1
|
Noreen S, Maqbool I, Saleem A, Mahmood H, Rai N. Recent insights and applications of nanocarriers-based drug delivery systems for colonic drug delivery and cancer therapy: An updated review. Crit Rev Oncol Hematol 2025; 208:104646. [PMID: 39914570 DOI: 10.1016/j.critrevonc.2025.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant tumor globally and is associated with high morbidity and mortality rates. The advancement of novel nanocarrier-based drug delivery systems has revolutionized therapeutic strategies for colonic drug delivery and cancer treatment. This review provides updated insights into various nanocarrier technologies, including quantum dots (QDs), polymeric nanoparticles (PNPs), magnetic and metallic nanoparticles, solid lipid nanoparticles (SLNs), and self-microemulsifying and self-nanoemulsifying drug delivery systems (SMEDDS/SNEDDS). These nanocarriers offer enhanced drug stability, controlled release, and targeted delivery, particularly for CRC treatment, resulting in up to 70 % improved therapeutic efficacy and a significant reduction in systemic toxicity as reported in preclinical studies. The review comprehensively discusses the structural composition, mechanisms of action, therapeutic potential, and imaging capabilities of these systems, with a focus on their applications in theranostics and targeted CRC therapy. For instance, polymeric nanoparticles have demonstrated a 50 % increase in bioavailability compared to conventional formulations, while QDs have enabled real-time imaging with high precision for tumor localization. Additionally, the toxicity profiles and challenges associated with these nanocarriers are critically evaluated. Despite significant progress in preclinical and clinical studies, the review highlights the need for optimizing biocompatibility, scalability, and regulatory standards to facilitate the clinical translation of these promising technologies. Emerging formulations such as graphene quantum dots and PEGylated nanoparticles have shown potential for achieving dual therapeutic and diagnostic applications with fewer adverse effects. Overall, nanocarrier-based systems hold great potential for personalized and more effective treatments in colon-targeted therapies.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan; Centre for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Austria.
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Anum Saleem
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Hassan Mahmood
- Humanities Department, COMSATS University Islamabad, Lahore Campus, Punjab, Pakistan
| | - Nadia Rai
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| |
Collapse
|
2
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
3
|
O'Connor S, Dennany L, O'Reilly E. Evolution of nanomaterial Electrochemiluminescence luminophores towards biocompatible materials. Bioelectrochemistry 2023; 149:108286. [DOI: 10.1016/j.bioelechem.2022.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
|
4
|
Quantum Dots Mediated Imaging and Phototherapy in Cancer Spheroid Models: State of the Art and Perspectives. Pharmaceutics 2022; 14:pharmaceutics14102136. [PMID: 36297571 PMCID: PMC9611360 DOI: 10.3390/pharmaceutics14102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum Dots (QDs) are fluorescent nanoparticles known for their exceptional optical properties, i.e., high fluorescence emission, photostability, narrow emission spectrum, and broad excitation wavelength. These properties make QDs an exciting choice for bioimaging applications, notably in cancer imaging. Challenges lie in their ability to specifically label targeted cells. Numerous studies have been carried out with QDs coupled to various ligands like peptides, antibodies, aptamers, etc., to achieve efficient targeting. Most studies were conducted in vitro with two-dimensional cell monolayers (n = 8902) before evolving towards more sophisticated models. Three-dimensional multicellular tumor models better recapitulate in vivo conditions by mimicking cell-to-cell and cell-matrix interactions. To date, only few studies (n = 34) were conducted in 3D in vitro models such as spheroids, whereas these models could better represent QDs behavior in tumors compared to monolayers. Thus, the purpose of this review is to present a state of the art on the studies conducted with Quantum Dots on spheroid models for imaging and phototherapy purposes.
Collapse
|
5
|
Kauzlarich SM, Ju Z, Tseng E, Lundervold J. Recent developments in germanium containing clusters in intermetallics and nanocrystals. Chem Soc Rev 2021; 50:13236-13252. [PMID: 34726681 DOI: 10.1039/d1cs00538c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimetallic clusters can be described as building blocks in intermetallics, compounds prepared from all metals and/or semi-metals, and in Zintl phases, a subset of intermetallics containing metals with large differences in electronegativity. In many cases, these intermetallic and Zintl phases provide the first clue for the possibilities of bond formation between metals and semi-metals. Recent advances in multimetallic clusters found in Zintl phases and nanoparticles focusing on Ge with transition metals and semi-metals is presented. Colloidal routes to Ge nanocrystals provide an opportunity for kinetically stabilized Ge-metal and Ge-semi-metal bonding. These routes provide crystalline nanoclusters of Ge, hereafter referred to as nanocrystals, that can be structurally characterized. Compositions of Ge nanocrystals containing transition metals, and the semi-metals, Sb, Bi, and Sn, whose structures have recently been elucidated through EXAFS, will be presented along with potential applications.
Collapse
Affiliation(s)
- Susan M Kauzlarich
- Chemistry Department, One Shields Ave, University of California, Davis, CA 95616, USA.
| | - Zheng Ju
- Chemistry Department, One Shields Ave, University of California, Davis, CA 95616, USA.
| | - Emily Tseng
- Chemistry Department, One Shields Ave, University of California, Davis, CA 95616, USA.
| | - Jesse Lundervold
- Chemistry Department, One Shields Ave, University of California, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Wu B, Li K, Sun F, Niu J, Zhu R, Qian Y, Wang S. Trifunctional Graphene Quantum Dot@LDH Integrated Nanoprobes for Visualization Therapy of Gastric Cancer. Adv Healthc Mater 2021; 10:e2100512. [PMID: 34110710 PMCID: PMC11469055 DOI: 10.1002/adhm.202100512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Indexed: 02/02/2023]
Abstract
Visualization technology has become a trend in tumor therapy in recent years. The superior optical properties of graphene quantum dots (GQDs) make them suitable candidates for tumor diagnosis, but their tumor targeting and drug-carrying capacities are still not ideal for treatment. Sulfur-doped graphene quantum dots (SGQDs) with stable fluorescence are prepared in a previous study. A reliable strategy by associating layered double hydroxides (LDHs) and etoposide (VP16) is designed for precise visualization therapy. Trifunctional LDH@SGQD-VP16 integrated nanoprobes can simultaneously achieve targeted aggregation, fluorescence visualization, and chemotherapy. LDH@SGQD-VP16 can accumulate in the tumor microenvironment, owing to pH-sensitive properties and long-term photostability in vivo, which can provide a basis for cancer targeting, real-time imaging, and effect tracking. The enhanced therapeutic and attenuated side effects of VP16 are demonstrated, and the apoptosis caused by LDH@SGQD-VP16 is ≈2.7 times higher than that of VP16 alone, in HGC-27 cells. This work provides a theoretical and experimental basis for LDH@SGQD-VP16 as a potential multifunctional agent for visualization therapy of gastric cancer.
Collapse
Affiliation(s)
- Bin Wu
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Kun Li
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Feiyue Sun
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Jintong Niu
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Rongrong Zhu
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| | - Yechang Qian
- Department of Respiratory DiseaseBaoshan District Hospital of Integrated Traditional Chinese and Western MedicineShanghai201900China
| | - Shilong Wang
- Research Center for Translational Medicine at East HospitalTongji University School of Life Science and TechnologyShanghai200092China
| |
Collapse
|
7
|
Saeboe AM, Nikiforov AY, Toufanian R, Kays JC, Chern M, Casas JP, Han K, Piryatinski A, Jones D, Dennis AM. Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed In Vivo Imaging. NANO LETTERS 2021; 21:3271-3279. [PMID: 33755481 PMCID: PMC8243857 DOI: 10.1021/acs.nanolett.1c00600] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This report of the reddest emitting indium phosphide quantum dots (InP QDs) to date demonstrates tunable, near-infrared (NIR) photoluminescence (PL) as well as PL multiplexing in the first optical tissue window while avoiding toxic constituents. This synthesis overcomes the InP "growth bottleneck" and extends the emission peak of InP QDs deeper into the first optical tissue window using an inverted QD heterostructure, specifically ZnSe/InP/ZnS core/shell/shell nanoparticles. The QDs exhibit InP shell thickness-dependent tunable emission with peaks ranging from 515-845 nm. The high absorptivity of InP yields effective photoexcitation of the QDs with UV, visible, and NIR wavelengths. These nanoparticles extend the range of tunable direct-bandgap emission from InP-based nanostructures, effectively overcoming a synthetic barrier that has prevented InP-based QDs from reaching their full potential as NIR imaging agents. Multiplexed lymph node imaging in a mouse model demonstrates the potential of the NIR-emitting InP particles for in vivo imaging.
