1
|
Catania G, Guerriero G, Bakrin N, Pourchez J, Kaouane G, Leclerc L, Augeul L, Haegebaert R, Remaut K, Kryza D, Lollo G. Generation of continuous production of polymeric nanoparticles via microfluidics for aerosolised localised drug delivery. Int J Pharm 2025; 675:125532. [PMID: 40154816 DOI: 10.1016/j.ijpharm.2025.125532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Transferring the production of nanoparticles from laboratory batches to large-scale production for preclinical and clinical applications represents a challenge due to difficulties in scaling up formulations and lack of suitable preclinical models for testing. Here, we transpose the production of hyaluronic acid and polyarginine-based nanoparticles encapsulating the platinum-derivative dichloro(1,2 diaminocyclohexane)platinum(II), from conventional bulk method to continuous production using microfluidics. The microfluidic-based drug delivery system is then tested in a customised preclinical setup to assess its suitability for pressurised intraperitoneal aerosol chemotherapy (PIPAC), a locoregional chemotherapy used to treat peritoneal carcinomatosis. PIPAC consists of the aerosolization of drugs under pressure using laparoscopy. In our preclinical setup, two clinical aerosol devices, CapnoPen® and TOPOL®, are used in conjunction with syringe pump to achieve the clinically optimal aerosol droplet size range (25-50 μm). Aerosol droplet sizes of 38 and 64 μm are obtained at upstream pressures of 14.7 and 7.4 bar and flow rates of 0.4 and 1.1 mL/s, for CapnoPen® and TOPOL®, respectively. To study the spatial distribution of the aerosol, our preclinical setup is then coupled to an ex-vivo model (inverted porcine urinary bladder) that mimics the physiological peritoneal cavity environment. The smaller droplet size obtained with CapnoPen® provided more homogeneous aerosol distribution in the bladder cavity, crucial for maximising treatment coverage within the peritoneal cavity. Furthermore, stability studies reveal that nanoparticles maintained their physicochemical properties and anticancer activity post-aerosolization. Overall, this study provides a scalable approach for the production of platinum-derivative-loaded polymeric nanoparticles and demonstrates the suitability of this DDS for PIPAC.
Collapse
Affiliation(s)
| | - Giulia Guerriero
- University of Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Naoual Bakrin
- Department of Surgical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
| | - Jérémie Pourchez
- École Nationale Supérieure des Mines de Saint-Etienne, Mines Saint-Etienne, INSERM, U1059 Sainbiose, Centre CIS, Université de Lyon, Université Jean Monnet, 158 Cours Fauriel, CS 62362, 42023, Saint-Etienne Cedex 2, France
| | - Ghalia Kaouane
- École Nationale Supérieure des Mines de Saint-Etienne, Mines Saint-Etienne, INSERM, U1059 Sainbiose, Centre CIS, Université de Lyon, Université Jean Monnet, 158 Cours Fauriel, CS 62362, 42023, Saint-Etienne Cedex 2, France
| | - Lara Leclerc
- École Nationale Supérieure des Mines de Saint-Etienne, Mines Saint-Etienne, INSERM, U1059 Sainbiose, Centre CIS, Université de Lyon, Université Jean Monnet, 158 Cours Fauriel, CS 62362, 42023, Saint-Etienne Cedex 2, France
| | - Lionel Augeul
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Ragna Haegebaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - David Kryza
- University of Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France; Imthernat Plateform, Centre Léon Bérard, Lyon, France
| | - Giovanna Lollo
- University of Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France; Institut universitaire de FranceFrance (IUF), Paris, France.
| |
Collapse
|
2
|
Cai Z, Liu B, Cai Q, Gou J, Tang X. Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects. Expert Opin Drug Deliv 2025; 22:31-46. [PMID: 39641971 DOI: 10.1080/17425247.2024.2439462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC. AREAS COVERED We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC. EXPERT OPINION Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.
Collapse
Affiliation(s)
- Zhitao Cai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Boyuan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Cai
- Department of Formulation, Zhuhai Livzon Microsphere Technology Co. Ltd, Zhuhai, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Vasylyshyn T, Patsula V, Větvička D, Shapoval O, Pankrác J, Kabešová M, Beneš J, Horák D. Intraperitoneal versus intravenous administration of Flamma®-conjugated PEG-alendronate-coated upconversion nanoparticles in a mouse pancreatic cancer model. NANOSCALE ADVANCES 2024; 7:144-154. [PMID: 39569328 PMCID: PMC11575528 DOI: 10.1039/d4na00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Pancreatic cancer is one of the most common forms of malignant disease with a poor survival prognosis. Currently, nanomedicine holds great promise for targeted diagnosis and treatment of this cancer, which also reduces toxic side effects. In this work, we prepared PEG-coated monodisperse upconversion nanoparticles (UCNPs) with a conjugated Flamma® fluorescent dye for imaging and detection of particle distribution in vivo. We performed a thorough physicochemical characterization of the particles and determined their colloidal and chemical stability in several aqueous media such as water, PBS, Dulbecco's modified Eagle's medium and artificial lysosomal fluid. Luminescence resonance energy transfer from the emission of UCNPs as a donor to the Flamma® as an acceptor was confirmed. Intraperitoneal versus intravenous administration was then compared in terms of biodistribution of particles in various organs in the orthotopic mice pancreatic cancer model. The intraperitoneal route was preferred over the intravenous one, because it significantly increased the accumulation of particles in the tumor tissue. These new UCNP@Ale-PEG-Flamma® nanoparticles are thus promising for new treatment avenues for pancreatic cancer.
