV-ERB-targeted therapies for cardiovascular disorders.
Collapse
Affiliation(s)
- Chunling Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiashu Yang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianfang Yuan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuyong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Qianrong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xinfang Lv
- Department of Geriatrics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Kai Liu
- Gansu Medical College, Pingliang, Gansu, China
| | - Xinke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Bailey CP, Elmi A, Qian J, DiPietro L, Tackney MS, Napolitano MA. Longitudinal timing of physical activity and associated cardiometabolic and behavioral health outcomes in young adults. Ann Behav Med 2025; 59:kaae084. [PMID: 39658316 PMCID: PMC11783297 DOI: 10.1093/abm/kaae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND This is the first study to examine longitudinal associations between self-selected timing of moderate-to-vigorous physical activity (MVPA) and health outcomes in young adults over 18 months. METHODS Young adults (N = 434, Mage = 23.9, SDage = 4.6 years) enrolled in a weight management trial recorded 4-7 days of ActiGraph wear time at ≥1 time point (baseline, months 6, 12, and 18). Time-of-day categories were based on quartiles of the temporal distribution of MVPA min/h at baseline: morning (06:00-11:59), afternoon (12:00-15:59), evening (16:00-18:59), and night (19:00-00:59). The proportion of weekly MVPA accumulated during each time category was the predictor in longitudinal linear mixed-effects models predicting body mass index (BMI) and total weekly MVPA. Longitudinal quasibinomial generalized estimating equations models predicted cardiometabolic risk. Interactions were tested, and marginal trend estimates were generated for sex and age subgroups. RESULTS The analytic sample was 79% female and 49% non-Hispanic White, with a mean (±SD) weekly MVPA of 311 ± 167 min at baseline. In adjusted models, there were no associations with BMI. Morning MVPA was inversely associated with cardiometabolic risk (OR [95% CI]: 0.99 [0.98-0.99]) for both sex and age groups. Evening MVPA was inversely associated with cardiometabolic risk for 26-35 year olds (0.98 [0.97-0.99]). Morning MVPA was associated with greater total MVPA across subgroups, and afternoon MVPA was associated with less total MVPA in women. CONCLUSIONS Over 18 months, incremental health benefits may accrue with optimal activity timing in young adults. Activity-based interventions designed to improve cardiometabolic and behavioral health outcomes in young adults may be optimized by tailoring timing recommendations to demographic factors.
Collapse
Affiliation(s)
- Caitlin P Bailey
- Prevention and Community Health, The George Washington University Milken Institute School of Public Health
| | - Angelo Elmi
- Biostatistics and Bioinformatics, The George Washington University Milken Institute School of Public Health
| | - Jingyi Qian
- Division of Sleep and Circadian Disorders, Brigham & Women’s Hospital and Harvard Medical School
| | - Loretta DiPietro
- Exercise and Nutrition Sciences, The George Washington University Milken Institute School of Public Health
| | | | - Melissa A Napolitano
- Prevention and Community Health | Exercise and Nutrition Sciences, The George Washington University Milken Institute School of Public Health
| |
Collapse
|
3
|
Guo Y, Cui L, Li L, Wang Z, Fang C, Yu B. Circadian rhythm pattern of symptom onset in patients with ST-segment elevation myocardial infarction in the Chinese population. Front Cardiovasc Med 2024; 11:1393390. [PMID: 39720211 PMCID: PMC11666443 DOI: 10.3389/fcvm.2024.1393390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Background The peak incidence of cardiovascular diseases (CVD) usually occurs in the morning. This study aimed to investigate the exact distribution pattern of peak incidence of ST-segment elevation myocardial infarction (STEMI) in the Chinese population, and to explore whether it is associated with the prognosis. Methods This study included 7,805 patients with STEMI from the multicenter, prospective AMI cohort in China, for whom had a definite time of symptom onset. In the overall population and the predefined subgroup populations, the circadian rhythms of STEMI onset were statistically analyzed. Then patients were divided into four groups based on the time of onset (6 h interval) to assess the association of symptom onset time and major adverse cardiovascular and cerebrovascular events (MACCE) after discharge. Results The onset of STEMI had a bimodal distribution: a well-defined primary peak at 8:38 AM [95% confidence interval (CI): 7:49 to 9:28 AM], and a less well-defined secondary peak at 12:55 PM (95% CI: 7:39 AM to 18:10 PM) (bimodal: P < 0.001). A similar bimodal circadian rhythm pattern was observed in subgroups of patients with STEMI defined with respect to day of the week, age, sex, and coronary risk factors. Notedly, the two peaks on Sunday were significantly later than other days, and the secondary peaks became clear and concentrated. In addition, no significant difference was found in MACCE among the four groups (P = 0.905). Conclusions In the Chinese population, the onset of STEMI exhibited a bimodal circadian rhythm pattern, with a clear primary peak and a less clear secondary peak. One-year clinical outcomes were unrelated to the timing of STEMI onset.
Collapse
Affiliation(s)
- Yibo Guo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Lina Cui
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Lulu Li
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zhuozhong Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Chao Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
5
|
van den Broek JLPM, Gottlieb LA, Vermeer JR, Overeem S, Dekker LRC. When the Clock Strikes A-fib. JACC Clin Electrophysiol 2024; 10:1916-1928. [PMID: 39093277 DOI: 10.1016/j.jacep.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 08/04/2024]
Abstract
Within the broad spectrum of atrial fibrillation (AF) symptomatology, there is a striking subset of patients with predominant or even solitary nocturnal onset of the arrhythmia. This review covers AF with nocturnal onset, with the aim of defining this distinctive subgroup among patients with AF. A periodicity analysis is provided showing a clear increased onset between 10:00 pm and 7:00 am. Multiple interacting mechanisms are discussed, such as circadian modulation of electrophysiological properties, vagal tone, and sleep disorders, as well as the potential interaction and synergism between these factors, to provide a better understanding of this clinical entity. Lastly, potential therapeutic targets for AF with nocturnal onset are addressed such as upstream therapy for underlying comorbidities, type of drug and timing of drug administration and pulmonary vein isolation, ablation of the ganglionated plexus, and autonomic nervous system modulation. Understanding the underlying AF mechanisms in the individual patient with nocturnal onset will contribute to patient-specific therapy.
Collapse
Affiliation(s)
- Johannes L P M van den Broek
- Department of Cardiology, Catharina Hospital Eindhoven, Eindhoven, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | | | - Jasper R Vermeer
- Department of Cardiology, Catharina Hospital Eindhoven, Eindhoven, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Kempenhaeghe Centre for Sleep Medicine, Heeze, the Netherlands
| | - Lukas R C Dekker
- Department of Cardiology, Catharina Hospital Eindhoven, Eindhoven, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
6
|
Zhou J, Huang Y, Wang W, Li J, Hou Y, Yi Z, Yang H, Hu K, Zhu Y, Wang Z, Ma S. Chronotoxici-Plate Containing Droplet-Engineered Rhythmic Liver Organoids for Drug Toxicity Evaluation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305925. [PMID: 38720476 PMCID: PMC11267367 DOI: 10.1002/advs.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/01/2024] [Indexed: 07/25/2024]
Abstract
The circadian clock coordinates the daily rhythmicity of biological processes, and its dysregulation is associated with various human diseases. Despite the direct targeting of rhythmic genes by many prevalent and World Health Organization (WHO) essential drugs, traditional approaches can't satisfy the need of explore multi-timepoint drug administration strategies across a wide range of drugs. Here, droplet-engineered primary liver organoids (DPLOs) are generated with rhythmic characteristics in 4 days, and developed Chronotoxici-plate as an in vitro high-throughput automated rhythmic tool for chronotherapy assessment within 7 days. Cryptochrome 1 (Cry1) is identified as a rhythmic marker in DPLOs, providing insights for rapid assessment of organoid rhythmicity. Using oxaliplatin as a representative drug, time-dependent variations are demonstrated in toxicity on the Chronotoxici-plate, highlighting the importance of considering time-dependent effects. Additionally, the role of chronobiology is underscored in primary organoid modeling. This study may provide tools for both precision chronotherapy and chronotoxicity in drug development by optimizing administration timing.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Yi‐chun Huang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Wanlong Wang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Jiawei Li
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Yibo Hou
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Ziqi Yi
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Haowei Yang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
| | - Keer Hu
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Yu Zhu
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Zitian Wang
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhen518055China
- Tsinghua‐Berkeley Shenzhen Institute (TBSI)Shenzhen518055China
- Key Lab of Industrial Biocatalysis Ministry of EducationTsinghua UniversityBeijing100084China
| |
Collapse
|
7
|
Saengsuwan J, Ruangsuphaphichat A, Brockmann L, Sirasaporn P, Manimmanakorn N, Hunt KJ. Diurnal variation of heart rate variability in individuals with spinal cord injury. Biomed Eng Online 2024; 23:58. [PMID: 38902756 PMCID: PMC11188279 DOI: 10.1186/s12938-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Heart rate variability (HRV) may provide objective information about cardiogenic autonomic balance in individuals with spinal cord injury (SCI). The aim of this study was to characterize the diurnal variation of HRV in individuals with SCI at lesion level T6 and above and lesion level below T6. METHODS This was a retrospective analysis of a prior cross-sectional study. Individuals with chronic SCI underwent 24 h recording of the time between consecutive R waves (RR interval) to derive parameters of HRV as follows: standard deviation of all normal-to-normal R-R intervals (SDNN) and square root of the mean of the squared differences between successive R-R intervals (RMSSD) (time domain); and high frequency power (HF), low-frequency power (LF), very low frequency power (VLF), ultra-low frequency power (ULF) and total power (TP) (frequency domain). Changes in the magnitude of HRV outcomes over the 24 h period were investigated using a novel multi-component cosinor model constrained to the form of a three-harmonic Fourier series. RESULTS Participants were grouped as lesion level T6 and above (n = 22) or below T6 (n = 36). Most of them were male (n = 40, 69%) and the median age (interquartile range) was 50.5 (28) years. Both groups exhibited similar diurnal patterns in most HRV metrics. The lowest values occurred in the late afternoon (4-6 pm) and gradually increased, peaking around midnight to early morning (1-6 am). Exceptions included RMSSD, which peaked before midnight, and ULF, which showed a double peak pattern that peaked from 11 am to 1 pm and 4-6 am in participants with lesion level at T6 and above. The HRV values in participants with lesion level T6 and above were generally lower than participants with lesion level below T6, except for peak values of RMSSD, HF and LF. CONCLUSION This study demonstrated substantial diurnal variation of HRV in participants with SCI in both groups of participants. In clinical and research settings, diurnal variations in HRV must be taken into consideration.