Collapse
Affiliation(s)
- Alexander M. Saeboe
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
| | | | - Reyhaneh Toufanian
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
| | - Joshua C. Kays
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Margaret Chern
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
| | - J. Paolo Casas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Keyi Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Andrei Piryatinski
- Theoretical Division and Center for Non-linear Studies, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Dennis Jones
- School of Medicine, Boston University, Boston, MA, 02118
| | - Allison M. Dennis
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- corresponding author: Allison M. Dennis,
| |
Collapse
|
8
|
Guryev EL, Shanwar S, Zvyagin A, Deyev SM, Balalaeva IV. Photoluminescent Nanomaterials for Medical Biotechnology. Acta Naturae 2021; 13:16-31. [PMID: 34377553 PMCID: PMC8327149 DOI: 10.32607/actanaturae.11180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Creation of various photoluminescent nanomaterials has significantly expanded the arsenal of approaches used in modern biomedicine. Their unique photophysical properties can significantly improve the sensitivity and specificity of diagnostic methods, increase therapy effectiveness, and make a theranostic approach to treatment possible through the application of nanoparticle conjugates with functional macromolecules. The most widely used nanomaterials to date are semiconductor quantum dots; gold nanoclusters; carbon dots; nanodiamonds; semiconductor porous silicon; and up-conversion nanoparticles. This paper considers the promising groups of photoluminescent nanomaterials that can be used in medical biotechnology: in particular, for devising agents for optical diagnostic methods, sensorics, and various types of therapy.
Collapse
Affiliation(s)
- E. L. Guryev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| | - S. Shanwar
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| | - A.V. Zvyagin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - I. V. Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| |
Collapse
|
9
|
Kallmyer NE, Abdennadher MS, Agarwal S, Baldwin-Kordick R, Khor RL, Kooistra AS, Peterson E, McDaniel MD, Reuel NF. Inexpensive Near-Infrared Fluorimeters: Enabling Translation of nIR-Based Assays to the Field. Anal Chem 2021; 93:4800-4808. [PMID: 33703890 DOI: 10.1021/acs.analchem.0c03732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The practical impact of analytical probes that transduce in the near-infrared (nIR) has been dampened by the lack of cost-effective and portable nIR fluorimeters. Herein, we demonstrate straightforward designs for an inexpensive microplate reader and a portable fluorimeter. These instruments require minimally complex machining and fabrication and operate with an open-source programming language (Python). Complete wiring diagrams, assembly diagrams, and scripts are provided. To demonstrate the utility of these two instruments, we performed high-throughput and field-side measurements of soil samples to evaluate the effect of soil management strategies on extracellular proteolytic, cellulolytic, and lignin-modifying activities. This was accomplished with fluorescent enzyme probes that utilized uniquely sensitive transducers exclusive to the nIR spectrum, single-walled carbon nanotubes. We also used the portable fluorimeter to evaluate spatial variations of proteolytic activity within individual field plots, while minimizing the effects of soil storage and handling. These demonstrations indicate the utility of these fluorimeters for translating analytical probes that operate in the nIR beyond the laboratory and into actual use.
Collapse
Affiliation(s)
- Nathaniel E Kallmyer
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Rd., Ames, Iowa 50011, United States
| | - Mohamed Seddik Abdennadher
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Rd., Ames, Iowa 50011, United States
| | - Sparsh Agarwal
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Rd., Ames, Iowa 50011, United States
| | - Rebecca Baldwin-Kordick
- Department of Agronomy, Iowa State University, 716 Farm House Ln., Ames, Iowa 50011, United States
| | - Rachel L Khor
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Rd., Ames, Iowa 50011, United States
| | - Alex S Kooistra
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Rd., Ames, Iowa 50011, United States
| | - Erica Peterson
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Rd., Ames, Iowa 50011, United States
| | - Marshall D McDaniel
- Department of Agronomy, Iowa State University, 716 Farm House Ln., Ames, Iowa 50011, United States
| | - Nigel F Reuel
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Rd., Ames, Iowa 50011, United States
| |
Collapse
|
10
|
Yang Z, Zou W, Pan Y, Yong KT, Li L, Wang X, Liu D, Chen T, Xue D, Lin G. PEGylated CuInS 2/ZnS quantum dots inhibit neurite outgrowth by downregulating the NGF/p75 NTR/MAPK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111378. [PMID: 33022524 DOI: 10.1016/j.ecoenv.2020.111378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
The widespread application of cadmium-free CuInS2/ZnS QDs has raised great concern regarding their potential toxicity to humans. To date, toxicological data related to CuInS2/ZnS QDs are scarce. Neurons play extraordinary roles in regulating the activities of organs and systems, and serious consequences occur when neurons are damaged. Currently, the potential toxicity of CuInS2/ZnS QDs on neurons has not been fully elucidated. Here, we investigate the neurotoxicity of PEGylated CuInS2/ZnS (CuInS2/ZnS-PEG) QDs on neuron-like PC12 cells. We found that CuInS2/ZnS-PEG QDs were taken up by PC12 cells, but at a concentration range from 0 to 100 μg/mL, they did not affect the survival rate of the PC12 cells. In addition, we found that CuInS2/ZnS-PEG QDs significantly inhibited neurite outgrowth from and the differentiation of PC12 cells in the presence of NGF, while COOH-modified CuInS2/ZnS QDs or free PEG did not have a similar effect. Further studies showed that CuInS2/ZnS-PEG QDs obviously downregulated the expression of low-affinity NGF receptor (p75NTR) and subsequently negatively regulated the downstream MAPK cascade by dephosphorylating ERK1/2 and AKT. Taken together, these results suggest that CuInS2/ZnS-PEG QDs disturb NGF signal transduction from external stimuli to relevant internal signals, thus affecting normal biological processes such as neurite outgrowth and cell differentiation.
Collapse
Affiliation(s)
- Zhiwen Yang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Wenyi Zou
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Yongning Pan
- Department of Disease Prevention and Control, Shenzhen Baoan District Health Bureau, Shenzhen, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Li Li
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Dongmeng Liu
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Dahui Xue
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China
| | - Guimiao Lin
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Kubicek-Sutherland JZ, Makarov NS, Stromberg ZR, Lenz KD, Castañeda C, Mercer AN, Mukundan H, McDaniel H, Ramasamy K. Exploring the Biocompatibility of Near-IR CuInSe xS 2-x/ZnS Quantum Dots for Deep-Tissue Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:8567-8574. [PMID: 35019627 DOI: 10.1021/acsabm.0c00939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Near-infrared (NIR) emitting quantum dots (QDs) with emission in the biological transparency windows (NIR-I: 650-950 nm and NIR-II: 1000-1350 nm) are promising candidates for deep-tissue bioimaging. However, they typically contain toxic heavy metals such as cadmium, mercury, arsenic, or lead. We report on the biocompatibility of high brightness CuInSexS2-x/ZnS (CISeS/ZnS) QDs with a tunable emission covering the visible to NIR (550-1300 nm peak emission) and quantify the transmission of their photoluminescence through multiple biological components to evaluate their use as imaging agents. In general, CISeS/ZnS QDs were less cytotoxic to mouse fibroblast cells when compared with commercial CdSe/ZnS and InP/ZnS QDs. Surprisingly, InP/ZnS QDs significantly upregulated expression of apoptotic genes in mouse fibroblast cells, while cells exposed to CISeS/ZnS QDs did not. These findings provide insight into biocompatibility and cytotoxicity of CISeS/ZnS QDs that could be used for bioimaging.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Zachary R Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Amanda N Mercer
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | | |
Collapse
|
12
|
NIR Imaging of the Integrin-Rich Head and Neck Squamous Cell Carcinoma Using Ternary Copper Indium Selenide/Zinc Sulfide-Based Quantum Dots. Cancers (Basel) 2020; 12:cancers12123727. [PMID: 33322532 PMCID: PMC7764319 DOI: 10.3390/cancers12123727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
The efficient intraoperative identification of cancers requires the development of the bright, minimally-toxic, tumor-specific near-infrared (NIR) probes as contrast agents. Luminescent semiconductor quantum dots (QDs) offer several unique advantages for in vivo cellular imaging by providing bright and photostable fluorescent probes. Here, we present the synthesis of ZnCuInSe/ZnS core/shell QDs emitting in NIR (~750 nm) conjugated to NAVPNLRGDLQVLAQKVART (A20FMDV2) peptide for targeting αvβ6 integrin-rich head and neck squamous cell carcinoma (HNSCC). Integrin αvβ6 is usually not detectable in nonpathological tissues, but is highly upregulated in HNSCC. QD-A20 showed αvβ6 integrin-specific binding in two-dimension (2D) monolayer and three-dimension (3D) spheroid in vitro HNSCC models. QD-A20 exhibit limited penetration (ca. 50 µm) in stroma-rich 3D spheroids. Finally, we demonstrated the potential of these QDs by time-gated fluorescence imaging of stroma-rich 3D spheroids placed onto mm-thick tissue slices to mimic imaging conditions in tissues. Overall, QD-A20 could be considered as highly promising nanoprobes for NIR bioimaging and imaging-guided surgery.