Collapse
Affiliation(s)
- Taras Vasylyshyn
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského Nám. 2 162 00 Prague 6 Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského Nám. 2 162 00 Prague 6 Czech Republic
| | - David Větvička
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Salmovská 1 120 00 Prague 2 Czech Republic
| | - Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského Nám. 2 162 00 Prague 6 Czech Republic
| | - Jan Pankrác
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University Salmovská 3 120 00 Prague 2 Czech Republic
| | - Martina Kabešová
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Salmovská 1 120 00 Prague 2 Czech Republic
| | - Jiří Beneš
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University Salmovská 1 120 00 Prague 2 Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského Nám. 2 162 00 Prague 6 Czech Republic
| |
Collapse
|
4
|
Kahil N, Abouzeinab NS, Hussein MAA, Khalil MI. Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review. Nanotoxicology 2024; 18:583-598. [PMID: 39319754 DOI: 10.1080/17435390.2024.2407352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) are widely used in various industries due to their distinctive physico-chemical and biological properties. However, concerns have been raised about their potential toxicity in humans. While many studies have reviewed their effects on visceral organs upon ingestion, inhalation, or skin contact, limited reviews are available regarding their adverse consequences on the liver and kidneys resulting from intraperitoneal administration in rats. Hence, this systematic review is the first to uniquely address this issue. A systematic search was performed on PubMed and Google scholar to identify articles that explored the toxic effects of ZnO-NPs and NiO-NPs in rats following intraperitoneal injection. The quality of the articles was assessed using SYCLE's risk of bias tool, leading to the selection of 16 articles; 14 for ZnO-NPs, 1 for NiO-NPs and 1 for both NPs. This review revealed that ZnO-NPs induces an acute toxicity in liver and kidney that is dose dependent. The impairments were marked by changes in organs functional markers, lipid and glucose levels and antioxidant deficiencies and lipid peroxidation. NiO-NPs also showed considerable toxicity, despite the limited studies. Further, variability of physico-chemical properties among studies complicated the toxicity assessment. To conclude, this study provides a novel contribution by summarizing the literature findings that suggest potential adverse intraperitoneal hepatorenal toxic outcomes associated with ZnO-NPs and NiO-NPs. Future research should focus on long-term effects and standardizing protocols to ensure the safe use of ZnO-NPs and NiO-NPs in industrial and clinical practices.
Collapse
Affiliation(s)
- Nour Kahil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Noura S Abouzeinab
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
| | - Mohamed A A Hussein
- Department of Internal Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Internal Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud I Khalil
- Department of Biological Sciences, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Cai Y, Zhang Z, Liu C, Tai Z, Zhu Q, Qi J, Lu Y, Chen Z, Wu W, He H. Size-dependent translocation and lymphatic transportation of polymeric nanocarriers post intraperitoneal administration. J Control Release 2024; 376:553-565. [PMID: 39427777 DOI: 10.1016/j.jconrel.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Intraperitoneal (i.p.) administered nanomedicine has been widely applied in the clinical treatment of intra-abdominal diseases and preclinical pharmacological investigations. However, current understandings about the in vivo fate of i.p.-administered drug remains controversial owing to lack of reliable investigation tools. This work presents a nanoparticle-labeling strategy based on aggregation-caused quenching (ACQ) probes in the second near-infrared (NIR-II) window, which can eliminate the interference of unbound probes and allow for non-invasive tracking of nanoparticles in deep tissues. Our results strongly evidence a size-dependent absorption and biodistribution of the i.p.-administered polymeric nanocarriers (PNs) with particle sizes ranging from 30 to 1000 nm both in vivo and ex vivo, and moreover provide a clear visualization of lymphatic transportation and lymph node retention of integral PNs. Importantly, our findings suggest that small particles (≤30 nm) are favorable in systemic therapies due to their rapid absorption and high concentration (>19 %ID mL-1) in circulation, while large particles (over 1000 nm) are meant for localized treatment of abdominal diseases. Besides, the high retention of 200 nm nanoparticles within lymph nodes indicates their promising role in cancer vaccines and lymphatic diseases including lymph node metastasis.
Collapse
Affiliation(s)
- Yifan Cai
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zichen Zhang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Chang Liu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
6
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
7
|
Sidorenko V, Scodeller P, Uustare A, Ogibalov I, Tasa A, Tshubrik O, Salumäe L, Sugahara KN, Simón-Gracia L, Teesalu T. Targeting vascular disrupting agent-treated tumor microenvironment with tissue-penetrating nanotherapy. Sci Rep 2024; 14:17513. [PMID: 39080306 PMCID: PMC11289491 DOI: 10.1038/s41598-024-64610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
Cancer treatment with vascular disrupting agents (VDAs) causes rapid and extensive necrosis in solid tumors. However, these agents fall short in eliminating all malignant cells, ultimately leading to tumor regrowth. Here, we investigated whether the molecular changes in the tumor microenvironment induced by VDA treatment sensitize the tumors for secondary nanotherapy enhanced by clinical-stage tumor penetrating peptide iRGD. Treatment of peritoneal carcinomatosis (PC) and breast cancer mice with VDA combretastatin A-4 phosphate (CA4P) resulted in upregulation of the iRGD receptors αv-integrins and NRP-1, particularly in the peripheral tumor tissue. In PC mice treated with CA4P, coadministration of iRGD resulted in an approximately threefold increase in tumor accumulation and a more homogenous distribution of intraperitoneally administered nanoparticles. Notably, treatment with a combination of CA4P, iRGD, and polymersomes loaded with a novel anthracycline Utorubicin (UTO-PS) resulted in a significant decrease in the overall tumor burden in PC-bearing mice, while avoiding overt toxicities. Our results indicate that VDA-treated tumors can be targeted therapeutically using iRGD-potentiated nanotherapy and warrant further studies on the sequential targeting of VDA-induced molecular signatures.
