1
|
Khoury W, Trus R, Chen X, Baghaie L, Clark M, Szewczuk MR, El-Diasty M. Parsimonious Effect of Pentoxifylline on Angiogenesis: A Novel Pentoxifylline-Biased Adenosine G Protein-Coupled Receptor Signaling Platform. Cells 2023; 12:cells12081199. [PMID: 37190108 DOI: 10.3390/cells12081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Angiogenesis is the physiological process of developing new blood vessels to facilitate the delivery of oxygen and nutrients to meet the functional demands of growing tissues. It also plays a vital role in the development of neoplastic disorders. Pentoxifylline (PTX) is a vasoactive synthetic methyl xanthine derivative used for decades to manage chronic occlusive vascular disorders. Recently, it has been proposed that PTX might have an inhibitory effect on the angiogenesis process. Here, we reviewed the modulatory effects of PTX on angiogenesis and its potential benefits in the clinical setting. Twenty-two studies met the inclusion and exclusion criteria. While sixteen studies demonstrated that pentoxifylline had an antiangiogenic effect, four suggested it had a proangiogenic effect, and two other studies showed it did not affect angiogenesis. All studies were either in vivo animal studies or in vitro animal and human cell models. Our findings suggest that pentoxifylline may affect the angiogenic process in experimental models. However, there is insufficient evidence to establish its role as an anti-angiogenesis agent in the clinical setting. These gaps in our knowledge regarding how pentoxifylline is implicated in host-biased metabolically taxing angiogenic switch may be via its adenosine A2BAR G protein-coupled receptor (GPCR) mechanism. GPCR receptors reinforce the importance of research to understand the mechanistic action of these drugs on the body as promising metabolic candidates. The specific mechanisms and details of the effects of pentoxifylline on host metabolism and energy homeostasis remain to be elucidated.
Collapse
Affiliation(s)
- William Khoury
- School of Medicine, Queen's University, Kingston, ON K7L 3L4, Canada
| | - Ryan Trus
- Faculty of Arts and Science, Queen's University, Kingston, ON K7L 3N9, Canada
- School of Medicine, The Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Xingyu Chen
- School of Medicine, Queen's University, Kingston, ON K7L 3L4, Canada
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mira Clark
- Faculty of Arts and Science, Queen's University, Kingston, ON K7L 3N9, Canada
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Myron R Szewczuk
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mohammad El-Diasty
- Division of Cardiac Surgery, Queen's University, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
2
|
Tagad HD, Brito J, Marin A, Buckley C, Wang H, Sun J, Sukhishvili SA, Wang H, Andrianov AK. 4-Methylumbelliferone-Functionalized Polyphosphazene and Its Assembly into Biocompatible Fluorinated Nanocoatings with Selective Antiproliferative Activity. Biomacromolecules 2023; 24:2278-2290. [PMID: 37071718 DOI: 10.1021/acs.biomac.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Advanced multifunctional biomaterials are increasingly relying on clinically dictated patterns of selectivity against various biological targets. Integration of these frequently conflicting features into a single material surface may be best achieved by combining various complementary methodologies. Herein, a drug with a broad spectrum of activity, i.e., 4-methylumbelliferone (4-MU), is synthetically multimerized into water-soluble anionic macromolecules with the polyphosphazene backbone. The polymer structure, composition, and solution behavior are studied by 1H and 31P NMR spectroscopy, size-exclusion chromatography, dynamic light scattering, and UV and fluorescence spectrophotometry. To take advantage of the clinically proven hemocompatibility of fluorophosphazene surfaces, the drug-bearing macromolecule was then nanoassembled onto the surface of selected substrates in an aqueous solution with fluorinated polyphosphazene of the opposite charge using the layer-by-layer (LbL) technique. Nanostructured 4-MU-functionalized fluoro-coatings exhibited a strong antiproliferative effect on vascular smooth muscle cells (VSMCs) and fibroblasts with no cytotoxicity against endothelial cells. This selectivity pattern potentially provides the opportunity for highly desirable fast tissue healing while preventing the overgrowth of VSMCs and fibrosis. Taken together with the established in vitro hemocompatibility and anticoagulant activity, 4-MU-functionalized fluoro-coatings demonstrate potential for applications as restenosis-resistant coronary stents and artificial joints.
Collapse
Affiliation(s)
- Harichandra D Tagad
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Christian Buckley
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Haoyu Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jingyu Sun
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
3
|
Yurtdaş-Kırımlıoğlu G, Görgülü Ş, Güleç K, Kıyan HT. Nanoarchitectonics of PLGA based polymeric nanoparticles with oseltamivir phosphate for lung cancer therapy: In vitro-in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Mukherjee S, Madamsetty VS. Nanomedicine: An Alternative Approach Towards Anti-angiogenic Cancer Therapy. SYNTHESIS LECTURES ON BIOMEDICAL ENGINEERING 2022:21-31. [DOI: 10.1007/978-3-031-11284-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Lan HR, Wu ZQ, Zhang LH, Jin KT, Wang SB. Nanotechnology Assisted Chemotherapy for Targeted Cancer Treatment: Recent Advances and Clinical Perspectives. Curr Top Med Chem 2021; 20:2442-2458. [PMID: 32703133 DOI: 10.2174/1568026620666200722110808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/05/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
Nanotechnology has recently provided exciting platforms in the field of anticancer research with promising potentials for improving drug delivery efficacy and treatment outcomes. Nanoparticles (NPs) possess different advantages over the micro and bulk therapeutic agents, including their capability to carry high payloads of drugs, with prolonged half-life, reduced toxicity of the drugs, and increased targeting efficiency. The wide variety of nanovectors, coupled with different conjugation and encapsulation methods available for different theranostic agents provide promising opportunities to fine-tune the pharmacological properties of these agents for more effective cancer treatment methods. This review discusses applications of NPs-assisted chemotherapy in preclinical and clinical settings and recent advances in design and synthesis of different nanocarriers for chemotherapeutic agents. Moreover, physicochemical properties of different nanocarriers, their impacts on different tumor targeting strategies and effective parameters for efficient targeted drug delivery are discussed. Finally, the current approved NPs-assisted chemotherapeutic agents for clinical applications and under different phases of clinical trials are discussed.