Collapse
|
13
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
14
|
Dong Y, Chen Z, Hou M, Qi L, Yan C, Lu X, Liu R, Xu Y. Mitochondria-targeted aggregation-induced emission active near infrared fluorescent probe for real-time imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117456. [PMID: 31419747 DOI: 10.1016/j.saa.2019.117456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Mitochondria are essential organelles in eukaryotic cells and act as the energy powerhouse and biosynthetic compartment. Fluorescent dyes are widely used powerful molecular tools for analytical sensing and optical imaging. Low photostability, short excitation and emission wavelengths, and aggregation-induced quenching effects restrict the application of traditional commercial mitochondrial fluorescent probes for bioimaging. In this study, using rhodamine as the acceptor and phenothiazine as the donor, we synthesized a novel mitochondrial-targeted near infrared (NIR) fluorescent probe, MIT-PZR. Due to low cytotoxicity, great photostability and high specificity for mitochondria targeting, MIT-PZR has enormous potential for cell imaging. Furthermore, with a sizeable Stokes shift (emission peak at 705 nm), MIT-PZR penetrated tissues providing stable red fluorescence for imaging in vivo. The histological assessment of various tissues after treatment with MIT-PZR indicated that it has good biocompatibility. Thus, MIT-PZR is a promising mitochondrial NIR fluorescent probe for future application in clinical diagnosis and modern biological research.
Collapse
Affiliation(s)
- Yanjing Dong
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zikang Chen
- Biomaterial Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Meirong Hou
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Li Qi
- Biomaterial Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaodan Lu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Ruiyuan Liu
- Biomaterial Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
15
|
Canham L. Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discuss 2020; 222:10-81. [DOI: 10.1039/d0fd00018c] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights many spectroscopy-based studies and selected phenomenological studies of silicon-based nanostructures that provide insight into their likely PL mechanisms, and also covers six application areas.
Collapse
Affiliation(s)
- Leigh Canham
- School of Physics and Astronomy
- University of Birmingham
- Birmingham
- UK
| |
Collapse
|
16
|
Duman FD, Akkoc Y, Demirci G, Bavili N, Kiraz A, Gozuacik D, Acar HY. Bypassing pro-survival and resistance mechanisms of autophagy in EGFR-positive lung cancer cells by targeted delivery of 5FU using theranostic Ag 2S quantum dots. J Mater Chem B 2019; 7:7363-7376. [PMID: 31696188 DOI: 10.1039/c9tb01602c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Targeted drug delivery systems that combine imaging and therapeutic functions in a single structure have become very popular in nanomedicine. Near-infrared (NIR) emitting Ag2S quantum dots (QDs) are excellent candidates for this task. Here, we have developed PEGylated Ag2S QDs functionalized with Cetuximab (Cet) antibody and loaded with an anticancer drug, 5-fluorouracil (5FU). These theranostic QDs were used for targeted NIR imaging and treatment of lung cancer using low (H1299) and high (A549) Epidermal Growth Factor Receptor (EGFR) overexpressing cell lines. The Cet conjugated QDs effectively and selectively delivered 5FU to A549 cells and provided significantly enhanced cell death associated with apoptosis. Interestingly, while treatment of cells with free 5FU activated autophagy, a cellular mechanism conferring resistance to cell death, these EGFR targeting multimodal QDs significantly overcame drug resistance compared to 5FU treatment alone. The improved therapeutic outcome of 5FU delivered to A549 cells by Cet conjugated Ag2S QDs is suggested as the synergistic outcome of enhanced receptor mediated uptake of nanoparticles, and hence the drug, coupled with suppressed autophagy even in the absence of addition of an autophagy suppressor.
Collapse
Affiliation(s)
| | - Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Programs, 34956 Istanbul, Turkey.
| | - Gozde Demirci
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Nima Bavili
- Koc University, Department of Physics, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul, Turkey
| | - Alper Kiraz
- Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey and Koc University, Department of Physics, Rumelifeneri Yolu, Sarıyer, 34450 Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Programs, 34956 Istanbul, Turkey. and Sabanci University, Center of Excellence for Functional Surfaces and Interfaces for NanoDiagnostics (EFSUN), 34956 Istanbul, Turkey
| | - Havva Yagci Acar
- Koc University, Department of Chemistry, 34450 Istanbul, Turkey. and Koc University, Graduate School of Materials Science and Engineering, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey and KUYTAM, Koc University Surface Science and Technology Center, 34450 Istanbul, Turkey
| |
Collapse
|
17
|
Debayle M, Marchandier T, Xu X, Lequeux N, Pons T. pH-Sensitive Visible or Shortwave Infrared Quantum Dot Nanoprobes Using Conformation-Switchable Copolymeric Ligands. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25008-25016. [PMID: 31264837 DOI: 10.1021/acsami.9b06194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Intracellular and extracellular pH are key parameters in many physiological processes and diseases. For example, the extracellular pH of the tumor micro-environment is slightly more acidic than in healthy tissue. In vivo mapping of the extracellular pH within the tumor would therefore improve our understanding of the tumor physiology. Fluorescent semiconductor quantum dots (QDs) represent interesting probes for in vivo imaging, in particular in the shortwave infrared (SWIR) range. Here, pH-sensitive QD nanoprobes are developed using a conformation-switchable surface chemistry. The central fluorescent QD is coated with a copolymer ligand and conjugated to gold nanoparticle quenchers. As the pH decreases from physiological (7.5) to slightly acidic (5.5-6), the copolymer reversibly shrinks, which increases the energy transfer between the QD and the gold quenchers and modulates the QD fluorescence signal. This enables the design of ratiometric QD probes for biological pH range emitting in the visible or SWIR range. In addition, these probes can be easily encapsulated and remain functional within ghost erythrocyte membranes, which facilitate their in vivo application.
Collapse
Affiliation(s)
- Manon Debayle
- LPEM, UMR 8213, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université , 75005 Paris , France
| | - Thomas Marchandier
- LPEM, UMR 8213, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université , 75005 Paris , France
| | - Xiangzhen Xu
- LPEM, UMR 8213, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université , 75005 Paris , France
| | - Nicolas Lequeux
- LPEM, UMR 8213, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université , 75005 Paris , France
| | - Thomas Pons
- LPEM, UMR 8213, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université , 75005 Paris , France
| |
Collapse
|
18
|
Lu H, Carroll GM, Neale NR, Beard MC. Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS NANO 2019; 13:939-953. [PMID: 30648854 DOI: 10.1021/acsnano.8b09815] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Infrared technologies provide tremendous value to our modern-day society. The need for easy-to-fabricate, solution-processable, tunable infrared active optoelectronic materials has driven the development of infrared colloidal quantum dots, whose band gaps can readily be tuned by dimensional constraints due to the quantum confinement effect. In this Perspective, we summarize recent progress in the development of infrared quantum dots both as infrared light emitters ( e.g., in light-emitting diodes, biological imaging, etc.) as well as infrared absorbers ( e.g., in photovoltaics, solar fuels, photon up-conversion, etc.), focusing on how fundamental breakthroughs in synthesis, surface chemistry, and characterization techniques are facilitating the implementation of these nanostructures into exploratory device architectures as well as in emerging applications. We discuss the ongoing challenges and opportunities associated with infrared colloidal quantum dots.