Collapse
Affiliation(s)
- Valeria Sidorenko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia
| | - Pablo Scodeller
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ain Uustare
- ToxInvent LLC, Tiigi 61b, 50410, Tartu, Estonia
| | | | - Andrus Tasa
- ToxInvent LLC, Tiigi 61b, 50410, Tartu, Estonia
| | | | - Liis Salumäe
- Department, of Pathology, Tartu University Hospital, 50410, Tartu, Estonia
| | - Kazuki N Sugahara
- Division of GI/Endocrine Surgery, Department of Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia.
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411, Tartu, Estonia.
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
8
|
Khetan R, Eldi P, Lokman NA, Ricciardelli C, Oehler MK, Blencowe A, Garg S, Pillman K, Albrecht H. Unveiling G-protein coupled receptors as potential targets for ovarian cancer nanomedicines: from RNA sequencing data analysis to in vitro validation. J Ovarian Res 2024; 17:156. [PMID: 39068454 PMCID: PMC11282829 DOI: 10.1186/s13048-024-01479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Genetic heterogeneity in ovarian cancer indicates the need for personalised treatment approaches. Currently, very few G-protein coupled receptors (GPCRs) have been investigated for active targeting with nanomedicines such as antibody-conjugated drugs and drug-loaded nanoparticles, highlighting a neglected potential to develop personalised treatment. To address the genetic heterogeneity of ovarian cancer, a future personalised approach could include the identification of unique GPCRs expressed in cancer biopsies, matched with personalised GPCR-targeted nanomedicines, for the delivery of lethal drugs to tumour tissue before, during and after surgery. Here we report on the systematic analysis of public ribonucleic acid-sequencing (RNA-seq) gene expression data, which led to prioritisation of 13 GPCRs as candidates with frequent overexpression in ovarian cancer tissues. Subsequently, primary ovarian cancer cells derived from ascites and ovarian cancer cell lines were used to confirm frequent gene expression for the selected GPCRs. However, the expression levels showed high variability within our selection of samples, therefore, supporting and emphasising the need for the future development of case-to-case personalised targeting approaches.
Collapse
Affiliation(s)
- Riya Khetan
- Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Preethi Eldi
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5000, Australia
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sanjay Garg
- Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Katherine Pillman
- Centre for Cancer Biology, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| | - Hugo Albrecht
- Centre of Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
9
|
Pan X, Han T, Zhao Z, Wang X, Fang X. Emerging Nanotechnology in Preclinical Pancreatic Cancer Immunotherapy: Driving Towards Clinical Applications. Int J Nanomedicine 2024; 19:6619-6641. [PMID: 38975321 PMCID: PMC11227336 DOI: 10.2147/ijn.s466459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/16/2024] [Indexed: 07/09/2024] Open
Abstract
The high malignant degree and poor prognosis of pancreatic cancer (PC) pose severe challenges to the basic research and clinical translation of next-generation therapies. The rise of immunotherapy has improved the treatment of a variety of solid tumors, while the application in PC is highly restricted by the challenge of immunosuppressive tumor microenvironment. The latest progress of nanotechnology as drug delivery platform and immune adjuvant has improved drug delivery in a variety of disease backgrounds and enhanced tumor therapy based on immunotherapy. Based on the immune loop of PC and the status quo of clinical immunotherapy of tumors, this article discussed and critically analyzed the key transformation difficulties of immunotherapy adaptation to the treatment of PC, and then proposed the rational design strategies of new nanocarriers for drug delivery and immune regulation, especially the design of combined immunotherapy. This review also put forward prospective views on future research directions, so as to provide information for the new means of clinical treatment of PC combined with the next generation of nanotechnology and immunotherapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Ting Han
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Zixuan Zhao
- The Translational Research Institute for Neurological Disorders of Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Xiaoming Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| | - Xiaosan Fang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
| |
Collapse
|
10
|
Wang P, Liu B, Wang Q, Wang Y, Gao X, Gou J, He H, Zhang Y, Yin T, Jin X, Tang X. Enhanced localized therapeutic precision: A face-to-face folate-targeted Cu 2+-mediated nanotherapy with thermosensitive sustained-release system. Int J Pharm 2024; 658:124213. [PMID: 38729382 DOI: 10.1016/j.ijpharm.2024.124213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Safe and effective Cu2+ supplementation in local lesion is crucial for minimizing toxicity of DSF-based chemotherapy. Targeted delivery of Cu2+ appears more promising. Intraperitoneal chemotherapy for peritoneal carcinoma (PC) establishes "face-to-face" contact between targeted nanocarriers and tumor tissue. Herein, this study developed a biodegradable, injectable thermosensitive hydrogel that coencapsulating DSF submicroemulsion (DSF-SE) and folate-modified liposome loading glycyrrhizic acid-Cu (FCDL). FCDL acted as 'beneficial horse' to target the tumor-localized folate receptor, thus liberating Cu2+ in tumor nidus. The prepared FCDL and DSF-SE were found with uniform sizes (160.2 nm, 175.4 nm), low surface charge (-25.77 mV, -16.40 mV) and high encapsulation efficiency (97.93 %, 90.08 %). In vitro drug release profile of FCDL, DSF-SE and FCDL&DSF-SE@G followed a sustained release pattern. And the release behavior of Cu2+ from FCDL was pH-related, i.e., Cu2+ was released faster under acidic condition. When FCDL and DSF-SE were loaded into an PLGA-PEG-PLGA-based hydrogel system, FCDL&DSF-SE@G was formed to ensure separated delivery of Cu2+ and DSF in space but synchronized release over time. The rheology experiment showed a satisfactory gelling temperature of 32.7 °C. In vitro cytotoxicity study demonstrated that FCDL&DSF-SE@G significantly lowered the IC50 of free Cu2+/DSF, Cu2+/DSF hydrogel and non-targeted analogue by almost 70 %, 65 % and 32 %, respectively. Accordingly, in tumor-bearing mice, FCDL&DSF-SE@G augmented the tumor inhibition rates for the same formulations by 352 %, 145 % and 44 %, respectively. The main mechanism was attributed to higher uptake of FCDL and DSF-SE, resulting in increased Cu(DDTC)2 formation, ROS production and cell apoptosis. In conclusion, this targeted nanotherapy approach with dual-nanocarriers loaded hydrogel system, with its focus on face-to-face contact between nanocarriers and tumor tissues in the peritoneal cavity, holds significant promise for intraperitoneal chemotherapy in PC.