Collapse
Affiliation(s)
- Jittima Saengsuwan
- Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland.
| | | | - Lars Brockmann
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland
| | - Patpiya Sirasaporn
- Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttaset Manimmanakorn
- Department of Rehabilitation Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kenneth J Hunt
- The Laboratory for Rehabilitation Engineering, Institute for Human Centred Engineering, Bern University of Applied Sciences, Biel, Switzerland
| |
Collapse
|
8
|
Soomro QH, Koplan BA, Costea AI, Roy-Chaudhury P, Tumlin JA, Kher V, Williamson DE, Pokhariyal S, McClure CK, Charytan DM. Arrhythmia and Time of Day in Maintenance Hemodialysis: Secondary Analysis of the Monitoring in Dialysis Study. Kidney Med 2024; 6:100799. [PMID: 38572395 PMCID: PMC10987926 DOI: 10.1016/j.xkme.2024.100799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
RATIONALE & OBJECTIVE The incidence of arrhythmia varies by time of day. How this affects individuals on maintenance dialysis is uncertain. Our objective was to quantify the relationship of arrhythmia with the time of day and timing of dialysis. STUDY DESIGN Secondary analysis of the Monitoring in Dialysis study, a multicenter prospective cohort study. SETTINGS & PARTICIPANTS Loop recorders were implanted for continuous cardiac monitoring in 66 participants on maintenance dialysis with a follow up of 6 months. EXPOSURE Time of day based on 6-hour intervals. OUTCOMES Event rates of clinically significant arrhythmia. ANALYTICAL APPROACH Negative binomial mixed effects regression models for repeated measures were used to evaluate data from the Monitoring in Dialysis study for differences in diurnal patterns of clinically significant arrhythmia among those with end-stage kidney disease with heart failure and end-stage kidney disease alone. We additionally analyzed rates according to presence of heart failure, time of dialysis shift, and dialysis versus nondialysis day. RESULTS Rates of clinically significant arrhythmia peaked between 12:00 AM and 5:59 AM and were more than 1.5-fold as frequent during this interval than the rest of the day. In contrast, variations in atrial fibrillation peaked between 6:00 AM and 11:59 AM, but variations across the day were qualitatively small. Clinically significant arrhythmia occurred at numerically higher rate in individuals with end-stage kidney disease and heart failure (5.9 events/mo; 95% CI, 1.3-26.8) than those without heart failure (4.0 events/mo; 95% CI, 0.9-17.9). Although differences in overall rate were not significant, their periodicity was significantly different (P < 0.001), with a peak between 12:00 AM and 6:00 AM with kidney failure alone and between 6:00 AM and 11:59 AM in those with heart failure. Although the overall clinically significant arrhythmia rate was similar in morning compared with evening dialysis shifts (P = 0.43), their periodicity differed with a peak between 12:00 AM and 5:59 AM in those with AM dialysis and a later peak between 6:00 AM and 11:59 AM in those with PM shifts. LIMITATIONS Post hoc analysis, unable to account for unmeasured confounders. CONCLUSION Clinically significant arrhythmias showed strong diurnal patterns with a maximal peak between 12:00 AM and 5:59 AM and noon. Although overall arrhythmia rates were similar, the peak rate occurred overnight in individuals without heart failure and during the morning in individuals with heart failure. Further exploration of the influence of circadian rhythm on arrhythmia in the setting of hemodialysis is needed.
Collapse
Affiliation(s)
- Qandeel H. Soomro
- Nephrology Division, Department of Medicine, NYU Langone Medical Center, New York, New York
| | | | | | - Prabir Roy-Chaudhury
- University of North Carolina Kidney Center, Chapel Hill, North Carolina
- WG (Bill) Hefner VA Medical Center, Salisbury, North Carolina
| | - James A. Tumlin
- Georgia Nephrology Clinical Research Institute, Atlanta, Georgia
| | - Vijay Kher
- Fortis Escorts Kidney & Urology Institute, Fortis Escorts Hospital, New Delhi, India
| | | | | | | | - David M. Charytan
- Nephrology Division, Department of Medicine, NYU Langone Medical Center, New York, New York
| |
Collapse
|
9
|
Delisle BP, Prabhat A, Burgess DE, Ono M, Esser KA, Schroder EA. Circadian Regulation of Cardiac Arrhythmias and Electrophysiology. Circ Res 2024; 134:659-674. [PMID: 38484028 PMCID: PMC11177776 DOI: 10.1161/circresaha.123.323513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.
Collapse
Affiliation(s)
- Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Abhilash Prabhat
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Makoto Ono
- Division of Cardiology and Rehabilitation, Tamaki Hospital, Japan
| | | | | |
Collapse
|
10
|
Astone M, Oberkersch RE, Tosi G, Biscontin A, Santoro MM. The circadian protein BMAL1 supports endothelial cell cycle during angiogenesis. Cardiovasc Res 2023; 119:1952-1968. [PMID: 37052172 DOI: 10.1093/cvr/cvad057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/23/2023] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
AIMS The circadian clock is an internal biological timer that co-ordinates physiology and gene expression with the 24-h solar day. Circadian clock perturbations have been associated to vascular dysfunctions in mammals, and a function of the circadian clock in angiogenesis has been suggested. However, the functional role of the circadian clock in endothelial cells (ECs) and in the regulation of angiogenesis is widely unexplored. METHODS AND RESULTS Here, we used both in vivo and in vitro approaches to demonstrate that ECs possess an endogenous molecular clock and show robust circadian oscillations of core clock genes. By impairing the EC-specific function of the circadian clock transcriptional activator basic helix-loop-helix ARNT like 1 (BMAL1) in vivo, we detect angiogenesis defects in mouse neonatal vascular tissues, as well as in adult tumour angiogenic settings. We then investigate the function of circadian clock machinery in cultured EC and show evidence that BMAL and circadian locomotor output cycles protein kaput knock-down impair EC cell cycle progression. By using an RNA- and chromatin immunoprecipitation sequencing genome-wide approaches, we identified that BMAL1 binds the promoters of CCNA1 and CDK1 genes and controls their expression in ECs. CONCLUSION(S) Our findings show that EC display a robust circadian clock and that BMAL1 regulates EC physiology in both developmental and pathological contexts. Genetic alteration of BMAL1 can affect angiogenesis in vivo and in vitro settings.
Collapse
Affiliation(s)
- Matteo Astone
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Roxana E Oberkersch
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Alberto Biscontin
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| |
Collapse
|
11
|
Wrist photoplethysmography-based assessment of ectopic burden in hemodialysis patients. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
12
|
Chai R, Ye Z, Wu Q, Xue W, Shi S, Du Y, Wu H, Wei Y, Hu Y. Circadian rhythm in cardiovascular diseases: a bibliometric analysis of the past, present, and future. Eur J Med Res 2023; 28:194. [PMID: 37355671 DOI: 10.1186/s40001-023-01158-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND One of the most prominent features of living organisms is their circadian rhythm, which governs a wide range of physiological processes and plays a critical role in maintaining optimal health and function in response to daily environmental changes. This work applied bibliometric analysis to explore quantitative and qualitative trends in circadian rhythm in cardiovascular diseases (CVD). It also aims to identify research hotspots and provide fresh suggestions for future research. METHODS The Web of Science Core Collection was used to search the data on circadian rhythm in CVD. HistCite, CiteSpace, and VOSviewer were used for bibliometric analysis and visualization. The analysis included the overall distribution of yearly outputs, top nations, active institutions and authors, core journals, co-cited references, and keywords. To assess the quality and efficacy of publications, the total global citation score (TGCS) and total local citation score (TLCS) were calculated. RESULTS There were 2102 papers found to be associated with the circadian rhythm in CVD, with the overall number of publications increasing year after year. The United States had the most research citations and was the most prolific country. Hermida RC, Young ME, and Ayala DE were the top three writers. The three most notable journals on the subject were Chronobiology International, Hypertension Research, and Hypertension. In the early years, the major emphasis of circadian rhythm in CVD was hormones. Inflammation, atherosclerosis, and myocardial infarction were the top developing research hotspots. CONCLUSION Circadian rhythm in CVD has recently received a lot of interest from the medical field. These topics, namely inflammation, atherosclerosis, and myocardial infarction, are critical areas of investigation for understanding the role of circadian rhythm in CVD. Although they may not be future research priorities, they remain of significant importance. In addition, how to implement these chronotherapy theories in clinical practice will depend on additional clinical trials to get sufficient trustworthy clinical evidence.
Collapse
Affiliation(s)
- Ruoning Chai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zelin Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Xue
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wei
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Ma T, Sirard JR, Jennings L. Association of Time-of-Day Physical Activity With Incident Cardiovascular Disease: The UK Biobank Study. J Phys Act Health 2023; 20:547-554. [PMID: 37076242 DOI: 10.1123/jpah.2022-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Early morning is characterized by an increased risk of cardiovascular events, a sudden rise in blood pressure, impaired endothelial function, and exacerbated hemodynamic changes during physical activity. The study aims to examine whether the time of day of physical activity is associated with incident cardiovascular disease (CVD). METHODS We prospectively analyzed 83,053 participants in the UK Biobank with objectively measured physical activity and initially free of CVD. Based on the diurnal patterns of physical activity, participants were categorized into 4 groups: early morning (n = 15,908), late morning (n = 22,371), midday (n = 24,764), and evening (n = 20,010). Incident CVD was defined as the first diagnosis of coronary heart disease or stroke. RESULTS During 197.4 million person-years of follow-up, we identified 3454 CVD cases. After adjusting for the overall acceleration average, the hazard ratios and 95% confidence intervals were 0.95 (0.86-1.07) for late morning, 1.15 (1.03-1.27) for midday, and 1.03 (0.92-1.15) for evening, as compared with the early morning group. In the joint analyses, higher levels of physical activity were associated with a lower risk of incident CVD in a similar manner across the early morning, late morning, and evening groups. However, the beneficial association was attenuated in the midday group. CONCLUSION In conclusion, early morning, late morning, and evening are all favorable times of day to engage in physical activity for the primary prevention of CVD, while midday physical activity is associated with an increased risk of CVD compared with early morning physical activity after controlling for the levels of physical activity.