Collapse
Affiliation(s)
- Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang Province, China
| | - Zhi-Qiang Wu
- Department of Pharmacy, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China
| | - Li-Hua Zhang
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang Province, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang Province, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
6
|
Liu M, Wu C, Ke L, Li Z, Wu YL. Emerging Biomaterials-Based Strategies for Inhibiting Vasculature Function in Cancer Therapy. SMALL METHODS 2021; 5:e2100347. [PMID: 34927997 DOI: 10.1002/smtd.202100347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Indexed: 06/14/2023]
Abstract
The constant feeding of oxygen and nutrients through the blood vasculature has a vital role in maintaining tumor growth. Interestingly, recent endeavors have shown that nanotherapeutics with the strategy to block tumor blood vessels feeding nutrients and oxygen for starvation therapy can be helpful in cancer treatment. However, this field has not been detailed. Hence, this review will present an exhaustive summary of the existing biomaterial based strategies to disrupt tumor vascular function for effective cancer treatment, including hydrogel or nanogel-mediated local arterial embolism, thrombosis activator loaded nano-material-mediated vascular occlusion and anti-vascular drugs that block tumor vascular function, which may be beneficial to the design of anti-cancer nanomedicine by targeting the tumor vascular system.
Collapse
Affiliation(s)
- Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
7
|
Şen Ö, Emanet M, Ciofani G. Nanotechnology-Based Strategies to Evaluate and Counteract Cancer Metastasis and Neoangiogenesis. Adv Healthc Mater 2021; 10:e2002163. [PMID: 33763992 PMCID: PMC7610913 DOI: 10.1002/adhm.202002163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Cancer metastasis is the major cause of cancer-related morbidity and mortality. It represents one of the greatest challenges in cancer therapy, both because of the ability of metastatic cells to spread into different organs, and because of the consequent heterogeneity that characterizes primary and metastatic tumors. Nanomaterials can potentially be used as targeting or detection agents owing to unique chemical and physical features that allow tailored and tunable theranostic functions. This review highlights nanomaterial-based approaches in the detection and treatment of cancer metastasis, with a special focus on the evaluation of nanostructure effects on cell migration, invasion, and angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- Özlem Şen
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| | - Melis Emanet
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
- Sabanci University Nanotechnology Research and Application Center (SUNUM)Sabanci UniversityUniversite Caddesi 27‐1TuzlaIstanbul34956Turkey
| | - Gianni Ciofani
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| |
Collapse
|
8
|
Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ. Surface functionalisation of poly-APO-b-polyol ester cross-linked copolymers as core-shell nanoparticles for targeted breast cancer therapy. Sci Rep 2020; 10:21704. [PMID: 33303818 PMCID: PMC7729971 DOI: 10.1038/s41598-020-78601-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Rida Tajau
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Siti Selina Abdul Hamid
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Zainah Adam
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Siti Najila Mohd Janib
- Division of Medical Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mek Zah Salleh
- Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
9
|
Chen D, Qu X, Shao J, Wang W, Dong X. Anti-vascular nano agents: a promising approach for cancer treatment. J Mater Chem B 2020; 8:2990-3004. [PMID: 32211649 DOI: 10.1039/c9tb02957e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anti-vascular agents (AVAs) are a class of promising therapeutic agents with tumor vasculature targeting properties, which can be divided into two types: anti-angiogenic agents (AAAs, inhibit angiogenesis factors) and vascular disrupting agents (VDAs, disrupt established tumor vasculature). AVAs exhibit an enhanced anti-cancer effect by cutting off the oxygen and nutrition supplement channels of tumors. However, the intrinsic drawbacks, such as poor hydrophilicity, undesirable membrane permeability and inferior tumor targeting ability, discount their anti-vascular efficacy. Fortunately, the development of nanotechnology has brought an opportunity for efficient delivery of AVAs to tumour sites with great therapeutic efficacy. The works summarized in this review will provide an understanding of recent advances of anti-vascular nano agents (AVNAs) with a goal to define the mechanism of anti-vascular-based cancer therapy and discuss the challenges and opportunities of AVNAs for clinical translation.
Collapse
Affiliation(s)
- Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | | | | | | | | |
Collapse
|
10
|
Qiao Y, Liu B, Peng Y, Ji E, Wu H. Preparation and biological evaluation of a novel pH-sensitive poly (β-malic acid) conjugate for antitumor drug delivery. Int J Mol Med 2018; 42:3495-3502. [PMID: 30272259 DOI: 10.3892/ijmm.2018.3893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/17/2018] [Indexed: 11/05/2022] Open
Abstract
Poly (β‑malic acid), referred to as PMLA, has been synthesized and introduced as a polymeric drug carrier due to its desirable biological properties. In the present study, a novel pH‑sensitive polymer‑drug conjugate based on PMLA, PMLA‑Hz‑doxorubicin (DOX), was prepared, and another conjugate, PMLA‑ami‑DOX, was synthesized as a comparison. The structures, conjugation efficiency, and drug release properties of the prodrugs were determined. The cytotoxicity and cell uptake were assessed using the HT1080 human fibrosarcoma cell line as an in vitro cell model. The release of DOX in the two conjugates were pH‑dependent in PBS buffer at a pH of 5.6, 6.0, 6.8 and 7.4. The quantity of drug released increased with the decrease in pH, and PMLA‑ami‑DOX released twice as much as PMLA‑Hz‑DOX (12 h). The cytotoxicity of PMLA‑Hz‑DOX at pH 7.4 was lower than that of free DOX and increased with the decrease in pH, indicating that the cytotoxicity of PMLA‑Hz‑DOX was pH‑sensitive. Flow cytometry and confocal experiments confirmed the efficiency of the PMLA‑Hz‑DOX conjugate. Therefore, bonding DOX to PMLA via an acid‑sensitive hydrazone bond may be used to reduce its toxic side effects on normal tissues while responding to tumor pH and releasing the drug.
Collapse
Affiliation(s)
- Youbei Qiao
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bao Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yifan Peng
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Erlong Ji
- Shiquanhe Medical Station, A'li, Tibet 859000, P.R. China
| | - Hong Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
11
|
Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:883-896. [PMID: 29366881 DOI: 10.1016/j.nano.2018.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/26/2017] [Accepted: 01/09/2018] [Indexed: 01/13/2023]
Abstract
Complete eradication of aggressive oral cancer remains a challenge due to the presence of CSCs. They resist conventional chemotherapeutic agents due to their self-renewal, drug efflux, and efficient DNA repair capacity. Here, we formulated a hybrid-nanoparticle (QAuNP) using quinacrine and gold and characterized/investigated its anti-angiogenic and anti-metastatic effect on OSCC-CSCs. QAuNP significantly inhibited cellular proliferation, caused apoptosis in vitro, and disrupted angiogenesis in vivo and tumor regression in xenograft mice model. It not only inhibited crucial angiogenic markers Ang-1, Ang-2 and VEGF but also depleted MMP-2 in H-357-PEMT cells in a p53 and p21-dependent manner. QAuNP also increased the ROS and NO generation in OSCC-CSCs and reduced the mitochondrial membrane potential. It altered the level of inflammatory cytokines IL-6, IL-1β, TNF-α and metastasis-associated markers (CD-44, CD-133) in H-357-PEMT and CM-treated endothelial cells (HUVEC) in p53/p21-dependent manner. Therefore, QAuNP will be a useful therapeutic agent against metastatic OSCC.