Collapse
Affiliation(s)
- Ping Wang
- School of Pharmaceutical Sciences, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Boyuan Liu
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qingqing Wang
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yue Wang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing 100730, China
| | - Xiuqian Gao
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jingxin Gou
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Haibing He
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yu Zhang
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiangqun Jin
- School of Pharmaceutical Sciences, Jilin University, No. 1266, Fujin Road, Changchun 130021, China.
| | - Xing Tang
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
11
|
Santhanes D, Zhang H, Wilkins A, John Aitken R, Gannon AL, Liang M. Engineering pH-sensitive dissolution of lipid-polymer nanoparticles by Eudragit integration impacts plasmid DNA (pDNA) transfection. Eur J Pharm Biopharm 2024; 199:114299. [PMID: 38643953 DOI: 10.1016/j.ejpb.2024.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Lipid-polymer nanoparticles offer a promising strategy for improving gene nanomedicines by combining the benefits of biocompatibility and stability associated with the individual systems. However, research to date has focused on poly-lactic-co-glycolic acid (PLGA) and resulted in inefficient transfection. In this study, biocompatible Eudragit constructs E100 and RS100 were formulated as lipid-polymer nanoparticles loaded with pDNA expressing red fluorescent protein (RFP) as a model therapeutic. Using a facile nanoprecipitation technique, a core-shell structure stabilised by lipid-polyethylene glycol (PEG) surfactant was produced and displayed resistance to ultracentrifugation. Both cationic polymers E100 (pH-sensitive dissolution at 5) and RS100 (pH-insensitive dissolution) produced 150-200 nm sized particles with a small positive surface charge (+3-5 mV) and high pDNA encapsulation efficiencies (EE) of 75-90%. The dissolution properties of the Eudragit polymers significantly impacted the biological performance in human embryonic kidney cells (HEK293T). Nanoparticles composed of polymer RS100 resulted in consistently high cell viability (80-100%), whereas polymer E100 demonstrated dose-dependent behaviour (20-90% cell viability). The low dissolution of polymer RS100 over the full pH range and the resulting nanoparticles failed to induce RFP expression in HEK293T cells. In contrast, polymer E100-constructed nanoparticles resulted in reproducible and gradually increasing RFP expression of 26-42% at 48-72 h. Intraperitoneal (IP) injection of the polymer E100-based nanoparticles in C57BL/6 mice resulted in targeted RFP expression in mouse testes with favourable biocompatibility one-week post-administration. These findings predicate Eudragit based lipid-polymer nanoparticles as a novel and effective carrier for nucleic acids, which could facilitate pre-clinical evaluation and translation of gene nanomedicines.
Collapse
Affiliation(s)
- Diviya Santhanes
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Huiming Zhang
- Electron Microscopy and X-ray Unit, Research and Innovation Division, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Alex Wilkins
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Robert John Aitken
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Anne-Louise Gannon
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
12
|
Nakamura N, Ohta S. Precise control methods of the physicochemical properties of nanoparticles for personalized medicine. Curr Opin Biotechnol 2024; 87:103108. [PMID: 38513338 DOI: 10.1016/j.copbio.2024.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/23/2024]
Abstract
Biomedical applications of nanoparticles (NPs) have attracted much attention. With the advancement of personalized medicine, researchers are now proposing the concept that the design of NPs needs to be optimized according to the individual patient. To realize this concept, an important question is how precisely we can tailor the physicochemical properties of NPs, such as size, shape, and surface chemistry, using current technology. This review discusses recent advances and challenges in the precise control of the size, shape, and surface chemistry of NPs. While control methods have advanced significantly over the past 20 years, the size, shape, and surface chemistry of currently available NPs vary by type, requiring careful selection based on the targeted disease, organ, and patient.