Collapse
Affiliation(s)
- Tongyu Ma
- Health Sciences Department, Franklin Pierce University, Rindge, NH,USA
| | - John R Sirard
- Department of Kinesiology, University of Massachusetts, Amherst, MA,USA
| | - Lydia Jennings
- Health Sciences Department, Franklin Pierce University, Rindge, NH,USA
| |
Collapse
|
14
|
Karatela MF, Fudim M, Mathew JP, Piccini JP. Neuromodulation therapy for atrial fibrillation. Heart Rhythm 2023; 20:100-111. [PMID: 35988908 DOI: 10.1016/j.hrthm.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation has a multifactorial pathophysiology influenced by cardiac autonomic innervation. Both sympathetic and parasympathetic influences are profibrillatory. Innovative therapies targeting the neurocardiac axis include catheter ablation or pharmacologic suppression of ganglionated plexi, renal sympathetic denervation, low-level vagal stimulation, and stellate ganglion blockade. To date, these therapies have variable efficacy. As our understanding of atrial fibrillation and the cardiac nervous system expands, our approach to therapeutic neuromodulation will continue evolving for the benefit of those with AF.
Collapse
Affiliation(s)
- Maham F Karatela
- Cardiac Electrophysiology Section, Duke Heart Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Cardiac Electrophysiology Section, Duke Heart Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University, Durham, North Carolina
| | - Jonathan P Piccini
- Cardiac Electrophysiology Section, Duke Heart Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina.
| |
Collapse
|
15
|
Cuomo A, Libri C, Barillà G, Cattolico M, Carmellini P, Fagiolini A. QTc interval diurnal variations in patients treated with psychotropic medications: implications for the evaluation of drug induced QTc changes. Int Rev Psychiatry 2022; 34:689-692. [PMID: 36786118 DOI: 10.1080/09540261.2022.2135985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Psychotropic drugs such as antipsychotics may prolong the QTc interval, increasing the risk of torsades de pointes (TdP) and sudden cardiac death. To assess QTc prolongation by psychotropic drugs, an electrocardiogram (EKG) is usually recorded before and after starting treatment. Circadian variations in the QTc interval have been described but have not been adequately studied in patients taking psychotropic drugs. In psychiatric clinical practice, EKGs before and after treatment initiation are often compared, without considering the time of day at which the two EKGs are recorded. To determine whether there is a circadian change in the QTc interval in patients treated with psychotropic drugs, we evaluated the EKGs of a group of patients treated with psychotropic drugs (85% on antipsychotics) and the EKGs of a group of patients that were not treated with medications. In each group, we compared the EKGs recorded before 11:00 am with those recorded after 5:00 pm. The QTc value was significantly longer in the group treated with psychotropic drugs than in the group without drugs at both morning and evening evaluations (p ≤ 0.001). In each group, a statistically significant difference was found between the EKGs recorded before 11:00 a.m. and the EKGs recorded after 5:00 p.m. In patients treated with medications, the mean QTc in the morning was 453.3 ± 25.4 while the mean QTc in the afternoon was 428.4 ± 24.7 (p < 0.0001). In patients who were not receiving any medication, the morning mean QTc was 422.4 ± 22.6 while the mean afternoon QTc was 409.4 ± 19.6 (p = 0.002). These results suggest that a circadian variation in QTc is observed both in patients taking psychotropic drugs and in patients not taking medication. We conclude that any comparison of EKGs to test the effect on QTc of a medication, should be referred to EKGs recorded at the same time of day.
Collapse
Affiliation(s)
- A Cuomo
- School of Medicine, University of Siena, Siena, Italy
| | - C Libri
- School of Medicine, University of Siena, Siena, Italy
| | - G Barillà
- School of Medicine, University of Siena, Siena, Italy
| | - M Cattolico
- School of Medicine, University of Siena, Siena, Italy
| | - P Carmellini
- School of Medicine, University of Siena, Siena, Italy
| | - A Fagiolini
- School of Medicine, University of Siena, Siena, Italy
| |
Collapse
|
16
|
Kilgallen AB, van den Akker F, Feyen DAM, Crnko S, Snijders Blok CJB, Gremmels H, du Pré BC, Reijers R, Doevendans PA, de Jager SCA, Sluijter JPG, Sampaio-Pinto V, van Laake LW. Circadian Dependence of the Acute Immune Response to Myocardial Infarction. Front Pharmacol 2022; 13:869512. [PMID: 35694249 PMCID: PMC9174900 DOI: 10.3389/fphar.2022.869512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythms influence the recruitment of immune cells and the onset of inflammation, which is pivotal in the response to ischemic cardiac injury after a myocardial infarction (MI). The hyperacute immune response that occurs within the first few hours after a MI has not yet been elucidated. Therefore, we characterized the immune response and myocardial damage 3 hours after a MI occurs over a full twenty-four-hour period to investigate the role of the circadian rhythms in this response. MI was induced at Zeitgeber Time (ZT) 2, 8, 14, and 20 by permanent ligation of the left anterior descending coronary artery. Three hours after surgery, animals were terminated and blood and hearts collected to assess the immunological status and cardiac damage. Blood leukocyte numbers varied throughout the day, peaking during the rest-phase (ZT2 and 8). Extravasation of leukocytes was more pronounced during the active-phase (ZT14 and 20) and was associated with greater chemokine release to the blood and expression of adhesion molecules in the heart. Damage to the heart, measured by Troponin-I plasma levels, was elevated during this time frame. Clock gene oscillations remained intact in both MI-induced and sham-operated mice hearts, which could explain the circadian influence of the hyperacute inflammatory response after a MI. These findings are in line with the clinical observation that patients who experience a MI early in the morning (i.e., early active phase) have worse clinical outcomes. This study provides further insight on the immune response occurring shortly after an MI, which may contribute to the development of novel and optimization of current therapeutic approaches.
Collapse
Affiliation(s)
- Aoife B. Kilgallen
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Dries A. M. Feyen
- Department of Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sandra Crnko
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christian J. B. Snijders Blok
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hendrik Gremmels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bastiaan C. du Pré
- Division of Internal Medicine, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Robin Reijers
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
- Central Military Hospital, Utrecht, Netherlands
| | - Saskia C. A. de Jager
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| | - Vasco Sampaio-Pinto
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linda W. van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
McClean C, Davison GW. Circadian Clocks, Redox Homeostasis, and Exercise: Time to Connect the Dots? Antioxidants (Basel) 2022; 11:antiox11020256. [PMID: 35204138 PMCID: PMC8868136 DOI: 10.3390/antiox11020256] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Compelling research has documented how the circadian system is essential for the maintenance of several key biological processes including homeostasis, cardiovascular control, and glucose metabolism. Circadian clock disruptions, or losses of rhythmicity, have been implicated in the development of several diseases, premature ageing, and are regarded as health risks. Redox reactions involving reactive oxygen and nitrogen species (RONS) regulate several physiological functions such as cell signalling and the immune response. However, oxidative stress is associated with the pathological effects of RONS, resulting in a loss of cell signalling and damaging modifications to important molecules such as DNA. Direct connections have been established between circadian rhythms and oxidative stress on the basis that disruptions to circadian rhythms can affect redox biology, and vice versa, in a bi-directional relationship. For instance, the expression and activity of several key antioxidant enzymes (SOD, GPx, and CAT) appear to follow circadian patterns. Consequently, the ability to unravel these interactions has opened an exciting area of redox biology. Exercise exerts numerous benefits to health and, as a potent environmental cue, has the capacity to adjust disrupted circadian systems. In fact, the response to a given exercise stimulus may also exhibit circadian variation. At the same time, the relationship between exercise, RONS, and oxidative stress has also been scrutinised, whereby it is clear that exercise-induced RONS can elicit both helpful and potentially harmful health effects that are dependent on the type, intensity, and duration of exercise. To date, it appears that the emerging interface between circadian rhythmicity and oxidative stress/redox metabolism has not been explored in relation to exercise. This review aims to summarise the evidence supporting the conceptual link between the circadian clock, oxidative stress/redox homeostasis, and exercise stimuli. We believe carefully designed investigations of this nexus are required, which could be harnessed to tackle theories concerned with, for example, the existence of an optimal time to exercise to accrue physiological benefits.
Collapse
|
18
|
Gabryelska A, Turkiewicz S, Karuga FF, Sochal M, Strzelecki D, Białasiewicz P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication. Int J Mol Sci 2022; 23:ijms23020709. [PMID: 35054894 PMCID: PMC8775490 DOI: 10.3390/ijms23020709] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by recurrent pauses in breathing caused by the collapse of the upper airways, which results in intermittent hypoxia and arousals during the night. The disorder is associated with a vast number of comorbidities affecting different systems, including cardiovascular, metabolic, psychiatric, and neurological complications. Due to abnormal sleep architecture, OSA patients are at high risk of circadian clock disruption, as has been reported in several recent studies. The circadian clock affects almost all daily behavioral patterns, as well as a plethora of physiological processes, and might be one of the key factors contributing to OSA complications. An intricate interaction between the circadian clock and hypoxia may further affect these processes, which has a strong foundation on the molecular level. Recent studies revealed an interaction between hypoxia-inducible factor 1 (HIF-1), a key regulator of oxygen metabolism, and elements of circadian clocks. This relationship has a strong base in the structure of involved elements, as HIF-1 as well as PER, CLOCK, and BMAL, belong to the same Per-Arnt-Sim domain family. Therefore, this review summarizes the available knowledge on the molecular mechanism of circadian clock disruption and its influence on the development and progression of OSA comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
- Correspondence: ; Tel.: +48-660796004
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (S.T.); (F.F.K.); (M.S.); (P.B.)
| |
Collapse
|
19
|
Goodenow D, Greer AJ, Cone SJ, Gaddameedhi S. Circadian effects on UV-induced damage and mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108413. [PMID: 35690416 PMCID: PMC9188652 DOI: 10.1016/j.mrrev.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Skin cancer is the most diagnosed type of cancer in the United States, and while most of these malignancies are highly treatable, treatment costs still exceed $8 billion annually. Over the last 50 years, the annual incidence of skin cancer has steadily grown; therefore, understanding the environmental factors driving these types of cancer is a prominent research-focus. A causality between ultraviolet radiation (UVR) exposure and skin cancer is well-established, but exposure to UVR alone is not necessarily sufficient to induce carcinogenesis. The emerging field of circadian biology intersects strongly with the physiological systems of the mammalian body and introduces a unique opportunity for analyzing mechanisms of homeostatic disruption. The circadian clock refers to the approximate 24-hour cycle, in which protein levels of specific clock-controlled genes (CCGs) fluctuate based on the time of day. Though these CCGs are tissue specific, the skin has been observed to have a robust circadian clock that plays a role in its response to UVR exposure. This in-depth review will detail the mechanisms of the circadian clock and its role in cellular homeostasis. Next, the skin's response to UVR exposure and its induction of DNA damage and mutations will be covered - with an additional focus placed on how the circadian clock influences this response through nucleotide excision repair. Lastly, this review will discuss current models for studying UVR-induced skin lesions and perturbations of the circadian clock, as well as the impact of these factors on human health.