Collapse
|
12
|
Duro-Castano A, Gallon E, Decker C, Vicent MJ. Modulating angiogenesis with integrin-targeted nanomedicines. Adv Drug Deliv Rev 2017; 119:101-119. [PMID: 28502767 DOI: 10.1016/j.addr.2017.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Targeting angiogenesis-related pathologies, which include tumorigenesis and metastatic processes, has become an attractive strategy for the development of efficient guided nanomedicines. In this respect, integrins are cell-adhesion molecules involved in angiogenesis signaling pathways and are overexpressed in many angiogenic processes. Therefore, they represent specific biomarkers not only to monitor disease progression but also to rationally design targeted nanomedicines. Arginine-glycine-aspartic (RGD) containing peptides that bind to specific integrins have been widely utilized to provide ligand-mediated targeting capabilities to small molecules, peptides, proteins, and antibodies, as well as to drug/imaging agent-containing nanomedicines, with the final aim of maximizing their therapeutic index. Within this review, we aim to cover recent and relevant examples of different integrin-assisted nanosystems including polymeric nanoconstructs, liposomes, and inorganic nanoparticles applied in drug/gene therapy as well as imaging and theranostics. We will also critically address the overall benefits of integrin-targeting.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Elena Gallon
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Caitlin Decker
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
13
|
Kapishon V, Allison S, Whitney RA, Cunningham MF, Szewczuk MR, Neufeld RJ. Oseltamivir-conjugated polymeric micelles prepared by RAFT living radical polymerization as a new active tumor targeting drug delivery platform. Biomater Sci 2017; 4:511-21. [PMID: 26788555 DOI: 10.1039/c5bm00519a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted drug delivery using polymeric nanostructures has been at the forefront of cancer research, engineered for safer, more efficient and effective use of chemotherapy. Here, we designed a new polymeric micelle delivery system for active tumor targeting followed by micelle-drug internalization via receptor-induced endocytosis. We recently reported that oseltamivir phosphate targets and inhibits Neu1 sialidase activity associated with receptor tyrosine kinases such as epidermal growth factor receptors (EGFRs) which are overexpressed in cancer cells. By decorating micelles with oseltamivir, we investigated whether they actively targeted human pancreatic PANC1 cancer cells. Amphiphilic block copolymers with oseltamivir conjugated at the hydrophilic end, oseltamivir-pPEGMEMA-b-pMMA (oseltamivir-poly(polyethylene glycol methyl ether methacrylate)-block-poly(methyl methacrylate), were synthesized using reversible addition-fragmentation chain transfer (RAFT) living radical polymerization. Oseltamivir-conjugated micelles have self-assembling properties to give worm-like micellar structures with molecular weight of 80 000 g mol(-1). Oseltamivir-conjugated water soluble pPEGMEMA, dose dependently, both inhibited sialidase activity associated with Neu1, and reduced viability of PANC1 cells. In addition, oseltamivir-conjugated micelles, labelled with a hydrophobic fluorescent dye within the micelle core, were subsequently internalized by PANC1 cells. Blocking cell surface Neu1 with anti-Neu1 antibody, reduced internalization of oseltamivir-conjugated micelles, demonstrating that Neu1 binding linked to sialidase inhibition were prerequisite steps for subsequent internalization of the micelles. The mechanism of internalization is likely that of receptor-induced endocytosis demonstrating potential as a new nanocarrier system for not only targeting a tumor cell, but also for directly reducing viability through Neu1 inhibition, followed by intracellular delivery of hydrophobic cytotoxic chemotherapeutics.
Collapse
Affiliation(s)
- Vitaliy Kapishon
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Stephanie Allison
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Ralph A Whitney
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Michael F Cunningham
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6. and Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
14
|
Soni S, Ruhela RK, Medhi B. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. Adv Pharm Bull 2016; 6:319-335. [PMID: 27766216 DOI: 10.15171/apb.2016.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 08/25/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go.
Collapse
Affiliation(s)
- Shringika Soni
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Rakesh Kumar Ruhela
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
15
|
Palao-Suay R, Gómez-Mascaraque L, Aguilar M, Vázquez-Lasa B, Román JS. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
|
17
|
Hrynyk M, Ellis JP, Haxho F, Allison S, Steele JA, Abdulkhalek S, Neufeld RJ, Szewczuk MR. Therapeutic designed poly (lactic-co-glycolic acid) cylindrical oseltamivir phosphate-loaded implants impede tumor neovascularization, growth and metastasis in mouse model of human pancreatic carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4573-86. [PMID: 26309402 PMCID: PMC4539083 DOI: 10.2147/dddt.s90170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) copolymers have been extensively used in cancer research. PLGA can be chemically engineered for conjugation or encapsulation of drugs in a particle formulation. We reported that oseltamivir phosphate (OP) treatment of human pancreatic tumor-bearing mice disrupted the tumor vasculature with daily injections. Here, the controlled release of OP from a biodegradable PLGA cylinder (PLGA-OP) implanted at tumor site was investigated for its role in limiting tumor neovascularization, growth, and metastasis. PLGA-OP cylinders over 30 days in vitro indicated 20%–25% release profiles within 48 hours followed by a continuous metronomic low dose release of 30%–50% OP for an additional 16 days. All OP was released by day 30. Surgically implanted PLGA-OP containing 20 mg OP and blank PLGA cylinders at the tumor site of heterotopic xenografts of human pancreatic PANC1 tumors in RAGxCγ double mutant mice impeded tumor neovascularization, growth rate, and spread to the liver and lungs compared with the untreated cohort. Xenograft tumors from PLGA and PLGA-OP-treated cohorts expressed significant higher levels of human E-cadherin with concomitant reduced N-cadherin and host CD31+ endothelial cells compared with the untreated cohort. These results clearly indicate that OP delivered from PLGA cylinders surgically implanted at the site of the solid tumor show promise as an effective treatment therapy for cancer.