Collapse
Affiliation(s)
- Noriko Nakamura
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
13
|
Sikora A, Sullivan KM, Dineen S, Raoof M, Karolak A. Emerging therapeutic approaches for peritoneal metastases from gastrointestinal cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200767. [PMID: 38596287 PMCID: PMC10873742 DOI: 10.1016/j.omton.2024.200767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Peritoneal metastases from gastrointestinal malignancies present difficult management decisions, with options consisting primarily of systemic chemotherapy or major surgery with or without hyperthermic intraperitoneal chemotherapy. Current research is investigating expanding therapeutic modalities, and the aim of this review is to provide an overview of the existing and emerging therapies for the peritoneal metastases from gastrointestinal cancers, primarily through the recent literature (2015 and newer). These include the current data with systemic therapy and cytoreduction with hyperthermic intraperitoneal or pressurized intraperitoneal aerosol chemotherapy, as well as novel promising modalities under investigation, including dominating oncolytic viral therapy and adoptive cellular, biologic, and bacteria therapy, or nanotechnology. The novel diverse strategies, although preliminary and preclinical in murine models, individually and collectively contribute to the treatment of peritoneal metastases, offering hope for improved outcomes and quality of life. We foresee that these evolving treatment approaches will facilitate the transfer of knowledge and data among studies and advance discovery of new drugs and optimized treatments for patients with peritoneal metastases.
Collapse
Affiliation(s)
- Aleksandra Sikora
- Department of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Kevin M. Sullivan
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sean Dineen
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mustafa Raoof
- Division of Surgical Oncology, Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Aleksandra Karolak
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
14
|
Abd Ellah NH, Helmy AM, Tammam OY, El-Sherif MW, Abouelmagd SA. Dual-responsive in situ gelling polymer matrix for tunable ketamine general anesthesia in experimental animals. Int J Pharm 2024; 652:123820. [PMID: 38242258 DOI: 10.1016/j.ijpharm.2024.123820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Animal experimentation is a critical part of the drug development process and pharmaceutical research. General anesthesia is one of the most common procedures. Careful administration and dosing of anesthetics ensure animal safety and study success. However, repeated injections are needed to maintain anesthesia, leading to adverse effects. Ketamine, a dissociative anesthetic, is commonly used for inducing anesthesia in animals and suffers from a short half-life requiring repeated dosing. Herein, we report a novel system for controlled anesthesia post-intraperitoneal administration. A polymer solution called "premix" was developed using two stimuli-responsive polymers, Pluronic (PF) and Carbopol (CP). As the premix was mixed with ketamine solution and injected, it underwent in situ gelation, hence controlling ketamine release and anesthesia. The PF and CP concentrations were optimized for the gelation temperature and viscosity upon mixing with the ketamine solution. The optimal premix/ketamine formulation (1.5:1) was liquid at room temperature and gel at physiological conditions with favorable mucoadhesion and rheology. Premix retarded the release of ketamine, translating to tunable anesthesia in vivo. Anesthesia duration and recovery were tunable per ketamine dose with minimal side effects. Therefore, we propose the implementation of PF/CP premix as a vehicle for general anesthesia in animals for optimal duration and effect.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City 2014101, Assiut, Egypt
| | - Abdelrahman M Helmy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya 61768, Egypt; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Omar Y Tammam
- Department of Biochemistry, Faculty of Pharmacy, New Valley University, Alkharga, New Valley 72511, Egypt
| | - Mohamed W El-Sherif
- Department of Surgery, Faculty of Veterinary Medicine, New Valley University, Alkharga, New Valley 72511, Egypt.
| | - Sara A Abouelmagd
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Institute for Drug Development and Innovation Research, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
15
|
Wileński S, Koper A, Śledzińska P, Bebyn M, Koper K. Innovative strategies for effective paclitaxel delivery: Recent developments and prospects. J Oncol Pharm Pract 2024; 30:367-384. [PMID: 38204196 DOI: 10.1177/10781552231208978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
PURPOSE Paclitaxel is an effective chemotherapeutic agent against a variety of cancer types. However, the clinical utility of paclitaxel is restricted by its poor solubility in water and high toxicity, resulting in low drug tolerance. These difficulties could be resolved by using suitable pharmacological carriers. Hence, it is essential to determine innovative methods of administering this effective medication to overcome paclitaxel's inherent limitations. METHODS An extensive literature search was conducted using multiple electronic databases to identify relevant studies published. RESULTS In this comprehensive analysis, many different paclitaxel delivery systems are covered and discussed, such as albumin-bound paclitaxel, polymeric micelles, paclitaxel-loaded liposomes, prodrugs, cyclodextrins, and peptide-taxane conjugates. Moreover, the review also covers various delivery routes of conventional paclitaxel or novel paclitaxel formulations, such as oral administration, local applications, and intraperitoneal delivery. CONCLUSION In addition to albumin-bound paclitaxel, polymeric micelles appear to be the most promising formulations for innovative drug delivery systems at present. A variety of variants of polymeric micelles are currently undergoing advanced phases of clinical trials.