Collapse
Affiliation(s)
- Donna Goodenow
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Adam J Greer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Sean J Cone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
20
|
van Dongen L, de Goede P, Moeller S, Eroglu T, Folke F, Gislason G, Blom M, Elders P, Torp-Pedersen C, Tan H. Temporal variation in out-of-hospital cardiac arrest occurrence in individuals with or without diabetes. Resusc Plus 2021; 8:100167. [PMID: 34604822 PMCID: PMC8473536 DOI: 10.1016/j.resplu.2021.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Out-of-hospital cardiac arrest (OHCA) occurrence has been shown to exhibit a circadian rhythm, following the circadian rhythm of acute myocardial infarction (AMI) occurrence. Diabetes mellitus (DM) is associated with changes in circadian rhythm. We aimed to compare the temporal variation of OHCA occurrence over the day and week between OHCA patients with DM and those without. Methods In two population-based OHCA registries (Amsterdam Resuscitation Studies [ARREST] 2010-2016, n = 4163, and Danish Cardiac Arrest Registry [DANCAR], 2010-2014, n = 12,734), adults (≥18y) with presumed cardiac cause of OHCA and available medical history were included. Single and double cosinor analysis was performed to model circadian variation of OHCA occurrence. Stratified analysis of circadian variation was performed in patients with AMI as immediate cause of OHCA. Results DM patients (22.8% in ARREST, 24.2% in DANCAR) were older and more frequently had cardiovascular risk factors or previous cardiovascular disease. Both cohorts showed 24 h-rhythmicity, with significant amplitudes in single and double cosinor functions (P-range < 0.001). In both registries, a morning peak (10:00-11:00) and an evening peak (20:00-21:00) was observed in both DM and non-DM patients. No septadian variation was observed in either DM or non-DM patients (P-range 0.13-84). Conclusions In these two population-based OHCA registries, we observed a similar circadian rhythm of OHCA occurrence in DM and non-DM patients.
Collapse
Affiliation(s)
- L.H. van Dongen
- Amsterdam UMC, Academic Medical Center, University of Amsterdam, Department of Experimental and Clinical Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - P. de Goede
- Laboratory of Endocrinology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
- Hypothalamic Integration Mechanisms Group, Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - S. Moeller
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - T.E. Eroglu
- Amsterdam UMC, Academic Medical Center, University of Amsterdam, Department of Experimental and Clinical Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark
| | - F. Folke
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark
- Emergency Medical Services Copenhagen, University of Copenhagen, Denmark
| | - G. Gislason
- Department of Cardiology, Copenhagen University Hospital Gentofte, Hellerup, Denmark
- The Danish Heart Foundation, Copenhagen, Denmark
| | - M.T. Blom
- Amsterdam UMC, Academic Medical Center, University of Amsterdam, Department of Experimental and Clinical Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - P.J.M. Elders
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, De Boelelaan 1117, Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of General Practice Medicine, Amsterdam Public Health Institute, De Boelelaan 1117, Amsterdam, Netherlands
| | - C. Torp-Pedersen
- Department of Cardiology, North Zealand Hospital, Hillerød, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Public Health, University of Copenhagen, Denmark
| | - H.L. Tan
- Amsterdam UMC, Academic Medical Center, University of Amsterdam, Department of Experimental and Clinical Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
- Corresponding author at: Amsterdam UMC, Academic Medical Center, Heart Center, Department of Cardiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Jesus ICG, Araújo FM, Mesquita T, Júnior NNS, Silva MM, Morgan HJN, Silva KSC, Silva CLA, Birbrair A, Amaral FA, Navegantes LC, Salgado HC, Szawka RE, Poletini MO, Guatimosim S. Molecular basis of Period 1 regulation by adrenergic signaling in the heart. FASEB J 2021; 35:e21886. [PMID: 34473369 DOI: 10.1096/fj.202100441r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
The cardiac circadian clock is responsible for the modulation of different myocardial processes, and its dysregulation has been linked to disease development. How this clock machinery is regulated in the heart remains an open question. Because noradrenaline (NE) can act as a zeitgeber in cardiomyocytes, we tested the hypothesis that adrenergic signaling resets cardiac clock gene expression in vivo. In its anti-phase with Clock and Bmal1, cardiac Per1 abundance increased during the dark phase, concurrent with the rise in heart rate and preceded by an increase in NE levels. Sympathetic denervation altered Bmal1 and Clock amplitude, while Per1 was affected in both amplitude and oscillatory pattern. We next treated mice with a β-adrenergic receptor (β-AR) blocker. Strikingly, the β-AR blockade during the day suppressed the nocturnal increase in Per1 mRNA, without altering Clock or Bmal1. In contrast, activating β-AR with isoproterenol (ISO) promoted an increase in Per1 expression, demonstrating its responsiveness to adrenergic input. Inhibitors of ERK1/2 and CREB attenuated ISO-induced Per1 expression. Upstream of ERK1/2, PI3Kγ mediated ISO induction of Per1 transcription, while activation of β2-AR, but not β1-AR induced increases in ERK1/2 phosphorylation and Per1 expression. Consistent with the β2-induction of Per1 mRNA, ISO failed to activate ERK1/2 and elevate Per1 in the heart of β2-AR-/- mice, whereas a β2-AR antagonist attenuated the nocturnal rise in Per1 expression. Our study established a link between NE/β2-AR signaling and Per1 oscillation via the PI3Ky-ERK1/2-CREB pathway, providing a new framework for understanding the physiological mechanism involved in resetting cardiac clock genes.
Collapse
Affiliation(s)
- Itamar C G Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia M Araújo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thássio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nilton N S Júnior
- Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mário M Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Henrique J N Morgan
- Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Kaoma S C Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cleide L A Silva
- Animal Facility of Blood Center Foundation, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio A Amaral
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maristela O Poletini
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Giri A, Srinivasan A, Sundar IK. COVID-19: Sleep, Circadian Rhythms and Immunity - Repurposing Drugs and Chronotherapeutics for SARS-CoV-2. Front Neurosci 2021; 15:674204. [PMID: 34220430 PMCID: PMC8249936 DOI: 10.3389/fnins.2021.674204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected nearly 28 million people in the United States and has caused more than five hundred thousand deaths as of February 21, 2021. As the novel coronavirus continues to take its toll in the United States and all across the globe, particularly among the elderly (>65 years), clinicians and translational researchers are taking a closer look at the nexus of sleep, circadian rhythms and immunity that may contribute toward a more severe coronavirus disease-19 (COVID-19). SARS-CoV-2-induced multi-organ failure affects both central and peripheral organs, causing increased mortality in the elderly. However, whether differences in sleep, circadian rhythms, and immunity between older and younger individuals contribute to the age-related differences in systemic dysregulation of target organs observed in SARS-CoV-2 infection remain largely unknown. Current literature demonstrates the emerging role of sleep, circadian rhythms, and immunity in the development of chronic pulmonary diseases and respiratory infections in human and mouse models. The exact mechanism underlying acute respiratory distress syndrome (ARDS) and other cardiopulmonary complications in elderly patients in combination with associated comorbidities remain unclear. Nevertheless, understanding the critical role of sleep, circadian clock dysfunction in target organs, and immune status of patients with SARS-CoV-2 may provide novel insights into possible therapies. Chronotherapy is an emerging concept that is gaining attention in sleep medicine. Accumulating evidence suggests that nearly half of all physiological functions follow a strict daily rhythm. However, healthcare professionals rarely take implementing timed-administration of drugs into consideration. In this review, we summarize recent findings directly relating to the contributing roles of sleep, circadian rhythms and immune response in modulating infectious disease processes, and integrate chronotherapy in the discussion of the potential drugs that can be repurposed to improve the treatment and management of COVID-19.
Collapse
Affiliation(s)
| | | | - Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
23
|
Zheng Y, Deng F, Wang B, Wu Y, Luo Q, Zuo X, Liu X, Cao L, Li M, Lu H, Cheng S, Li X. Melt extrusion deposition (MED™) 3D printing technology – A paradigm shift in design and development of modified release drug products. Int J Pharm 2021; 602:120639. [DOI: 10.1016/j.ijpharm.2021.120639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
|
24
|
Bar N, Sobel JA, Penzel T, Shamay Y, Behar JA. From sleep medicine to medicine during sleep-a clinical perspective. Physiol Meas 2021; 42. [PMID: 33794516 DOI: 10.1088/1361-6579/abf47c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 01/01/2023]
Abstract
Objective. In this perspective paper, we aim to highlight the potential of sleep as an auspicious time for diagnosis, management and therapy of non-sleep-specific pathologies.Approach. Sleep has a profound influence on the physiology of body systems and biological processes. Molecular studies have shown circadian-regulated shifts in protein expression patterns across human tissues, further emphasizing the unique functional, behavioral and pharmacokinetic landscape of sleep. Thus, many pathological processes are also expected to exhibit sleep-specific manifestations. Modern advances in biosensor technologies have enabled remote, non-invasive recording of a growing number of physiologic parameters and biomarkers promoting the detection and study of such processes.Main results. Here, we introduce key clinical studies in selected medical fields, which leveraged novel technologies and the advantageous period of sleep to diagnose, monitor and treat pathologies. Studies demonstrate that sleep is an ideal time frame for the collection of long and clean physiological time series data which can then be analyzed using data-driven algorithms such as deep learning.Significance.This new paradigm proposes opportunities to further harness modern technologies to explore human health and disease during sleep and to advance the development of novel clinical applications - from sleep medicine to medicine during sleep.
Collapse
Affiliation(s)
- Nitai Bar
- Israel Department of Radiology, Rambam Health Care Campus, Haifa, Israel
| | - Jonathan A Sobel
- Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Thomas Penzel
- Interdisciplinary Center of Sleep Medicine, Charite University Medicine Berlin, Chariteplatz 1, D-10117 Berlin, Germany.,Saratov State University, Saratov, Russia
| | - Yosi Shamay
- Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joachim A Behar
- Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
25
|
Abstract
Circadian rhythms describe physiological systems that repeat themselves with a cycle of approximately 24 h. Our understanding of the cellular and molecular origins of these oscillations has improved dramatically, allowing us to appreciate the significant role these oscillations play in maintaining physiological homeostasis. Circadian rhythms allow living organisms to predict and efficiently respond to a dynamically changing environment, set by repetitive day/night cycles. Since circadian rhythms underlie almost every aspect of human physiology, it is unsurprising that they also influence the response of a living organism to disease, stress, and therapeutics. Therefore, not only do the mechanisms that maintain health and disrupt homeostasis depend on our internal circadian clock, but also the way drugs are perceived and function depends on these physiological rhythms. We present a holistic view of the therapeutic process, discussing components such as disease state, pharmacokinetics, and pharmacodynamics, as well as adverse reactions that are critically affected by circadian rhythms. We outline challenges and opportunities in moving toward personalized medicine approaches that explore and capitalize on circadian rhythms for the benefit of the patient.