Collapse
Affiliation(s)
- Haipeng Lu
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Gerard M Carroll
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Nathan R Neale
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Matthew C Beard
- Chemistry & Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| |
Collapse
|
19
|
Ji B, Kenaan A, Gao S, Cheng J, Cui D, Yang H, Wang J, Song J. Label-free detection of biotoxins via a photo-induced force infrared spectrum at the single-molecular level. Analyst 2019; 144:6108-6117. [DOI: 10.1039/c9an01338e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schematic illustration of photo-induced force microscopy combine principal component analysis detected and distinguish single molecule particles of biotoxins AT, RT/ETX with label-free.
Collapse
Affiliation(s)
- Bin Ji
- State Key Laboratory of Pathogen and Biosecurity
- Beijing Institute of Microbiology and Epidemiology
- Beijing 100071
- China
- Institute of Nano Biomedicine and Engineering
| | - Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument
- Department of Instrument Science and Engineering
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity
- Beijing Institute of Microbiology and Epidemiology
- Beijing 100071
- China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument
- Department of Instrument Science and Engineering
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument
- Department of Instrument Science and Engineering
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
| | - Hao Yang
- State Key Laboratory of Pathogen and Biosecurity
- Beijing Institute of Microbiology and Epidemiology
- Beijing 100071
- China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity
- Beijing Institute of Microbiology and Epidemiology
- Beijing 100071
- China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering
- Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument
- Department of Instrument Science and Engineering
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
| |
Collapse
|
20
|
Miao Y, Gu C, Zhu Y, Yu B, Shen Y, Cong H. Recent Progress in Fluorescence Imaging of the Near‐Infrared II Window. Chembiochem 2018; 19:2522-2541. [DOI: 10.1002/cbic.201800466] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Yawei Miao
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| | - Chuantao Gu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| | - Yaowei Zhu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| | - Bing Yu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| | - Youqing Shen
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
- Center for Bionanoengineering and Key Laboratory of Biomass, Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 P.R. China
| | - Hailin Cong
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringLaboratory for New Fiber Materials and Modern Textile, Growing Base for State Key LaboratoryCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 P.R. China
| |
Collapse
|
21
|
Tabassum N, Verma V, Kumar M, Kumar A, Singh B. Nanomedicine in cancer stem cell therapy: from fringe to forefront. Cell Tissue Res 2018; 374:427-438. [PMID: 30302547 DOI: 10.1007/s00441-018-2928-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
Nanomedicine is the spin-off of modern medicine and nanotechnology and aims to prevent and treat diseases using nanoscale materials such as biocompatible nanoparticles and nanorobots. Targeted cellular and tissue-specific clinical applications with maximal therapeutic effects and insignificant side effects could be achieved by the pursuit of nanotechnology in medicine and healthcare regimen. The majority of conventional cancer therapies eliminate the cells of the tumor but not the cancer stem cells (CSCs). Conversely, the use of nanotechnology in CSC-based therapies is an emerging field of biomedical sciences. This article summarizes the recent trends and application of nanomedicine especially in CSC therapy along with its limitations.
Collapse
Affiliation(s)
- Nazish Tabassum
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, 211002, India
| | - Vinod Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, 211002, India.
| | - Manoj Kumar
- National Institute for Research in Environmental Health (NIREH), ICMR, Kamla Nehru Hospital Building, Bhopal, India
| | - Ashok Kumar
- Department of Zoology, MLK Post Graduate College, Balrampur, India
| | - Birbal Singh
- Indian Veterinary Research Institute, Regional Station, Palampur, India
| |
Collapse
|
22
|
Gubala V, Johnston LJ, Krug HF, Moore CJ, Ober CK, Schwenk M, Vert M. Engineered nanomaterials and human health: Part 2. Applications and nanotoxicology (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractResearch on engineered nanomaterials (ENM) has progressed rapidly from the very early stages of studying their unique, size-dependent physicochemical properties and commercial exploration to the development of products that influence our everyday lives. We have previously reviewed various methods for synthesis, surface functionalization, and analytical characterization of ENM in a publication titled ‘Engineered Nanomaterials: Preparation, Functionalization and Characterization’. In this second, inter-linked document, we first provide an overview of important applications of ENM in products relevant to human healthcare and consumer goods, such as food, textiles, and cosmetics. We then highlight the challenges for the design and development of new ENM for bio-applications, particularly in the rapidly developing nanomedicine sector. The second part of this document is dedicated to nanotoxicology studies of ENM in consumer products. We describe the various biological targets where toxicity may occur, summarize the four nanotoxicology principles, and discuss the need for careful consideration of the biodistribution, degradation, and elimination routes of nanosized materials before they can be safely used. Finally, we review expert opinions on the risk, regulation, and ethical aspects of using engineered nanomaterials in applications that may have direct or indirect impact on human health or our environment.
Collapse
|
23
|
Mangeolle T, Yakavets I, Marchal S, Debayle M, Pons T, Bezdetnaya L, Marchal F. Fluorescent Nanoparticles for the Guided Surgery of Ovarian Peritoneal Carcinomatosis. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E572. [PMID: 30050022 PMCID: PMC6116267 DOI: 10.3390/nano8080572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 01/07/2023]
Abstract
Complete surgical resection is the ideal cure for ovarian peritoneal carcinomatosis, but remains challenging. Fluorescent guided surgery can be a promising approach for precise cytoreduction when appropriate fluorophore is used. In the presence paper, we review already developed near- and short-wave infrared fluorescent nanoparticles, which are currently under investigation for peritoneal carcinomatosis fluorescence imaging. We also highlight the main ways to improve the safety of nanoparticles, for fulfilling prerequisites of clinical application.
Collapse
Affiliation(s)
- Tristan Mangeolle
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
| | - Sophie Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Manon Debayle
- LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Thomas Pons
- LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Frédéric Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
24
|
Fan Z, Chang Y, Cui C, Sun L, Wang DH, Pan Z, Zhang M. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat Commun 2018; 9:2605. [PMID: 29973582 PMCID: PMC6031624 DOI: 10.1038/s41467-018-04763-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
Various types of nanoparticles have been proposed for targeted drug delivering, imaging, and tracking of therapeutic agents. However, highly biocompatible nanoparticles with structure-induced fluorescence and capability to conjugate with biomarkers and drugs remain lacking. This research proposes and synthesizes fluorescent nanoparticles (f-PNPs) assembled by cyclic peptides to combine imaging and drug delivering for esophageal cancer (EC). To achieve tumor targeting, f-PNPs are first conjugated with RGD moieties to selectively target EC cells via αvβ3 integrin; the nanoparticles are then embedded with epirubicin (EPI). Cell viability assays and analysis of tissue histology reveal that EPI-loaded RGD-f-PNPs (RGD-f-PNPs/EPI) led to significantly reduced cardiotoxicity and improved anti-tumor activity compared to EPI alone. Moreover, the drug delivery to tumor sites and therapeutic responses could be monitored with near-infrared fluorescence using RGD-f-PNPs/EPI. This unique nanoparticle system may lead to potential approaches for bioorganic fluorescence-based delivering, imaging, and drug release tracking.