Collapse
Affiliation(s)
- Michael Hrynyk
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Jordon P Ellis
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Fiona Haxho
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Stephanie Allison
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Joseph Am Steele
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Samar Abdulkhalek
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Ronald J Neufeld
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
18
|
Van Hove AH, Benoit DSW. Depot-Based Delivery Systems for Pro-Angiogenic Peptides: A Review. Front Bioeng Biotechnol 2015; 3:102. [PMID: 26236708 PMCID: PMC4504170 DOI: 10.3389/fbioe.2015.00102] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/29/2015] [Indexed: 01/13/2023] Open
Abstract
Insufficient vascularization currently limits the size and complexity for all tissue engineering approaches. Additionally, increasing or re-initiating blood flow is the first step toward restoration of ischemic tissue homeostasis. However, no FDA-approved pro-angiogenic treatments exist, despite the many pre-clinical approaches that have been developed. The relatively small size of peptides gives advantages over protein-based treatments, specifically with respect to synthesis and stability. While many pro-angiogenic peptides have been identified and shown promising results in vitro and in vivo, the majority of biomaterials developed for pro-angiogenic drug delivery focus on protein delivery. This narrow focus limits pro-angiogenic therapeutics as peptides, similar to proteins, suffer from poor pharmacokinetics in vivo, necessitating the development of controlled release systems. This review discusses pro-angiogenic peptides and the biomaterials delivery systems that have been developed, or that could easily be adapted for peptide delivery, with a particular focus on depot-based delivery systems.
Collapse
Affiliation(s)
- Amy H. Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
19
|
Miki K, Kimura A, Inoue T, Matsuoka H, Harada H, Hiraoka M, Ohe K. Synthesis of Biocompatible Polysaccharide Analogues and Their Application to In Vivo Optical Tumor Imaging. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Akinori Kimura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Tatsuhiro Inoue
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | - Hiroshi Harada
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST)
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
20
|
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Citation(s) in RCA: 1141] [Impact Index Per Article: 114.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
Cancer is the second worldwide cause of death, exceeded only by cardiovascular diseases. It is characterized by uncontrolled cell proliferation and an absence of cell death that, except for hematological cancers, generates an abnormal cell mass or tumor. This primary tumor grows thanks to new vascularization and, in time, acquires metastatic potential and spreads to other body sites, which causes metastasis and finally death. Cancer is caused by damage or mutations in the genetic material of the cells due to environmental or inherited factors. While surgery and radiotherapy are the primary treatment used for local and non-metastatic cancers, anti-cancer drugs (chemotherapy, hormone and biological therapies) are the choice currently used in metastatic cancers. Chemotherapy is based on the inhibition of the division of rapidly growing cells, which is a characteristic of the cancerous cells, but unfortunately, it also affects normal cells with fast proliferation rates, such as the hair follicles, bone marrow and gastrointestinal tract cells, generating the characteristic side effects of chemotherapy. The indiscriminate destruction of normal cells, the toxicity of conventional chemotherapeutic drugs, as well as the development of multidrug resistance, support the need to find new effective targeted treatments based on the changes in the molecular biology of the tumor cells. These novel targeted therapies, of increasing interest as evidenced by FDA-approved targeted cancer drugs in recent years, block biologic transduction pathways and/or specific cancer proteins to induce the death of cancer cells by means of apoptosis and stimulation of the immune system, or specifically deliver chemotherapeutic agents to cancer cells, minimizing the undesirable side effects. Although targeted therapies can be achieved directly by altering specific cell signaling by means of monoclonal antibodies or small molecules inhibitors, this review focuses on indirect targeted approaches that mainly deliver chemotherapeutic agents to molecular targets overexpressed on the surface of tumor cells. In particular, we offer a detailed description of different cytotoxic drug carriers, such as liposomes, carbon nanotubes, dendrimers, polymeric micelles, polymeric conjugates and polymeric nanoparticles, in passive and active targeted cancer therapy, by enhancing the permeability and retention or by the functionalization of the surface of the carriers, respectively, emphasizing those that have received FDA approval or are part of the most important clinical studies up to date. These drug carriers not only transport the chemotherapeutic agents to tumors, avoiding normal tissues and reducing toxicity in the rest of the body, but also protect cytotoxic drugs from degradation, increase the half-life, payload and solubility of cytotoxic agents and reduce renal clearance. Despite the many advantages of all the anticancer drug carriers analyzed, only a few of them have reached the FDA approval, in particular, two polymer-protein conjugates, five liposomal formulations and one polymeric nanoparticle are available in the market, in contrast to the sixteen FDA approval of monoclonal antibodies. However, there are numerous clinical trials in progress of polymer-protein and polymer-drug conjugates, liposomal formulations, including immunoliposomes, polymeric micelles and polymeric nanoparticles. Regarding carbon nanotubes or dendrimers, there are no FDA approvals or clinical trials in process up to date due to their unresolved toxicity. Moreover, we analyze in detail the more promising and advanced preclinical studies of the particular case of polymeric nanoparticles as carriers of different cytotoxic agents to active and passive tumor targeting published in the last 5 years, since they have a huge potential in cancer therapy, being one of the most widely studied nano-platforms in this field in the last years. The interest that these formulations have recently achieved is stressed by the fact that 90% of the papers based on cancer therapeutics with polymeric nanoparticles have been published in the last 6 years (PubMed search).
Collapse
|
21
|
Paramjot, Khan NM, Kapahi H, Kumar S, Bhardwaj TR, Arora S, Mishra N. Role of polymer–drug conjugates in organ-specific delivery systems. J Drug Target 2015; 23:387-416. [DOI: 10.3109/1061186x.2015.1016436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Zhang Q, He J, Zhang M, Ni P. A polyphosphoester-conjugated camptothecin prodrug with disulfide linkage for potent reduction-triggered drug delivery. J Mater Chem B 2015; 3:4922-4932. [DOI: 10.1039/c5tb00623f] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reduction-cleavable polyphosphoester-camptothecin (CPT) prodrug tailored for enhancing drug loading content and triggering drug release has been prepared and applied in tumor chemotherapy.