Collapse
Affiliation(s)
- Yaakov Nahmias
- Center for Bioengineering, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ioannis P Androulakis
- Department of Biomedical Engineering and Department of Chemical & Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA; .,Department of Surgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
26
|
Wiśniowska B, Bielecka ZM, Polak S. How circadian variability of the heart rate and plasma electrolytes concentration influence the cardiac electrophysiology - model-based case study. J Pharmacokinet Pharmacodyn 2021; 48:387-399. [PMID: 33666801 PMCID: PMC8144092 DOI: 10.1007/s10928-021-09744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
The circadian rhythm of cardiac electrophysiology is dependent on many physiological and biochemical factors. Provided, that models describing the circadian patterns of cardiac activity and/or electrophysiology which have been verified to the acceptable level, modeling and simulation can give answers to many of heart chronotherapy questions. The aim of the study was to assess the performance of the circadian models implemented in Cardiac Safety Simulator v 2.2 (Certara, Sheffield, UK) (CSS), as well as investigate the influence ofcircadian rhythms on the simulation results in terms of cardiac safety. The simulations which were run in CSS accounted for inter-individual and intra-individual variability. Firstly, the diurnal variations in QT interval length in a healthy population were simulated accounting for heart rate (HR) circadian changes alone, or with concomitant diurnal variations of plasma ion concentrations. Next, tolterodine was chosen as an exemplary drug for PKPD modelling exercise to assess the role of circadian rhythmicity in the prediction of drug effects on QT interval. The results of the simulations were in line with clinical observations, what can serve as a verification of the circadian models implemented in CSS. Moreover, the results have suggested that the circadian variability of the electrolytes balance is the main factor influencing QT circadian pattern. The fluctuation of ion concentration increases the intra-subject variability of predicted drug-triggered QT corrected for HR (QTc) prolongation effect and, in case of modest drug effect on QTc interval length, allows to capture this effect.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland.
| | - Zofia M Bielecka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
27
|
Diekman CO, Wei N. Circadian Rhythms of Early Afterdepolarizations and Ventricular Arrhythmias in a Cardiomyocyte Model. Biophys J 2020; 120:319-333. [PMID: 33285114 DOI: 10.1016/j.bpj.2020.11.2264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022] Open
Abstract
Sudden cardiac arrest is a malfunction of the heart's electrical system, typically caused by ventricular arrhythmias, that can lead to sudden cardiac death (SCD) within minutes. Epidemiological studies have shown that SCD and ventricular arrhythmias are more likely to occur in the morning than in the evening, and laboratory studies indicate that these daily rhythms in adverse cardiovascular events are at least partially under the control of the endogenous circadian timekeeping system. However, the biophysical mechanisms linking molecular circadian clocks to cardiac arrhythmogenesis are not fully understood. Recent experiments have shown that L-type calcium channels exhibit circadian rhythms in both expression and function in guinea pig ventricular cardiomyocytes. We developed an electrophysiological model of these cells to simulate the effect of circadian variation in L-type calcium conductance. In our simulations, we found that there is a circadian pattern in the occurrence of early afterdepolarizations (EADs), which are abnormal depolarizations during the repolarization phase of a cardiac action potential that can trigger fatal ventricular arrhythmias. Specifically, the model produces EADs in the morning, but not at other times of day. We show that the model exhibits a codimension-2 Takens-Bogdanov bifurcation that serves as an organizing center for different types of EAD dynamics. We also simulated a two-dimensional spatial version of this model across a circadian cycle. We found that there is a circadian pattern in the breakup of spiral waves, which represents ventricular fibrillation in cardiac tissue. Specifically, the model produces spiral wave breakup in the morning, but not in the evening. Our computational study is the first, to our knowledge, to propose a link between circadian rhythms and EAD formation and suggests that the efficacy of drugs targeting EAD-mediated arrhythmias may depend on the time of day that they are administered.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey; EPSRC Centre for Predictive Modelling in Healthcare, Living Systems Institute, University of Exeter, Exeter, United Kingdom.
| | - Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, Indiana
| |
Collapse
|
28
|
van Diemen JJK, Madsen MC, Vrancken P, de Bie K, van der Bom JG, Veen G, Bonten TN, Fuijkschot WW, Smulders YM, Thijs A. Evening aspirin intake results in higher levels of platelet inhibition and a reduction in reticulated platelets - a window of opportunity for patients with cardiovascular disease? Platelets 2020; 32:821-827. [PMID: 32838616 DOI: 10.1080/09537104.2020.1809643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiovascular events occur most frequently in the early morning. Similarly, the release of reticulated platelets (RP) by megakaryocytes has a peak in the late night and early morning. Which aspirin regimen most effectively inhibits platelets during these critical hours is unknown. Hence, the primary objective of this trial was to assess platelet function and RP levels at 8.00 AM, in stable cardiovascular (CVD) patients, during three different aspirin regimens. In this open-label randomized cross-over study subjects were allocated to three sequential aspirin regimens: once-daily (OD) 80 mg morning; OD-evening, and twice-daily (BID) 40 mg. Platelet function was measured at 8.00 AM & 8.00 PM by serum Thromboxane B2 (sTxB2) levels, the Platelet Function Analyzer (PFA)-200® Closure Time (CT), Aspirin Reaction Units (ARU, VerifyNow®), and RP levels. In total, 22 patients were included. At 8.00 AM, sTxB2 levels were the lowest after OD-evening in comparison with OD-morning (p = <0.01), but not in comparison with BID. Furthermore, RP levels were similar at 8.00 AM, but statistically significantly reduced at 8.00 PM after OD-evening (p = .01) and BID (p = .02) in comparison with OD-morning. OD-evening aspirin intake results in higher levels of platelet inhibition during early morning hours and results in a reduction of RP levels in the evening. These findings may, if confirmed by larger studies, be relevant to large groups of patients taking aspirin to reduce cardiovascular risk.
Collapse
Affiliation(s)
- J J K van Diemen
- Department of Internal Medicine, Amsterdam UMC, Location VU University, Amsterdam, The Netherlands
| | - M C Madsen
- Department of Internal Medicine, Amsterdam UMC, Location VU University, Amsterdam, The Netherlands
| | - P Vrancken
- Department of Internal Medicine, Amsterdam UMC, Location VU University, Amsterdam, The Netherlands
| | - K de Bie
- Department of Internal Medicine, Amsterdam UMC, Location VU University, Amsterdam, The Netherlands
| | - J G van der Bom
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,JJ Van Rood Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
| | - G Veen
- Department of Cardiology, Amsterdam UMC, Location VU University, Amsterdam, The Netherlands
| | - T N Bonten
- Department of Public Health & Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - W W Fuijkschot
- Department of Internal Medicine, Amsterdam UMC, Location VU University, Amsterdam, The Netherlands
| | - Y M Smulders
- Department of Internal Medicine, Amsterdam UMC, Location VU University, Amsterdam, The Netherlands
| | - A Thijs
- Department of Internal Medicine, Amsterdam UMC, Location VU University, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Abstract
The Earth turns on its axis every 24 h; almost all life on the planet has a mechanism - circadian rhythmicity - to anticipate the daily changes caused by this rotation. The molecular clocks that control circadian rhythms are being revealed as important regulators of physiology and disease. In humans, circadian rhythms have been studied extensively in the cardiovascular system. Many cardiovascular functions, such as endothelial function, thrombus formation, blood pressure and heart rate, are now known to be regulated by the circadian clock. Additionally, the onset of acute myocardial infarction, stroke, arrhythmias and other adverse cardiovascular events show circadian rhythmicity. In this Review, we summarize the role of the circadian clock in all major cardiovascular cell types and organs. Second, we discuss the role of circadian rhythms in cardiovascular physiology and disease. Finally, we postulate how circadian rhythms can serve as a therapeutic target by exploiting or altering molecular time to improve existing therapies and develop novel ones.
Collapse
|
30
|
Cederroth CR, Albrecht U, Bass J, Brown SA, Dyhrfjeld-Johnsen J, Gachon F, Green CB, Hastings MH, Helfrich-Förster C, Hogenesch JB, Lévi F, Loudon A, Lundkvist GB, Meijer JH, Rosbash M, Takahashi JS, Young M, Canlon B. Medicine in the Fourth Dimension. Cell Metab 2019; 30:238-250. [PMID: 31390550 PMCID: PMC6881776 DOI: 10.1016/j.cmet.2019.06.019] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/08/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
The importance of circadian biology has rarely been considered in pre-clinical studies, and even more when translating to the bedside. Circadian biology is becoming a critical factor for improving drug efficacy and diminishing drug toxicity. Indeed, there is emerging evidence showing that some drugs are more effective at nighttime than daytime, whereas for others it is the opposite. This suggests that the biology of the target cell will determine how an organ will respond to a drug at a specific time of the day, thus modulating pharmacodynamics. Thus, it is now time that circadian factors become an integral part of translational research.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Urs Albrecht
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Frederic Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael H Hastings
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Biocenter, Theodor-Boveri Institute, University of Würzburg, Würzburg, Germany
| | - John B Hogenesch
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francis Lévi
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, UK; Warwick University on "Personalized Cancer Chronotherapeutics through System Medicine" (C2SysMed), European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale and Paris-Sud University, Villejuif, France; Department of Medical Oncology, Paul Brousse Hospital, Assistance Publique-Hopitaux de Paris, 94800 Villejuif, France
| | - Andrew Loudon
- School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | - Johanna H Meijer
- Department of Neurophysiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Young
- Laboratory of Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Barbara Canlon
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
31
|
Brito LC, Ely MR, Sieck DC, Mangum JE, Larson EA, Minson CT, Forjaz CLM, Halliwill JR. Effect of Time of Day on Sustained Postexercise Vasodilation Following Small Muscle-Mass Exercise in Humans. Front Physiol 2019; 10:762. [PMID: 31293439 PMCID: PMC6603126 DOI: 10.3389/fphys.2019.00762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction Previous studies observed diurnal variation in hemodynamic responses during recovery from whole-body exercise, with vasodilation appearing greater after evening versus morning sessions. It is unclear what mechanism(s) underlie this response. Since small muscle-mass exercise can isolate peripheral effects related to postexercise vasodilation, it may provide insight into possible mechanisms behind this diurnal variation. Methods The study was conducted in ten healthy (5F, 5M) young individuals, following single-leg dynamic knee-extension exercise performed in the Morning (7:30–11:30 am) or the Evening (5–9 pm) on two different days, in random order. Arterial pressure (automated auscultation) and leg blood flow (femoral artery Doppler ultrasound) were measured pre-exercise and during 120 min postexercise. Net effect for each session was calculated as percent change in blood flow (or vascular conductance) between the Active Leg and the Inactive Leg. Results Following Morning exercise, blood flow was 34.9 ± 8.9% higher in the Active Leg versus the Inactive Leg (p < 0.05) across recovery. Following Evening exercise, blood flow was 35.0 ± 8.8% higher in the Active Leg versus the Inactive Leg (p < 0.05). Likewise, vascular conductance was higher in the Active Leg versus the Inactive Leg (Morning: +35.1 ± 9.0%, p < 0.05; Evening: +33.2 ± 8.2%, p < 0.05). Morning and Evening blood flow (p = 0.66) and vascular conductance (p = 0.64) did not differ. Conclusion These data suggest previous studies which identified diurnal variations in postexercise vasodilation responses are likely reflecting central rather than peripheral modulation of cardiovascular responses.