Collapse
Affiliation(s)
- Sławomir Wileński
- Department of Pharmaceutical Technology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Central Cytostatic Drug Department, Hospital Pharmacy, The F. Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Agnieszka Koper
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Paulina Śledzińska
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
- Department of Clinical Oncology, and Nursing, Department of Oncological Surgery, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
16
|
Demuytere J, Carlier C, Van de Sande L, Hoorens A, De Clercq K, Giordano S, Morosi L, Matteo C, Zucchetti M, Davoli E, Van Dorpe J, Vervaet C, Ceelen W. Preclinical Activity of Two Paclitaxel Nanoparticle Formulations After Intraperitoneal Administration in Ovarian Cancer Murine Xenografts. Int J Nanomedicine 2024; 19:429-440. [PMID: 38260242 PMCID: PMC10800285 DOI: 10.2147/ijn.s424045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
Background Epithelial ovarian cancer is associated with high mortality due to diagnosis at later stages associated with peritoneal involvement. Several trials have evaluated the effect of intraperitoneal treatment. In this preclinical study, we report the efficacy, pharmacokinetics and pharmacodynamics of intraperitoneal treatment with two approved nanomolecular formulations of paclitaxel (nab-PTX and mic-PTX) in a murine ovarian cancer xenograft model. Methods IC50 was determined in vitro on three ovarian cancer cell lines (OVCAR-3, SK-OV-3 and SK-OV-3-Luc IP1). EOC xenografts were achieved using a modified subperitoneal implantation technique. Drug treatment was initiated 2 weeks after engraftment, and tumor volume and survival were assessed. Pharmacokinetics and drug distribution effects were assessed using UHPLC-MS/MS and MALDI imaging mass spectrometry, respectively. Pharmacodynamic effects were analyzed using immunohistochemistry and transmission electron microscopy using standard protocols. Results We demonstrated sub-micromolar IC50 concentrations for both formulations on three EOC cancer cell lines in vitro. Furthermore, IP administration of nab-PTX or mic-PTX lead to more than 2-fold longer survival compared to a control treatment of IP saline administration (30 days in controls, 66 days in nab-PTX treated animals, and 76 days in mic-PTX animals, respectively). We observed higher tissue uptake of drug following nab-PTX administration when compared to mic-PTX, with highest uptake after 4 hours post-treatment, and confirmed this lower uptake of mic-PTX using HPLC on digested tumor samples. Furthermore, apoptosis was not increased in tumor implants up to 24h post-treatment. Conclusion Intraperitoneal administration of both nab-PTX and mic-PTX results in a significant anticancer efficacy and survival benefit in a mouse OC xenograft model.
Collapse
Affiliation(s)
- Jesse Demuytere
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Charlotte Carlier
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Leen Van de Sande
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Kaat De Clercq
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - Silvia Giordano
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Lavinia Morosi
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Cristina Matteo
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Massimo Zucchetti
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Enrico Davoli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Milano, Italy
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
17
|
Xia W, Geng Y, Hu W. Peritoneal Metastasis: A Dilemma and Challenge in the Treatment of Metastatic Colorectal Cancer. Cancers (Basel) 2023; 15:5641. [PMID: 38067347 PMCID: PMC10705712 DOI: 10.3390/cancers15235641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 10/25/2024] Open
Abstract
Peritoneal metastasis (PM) is a common mode of distant metastasis in colorectal cancer (CRC) and has a poorer prognosis compared to other metastatic sites. The formation of PM foci depends on the synergistic effect of multiple molecules and the modulation of various components of the tumor microenvironment. The current treatment of CRC-PM is based on systemic chemotherapy. However, recent developments in local therapeutic modalities, such as cytoreductive surgery (CRS) and intraperitoneal chemotherapy (IPC), have improved the survival of these patients. This article reviews the research progress on the mechanism, characteristics, diagnosis, and treatment strategies of CRC-PM, and discusses the current challenges, so as to deepen the understanding of CRC-PM among clinicians.
Collapse
Affiliation(s)
- Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, China;
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
18
|
Wang P, Luo Q, Zhang L, Qu X, Che X, Cai S, Liu Y. A disulfiram/copper gluconate co-loaded bi-layered long-term drug delivery system for intraperitoneal treatment of peritoneal carcinomatosis. Colloids Surf B Biointerfaces 2023; 231:113558. [PMID: 37776774 DOI: 10.1016/j.colsurfb.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
To develop a long-term drug delivery system for the treatment of primary and metastatic peritoneal carcinoma (PC) by intraperitoneal (IP) injection, a disulfiram (DSF)/copper gluconate (Cu-Glu)-co-loaded bi-layered poly (lactic acid-coglycolic acid) (PLGA) microspheres (Ms) - thermosensitive hydrogel system (DSF-Ms-Cu-Glu-Gel) was established. Rate and mechanisms of drug release from DSF-Ms-Cu-Glu-Gel were explored. The anti-tumor effects of DSF-Ms-Cu-Glu-Gel by IP injection were evaluated using H22 xenograft tumor model mice. The accumulative release of DSF from Ms on the 10th day was 83.79% without burst release. When Ms were dispersed into B-Gel, burst release at 24 h decreased to 14.63%. The results showed that bis (diethyldithiocarbamate)-copper (Cu(DDC)2) was formed in DSF-Ms-Cu-Glu-Gel and slowly released from B-Gel. In a pharmacodynamic study, the mount of tumor nodes and ascitic fluid decreased in the DSF-Ms-Cu-Glu-Gel group. This was because: (1) DSF-Ms-Cu-Glu-Gel system co-loaded DSF and Cu-Glu, and physically isolated DSF and Cu-Glu before injection to protect DSF; (2) space and water were provided for the formation of Cu(DDC)2; (3) could provide an effective drug concentration in the abdominal cavity for a long time; (4) both DSF and Cu(DDC)2 were effective anti-tumor drugs, and the formation of Cu(DDC)2 occurred in the abdominal cavity, which further enhanced the anti-tumor activity. Thus, the DSF-Ms-Cu-Glu-Gel system can be potentially used for the IP treatment of PC in the future.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Qiuhua Luo
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, the First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China.