Collapse
Affiliation(s)
- Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- Institute for Advanced Study, Tongji University, Shanghai, 200092, China
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, OH, 43210, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, 43210, Columbus, OH, USA
| | - Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Chaochu Cui
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, 76019, USA
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 453003, Xinxiang, Henan, China
| | - Leming Sun
- School of Life Sciences, Northwestern Polytechnical University, 710065, Xi'an, China
| | - David H Wang
- Department of Internal Medicine, Esophageal Diseases Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- VA North Texas Health Care System, Dallas, TX, 75216, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - Mingjun Zhang
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, OH, 43210, Columbus, Ohio, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
Bajorowicz B, Kobylański MP, Gołąbiewska A, Nadolna J, Zaleska-Medynska A, Malankowska A. Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis. Adv Colloid Interface Sci 2018; 256:352-372. [PMID: 29544654 DOI: 10.1016/j.cis.2018.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/28/2022]
Abstract
Quantum dot (QD)-decorated semiconductor micro- and nanoparticles are a new class of functional nanomaterials that have attracted considerable interest for their unique structural, optical and electronic properties that result from the large surface-to-volume ratio and the quantum confinement effect. In addition, because of QDs' excellent light-harvesting capacity, unique photoinduced electron transfer, and up-conversion behaviour, semiconductor nanoparticles decorated with quantum dots have been used widely in photocatalytic applications for the degradation of organic pollutants in both the gas and aqueous phases. This review is a comprehensive overview of the recent progress in synthesis methods for quantum dots and quantum dot-decorated semiconductor composites with an emphasis on their composition, morphology and optical behaviour. Furthermore, various approaches used for the preparation of QD-based composites are discussed in detail with respect to visible and UV light-induced photoactivity. Finally, an outlook on future development is proposed with the goal of overcoming challenges and stimulating further research into this promising field.
Collapse
Affiliation(s)
- Beata Bajorowicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Marek P Kobylański
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Anna Gołąbiewska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Joanna Nadolna
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Adriana Zaleska-Medynska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Anna Malankowska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland.
| |
Collapse
|
26
|
Trapiella-Alfonso L, Pons T, Lequeux N, Leleu L, Grimaldi J, Tasso M, Oujagir E, Seguin J, d'Orlyé F, Girard C, Doan BT, Varenne A. Clickable-Zwitterionic Copolymer Capped-Quantum Dots for in Vivo Fluorescence Tumor Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17107-17116. [PMID: 29701456 DOI: 10.1021/acsami.8b04708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In the last decades, fluorescent quantum dots (QDs) have appeared as high-performance biological fluorescent nanoprobes and have been explored for a variety of biomedical optical imaging applications. However, many central challenges still exist concerning the control of the surface chemistry to ensure high biocompatibility, low toxicity, antifouling, and specific active targeting properties. Regarding in vivo applications, circulation time and clearance of the nanoprobe are also key parameters to control the design and characterization of new optical imaging agents. Herein, the complete design and characterization of a peptide-near-infrared-QD-based nanoprobe for biomedical optical imaging is presented from the synthesis of the QDs and the zwitterionic-azide copolymer ligand, enabling a bio-orthogonal coupling, till the final in vivo test through all the characterization steps. The developed nanoprobes show high fluorescence emission, controlled grafting rate, low toxicity, in vitro active specific targeting, and in vivo long circulating blood time. This is, to our knowledge, the first report characterizing the in vivo circulation kinetics and tumor accumulation of targeted zwitterionic QDs.
Collapse
Affiliation(s)
- Laura Trapiella-Alfonso
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Thomas Pons
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Nicolas Lequeux
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Ludovic Leleu
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Juliette Grimaldi
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Mariana Tasso
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC Univ. Paris 6 , 10 rue Vauquelin , F-75231 Paris Cedex 5 , France
| | - Edward Oujagir
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Johanne Seguin
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Fanny d'Orlyé
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Christian Girard
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Bich-Thuy Doan
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| | - Anne Varenne
- PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé , 75005 Paris , France
- INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022) , 75006 Paris , France
- CNRS, Unité de Technologies Chimiques et Biologiques pour la santé UMR 8258 , 75006 Paris , France
- Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé , 75006 Paris , France
| |
Collapse
|
27
|
McHugh KJ, Jing L, Behrens AM, Jayawardena S, Tang W, Gao M, Langer R, Jaklenec A. Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706356. [PMID: 29468747 DOI: 10.1002/adma.201706356] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/26/2017] [Indexed: 05/20/2023]
Abstract
Approximately 1.7 million new cases of cancer will be diagnosed this year in the United States leading to 600 000 deaths. Patient survival rates are highly correlated with the stage of cancer diagnosis, with localized and regional remission rates that are much higher than for metastatic cancer. The current standard of care for many solid tumors includes imaging and biopsy with histological assessment. In many cases, after tomographical imaging modalities have identified abnormal morphology consistent with cancer, surgery is performed to remove the primary tumor and evaluate the surrounding lymph nodes. Accurate identification of tumor margins and staging are critical for selecting optimal treatments to minimize recurrence. Visible, fluorescent, and radiolabeled small molecules have been used as contrast agents to improve detection during real-time intraoperative imaging. Unfortunately, current dyes lack the tissue specificity, stability, and signal penetration needed for optimal performance. Quantum dots (QDs) represent an exciting class of fluorescent probes for optical imaging with tunable optical properties, high stability, and the ability to target tumors or lymph nodes based on surface functionalization. Here, state-of-the-art biocompatible QDs are compared with current Food and Drug Administration approved fluorophores used in cancer imaging and a perspective on the pathway to clinical translation is provided.
Collapse
Affiliation(s)
- Kevin J McHugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lihong Jing
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Adam M Behrens
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Surangi Jayawardena
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Wen Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Mingyuan Gao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
28
|
Ramírez-Herrera DE, Rodríguez-Velázquez E, Alatorre-Meda M, Paraguay-Delgado F, Tirado-Guízar A, Taboada P, Pina-Luis G. NIR-Emitting Alloyed CdTeSe QDs and Organic Dye Assemblies: A Nontoxic, Stable, and Efficient FRET System. NANOMATERIALS 2018; 8:nano8040231. [PMID: 29641435 PMCID: PMC5923561 DOI: 10.3390/nano8040231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/23/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022]
Abstract
In the present work, we synthesize Near Infrared (NIR)-emitting alloyed mercaptopropionic acid (MPA)-capped CdTeSe quantum dots (QDs) in a single-step one-hour process, without the use of an inert atmosphere or any pyrophoric ligands. The quantum dots are water soluble, non-toxic, and highly photostable and have high quantum yields (QYs) up to 84%. The alloyed MPA-capped CdTeSe QDs exhibit a red-shifted emission, whose color can be tuned between visible and NIR regions (608-750 nm) by controlling the Te:Se molar ratio in the precursor mixtures and/or changing the time reaction. The MPA-capped QDs were characterized by UV-visible absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and zeta potential measurements. Photostability studies were performed by irradiating the QDs with a high-power xenon lamp. The ternary MPA-CdTeSe QDs showed greater photostability than the corresponding binary MPA-CdTe QDs. We report the Förster resonance energy transfer (FRET) from the MPA-capped CdTeSe QDs as energy donors and Cyanine5 NHS-ester (Cy5) dye as an energy acceptor with efficiency (E) up to 95%. The distance between the QDs and dye (r), the Förster distance (R₀), and the binding constant (K) are reported. Additionally, cytocompatibility and cell internalization experiments conducted on human cancer cells (HeLa) cells revealed that alloyed MPA-capped CdTeSe QDs are more cytocompatible than MPA-capped CdTe QDs and are capable of ordering homogeneously all over the cytoplasm, which allows their use as potential safe, green donors for biological FRET applications.
Collapse
Affiliation(s)
- Doris E Ramírez-Herrera
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, A.P. 1166, 22500 Tijuana, BC, Mexico.
| | - Eustolia Rodríguez-Velázquez
- Facultad de Odontología, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional, 22390 Tijuana, BC, Mexico.
- Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, Campus Sur S/N, E-15782 Santiago de Compostela, Spain.
| | - Manuel Alatorre-Meda
- Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, Campus Sur S/N, E-15782 Santiago de Compostela, Spain.
- CONACyT-Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N, 22510 Tijuana, BC, Mexico.
| | - Francisco Paraguay-Delgado
- Centro de Investigación en Materiales Avanzados S. C., Departamento de Física de Materiales, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih., Mexico.
| | - Antonio Tirado-Guízar
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, A.P. 1166, 22500 Tijuana, BC, Mexico.