Collapse
Affiliation(s)
- Qingqing Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Soochow University
| |
Collapse
|
23
|
Human RNASET2 derivatives as potential anti-angiogenic agents: actin binding sequence identification and characterization. Oncoscience 2014; 2:31-43. [PMID: 25815360 PMCID: PMC4341462 DOI: 10.18632/oncoscience.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/26/2014] [Indexed: 02/02/2023] Open
Abstract
Human RNASET2 (hRNASET2) has been demonstrated to exert antiangiogenic and antitumorigenic effects independent of its ribonuclease capacity. We suggested that RNASET2 exerts its antiangiogenic and antitumorigenic activities via binding to actin and consequently inhibits cell motility. We focused herein on the identification of the actin binding site of hRNASET2 using defined sequences encountered within the whole hRNASET2 protein. For that purpose we designed 29 different hRNASET2-derived peptides. The 29 peptides were examined for their ability to bind immobilized actin. Two selected peptides-A103-Q159 consisting of 57 amino acids and peptide K108-K133 consisting of 26 amino acids were demonstrated to have the highest actin binding ability and concomitantly the most potent anti-angiogenic activity. Further analyses on the putative mechanisms associated with angiogenesis inhibition exerted by peptide K108-K133 involved its location during treatment within the HUVE cells. Peptide K108-K133 readily penetrates the cell membrane within 10 min of incubation. In addition, supplementation with angiogenin delays the entrance of peptide K108-K133 to the cell suggesting competition on the same cell internalization route. The peptide was demonstrated to co-localize with angiogenin, suggesting that both molecules bind analogous cellular epitopes, similar to our previously reported data for ACTIBIND and trT2-50.
Collapse
|
24
|
Ferber S, Tiram G, Satchi-Fainaro R. Monitoring functionality and morphology of vasculature recruited by factors secreted by fast-growing tumor-generating cells. J Vis Exp 2014:e51525. [PMID: 25490071 DOI: 10.3791/51525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The subcutaneous matrigel plug assay in mice is a method of choice for the in vivo evaluation of pro- and anti-angiogenic factors. In this method, desired factors are introduced into cold-liquid ECM-mimic gel which, after subcutaneous injection, solidifies to form an environment mimicking the cancer milieu. This matrix permits the penetration of host cells, such as endothelial cells, and therefore, the formation of vasculature. Herein we propose a new modified matrigel plug assay, which can be exploited to illustrate the angiogenic potential of a pool of factors secreted by cancer cells, as opposed to a specific factor (e.g., bFGF and VEGF) or agent. The plug containing ECM-mimic gel is utilized to introduce the host (i.e., mouse) with a pool of factors secreted to the C.M. of fast-growing tumor-generating glioblastoma cells. We have previously described an extensive comparison of the angiogenic potential of U-87 MG human glioblastoma and its dormant-derived clone, in this system model, showing induced angiogenesis in the U-87 MG parental cells. The C.M. is prepared by filtering collected media from confluent tissue culture plates of either cell line following 48 hr incubation. Hence, it contains only factors secreted by the cells, without the cells themselves. Described here is the combination of two imaging modalities, microbubbles contrast-enhanced ultrasound imaging and intravital fibered-confocal endomicroscopy, for an accurate, real-time characterization of the extent, morphology and functionality of newly-formed blood vessels within the plugs.
Collapse
Affiliation(s)
- Shiran Ferber
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University;
| |
Collapse
|
25
|
Wang H, Yang Z, Gu J. Therapeutic Targeting of Angiogenesis with a Recombinant CTT Peptide–Endostatin Mimic–Kringle 5 Protein. Mol Cancer Ther 2014; 13:2674-87. [PMID: 25127900 DOI: 10.1158/1535-7163.mct-14-0266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Biomimetic Materials/chemistry
- Biomimetic Materials/pharmacology
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/drug therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation/drug effects
- Endostatins/chemistry
- Endostatins/pharmacology
- HEK293 Cells
- HeLa Cells
- Humans
- Kringles
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/drug therapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Neovascularization, Pathologic/drug therapy
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Random Allocation
- Recombinant Fusion Proteins/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Houbin Wang
- National Key Laboratory of Protein and Plant Gene Research, LSC, Peking University, Beijing, China
| | - Zhigang Yang
- Department of Hematology, Affiliated Hospital of Guangdong Medical College, Guangzhou, China
| | - Jun Gu
- National Key Laboratory of Protein and Plant Gene Research, LSC, Peking University, Beijing, China. Department of Hematology, Affiliated Hospital of Guangdong Medical College, Guangzhou, China.
| |
Collapse
|
26
|
Miki K, Hashimoto H, Inoue T, Matsuoka H, Harada H, Hiraoka M, Ohe K. Sonication-induced formation of size-controlled self-assemblies of amphiphilic Janus-type polymers as optical tumor-imaging agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3119-3130. [PMID: 24729486 DOI: 10.1002/smll.201400358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/14/2014] [Indexed: 06/03/2023]
Abstract
In this study, amphiphilic Janus-type polymers were synthesized via ring-opening metathesis polymerization (ROMP), multiple vicinal diol formation, and grafting of poly(ethylene glycol) monomethyl ether (mPEG). These amphiphilic polymers formed self-assemblies, which were a mixture of micelles and multimicellar aggregates, in water. By choosing suitable Janus-type polymers and irradiating an aqueous solution of polymers using a sonicator, either small micelles or large multimicellar aggregates were obtained selectively. Hydrophobic substituents controlled the aggregation-disaggregation behavior, leading to the formation of metastable self-assemblies by sonication. The formation of self-assemblies with a uniform size was affected by ultrasonic frequency, rather than power. In vivo optical tumor imaging revealed that the large-size multimicellar aggregates persisting for a long time in blood circulation slowly accumulated in tumor tissues. In contrast, the tumor site was rapidly, clearly visualized using the small-size micelles.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Shahin M, Safaei-Nikouei N, Lavasanifar A. Polymeric micelles for pH-responsive delivery of cisplatin. J Drug Target 2014; 22:629-37. [PMID: 24878378 DOI: 10.3109/1061186x.2014.921925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Methoxy poly(ethylene oxide)-block-poly-(α-carboxylate-ε-caprolactone) (PEO-b-PCCL) was used to develop pH-responsive polymeric micelles for the delivery of cisplatin (CDDP). Micelles were prepared through complexation of CDDP with the pendant carboxyl groups on the poly(ε-caprolactone) core, perhaps through coordinate bonding. The obtained micelles were characterized using dynamic light scattering (DLS) measurement for size and stability. The in vitro release of CDDP at different pHs (7.4, 6.0 and 5.0) was evaluated. The in vitro cell uptake as well as cytotoxicity of developed micelles against two breast cancer cell lines, i.e. MDA-MB-435 and MDA-MB-231, were also assessed and compared to free CDDP as control. DLS results showed PEO-b-PCCL to form stable micelles with an average diameter of <50 nm upon complexation with CDDP. Developed polymeric micelles were capable of slowly releasing CDDP in physiological pH. However, CDDP release from polymeric micelles was triggered upon exposure to electrolytes and/or acidic pHs mimicking that of extracellular tumor microenvironment or intracellular organelles. Consistent with the slow release of CDDP from its polymeric micellar formulation, polymeric micellar CDDP exhibited lower cytotoxicity and CDDP intracellular uptake compared to free drug. The results indicate a great potential for the developed formulation in platinum therapy of breast cancer.