Collapse
Affiliation(s)
- Leandro C Brito
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Matthew R Ely
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Dylan C Sieck
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Joshua E Mangum
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Emily A Larson
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | | | - Cláudia L M Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
32
|
Pereira PJS, Pugsley MK, Troncy E, Tan W, Pouliot M, Harper C, Prefontaine A, Easter A, Wallis R, Miraucourt L, Huang H, Accardi MV, Boulay E, Maghezzi MS, Authier S. Incidence of spontaneous arrhythmias in freely moving healthy untreated Sprague-Dawley rats. J Pharmacol Toxicol Methods 2019; 99:106589. [PMID: 31154034 DOI: 10.1016/j.vascn.2019.106589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
Spontaneous arrhythmia characterization in healthy rats can support interpretation when studying novel therapies. Male (n = 55) and female (n = 40) Sprague-Dawley rats with telemetry transmitters for a derivation II ECG. Arrhythmias were assessed from continuous ECG monitoring over a period of 24-48 h, and data analyzed using an automated detection algorithm with 100% manual over-read. While a total of 1825 spontaneous ventricular premature beats (VPB) were identified, only 7 rats (or 7.4%) did not present with any over the recording period. Spontaneous episode(s) of ventricular tachycardia (VT) were noted in males (27%) and females (3%). The incidence of VPB was significantly higher (p < 0.01) during the night time (7 pm-7 am) compared to daytime, while males presented with significantly (p < 0.001) more VPB than females. Most VPB were observed as single ectopic beats, followed by salvos (2 or 3 consecutive VPBs), and VT (i.e. 4 consecutive VPBs). Most VPBs were single premature ventricular contractions (PVCs) (57%), while the remaining were escape complexes (43%). Spontaneous premature junctional complexes (PJC) were also observed and were significantly more frequent during the night, and in males. Lastly, 596 episodes of spontaneous 2nd-degree atrioventricular (AV) block were identified and were significantly more frequent during the day time in males. Most 2nd-degree AV block episodes were Mobitz type I (57%), with a significantly (p < 0.05) higher incidence in males. This work emphasizes the importance of obtaining sufficient baseline data when undertaking arrhythmia analysis in safety study and provides a better understanding of both sex- and time- dependent effects of spontaneous arrhythmias in rats.
Collapse
Affiliation(s)
| | | | - Eric Troncy
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Wendy Tan
- Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | - Alison Easter
- Praxis Precision Medicines, Cambridge, MA, United States of America
| | - Rob Wallis
- Safety Pharmacology Consultant, London, United Kingdom
| | | | | | | | - Emmanuel Boulay
- Citoxlab, Laval, QC, Canada; Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | - Simon Authier
- Citoxlab, Laval, QC, Canada; Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, Canada.
| |
Collapse
|
33
|
Asgari-Targhi A, Klerman EB. Mathematical modeling of circadian rhythms. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1439. [PMID: 30328684 PMCID: PMC6375788 DOI: 10.1002/wsbm.1439] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Circadian rhythms are endogenous ~24-hr oscillations usually entrained to daily environmental cycles of light/dark. Many biological processes and physiological functions including mammalian body temperature, the cell cycle, sleep/wake cycles, neurobehavioral performance, and a wide range of diseases including metabolic, cardiovascular, and psychiatric disorders are impacted by these rhythms. Circadian clocks are present within individual cells and at tissue and organismal levels as emergent properties from the interaction of cellular oscillators. Mathematical models of circadian rhythms have been proposed to provide a better understanding of and to predict aspects of this complex physiological system. These models can be used to: (a) manipulate the system in silico with specificity that cannot be easily achieved using in vivo and in vitro experimental methods and at lower cost, (b) resolve apparently contradictory empirical results, (c) generate hypotheses, (d) design new experiments, and (e) to design interventions for altering circadian rhythms. Mathematical models differ in structure, the underlying assumptions, the number of parameters and variables, and constraints on variables. Models representing circadian rhythms at different physiologic scales and in different species are reviewed to promote understanding of these models and facilitate their use. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
|
34
|
Black N, D'Souza A, Wang Y, Piggins H, Dobrzynski H, Morris G, Boyett MR. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms. Heart Rhythm 2018; 16:298-307. [PMID: 30170229 PMCID: PMC6520649 DOI: 10.1016/j.hrthm.2018.08.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 12/31/2022]
Abstract
Cardiac arrhythmias are a leading cause of cardiovascular death. It has long been accepted that life-threatening cardiac arrhythmias (ventricular tachycardia, ventricular fibrillation, and sudden cardiac death) are more likely to occur in the morning after waking. It is perhaps less well recognized that there is a circadian rhythm in cardiac pacemaking and other electrophysiological properties of the heart. In addition, there is a circadian rhythm in other arrhythmias, for example, bradyarrhythmias and supraventricular arrhythmias. Two mechanisms may underlie this finding: (1) a central circadian clock in the suprachiasmatic nucleus in the hypothalamus may directly affect the electrophysiology of the heart and arrhythmogenesis via various neurohumoral factors, particularly the autonomic nervous system; or (2) a local circadian clock in the heart itself (albeit under the control of the central clock) may drive a circadian rhythm in the expression of ion channels in the heart, which in turn varies arrhythmic substrate. This review summarizes the current understanding of the circadian rhythm in cardiac electrophysiology, arrhythmogenesis, and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nicholas Black
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Yanwen Wang
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Hugh Piggins
- Division of Diabetes, Endocrinology & Gastroenterology, University of Manchester, Manchester, United Kingdom
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Gwilym Morris
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Mark R Boyett
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
35
|
Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang CH. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 2018; 132:104-138. [PMID: 30415656 DOI: 10.1016/j.addr.2018.07.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
With the advancement in medical science and understanding the importance of biodistribution and pharmacokinetics of therapeutic agents, modern drug delivery research strives to utilize novel materials and fabrication technologies for the preparation of robust drug delivery systems to combat acute and chronic diseases. Compared to traditional drug carriers, which could only control the release of the agents in a monotonic manner, the new drug carriers are able to provide a precise control over the release time and the quantity of drug introduced into the patient's body. To achieve this goal, scientists have introduced "programmed" and "on-demand" approaches. The former provides delivery systems with a sophisticated architecture to precisely tune the release rate for a definite time period, while the latter includes systems directly controlled by an operator/practitioner, perhaps with a remote device triggering/affecting the implanted or injected drug carrier. Ideally, such devices can determine flexible release pattern and intensify the efficacy of a therapy via controlling time, duration, dosage, and location of drug release in a predictable, repeatable, and reliable manner. This review sheds light on the past and current techniques available for fabricating and remotely controlling drug delivery systems and addresses the application of new technologies (e.g. 3D printing) in this field.
Collapse
|
36
|
Frigy A, Csiki E, Caraşca C, Szabó IA, Moga VD. Autonomic influences related to frequent ventricular premature beats in patients without structural heart disease. Medicine (Baltimore) 2018; 97:e11489. [PMID: 29995813 PMCID: PMC6076203 DOI: 10.1097/md.0000000000011489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To study the possible role of autonomic influences on the occurrence of frequent premature ventricular beats (VPBs) in subjects without structural heart disease.24-hour Holter ECG recordings (≥1500 VPBs/d, sinus rhythm) of 20 symptomatic patients (9 women, 11 men, mean age 58.9 years) without structural heart disease were used for the study. The circadian distribution pattern of VPBs was studied (paired t test) by dividing the day into 3 periods (16:00-22:00-06:00-16:00), and correlations were analyzed between the absolute (ln transformed) and relative (% of total beats) average hourly numbers of VPBs and the hourly mean values of global and vagal time domain parameters of heart rate variability (Pearson correlation).No significant (P > .3 for every comparison) tendency for circadian distribution of VPBs was found. However, VPBs showed a significant correlation with rMSSD (r = 0.51 and P = .02 for the relative number), which became even stronger if VPBs were > 8000/d (r = 0.65 and P = .04 for both numbers).The significant correlation between the number of VPBs and a vagally mediated parameter underlines the triggering/permitting effect of parasympathetic tone on ventricular ectopy. This fact suggests that initiation of beta-blocker therapy could not be recommended routinely in these patients.