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Campus Sur S/N, E-15782 Santiago de Compostela, Spain.
| | - Georgina Pina-Luis
- Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana, A.P. 1166, 22500 Tijuana, BC, Mexico.
| |
Collapse
|
29
|
Kang MH, Kim SH, Jang S, Lim JE, Chang H, Kong KJ, Myung S, Park JK. Synthesis of silver sulfide nanoparticles and their photodetector applications. RSC Adv 2018; 8:28447-28452. [PMID: 35542471 PMCID: PMC9083940 DOI: 10.1039/c8ra03306d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/09/2018] [Indexed: 11/28/2022] Open
Abstract
Silver sulfide nanoparticles (Ag2S NPs) are currently being explored as infrared active nanomaterials that can provide environmentally stable alternatives to heavy metals such as lead. In this paper, we describe the novel synthesis of Ag2S NPs by using a sonochemistry method and the fabrication of photodetector devices through the integration of Ag2S NPs atop a graphene sheet. We have also synthesized Li-doped Ag2S NPs that exhibited a significantly enhanced photodetector sensitivity via their enhanced absorption ability in the UV-NIR region. First-principles calculations based on a density functional theory formalism indicated that Li-doping produced a dramatic enhancement of NIR photoluminescence of the Ag2S NPs. Finally, high-performance photodetectors based on CVD graphene and Ag2S NPs were demonstrated and investigated; the hybrid photodetectors based on Ag2S NPs and Li-doped Ag2S NPs exhibited a photoresponse of 2723.2 and 4146.0 A W−1 respectively under a light exposure of 0.89 mW cm−2 at 550 nm. Our novel approach represents a promising and effective method for the synthesis of eco-friendly semiconducting NPs for photoelectric devices. Silver sulfide nanoparticles (Ag2S NPs) are currently being explored as infrared active nanomaterials that can provide environmentally stable alternatives to heavy metals such as lead.![]()
Collapse
Affiliation(s)
- Myung Hyun Kang
- Advanced Materials Division
- Korea Research Institute of Chemical Technology
- Daejeon
- Korea
| | - Sung Ho Kim
- Advanced Materials Division
- Korea Research Institute of Chemical Technology
- Daejeon
- Korea
| | - Seunghun Jang
- Center for Molecular Modeling and Simulation
- Korea Research Institute of Chemical Technology
- Daejeon
- Korea
| | - Ji Eun Lim
- Advanced Materials Division
- Korea Research Institute of Chemical Technology
- Daejeon
- Korea
| | - Hyunju Chang
- Center for Molecular Modeling and Simulation
- Korea Research Institute of Chemical Technology
- Daejeon
- Korea
| | - Ki-jeong Kong
- Center for Molecular Modeling and Simulation
- Korea Research Institute of Chemical Technology
- Daejeon
- Korea
| | - Sung Myung
- Advanced Materials Division
- Korea Research Institute of Chemical Technology
- Daejeon
- Korea
| | - Joung Kyu Park
- Advanced Materials Division
- Korea Research Institute of Chemical Technology
- Daejeon
- Korea
| |
Collapse
|
30
|
Suseela YV, Narayanaswamy N, Pratihar S, Govindaraju T. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chem Soc Rev 2018; 47:1098-1131. [DOI: 10.1039/c7cs00774d] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our review presents the recent progress on far-red fluorescent probes of canonical and non-canonical nucleic acid (NA) structures, critically discusses the design principles, applications, limitations and outline the future prospects of developing newer probes with target-specificity for different NA structures.
Collapse
Affiliation(s)
- Y. V. Suseela
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Sumon Pratihar
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory
- New Chemistry Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru 560064
- India
| |
Collapse
|
31
|
Paramagnetic Quantum Dots as Multimodal Probes for Potential Applications in Nervous System Imaging. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0766-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Biochemical mechanisms of dose-dependent cytotoxicity and ROS-mediated apoptosis induced by lead sulfide/graphene oxide quantum dots for potential bioimaging applications. Sci Rep 2017; 7:12896. [PMID: 29018231 PMCID: PMC5635035 DOI: 10.1038/s41598-017-13396-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Colloidal quantum dots (CQD) have attracted considerable attention for biomedical diagnosis and imaging as well as biochemical analysis and stem cell tracking. In this study, quasi core/shell lead sulfide/reduced graphene oxide CQD with near infrared emission (1100 nm) were prepared for potential bioimaging applications. The nanocrystals had an average diameter of ~4 nm, a hydrodynamic size of ~8 nm, and a high quantum efficiency of 28%. Toxicity assay of the hybrid CQD in the cultured human mononuclear blood cells does not show cytotoxicity up to 200 µg/ml. At high concentrations, damage to mitochondrial activity and mitochondrial membrane potential (MMP) due to the formation of uncontrollable amounts of intracellular oxygen radicals (ROS) was observed. Cell membrane and Lysosome damage or a transition in mitochondrial permeability were also noticed. Understanding of cell-nanoparticle interaction at the molecular level is useful for the development of new fluorophores for biomedical imaging.
Collapse
|
33
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
34
|
Facile synthesis of Gd-doped CdTe quantum dots with optimized properties for optical/MR multimodal imaging. J Biol Inorg Chem 2017; 22:1151-1163. [DOI: 10.1007/s00775-017-1491-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022]
|
35
|
|
36
|
Han S, Shih WY, Shih WH. Charge-Neutral, Stable, Non-Cytotoxic, Near-Infrared SnS Aqueous Quantum Dots for High Signal-to-Noise-Ratio Biomedical Imaging. ChemistrySelect 2017; 2:7332-7339. [PMID: 30410961 PMCID: PMC6219619 DOI: 10.1002/slct.201700855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022]
Abstract
We have synthesized charge-neutral, stable, non-cytotoxic, bright, near-infrared (NIR) SnS quantum dots (QDs) by first making Cysteamine-capped SnS QDs in glycerol under acidic conditions followed by lengthening the capping molecule with peptide bonds by reacting the capping molecules with glycine and subsequent heat treatment at 200°C for 4 hours. The obtained stable SnS QDs exhibited a band gap of 1.5 eV and a strong, narrow NIR emission peak at 830 nm with a quantum yield of 4.6%. The suspension could be stable for more than 1 month without aggregation or emission decay. The positively charged SnS QDs were further neutralized by 3-mercaptoproprionic acid (MPA) through electrostatic attraction. The MPA neutralized SnS QDs were shown to be non-cytotoxic at concentrations 6 times the typical QDs concentration for immunostaining. Low-noise, optimal NIR immunofluorescent imaging of vascular endothelial growth factor (VEGF) on 3T3 cells and Tn antigen on HT29 cells was achieved by using streptavidin (SA)-linked MPA-neutralized SnS QDs with a SA:QD molar ratio of 22:1 to bind to biotinylated secondary antibody bound on the primary antibody that was bound on the targeted antigen on the cell membrane with a high signal-to noise ratio (SNR) of 35.
Collapse
Affiliation(s)
- Song Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University
| | - Wan Y. Shih
- School of Biomedical Engineering, Science, and Health Systems, Drexel University
| | - Wei-Heng Shih
- Department of Materials Science and Engineering, Drexel University
| |
Collapse
|
37
|
Rajeeva BB, Alabandi MA, Lin L, Perillo EP, Dunn AK, Zheng Y. Patterning and fluorescence tuning of quantum dots with haptic-interfaced bubble printing. JOURNAL OF MATERIALS CHEMISTRY. C 2017; 5:5693-5699. [PMID: 29599983 PMCID: PMC5870898 DOI: 10.1039/c7tc00454k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Semiconductor quantum dots (QDs) are attractive for a wide range of applications such as displays, light-emitting devices, and sensors due to their properties such as tunable fluorescence wavelength, high brightness, and narrow bandwidth. Most of the applications require precise patterning of QDs with targeted properties on solid-state substrates. Herein, we have developed a haptic-interfaced bubble printing (HIBP) technique to enable high-resolution (510 nm) high-throughput (>104 μm s-1) patterning of QDs with strong emission tunability and to significantly enhance the accessibility of the technique via a smartphone device. The scalability and versatility of the HIBP are demonstrated in our arbitrary patterning of QDs on plasmonic substrates. A detailed study of plasmonic and photothermal interactions is performed via programmed stage movements to realize tunability of the emission wavelength and lifetime. Finally, the influence of the hand movement on the properties of the printed QDs in terms of emission wavelength tuning from yellow to blue is established. This work provides a single-step macroscale platform to manipulate nanoscale properties at high resolution and high throughput.