| |
Collapse
|
19
|
Braet H, Andretto V, Mariën R, Yücesan B, van der Vegte S, Haegebaert R, Lollo G, De Smedt SC, Remaut K. The effect of electrostatic high pressure nebulization on the stability, activity and ex vivo distribution of ionic self-assembled nanomedicines. Acta Biomater 2023; 170:318-329. [PMID: 37598790 DOI: 10.1016/j.actbio.2023.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is applied to treat unresectable peritoneal metastasis (PM), an advanced, end-stage disease with a poor prognosis. Electrostatic precipitation of the aerosol (ePIPAC) is aimed at improving the intraperitoneal (IP) drug distribution and tumor penetration. Also, the combination of nanoparticles (NPs) as drug delivery vehicles and IP aerosolization as administration method has been proposed as a promising tool to treat PM. There is currently limited knowledge on how electrostatic precipitation (ePIPAC) and high pressure nebulization (PIPAC) affects the performance of electrostatically formed complexes. Therefore, the stability, in vitro activity and ex vivo distribution and tissue penetration of negatively charged cisPt-pArg-HA NPs and positively charged siRNA-RNAiMAX NPs was evaluated following PIPAC and ePIPAC. Additionally, a multidirectional Medspray® nozzle was developed and compared with the currently used Capnopen® nozzle. For both NP types, PIPAC and ePIPAC did not negatively influence the in vitro activity, although limited aggregation of siRNA-RNAiMAX NPs was observed following nebulization with the Capnopen®. Importantly, ePIPAC was linked to a more uniform distribution and higher tissue penetration of the NPs aerosolized by both nozzles, independent on the NPs charge. Finally, compared to the Capnopen®, an increased NP deposition was observed at the top of the ex vivo model following aerosolization with the Medspray® nozzle, which indicates that this device possesses great potential for IP drug delivery purposes. STATEMENT OF SIGNIFICANCE: Aerosolized drug delivery in the peritoneal cavity holds great promise to treat peritoneal cancer. In addition, electrostatic precipitation of the aerosol to the peritoneal tissue is aimed at improving the drug distribution and tumor penetration. The combination of nanoparticles (NPs), which are nano-sized drug delivery vehicles, and aerosolization has been proposed as a promising tool to treat peritoneal cancer. However, there is currently limited knowledge on how electrostatic precipitation and aerosolization affect the performance of electrostatically formed NPs. Therefore, the stability, activity, distribution and penetration of negatively and positively charged NPs was evaluated after aerosolization and electrostatic precipitation. Additionally, to further optimize the local drug distribution, a multidirectional spray nozzle was developed and compared with the currently used nozzle.
Collapse
Affiliation(s)
- Helena Braet
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Valentina Andretto
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1, Lyon, France
| | - Remco Mariën
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Beyza Yücesan
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Ragna Haegebaert
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Giovanna Lollo
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1, Lyon, France
| | - Stefaan C De Smedt
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Katrien Remaut
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
20
|
Pharmacokinetic evaluation of poorly soluble compounds formulated as nano- or microcrystals after intraperitoneal injection to mice. Int J Pharm 2023; 636:122787. [PMID: 36894042 DOI: 10.1016/j.ijpharm.2023.122787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023]
Abstract
Intraperitonial (i.p.) delivery during initial stages of drug discovery can allow efficacy readouts for compounds which have suboptimal pharmacokinetics (PK) due to poor physiochemical properties and/or oral bioavailability. A major limitation for widespread use of i.p. administration is the paucity of published data and unclear mechanisms of absorption, particularly when using complex formulations. The aim of the present study was to investigate the PK of poorly soluble compounds with low oral bioavailability when administered i.p. as crystalline nano- and microsuspensions. Three compounds, with varying aqueous solubility (2, 7, and 38 µM, at 37 °C), were dosed to mice at 10 and 50 mg/kg. In vitro dissolution confirmed that nanocrystals dissolved faster than microcrystals and hence were expected to result in higher exposure after i.p. dosing. Surprisingly, the increase in dissolution rate with decrease in particle size did not result in higher in vivo exposure. In contrast, the microcrystals showed higher exposure. The potential of smaller particles to promote access to the lymphatic system is hypothesized and discussed as one plausible explanation. The present work demonstrates the importance of understanding physicochemical properties of drug formulations in the context of the microphysiology at the delivery site and how that knowledge can be leveraged to alter systemic PK.
Collapse
|
21
|
Hyldbakk A, Fleten KG, Snipstad S, Åslund AKO, Davies CDL, Flatmark K, Mørch Y. Intraperitoneal administration of cabazitaxel-loaded nanoparticles in peritoneal metastasis models. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102656. [PMID: 36646195 DOI: 10.1016/j.nano.2023.102656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
Colorectal and ovarian cancers frequently develop peritoneal metastases with few treatment options. Intraperitoneal chemotherapy has shown promising therapeutic effects, but is limited by rapid drug clearance and systemic toxicity. We therefore encapsulated the cabazitaxel taxane in poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs), designed to improve intraperitoneal delivery. Toxicity of free and encapsulated cabazitaxel was investigated in rats by monitoring clinical signs, organ weight and blood hematological and biochemical parameters. Pharmacokinetics, biodistribution and treatment response were evaluated in mice. Biodistribution was investigated by measuring both cabazitaxel and the 2-ethylbutanol NP degradation product. Drug encapsulation was shown to increase intraperitoneal drug retention, leading to prolonged intraperitoneal drug residence time and higher drug concentrations in peritoneal tumors. As a result, encapsulation of cabazitaxel improved the treatment response in two in vivo models bearing intraperitoneal tumors. Together, these observations indicate a strong therapeutic potential of NP-based cabazitaxel encapsulation as a novel treatment for peritoneal metastases.