Collapse
|
28
|
Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:814208. [PMID: 24672796 PMCID: PMC3950423 DOI: 10.1155/2014/814208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/25/2013] [Indexed: 12/14/2022]
Abstract
Targeted delivery systems of nanobiomaterials are necessary to be developed for the diagnosis and treatment of cancer. Nanobiomaterials can be engineered to recognize cancer-specific receptors at the cellular levels and to deliver anticancer drugs into the diseased sites. In particular, nanobiomaterial-based nanocarriers, so-called nanoplatforms, are the design of the targeted delivery systems such as liposomes, polymeric nanoparticles/micelles, nanoconjugates, norganic materials, carbon-based nanobiomaterials, and bioinspired phage system, which are based on the nanosize of 1-100 nm in diameter. In this review, the design and the application of these nanoplatforms are discussed at the cellular levels as well as in the clinics. We believe that this review can offer recent advances in the targeted delivery systems of nanobiomaterials regarding in vitro and in vivo applications and the translation of nanobiomaterials to nanomedicine in anticancer therapy.
Collapse
Affiliation(s)
- Su-Eon Jin
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Hyo-Eon Jin
- Department of Bioengineering, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Soon-Sun Hong
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung dong, Jung-gu, Incheon 400-712, Republic of Korea
| |
Collapse
|
29
|
|
30
|
Xu Z, Zhang K, Hou C, Wang D, Liu X, Guan X, Zhang X, Zhang H. A novel nanoassembled doxorubicin prodrug with a high drug loading for anticancer drug delivery. J Mater Chem B 2014; 2:3433-3437. [DOI: 10.1039/c4tb00128a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel doxorubicin (DOX) prodrug (MPEG-b-DOX) was synthesized that reduces the proportion of inactive materials and minimizes drug leak.
Collapse
Affiliation(s)
- Zhigang Xu
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, China
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
| | - Kelin Zhang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, China
| | - Cuilan Hou
- School of Basic Medical Science
- Lanzhou University
- Lanzhou 730000, China
| | - Dongdong Wang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, China
| | - Xiujuan Guan
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, China
| | - Xiaoyu Zhang
- School of Basic Medical Science
- Lanzhou University
- Lanzhou 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000, China
| |
Collapse
|
31
|
Xu Z, Wang D, Xu S, Liu X, Zhang X, Zhang H. Preparation of a camptothecin prodrug with glutathione-responsive disulfide linker for anticancer drug delivery. Chem Asian J 2013; 9:199-205. [PMID: 24136878 DOI: 10.1002/asia.201301030] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 12/22/2022]
Abstract
We present here a novel camptothecin (CPT) prodrug based on polyethylene glycol monomethyl ether-block-poly(2-methacryl ester hydroxyethyl disulfide-graft-CPT) (MPEG-SS-PCPT). It formed biocompatible nanoparticles (NPs) with diameters of approximately 122 nm with a CPT loading content as high as approximately 25 wt% in aqueous solution. In in vitro release studies, these MPEG-SS-PCPT NPs could undergo triggered disassembly and much faster release of CPT under glutathione (GSH) stimulus than in the absence of GSH. The CPT prodrug had high antitumor activity, and another anticancer drug, doxorubicin hydrochloride (DOX⋅HCl), could also be introduced into the prodrug with a high loading amount. The DOX·HCl-loaded CPT prodrug could deliver two anticancer drugs at the same time to produce a collaborative cytotoxicity toward cancer cells, which suggested that this GSH-responsive NP system might become a promising carrier to improve drug-delivery efficacy.
Collapse
Affiliation(s)
- Zhigang Xu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (P.R. China), Fax: (+86) 931-8912582; School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore)
| | | | | | | | | | | |
Collapse
|
32
|
Berényi S, Mihály J, Kristyán S, Naszályi Nagy L, Telegdi J, Bóta A. Thermotropic and structural effects of poly(malic acid) on fully hydrated multilamellar DPPC–water systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:661-9. [DOI: 10.1016/j.bbamem.2012.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 11/30/2022]
|
33
|
Kopeček J. Polymer-drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev 2013; 65:49-59. [PMID: 23123294 DOI: 10.1016/j.addr.2012.10.014] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023]
Abstract
This overview focuses on bioconjugates of water-soluble polymers with low molecular weight drugs and proteins. After a short discussion of the origins of the field, the state-of-the-art is reviewed. Then research directions needed for the acceleration of the translation of nanomedicines into the clinic are outlined. Two most important directions, synthesis of backbone degradable polymer carriers and drug-free macromolecular therapeutics, a new paradigm in drug delivery, are discussed in detail. Finally, the future perspectives of the field are briefly discussed.
Collapse
|
34
|
Miki K, Nakano K, Matsuoka H, Yeom CJ, Harada H, Hiraoka M, Ohe K. Amphiphilic Brush-Like Copolymers Involving Hydrophobic Amino Acid- and Oligopeptide-Side Chains for Optical Tumor Imaging In Vivo. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20120220] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Katsuya Nakano
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | - Chan Joo Yeom
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University
| | - Hiroshi Harada
- Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
35
|
Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly(β-l-malic acid). Int J Mol Sci 2012; 13:11681-11693. [PMID: 23109877 PMCID: PMC3472769 DOI: 10.3390/ijms130911681] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/17/2012] [Accepted: 09/07/2012] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (DOX) is currently used in cancer chemotherapy to treat many tumors and shows improved delivery, reduced toxicity and higher treatment efficacy when being part of nanoscale delivery systems. However, a major drawback remains its toxicity to healthy tissue and the development of multi-drug resistance during prolonged treatment. This is why in our work we aimed to improve DOX delivery and reduce the toxicity by chemical conjugation with a new nanoplatform based on polymalic acid. For delivery into recipient cancer cells, DOX was conjugated via pH-sensitive hydrazone linkage along with polyethylene glycol (PEG) to a biodegradable, non-toxic and non-immunogenic nanoconjugate platform: poly(β-l-malic acid) (PMLA). DOX-nanoconjugates were found stable under physiological conditions and shown to successfully inhibit in vitro cancer cell growth of several invasive breast carcinoma cell lines such as MDA-MB-231 and MDA-MB- 468 and of primary glioma cell lines such as U87MG and U251.