Collapse
Affiliation(s)
- Bharath Bangalore Rajeeva
- Materials Science and Engineering Program, Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Majd A Alabandi
- Materials Science and Engineering Program, Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Linhan Lin
- Materials Science and Engineering Program, Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program, Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
38
|
Rajeeva BB, Lin L, Perillo EP, Peng X, Yu WW, Dunn AK, Zheng Y. High-Resolution Bubble Printing of Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16725-16733. [PMID: 28452214 PMCID: PMC5866051 DOI: 10.1021/acsami.7b04881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Semiconductor quantum dots (QDs) feature excellent properties, such as high quantum efficiency, tunable emission frequency, and good fluorescence stability. Incorporation of QDs into new devices relies upon high-resolution and high-throughput patterning techniques. Herein, we report a new printing technique known as bubble printing (BP), which exploits a light-generated microbubble at the interface of colloidal QD solution and a substrate to directly write QDs into arbitrary patterns. With the uniform plasmonic hot spot distribution for high bubble stability and the optimum light-scanning parameters, we have achieved full-color QD printing with submicron resolution (650 nm), high throughput (scanning rate of ∼10-2 m/s), and high adhesion of the QDs to the substrates. The printing parameters can be optimized to further control the fluorescence properties of the patterned QDs, such as emission wavelength and lifetime. The patterning of QDs on flexible substrates further demonstrates the wide applicability of this new technique. Thus, BP technique addresses the barrier of achieving a widely applicable, high-throughput and user-friendly patterning technique in the submicrometer regime, along with simultaneous fluorescence modification capability.
Collapse
Affiliation(s)
| | - Linhan Lin
- Materials Science and Engineering Program, Department of Mechanical Engineering and
| | - Evan P. Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaolei Peng
- Materials Science and Engineering Program, Department of Mechanical Engineering and
| | - William W. Yu
- Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115, United States
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science and Engineering Program, Department of Mechanical Engineering and
- Corresponding Author:
| |
Collapse
|
39
|
Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 2017; 113:61-86. [PMID: 27266447 PMCID: PMC5136524 DOI: 10.1016/j.addr.2016.05.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Therapeutic nanoparticles (NPs) can deliver cytotoxic chemotherapeutics and other drugs more safely and efficiently to patients; furthermore, selective delivery to target tissues can theoretically be accomplished actively through coating NPs with molecular ligands, and passively through exploiting physiological "enhanced permeability and retention" features. However, clinical trial results have been mixed in showing improved efficacy with drug nanoencapsulation, largely due to heterogeneous NP accumulation at target sites across patients. Thus, a clear need exists to better understand why many NP strategies fail in vivo and not result in significantly improved tumor uptake or therapeutic response. Multicolor in vivo confocal fluorescence imaging (intravital microscopy; IVM) enables integrated pharmacokinetic and pharmacodynamic (PK/PD) measurement at the single-cell level, and has helped answer key questions regarding the biological mechanisms of in vivo NP behavior. This review summarizes progress to date and also describes useful technical strategies for successful IVM experimentation.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Zeng X, Yuan Y, Wang T, Wang H, Hu X, Fu Z, Zhang G, Liu B, Lu G. Targeted imaging and induction of apoptosis of drug-resistant hepatoma cells by miR-122-loaded graphene-InP nanocompounds. J Nanobiotechnology 2017; 15:9. [PMID: 28114997 PMCID: PMC5260086 DOI: 10.1186/s12951-016-0237-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/03/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Currently, graphene oxide has attracted growing attention as a drug delivery system due to its unique characteristics. Furthermore, utilization of microRNAs as biomarkers and therapeutic strategies would be particularly attractive because of their biological mechanisms and relatively low toxicity. Therefore, we have developed functionalized nanocompounds consisted of graphene oxide, quantum dots and microRNA, which induced cancer cells apoptosis along with targeted imaging. RESULTS In the present study, we synthesized a kind of graphene-P-gp loaded with miR-122-InP@ZnS quantum dots nanocomposites (GPMQNs) that, in the presence of glutathione, provides controlled release of miR-122. The miR-122 actively targeted liver tumor cells and induced their apoptosis, including drug-resistant liver tumor cells. We also explored the near-infrared fluorescence and potential utility for targeting imaging of InP@ZnS quantum dots. To further understand the molecular mechanism of GPMQNs-induced apoptosis of drug-resistant HepG2/ADM hepatoma cells, the relevant apoptosis proteins and signal pathways were explored in vitro and in vivo. Furthermore, near-infrared GPMQNs, which exhibited reduced photon scattering and auto-fluorescence, were applied for tumor imaging in vivo to allow for deep tissue penetration and three-dimensional imaging. CONCLUSION In conclusion, techniques using GPMQNs could provide a novel targeted treatment for liver cancer, which possessed properties of targeted imaging, low toxicity, and controlled release.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Medical Imaging, Jingling Hospital, School of Medicine, Nanjing Universtiy, Nanjing, 210002 China
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004 China
| | - Yi Yuan
- Institute of Stomatology, Nanjing Medical University, Nanjing, 210029 China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 China
| | - Han Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, 210029 China
| | - Xianyun Hu
- Department of Biochemistry, Qiannan Medical College for Nationalities, Duyun, 558000 China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004 China
| | - Gen Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 China
| | - Bin Liu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 China
| | - Guangming Lu
- Department of Medical Imaging, Jingling Hospital, School of Medicine, Nanjing Universtiy, Nanjing, 210002 China
| |
Collapse
|
41
|
Rood MTM, Spa SJ, Welling MM, ten Hove JB, van Willigen DM, Buckle T, Velders AH, van Leeuwen FWB. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions. Sci Rep 2017; 7:39908. [PMID: 28057918 PMCID: PMC5216351 DOI: 10.1038/srep39908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or "training" of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.
Collapse
Affiliation(s)
- Mark T. M. Rood
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Silvia J. Spa
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Mick M. Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Jan Bart ten Hove
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
- Laboratory of BioNanoTechnology, Axis, Building 118, Bornse weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Danny M. van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Aldrik H. Velders
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
- Laboratory of BioNanoTechnology, Axis, Building 118, Bornse weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
- Laboratory of BioNanoTechnology, Axis, Building 118, Bornse weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
42
|
Abstract
In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.
Collapse
Affiliation(s)
- Bryan Ronain Smith
- Stanford University , 3155 Porter Drive, #1214, Palo Alto, California 94304-5483, United States
| | - Sanjiv Sam Gambhir
- The James H. Clark Center , 318 Campus Drive, First Floor, E-150A, Stanford, California 94305-5427, United States
| |
Collapse
|
43
|
Hemmer E, Acosta-Mora P, Méndez-Ramos J, Fischer S. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J Mater Chem B 2017; 5:4365-4392. [DOI: 10.1039/c7tb00403f] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shining a light on spectrally converting lanthanide (Ln3+)-doped nanoparticles: progress, trends, and challenges in Ln3+-nanoprobes for near-infrared bioimaging, nanothermometry, and photodynamic therapy.
Collapse
Affiliation(s)
- E. Hemmer
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa (ON)
- Canada
| | - P. Acosta-Mora
- Departamento de Fíísica
- Universidad de La Laguna
- Tenerife
- Spain
| | - J. Méndez-Ramos
- Departamento de Fíísica
- Universidad de La Laguna
- Tenerife
- Spain
| | - S. Fischer
- Department of Materials Science and Engineering, University of California—Berkeley
- Berkeley
- USA
| |
Collapse
|
44
|
Liu MX, Zhong J, Dou NN, Visocchi M, Gao G. One-Pot Aqueous Synthesization of Near-Infrared Quantum Dots for Bioimaging and Photodynamic Therapy of Gliomas. ACTA NEUROCHIRURGICA. SUPPLEMENT 2017; 124:303-308. [PMID: 28120088 DOI: 10.1007/978-3-319-39546-3_44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND As the early detection and total destruction of gliomas are essential for longer survival, we attempted to synthesize a quantum dot (QD) that is capable of recognizing glioma cells for imaging and photodynamic therapy. METHODS Using a one-pot aqueous approach, near infrared-emitting CdTe was produced. After detection of its physicochemical characteriistics, it was conjugated with RGD. The emission images were observed with confocal microscopy. To test its toxicity, CdTe-RGD at various concentrations was separately added to a human glioma cell line (U251) and a mouse embryo fibroblast cell line (3T3) (control) for incubation in dark conditions. To test its photodynamic effect, the U251 and 3T3 cells were then irradiated for 5-60 min, using a 632.8-nm laser. RESULTS This QD (Φ = 3.75 nm, photoluminescence (PL) peak wavelength = 700 nm, photoluminescence quantum yield (PLQY) = 20 %), was a spherical crystal with excellent monodispersity. Under a confocal microscope, U251 cells were visualized, but not the 3T3 cells. In dark conditions, the survival rates of both U251 and 3T3 cells were above 85 %. After laser irradiation, the survival rate of U251 cells decreased to 37 ± 1.6 % as the irradiation time and the CdTe-RGD concentration were increased. CONCLUSIONS With good physicochemical characteriistics and low toxicity, this QD-RGD has broad prospects for use in the biomedical imaging and photodynamic therapy of gliomas.