Collapse
Affiliation(s)
- Attila Frigy
- Department of Internal Medicine IV, University of Medicine and Pharmacy of Tirgu Mures
| | - Endre Csiki
- Department of Gastroenterology, Clinical County Hospital Mures
| | - Cosmin Caraşca
- Department of Forensic Medicine, University of Medicine and Pharmacy of Tirgu Mures, Tirgu Mures
| | - István Adorján Szabó
- Department of Internal Medicine IV, University of Medicine and Pharmacy of Tirgu Mures
| | - Victor-Dan Moga
- Department of Cardiology I, Victor Babes University of Medicine and Pharmacy Timisoara, Timisioara, Romania
| |
Collapse
|
37
|
Does the timing of aspirin administration influence its antiplatelet effect - review of literature on chronotherapy. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 15:125-129. [PMID: 30069194 PMCID: PMC6066683 DOI: 10.5114/kitp.2018.76479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/06/2018] [Indexed: 12/03/2022]
Abstract
This publication is a summary of the multidirectional effects of aspirin and its role in modern medicine. The history of aspirin, or acetylsalicylic acid (ASA), and its use dates back to ancient times, although the substance in its pure form has been produced and sold since 1899. Initially it was used for its antipyretic, analgesic, and anti-inflammatory effects. Over the years many other benefits associated with the administration of ASA have been revealed. The mechanism of aspirin’s action was discovered thanks to the British pharmacologist and Nobel Prize winner Sir John Vane. Understanding the effects of acetylsalicylic acid, associated with the inhibition of cyclooxygenase and proinflammatory thromboxane A2 and with increased concentration of vasoprotective, antithrombotic prostacyclin, gave rise to the era of using small “cardiac” doses of ASA in cardiovascular diseases. In addition to the well-researched antiplatelet effect, other properties of ASA have been discovered, such as the non-COX-1 dependent improvement of endothelial function or the hypotensive effect after evening administration. According to the currently available knowledge, it is possible to speak of a pleiotropic effect of ASA and its use in the prevention of cardiovascular diseases, taking into account its anti-aggregation effect, circadian rhythms, and the principles of chronotherapy.
Collapse
|
38
|
Hermida RC, Ayala DE, Fernández JR, Mojón A, Smolensky MH. Hypertension: New perspective on its definition and clinical management by bedtime therapy substantially reduces cardiovascular disease risk. Eur J Clin Invest 2018; 48:e12909. [PMID: 29423914 DOI: 10.1111/eci.12909] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022]
Abstract
Diagnosis of hypertension-elevated blood pressure (BP) associated with increased cardiovascular disease (CVD) risk-and its management for decades have been based primarily on single time-of-day office BP measurements (OBPM) assumed representative of systolic (SBP) and diastolic BP (DBP) during the entire 24-hours span. Around-the-clock ambulatory blood pressure monitoring (ABPM), however, reveals BP undergoes 24-hours patterning characterized in normotensives and uncomplicated hypertensives by striking morning-time rise, 2 daytime peaks-one ~2-3 hours after awakening and the other early evening, small midafternoon nadir and 10-20% decline (BP dipping) in the asleep BP mean relative to the wake-time BP mean. A growing number of outcome trials substantiate correlation between BP and target organ damage, vascular and other risks is greater for the ABPM-derived asleep BP mean, independent and stronger predictor of CVD risk, than daytime OBPM or ABPM-derived awake BP. Additionally, bedtime hypertension chronotherapy, that is, ingestion of ≥1 conventional hypertension medications at bedtime to achieve efficient attenuation of asleep BP, better reduces total CVD events by 61% and major events (CVD death, myocardial infarction, ischaemic and haemorrhagic stroke) by 67%-even in more vulnerable chronic kidney disease, diabetes and resistant hypertension patients-than customary on-awaking therapy that targets wake-time BP. Such findings of around-the-clock ABPM and bedtime hypertension outcome trials, consistently indicating greater importance of asleep BP than daytime OBPM or ambulatory awake BP, call for a new definition of true arterial hypertension plus modern approaches for its diagnosis and management.
Collapse
Affiliation(s)
- Ramón C Hermida
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Information and Communication Technologies (AtlantTIC), University of Vigo, Vigo, Spain
| | - Diana E Ayala
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Information and Communication Technologies (AtlantTIC), University of Vigo, Vigo, Spain
| | - José R Fernández
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Information and Communication Technologies (AtlantTIC), University of Vigo, Vigo, Spain
| | - Artemio Mojón
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Information and Communication Technologies (AtlantTIC), University of Vigo, Vigo, Spain
| | - Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
39
|
Neonatal rat cardiomyocytes as an in vitro model for circadian rhythms in the heart. J Mol Cell Cardiol 2017; 112:58-63. [DOI: 10.1016/j.yjmcc.2017.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023]
|
40
|
Yoon JY, Vikram A, London B, Irani K. Reversible lysine acetylation: Another layer of post-translational regulation of the cardiac sodium channel. Channels (Austin) 2017; 11:360-361. [PMID: 28598266 DOI: 10.1080/19336950.2017.1340015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jin-Young Yoon
- a Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, and Abboud Cardiovascular Research Center , The University of Iowa , Iowa City , IA , USA
| | - Ajit Vikram
- a Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, and Abboud Cardiovascular Research Center , The University of Iowa , Iowa City , IA , USA
| | - Barry London
- a Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, and Abboud Cardiovascular Research Center , The University of Iowa , Iowa City , IA , USA
| | - Kaikobad Irani
- a Division of Cardiology, Department of Internal Medicine, Carver College of Medicine, and Abboud Cardiovascular Research Center , The University of Iowa , Iowa City , IA , USA
| |
Collapse
|
41
|
Smolensky MH, Hermida RC, Ayala DE, Mojón A, Fernández JR. Bedtime Chronotherapy with Conventional Hypertension Medications to Target Increased Asleep Blood Pressure Results in Markedly Better Chronoprevention of Cardiovascular and Other Risks than Customary On-awakening Therapy. Heart Fail Clin 2017; 13:775-792. [PMID: 28865784 DOI: 10.1016/j.hfc.2017.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The bases for bedtime hypertension chronotherapy (BHCT) as superior chronoprevention against cardiovascular disease (CVD) are: (1) correlation between blood pressure (BP) and various risks is greater for ambulatory BP monitoring (ABPM) than office BP measurements (OBPM); (2) asleep BP mean is a better predictor of CVD risk than ABPM awake and 24-hour means and OBPM; and (3) targeting of asleep BP by BHCT with one or more conventional medications versus usual on-awakening therapy better reduces major and total CVD events. BHCT offers the most cost-effective chronoprevention against adverse CVD outcomes in regular and vulnerable renal, diabetic, and resistant hypertensive patients.
Collapse
Affiliation(s)
- Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX 78712-0238, USA.
| | - Ramón C Hermida
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Information and Communication Technologies (AtlantTIC), University of Vigo, 36310 Vigo, Spain
| | - Diana E Ayala
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Information and Communication Technologies (AtlantTIC), University of Vigo, 36310 Vigo, Spain
| | - Artemio Mojón
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Information and Communication Technologies (AtlantTIC), University of Vigo, 36310 Vigo, Spain
| | - José R Fernández
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Information and Communication Technologies (AtlantTIC), University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
42
|
Vencloviene J, Babarskiene RM, Dobozinskas P, Dedele A, Lopatiene K, Ragaisyte N. The short-term associations of weather and air pollution with emergency ambulance calls for paroxysmal atrial fibrillation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15031-15043. [PMID: 28493187 DOI: 10.1007/s11356-017-9138-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
A circadian variation in the cardiovascular parameters has been detected. It is plausible that the influence of the environment varies during different periods of the day. We investigated the association between daily emergency ambulance calls (EC) for paroxysmal atrial fibrillation (AF) that occurred during the time intervals of 8:00-13:59, 14:00-21:59, and 22:00-7:59, and weather conditions and exposure to CO and PM10. We used Poisson regression to explore the association between the risk of EC for AF and environmental variables, adjusting for seasonal variation. Before noon, the risk was associated with an IQR (0.333 mg/m3) increase in CO at lag 2-6 days above the median (RR = 1.15, P = 0.002); a protective impact of CO on previous day was observed (RR = 0.91, P = 0.018). During 14:00-21:59, a negative effect of air temperature below 1.9 °C (lag 2-3 days) was detected (per 10 °C decrease: RR = 1.17, P = 0.044). At night, the elevated risk was associated with wind speed above the median (lag 2-4 days) (per 1-kt increase: RR = 1.07, P = 0.001) and with PM10 at lag 2-5 days below the median (per IQR (7.31 μg/m3) increase: RR = 1.21, P = 0.002). Individuals over 65 years of age were more sensitive to air pollution, especially at night (CO lag 2-3 days < median, per IQR (0.12 mg/m3) increase: RR = 1.14, P = 0.045; PM10 lag 2-5 days < median, per IQR increase: RR = 1.32, P = 0.001). The associations of air pollution and other environmental variables with acute events may be analyzed depending on the time of the event.
Collapse
Affiliation(s)
- Jone Vencloviene
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Donelaicio St. 58, 44248, Kaunas, Lithuania.
| | - Ruta Marija Babarskiene
- Department of Cardiology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50028, Kaunas, Lithuania
| | - Paulius Dobozinskas
- Department of Disaster Medicine, Lithuanian University of Health Sciences, Eiveniu str. 4, 50028, Kaunas, Lithuania
| | - Audrius Dedele
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, Donelaicio St. 58, 44248, Kaunas, Lithuania
| | - Kristina Lopatiene
- Department of Orthodontics, Lithuanian University of Health Sciences, Luksos-Daumanto str. 6, 50106, Kaunas, Lithuania
| | - Nijole Ragaisyte
- Department of Cardiology, Lithuanian University of Health Sciences, Eiveniu str. 2, 50028, Kaunas, Lithuania
| |
Collapse
|
43
|
Hermida RC, Ayala DE, Smolensky MH, Fernández JR, Mojón A, Portaluppi F. Sleep-time blood pressure: Unique sensitive prognostic marker of vascular risk and therapeutic target for prevention. Sleep Med Rev 2017; 33:17-27. [DOI: 10.1016/j.smrv.2016.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/03/2016] [Accepted: 04/06/2016] [Indexed: 01/04/2023]
|
44
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system-resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|
45
|
Smolensky MH, Hermida RC, Reinberg A, Sackett-Lundeen L, Portaluppi F. Circadian disruption: New clinical perspective of disease pathology and basis for chronotherapeutic intervention. Chronobiol Int 2016; 33:1101-19. [PMID: 27308960 DOI: 10.1080/07420528.2016.1184678] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological processes are organized in time as innate rhythms defined by the period (τ), phase (peak [Φ] and trough time), amplitude (A, peak-trough difference) and mean level. The human time structure in its entirety is comprised of ultradian (τ < 20 h), circadian (20 h > τ < 28 h) and infradian (τ > 28 h) bioperiodicities. The circadian time structure (CTS) of human beings, which is more complicated than in lower animals, is orchestrated and staged by a brain central multioscillator system that includes a prominent pacemaker - the suprachiasmatic nuclei of the hypothalamus. Additional pacemaker activities are provided by the pineal hormone melatonin, which circulates during the nighttime, and the left and right cerebral cortices. Under ordinary circumstances this system coordinates the τ and Φ of rhythms driven by subservient peripheral cell, tissue and organ clock networks. Cyclic environmental, feeding and social time cues synchronize the endogenous 24 h clocks and rhythms. Accordingly, processes and functions of the internal environment are integrated in time for maximum biological efficiency, and they are also organized and synchronized in time to the external environment to ensure optimal performance and response to challenge. Artificial light at night (ALAN) exposure can alter the CTS as can night work, which, like rapid transmeridian displacement by air travel, necessitates realignment of the Φ of the multitude of 24 h rhythms. In 2001, Stevens and Rea coined the phrase "circadian disruption" (CD) to label the CTS misalignment induced by ALAN and shift work (SW) as a potential pathologic mechanism of the increased risk for cancer and other medical conditions. Current concerns relating to the effects of ALAN exposure on the CTS motivated us to renew our long-standing interest in the possible role of CD in the etiopathology of common human diseases and patient care. A surprisingly large number of medical conditions involve CD: adrenal insufficiency; nocturia; sleep-time non-dipping and rising blood pressure 24 h patterns (nocturnal hypertension); delayed sleep phase syndrome, non-24 h sleep/wake disorder; recurrent hypersomnia; SW intolerance; delirium; peptic ulcer disease; kidney failure; depression; mania; bipolar disorder; Parkinson's disease; Smith-Magenis syndrome; fatal familial insomnia syndrome; autism spectrum disorder; asthma; byssinosis; cancers; hand, foot and mouth disease; post-operative state; and ICU outcome. Poorly conceived medical interventions, for example nighttime dosing of synthetic corticosteroids and certain β-antagonists and cyclic nocturnal enteral or parenteral nutrition, plus lifestyle habits, including atypical eating times and chronic alcohol consumption, also can be causal of CD. Just as surprisingly are the many proven chronotherapeutic strategies available today to manage the CD of several of these medical conditions. In clinical medicine, CD seems to be a common, yet mostly unrecognized, pathologic mechanism of human disease as are the many effective chronotherapeutic interventions to remedy it.