Collapse
|
36
|
Low SA, Kopeček J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev 2012; 64:1189-204. [PMID: 22316530 DOI: 10.1016/j.addr.2012.01.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 12/13/2022]
Abstract
An aging population in the developing world has led to an increase in musculoskeletal diseases such as osteoporosis and bone metastases. Left untreated many bone diseases cause debilitating pain and in the case of cancer, death. Many potential drugs are effective in treating diseases but result in side effects preventing their efficacy in the clinic. Bone, however, provides a unique environment of inorganic solids, which can be exploited in order to effectively target drugs to diseased tissue. By integration of bone targeting moieties to drug-carrying water-soluble polymers, the payload to diseased area can be increased while side effects decreased. The realization of clinically relevant bone targeted polymer therapeutics depends on (1) understanding bone targeting moiety interactions, (2) development of controlled drug delivery systems, as well as (3) understanding drug interactions. The latter makes it possible to develop bone targeted synergistic drug delivery systems.
Collapse
Affiliation(s)
- Stewart A Low
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
37
|
Liu C, Zhang N. Emerging biotechnological strategies for non-viral antiangiogenic gene therapy. Angiogenesis 2012; 15:521-42. [DOI: 10.1007/s10456-012-9295-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/04/2012] [Indexed: 01/08/2023]
|
38
|
Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, Ofek P, Polyak D, Scomparin A, Satchi-Fainaro R. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 2012; 161:446-60. [PMID: 22286005 DOI: 10.1016/j.jconrel.2011.12.021] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 11/18/2022]
Abstract
Polymer conjugation is an efficient approach to improve the delivery of drugs and biological agents, both by protecting the body from the drug (by improving biodistribution and reducing toxicity) and by protecting the drug from the body (by preventing degradation and enhancing cellular uptake). This review discusses the journey that polymer therapeutics make through the body, following the ADME (absorption, distribution, metabolism, excretion) concept. The biological factors and delivery system parameters that influence each stage of the process will be described, with examples illustrating the different solutions to the challenges of drug delivery systems in vivo.
Collapse
Affiliation(s)
- Ela Markovsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hou L, Yao J, Zhou J, Zhang Q. Pharmacokinetics of a paclitaxel-loaded low molecular weight heparin-all-trans-retinoid acid conjugate ternary nanoparticulate drug delivery system. Biomaterials 2012; 33:5431-40. [DOI: 10.1016/j.biomaterials.2012.03.070] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/21/2012] [Indexed: 11/24/2022]
|
40
|
Galvin P, Thompson D, Ryan KB, McCarthy A, Moore AC, Burke CS, Dyson M, Maccraith BD, Gun'ko YK, Byrne MT, Volkov Y, Keely C, Keehan E, Howe M, Duffy C, MacLoughlin R. Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications. Cell Mol Life Sci 2012; 69:389-404. [PMID: 22015612 PMCID: PMC11115117 DOI: 10.1007/s00018-011-0856-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 11/25/2022]
Abstract
Nanoparticles (NPs) comprised of nanoengineered complexes are providing new opportunities for enabling targeted delivery of a range of therapeutics and combinations. A range of functionalities can be included within a nanoparticle complex, including surface chemistry that allows attachment of cell-specific ligands for targeted delivery, surface coatings to increase circulation times for enhanced bioavailability, specific materials on the surface or in the nanoparticle core that enable storage of a therapeutic cargo until the target site is reached, and materials sensitive to local or remote actuation cues that allow controlled delivery of therapeutics to the target cells. However, despite the potential benefits of NPs as smart drug delivery and diagnostic systems, much research is still required to evaluate potential toxicity issues related to the chemical properties of NP materials, as well as their size and shape. The need to validate each NP for safety and efficacy with each therapeutic compound or combination of therapeutics is an enormous challenge, which forces industry to focus mainly on those nanoparticle materials where data on safety and efficacy already exists, i.e., predominantly polymer NPs. However, the enhanced functionality affordable by inclusion of metallic materials as part of nanoengineered particles provides a wealth of new opportunity for innovation and new, more effective, and safer therapeutics for applications such as cancer and cardiovascular diseases, which require selective targeting of the therapeutic to maximize effectiveness while avoiding adverse effects on non-target tissues.
Collapse
Affiliation(s)
- Paul Galvin
- Tyndall National Institute, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gao Q, Han X, Zhu J, Chen R, Sun B. A polymer-drug conjugate for doxorubicin: Synthesis and biological evaluation of pluronic F127-doxorubicin amide conjugates. J Appl Polym Sci 2011. [DOI: 10.1002/app.35613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Canal F, Sanchis J, Vicent MJ. Polymer–drug conjugates as nano-sized medicines. Curr Opin Biotechnol 2011; 22:894-900. [DOI: 10.1016/j.copbio.2011.06.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/04/2011] [Accepted: 06/01/2011] [Indexed: 11/28/2022]
|
43
|
Affiliation(s)
- Ruth Duncan
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe, Av. Autopista del Saler 16 E-46012, Valencia, Spain
| | - Rogerio Gaspar
- Nanomedicine & Drug Delivery Systems Group, iMed, Faculty of Pharmacy of the University of Lisbon, Av. Prof Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
44
|
Low molecular weight heparin-all-trans-retinoid acid conjugate as a drug carrier for combination cancer chemotherapy of paclitaxel and all-trans-retinoid acid. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Greish K, Ray A, Bauer H, Larson N, Malugin A, Pike D, Haider M, Ghandehari H. Anticancer and antiangiogenic activity of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer therapy. J Control Release 2011; 151:263-70. [PMID: 21223983 PMCID: PMC3095727 DOI: 10.1016/j.jconrel.2010.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/10/2010] [Accepted: 12/30/2010] [Indexed: 01/08/2023]
Abstract
Tumor progression is dependent on neoangiogenesis for blood supply. Neovasculature over-express α(v)β(3) integrins which recognize the Arg-Gly-Asp (RGD) sequence in the extracellular matrix. N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing side chains terminated in cyclic RGD analogs such as RGDfK show increased accumulation in prostate tumors. Geldanamycin and their derivatives (e.g., aminohexylgeldanamycin (AH-GDM)) are benzoquinone ansamycins that have both antiangiogenic and antitumor activity. In this work the antiangiogenic and antitumor activities of targetable HPMA copolymer-RGDfK-AH-GDM conjugates were compared with non-targetable systems in vitro and in vivo. Copolymer-drug conjugates containing RGDfK in the side chains showed superior activity against endothelial and prostate cancer cell lines in vitro, as well as higher inhibition of angiogenesis in vivo. At equimolar doses of the drug, the RGDfK containing conjugates showed significantly higher antitumor activity in nude mice bearing DU-145 human prostate cancer xenografts. These findings suggest the utility of HPMA copolymer-RGDfK conjugates for targeted delivery of geldanamycin analogs with a dual mode of action.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/chemical synthesis