Collapse
Affiliation(s)
- Ming-Xing Liu
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang road, Shanghai, 200092, China
| | - Jun Zhong
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang road, Shanghai, 200092, China.
| | - Ning-Ning Dou
- Department of Neurosurgery, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang road, Shanghai, 200092, China
| | | | - Guo Gao
- Department of Bio-Nano Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
45
|
Sun X, Li W, Zhang X, Qi M, Zhang Z, Zhang XE, Cui Z. In Vivo Targeting and Imaging of Atherosclerosis Using Multifunctional Virus-Like Particles of Simian Virus 40. NANO LETTERS 2016; 16:6164-6171. [PMID: 27622963 DOI: 10.1021/acs.nanolett.6b02386] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Atherosclerosis is a leading cause of death globally. Targeted imaging and therapeutics are desirable for the detection and treatment of the disease. In this study, we developed trifunctional Simian virus 40 (SV40)-based nanoparticles for in vivo targeting and imaging of atherosclerotic plaques. These novel trifunctional SV40-based nanoparticles encapsulate near-infrared quantum dots and bear a targeting element and a drug component. Using trifunctional SV40-based nanoparticles, we were able to noninvasively fluorescently image atherosclerotic plaques in live intact ApoE(-/-) mice. Near-infrared quantum dots encapsulated in the SV40 virus-like particles showed prominent optical properties for in vivo imaging. When different targeting peptides for vascular cell adhesion molecule-1, macrophages, and fibrin were used, early, developmental, and late stages of atherosclerosis could be targeted and imaged in live intact ApoE(-/-) mice, respectively. Targeted SV40 virus-like particles also delivered an increased concentration of the anticoagulant drug Hirulog to atherosclerosis plaques. Our study provides novel SV40-based nanoparticles with multivalency and multifunctionality suitable for in vivo imaging, molecular targeting, and drug delivery in atherosclerosis.
Collapse
Affiliation(s)
- Xianxun Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences , Beijing 100049, China
- College of Life Science, Jiang Han University , Wuhan 430056, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Mi Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071, China
| |
Collapse
|
46
|
Yaghini E, Turner HD, Le Marois AM, Suhling K, Naasani I, MacRobert AJ. In vivo biodistribution studies and ex vivo lymph node imaging using heavy metal-free quantum dots. Biomaterials 2016; 104:182-91. [PMID: 27454064 PMCID: PMC4993815 DOI: 10.1016/j.biomaterials.2016.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/08/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022]
Abstract
Quantum dots (QDs) are attractive photoluminescence probes for biomedical imaging due to their unique photophysical properties. However, the potential toxicity of QDs has remained a major obstacle to their clinical use because they commonly incorporate the toxic heavy metal cadmium within the core of the QDs. In this work, we have evaluated a novel type of heavy metal-free/cadmium-free and biocompatible QD nanoparticles (bio CFQD(®) nanoparticles) with a good photoluminescence quantum yield. Sentinel lymph node mapping is an increasingly important treatment option in the management of breast cancer. We have demonstrated their potential for lymph node mapping by ex vivo imaging of regional lymph nodes after subcutaneous injection in the paw of rats. Using photoluminescence imaging and chemical extraction measurements based on elemental analysis by inductively coupled plasma mass spectroscopy, the quantum dots are shown to accumulate quickly and selectively in the axillary and thoracic regional lymph nodes. In addition, lifetime imaging microscopy of the QD photoluminescence indicates minimal perturbation to their photoluminescence properties in biological systems.
Collapse
Affiliation(s)
- Elnaz Yaghini
- Division of Surgery and Interventional Science and Institute of Healthcare Engineering, University College London, London, UK.
| | - Helen D Turner
- Nanoco Technologies Ltd., 46 Grafton Street, Manchester, UK
| | | | - Klaus Suhling
- Department of Physics, King's College London, London, UK
| | - Imad Naasani
- Nanoco Technologies Ltd., 46 Grafton Street, Manchester, UK
| | - Alexander J MacRobert
- Division of Surgery and Interventional Science and Institute of Healthcare Engineering, University College London, London, UK
| |
Collapse
|
47
|
Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem Rev 2016; 116:12234-12327. [DOI: 10.1021/acs.chemrev.6b00290] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gaixia Xu
- Key
Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong
Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Shuwen Zeng
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Butian Zhang
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Ken-Tye Yong
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | |
Collapse
|
48
|
Li B, Zhang G, Wang Z, Li Z, Chen R, Qin C, Gao Y, Xiao L, Jia S. Suppressing the Fluorescence Blinking of Single Quantum Dots Encased in N-type Semiconductor Nanoparticles. Sci Rep 2016; 6:32662. [PMID: 27605471 PMCID: PMC5015025 DOI: 10.1038/srep32662] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
N-type semiconductor indium tin oxide (ITO) nanoparticles are used to effectively suppress the fluorescence blinking of single near-infrared-emitting CdSeTe/ZnS core/shell quantum dots (QDs), where the ITO could block the electron transfer from excited QDs to trap states and facilitate more rapid regeneration of neutral QDs by back electron transfer. The average blinking rate of QDs is significantly reduced by more than an order of magnitude and the largest proportion of on-state is 98%, while the lifetime is not considerably reduced. Furthermore, an external electron transfer model is proposed to analyze the possible effect of radiative, nonradiative, and electron transfer pathways on fluorescence blinking. Theoretical analysis based on the model combined with measured results gives a quantitative insight into the blinking mechanism.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Zao Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Zhijie Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| |
Collapse
|
49
|
|
50
|
Yang MY, Hong J, Zhang Y, Gao Z, Jiang TT, Song J, Xu XL, Zhu LX. Bio-compatibility and cytotoxicity studies of water-soluble CuInS2-ZnS-AFP fluorescence probe in liver cancer cells. Hepatobiliary Pancreat Dis Int 2016; 15:406-11. [PMID: 27498581 DOI: 10.1016/s1499-3872(16)60112-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The oncogenesis of hepatocellular carcinoma (HCC) is not clear. The current methods of the pertinent studies are not precise and sensitive. The present study was to use liver cancer cell line to explore the bio-compatibility and cytotoxicity of ternary quantum dots (QDs) probe and to evaluate the possible application of QDs in HCC. METHODS CuInS2-ZnS-AFP fluorescence probe was designed and synthesized to label the liver cancer cell HepG2. The cytotoxicity of CuInS2-ZnS-AFP probe was evaluated by MTT experiments and flow cytometry. RESULTS The labeling experiments indicated that CuInS2-ZnS QDs conjugated with AFP antibody could enter HepG2 cells effectively and emit intensive yellow fluorescence by ultraviolet excitation without changing cellular morphology. Toxicity tests suggested that the cytotoxicity of CuInS2-ZnS-AFP probe was significantly lower than that of CdTe-ZnS-AFP probe (t test, F=0.8, T=-69.326, P<0.001). For CuInS2-ZnS-AFP probe, time-effect relationship was presented in intermediate concentration (>20%) groups (P<0.05) and dose-effect relationship was presented in almost all of the groups (P<0.05). CONCLUSION CuInS2-ZnS-AFP QDs probe had better bio-compatibility and lower cytotoxicity compared with CdTe-ZnS-AFP probe, and could be used for imaging the living cells in vitro.
Collapse
Affiliation(s)
- Ming-Ya Yang
- Center Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | | | | | | | | | | | | | | |
Collapse
|