Collapse
Affiliation(s)
- Michael H Smolensky
- a Department of Biomedical Engineering , Cockrell School of Engineering, The University of Texas at Austin , Austin , TX , USA
| | - Ramon C Hermida
- b Bioengineering and Chronobiology Laboratories , Atlantic Research Center for Information and Communication Technologies (AtlantTIC), University of Vigo , Vigo , Spain
| | - Alain Reinberg
- c Unité de Chronobiologie , Fondation A de Rothschild , Paris , Cedex , France
| | - Linda Sackett-Lundeen
- d American Association for Clinical Chronobiology and Chronotherapeutics, Roseville , MN , USA
| | - Francesco Portaluppi
- e Hypertension Center, University Hospital S. Anna and Department of Medical Sciences , University of Ferrara , Ferrara , Italy
| |
Collapse
|
46
|
Hermida RC. Sleep-time ambulatory blood pressure as a prognostic marker of vascular and other risks and therapeutic target for prevention by hypertension chronotherapy: Rationale and design of the Hygia Project. Chronobiol Int 2016; 33:906-36. [PMID: 27221952 DOI: 10.1080/07420528.2016.1181078] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article describes the rationale, objectives, design and conduct of the ambulatory blood pressure monitoring (ABPM)-based Hygia Project. Given the substantial evidence of the significantly better prognostic value of ABPM compared to clinic BP measurements, several international guidelines now propose ABPM as a requirement to confirm the office diagnosis of hypertension. Nonetheless, all previous ABPM outcome investigations, except the Monitorización Ambulatoria para Predicción de Eventos Cardiovasculares study (MAPEC) study, relied upon only a single, low-reproducible 24 h ABPM assessment per participant done at study inclusion, thus precluding the opportunity to explore the potential reduction in cardiovascular disease (CVD) risk associated with modification of prognostic ABPM-derived parameters by hypertension therapy. The findings of the single-center MAPEC study, based upon periodic systematic 48 h ABPM evaluation of all participants during a median follow-up of 5.6 years, constitute the first proof-of-concept evidence that the progressive reduction of the asleep systolic blood pressure (SBP) mean and correction of the sleep-time relative SBP decline toward the normal dipper BP profile, most efficiently accomplished by a bedtime hypertension treatment strategy, best attenuates the risk of CVD, stroke and development of new-onset diabetes. The Hygia Project, primarily designed to extend the use of ABPM in primary care as a requirement for diagnosis of hypertension, evaluation of response to treatment and individualized assessment of CVD and other risks, is a research network presently composed of 40 clinical sites and 292 investigators. Its main objectives are to (i) investigate whether specific treatment-induced changes in ABPM-derived parameters reduce risk of CVD events, stroke, new-onset diabetes and/or development of chronic kidney disease (CKD); and (ii) test the hypothesis that bedtime chronotherapy entailing the entire daily dose of ≥1 conventional hypertension medications exerts better ambulatory BP control and CVD, metabolic and renal risk reduction than all such medications ingested in the morning upon awakening. Between 2007 and 2015, investigators recruited 18 078 persons [9769 men/8309 women, 59.1 ± 14.3 years of age (mean ± SD)], including 15 764 with hypertension according to ABPM criteria as participants in the prospective randomized chronotherapy trial. The initial evaluation includes 48 h ABPM, detailed medical history and screening laboratory blood and urine tests. The same evaluation procedure is scheduled annually, or more frequently when treatment adjustment is required for proper ambulatory BP control, targeting a median follow-up of >5 years. The primary CVD outcome end point is the composite of CVD death, myocardial infarction, coronary revascularization, heart failure, ischemic stroke and hemorrhagic stroke. The independent Hygia Project Events Committee periodically evaluates blinded clinical reports to ascertain and certify every documented event. Beyond the potential findings resulting from testing the main hypotheses, the Hygia Project has already demonstrated, as proof of concept, that the routine diagnosis of hypertension and individualized assessment of CVD and other risks by ABPM, as currently recommended, is fully viable in the primary care setting, where most people with either hypertension, dyslipidemia, type 2 diabetes or CKD receive routine medical attention.
Collapse
Affiliation(s)
- Ramón C Hermida
- a Bioengineering & Chronobiology Laboratories; Atlantic Research Center for Information and Communication Technologies (AtlantTIC) ; E.E. Telecomunicación, University of Vigo , Vigo , Spain
| |
Collapse
|
47
|
Abstract
OBJECTIVES Circadian rhythms are severely disrupted among the critically ill. These circadian arrhythmias impair mentation, immunity, autonomic function, endocrine activity, hormonal signaling, and ultimately healing. In this review, we present a modern model of circadian disruption among the critically ill, discuss causes of these circadian arrhythmias, review observational and intervention studies of the effects of circadian-rhythm-restoring factors on medical outcomes, and identify needed key trials of circadian interventions in the critically ill. DATA SOURCES MEDLINE, EMBASE, PsychINFO, Google Scholar through December 2014. STUDY SELECTION Articles relevant to circadian rhythms, melatonin, and light in the critically ill were selected. DATA EXTRACTION AND DATA SYNTHESIS Articles were synthesized for this review of circadian arrhythmia and the use of circadian-rhythm-restoring interventions among the critically ill. CONCLUSIONS Circadian disruption often demonstrates serial degradation: initially, the amplitude attenuates along with delayed circadian phase. With increasing acuity of illness, circadian rhythmicity may be lost entirely. Causes of chronodisruption may be environmental or internal to the patient. In particular, inadequate daytime illumination and nocturnal light pollution disrupt healthy circadian periodicity. Internal causes of circadian arrhythmia include critical illness itself and subjective experience of distress and pain. Observational studies of windowed rooms and real-time ambient lighting have found that physiologic light-dark patterns may support recovery from critical illness. Studies of early morning bright light or evening melatonin agonists have found improved rates of delirium, enhanced sleep, and lower arrhythmia prevalence. The current evidence base emphasizes that lighting and melatoninergic interventions deserve to be tested in full-scale trials.
Collapse
|
48
|
Larsen BS, Kumarathurai P, Nielsen OW, Sajadieh A. The circadian variation of premature atrial contractions. Europace 2015; 18:1573-1580. [DOI: 10.1093/europace/euv389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/27/2015] [Indexed: 11/12/2022] Open
|
49
|
Chronotherapy with conventional blood pressure medications improves management of hypertension and reduces cardiovascular and stroke risks. Hypertens Res 2015; 39:277-92. [PMID: 26657008 DOI: 10.1038/hr.2015.142] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Correlation between blood pressure (BP) and target organ damage, vascular risk and long-term patient prognosis is greater for measurements derived from around-the-clock ambulatory BP monitoring than in-clinic daytime ones. Numerous studies consistently substantiate the asleep BP mean is both an independent and a much better predictor of cardiovascular disease (CVD) risk than either the awake or 24 h means. Sleep-time hypertension is much more prevalent than suspected, not only in patients with sleep disorders, but also among those who are elderly or have type 2 diabetes, chronic kidney disease or resistant hypertension. Hence, cost-effective adequate control of sleep-time BP is of marked clinical relevance. Ingestion time, according to circadian rhythms, of hypertension medications of six different classes and their combinations significantly affects BP control, particularly sleep-time BP, and adverse effects. For example, because the high-amplitude circadian rhythm of the renin-angiotensin-aldosterone system activates during nighttime sleep, bedtime vs. morning ingestion of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers better reduces the asleep BP mean, with additional benefit, independent of medication terminal half-life, of converting the 24 h BP profile into more normal dipper patterning. The MAPEC (Monitorización Ambulatoria para Predicción de Eventos Cardiovasculares) study, first prospective randomized treatment-time investigation designed to test the worthiness of bedtime chronotherapy with ⩾1 conventional hypertension medications so as to specifically target attenuation of asleep BP, demonstrated, relative to conventional morning therapy, 61% reduction of total CVD events and 67% decrease of major CVD events, that is, CVD death, myocardial infarction, and ischemic and hemorrhagic stroke. The MAPEC study, along with other earlier conducted less refined trials, documents the asleep BP mean is the most significant prognostic marker of CVD morbidity and mortality; moreover, it substantiates attenuation of the asleep BP mean by a bedtime hypertension treatment strategy entailing the entire daily dose of ⩾1 hypertension medications significantly reduces CVD risk in both general and more vulnerable hypertensive patients, that is, those diagnosed with chronic kidney disease, diabetes and resistant hypertension.
Collapse
|
50
|
Sleep-related modification of atrioventricular block: from first-degree to second-degree, Mobitz type II. Sleep Med 2015; 16:1091-3. [DOI: 10.1016/j.sleep.2015.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/29/2015] [Accepted: 04/20/2015] [Indexed: 11/20/2022]
|