- Angiogenesis Inhibitors/chemistry
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Benzoquinones/administration & dosage
- Benzoquinones/chemical synthesis
- Benzoquinones/chemistry
- Benzoquinones/therapeutic use
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Humans
- Lactams, Macrocyclic/administration & dosage
- Lactams, Macrocyclic/chemical synthesis
- Lactams, Macrocyclic/chemistry
- Lactams, Macrocyclic/therapeutic use
- Male
- Mice
- Mice, Nude
- Molecular Structure
- Molecular Weight
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Peptides, Cyclic/administration & dosage
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/therapeutic use
- Polymethacrylic Acids/administration & dosage
- Polymethacrylic Acids/chemical synthesis
- Polymethacrylic Acids/chemistry
- Polymethacrylic Acids/therapeutic use
- Prostatic Neoplasms/blood supply
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Khaled Greish
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84108, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84108, USA
| | - Abhijit Ray
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84108, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84108, USA
| | - Hillevi Bauer
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84108, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84108, USA
| | - Nate Larson
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84108, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84108, USA
| | - Alexander Malugin
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84108, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84108, USA
| | - Daniel Pike
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84108, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84108, USA
| | - Mohamed Haider
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84108, USA
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84108, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84108, USA
| |
Collapse
|
46
|
Scomparin A, Salmaso S, Bersani S, Satchi-Fainaro R, Caliceti P. Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci 2011; 42:547-58. [DOI: 10.1016/j.ejps.2011.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
47
|
Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials 2011; 32:4450-63. [PMID: 21429572 DOI: 10.1016/j.biomaterials.2011.02.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 02/27/2011] [Indexed: 11/22/2022]
Abstract
Bone neoplasms, such as osteosarcoma, exhibit a propensity for systemic metastases resulting in adverse clinical outcome. Traditional treatment consisting of aggressive chemotherapy combined with surgical resection, has been the mainstay of these malignances. Therefore, bone-targeted non-toxic therapies are required. We previously conjugated the aminobisphosphonate alendronate (ALN), and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer. HPMA copolymer-ALN-TNP-470 conjugate exhibited improved anti-angiogenic and anti-tumor activity compared with the combination of free ALN and TNP-470 when evaluated in a xenogeneic model of human osteosarcoma. The immune system has major effect on toxicology studies and on tumor progression. Therefore, in this manuscript we examined the safety and efficacy profiles of the conjugate using murine osteosarcoma syngeneic model. Toxicity and efficacy evaluation revealed superior anti-tumor activity and decreased organ-related toxicities of the conjugate compared with the combination of free ALN plus TNP-470. Finally, comparative anti-angiogenic activity and specificity studies, using surrogate biomarkers of circulating endothelial cells (CEC), highlighted the advantage of the conjugate over the free agents. The therapeutic platform described here may have clinical translational relevance for the treatment of bone-related angiogenesis-dependent malignances.
Collapse
|
48
|
Banerjee D, Harfouche R, Sengupta S. Nanotechnology-mediated targeting of tumor angiogenesis. Vasc Cell 2011; 3:3. [PMID: 21349160 PMCID: PMC3039831 DOI: 10.1186/2045-824x-3-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/31/2011] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is disregulated in many diseased states, most notably in cancer. An emerging strategy for the development of therapies targeting tumor-associated angiogenesis is to harness the potential of nanotechnology to improve the pharmacology of chemotherapeutics, including anti-angiogenic agents. Nanoparticles confer several advantages over that of free drugs, including their capability to carry high payloads of therapeutic agents, confer increased half-life and reduced toxicity to the drugs, and provide means for selective targeting of the tumor tissue and vasculature. The plethora of nanovectors available, in addition to the various methods available to combine them with anti-angiogenic drugs, allows researchers to fine-tune the pharmacological profile of the drugs ad infinitum. Use of nanovectors has also opened up novel avenues for non-invasive imaging of tumor angiogenesis. Herein, we review the types of nanovector and therapeutic/diagnostic agent combinations used in targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Deboshri Banerjee
- BWH-HST Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard-MIT Division of Health Science and Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
49
|
Polyak D, Ryppa C, Eldar-Boock A, Ofek P, Many A, Licha K, Kratz F, Satchi-Fainaro R. Development of PEGylated doxorubicin-E-[c(RGDfK)2
] conjugate for integrin-targeted cancer therapy. POLYM ADVAN TECHNOL 2010. [DOI: 10.1002/pat.1731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Shamay Y, Adar L, Ashkenasy G, David A. Light induced drug delivery into cancer cells. Biomaterials 2010; 32:1377-86. [PMID: 21074848 DOI: 10.1016/j.biomaterials.2010.10.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023]
Abstract
Cell-penetrating peptides (CPPs) can be used for intracellular delivery of a broad variety of cargoes, including various nanoparticulate pharmaceutical carriers. However, the cationic nature of all CPP sequences, and thus lack of cell specificity, limits their in vivo use for drug delivery applications. Here, we have devised and tested a strategy for site-specific delivery of dyes and drugs into cancer cells by using polymers bearing a light activated caged CPP (cCPP). The positive charge of Lys residues on the minimum sequence of the CPP penetratin ((52)RRMKWKK(58)) was masked with photo-cleavable groups to minimize non-specific adsorption and cellular uptake. Once illuminated by UV light, these protecting groups were cleaved, the positively charged CPP regained its activity and facilitated rapid intracellular delivery of the polymer-dye or polymer-drug conjugates into cancer cells. We have found that a 10-min light illumination time was sufficient to enhance the penetration of the polymer-CPP conjugates bearing the proapoptotic peptide, (D)(KLAKLAK)(2), into 80% of the target cells, and to promote a 'switch' like cytotoxic activity resulting a shift from 100% to 10% in cell viability after 2 h. This report provides an example for tumor targeting by means of light activation of cell-penetrating peptides for intracellular drug delivery.
Collapse
Affiliation(s)
- Yosi Shamay
- Department of Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|