Collapse
Affiliation(s)
- Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Karianne Giller Fleten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sofie Snipstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway.
| | - Andreas K O Åslund
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
| | | | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Yrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
| |
Collapse
|
22
|
Khan R, Panja S, Ding L, Tang S, Tang W, Kapoor E, Bennett RG, Oupický D. Polymeric Chloroquine as an Effective Antimigration Agent in the Treatment of Pancreatic Cancer. Mol Pharm 2022; 19:4631-4643. [PMID: 36346968 DOI: 10.1021/acs.molpharmaceut.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxychloroquine (HCQ) has been the subject of multiple recent preclinical and clinical studies for its beneficial use in the combination treatments of different types of cancers. Polymeric HCQ (PCQ), a macromolecular multivalent version of HCQ, has been shown to be effective in various cancer models both in vitro and in vivo as an inhibitor of cancer cell migration and experimental lung metastasis. Here, we present detailed in vitro studies that show that low concentrations of PCQ can efficiently inhibit cancer cell migration and colony formation orders of magnitude more effectively compared to HCQ. After intraperitoneal administration of PCQ in vivo, high levels of tumor accumulation and penetration are observed, combined with strong antimetastatic activity in an orthotopic pancreatic cancer model. These studies support the idea that PCQ may be effectively used at low doses as an adjuvant in the therapy of pancreatic cancer. In conjunction with previously published literature, these studies further undergird the potential of PCQ as an anticancer agent.
Collapse
Affiliation(s)
- Rubayat Khan
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Robert G Bennett
- Department of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
23
|
Fleten KG, Hyldbakk A, Einen C, Benjakul S, Strand BL, Davies CDL, Mørch Ý, Flatmark K. Alginate Microsphere Encapsulation of Drug-Loaded Nanoparticles: A Novel Strategy for Intraperitoneal Drug Delivery. Mar Drugs 2022; 20:744. [PMID: 36547891 PMCID: PMC9782800 DOI: 10.3390/md20120744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Alginate hydrogels have been broadly investigated for use in medical applications due to their biocompatibility and the possibility to encapsulate cells, proteins, and drugs. In the treatment of peritoneal metastasis, rapid drug clearance from the peritoneal cavity is a major challenge. Aiming to delay drug absorption and reduce toxic side effects, cabazitaxel (CAB)-loaded poly(alkyl cyanoacrylate) (PACA) nanoparticles were encapsulated in alginate microspheres. The PACAlg alginate microspheres were synthesized by electrostatic droplet generation and the physicochemical properties, stability, drug release kinetics, and mesothelial cytotoxicity were analyzed before biodistribution and therapeutic efficacy were studied in mice. The 450 µm microspheres were stable at in vivo conditions for at least 21 days after intraperitoneal implantation in mice, and distributed evenly throughout the peritoneal cavity without aggregation or adhesion. The nanoparticles were stably retained in the alginate microspheres, and nanoparticle toxicity to mesothelial cells was reduced, while the therapeutic efficacy of free CAB was maintained or improved in vivo. Altogether, this work presents the alginate encapsulation of drug-loaded nanoparticles as a promising novel strategy for the treatment of peritoneal metastasis that can improve the therapeutic ratio between toxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Karianne Giller Fleten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Caroline Einen
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Sopisa Benjakul
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Berit Løkensgard Strand
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Catharina de Lange Davies
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Ýrr Mørch
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7034 Trondheim, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Gastroenterological Surgery, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| |
Collapse
|
24
|
Akhlaghi S, Rabbani S, Karimi H, Haeri A. Hyaluronic acid gel incorporating curcumin-phospholipid complex nanoparticles prevents postoperative peritoneal adhesion. J Pharm Sci 2022. [DOI: 10.1016/j.xphs.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Phase I study of intraperitoneal aerosolized nanoparticle albumin based paclitaxel (NAB-PTX) for unresectable peritoneal metastases. EBioMedicine 2022; 82:104151. [PMID: 35843174 PMCID: PMC9297106 DOI: 10.1016/j.ebiom.2022.104151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022] Open
Abstract
Background Pressurized intraperitoneal aerosolized chemotherapy (PIPAC) is a novel method to treat patients with peritoneal metastases (PM). We aimed to study the tolerability, safety, pharmacokinetics, and tumour response of nanoparticle albumin bound paclitaxel (NAB-PTX) during PIPAC in a Phase I study. Methods Eligible patients with biopsy-proven PM from ovarian, breast, gastric, hepatobiliary, or pancreatic origin underwent three PIPAC treatments using NAB-PTX with a four-week interval. The dose of NAB-PTX was escalated from 35 to 140 mg/m2 using a Bayesian design to estimate the maximum tolerated dose (MTD). Findings Twenty-three patients were included; thirteen (65%) patients combined PIPAC therapy with continued systemic chemotherapy. The most frequent toxicities were liver toxicity and anaemia. Treatment resulted in seven (35%) responders, six (30%) non-responders and seven (35%) patients with stable PM. Systemic absorption of NAB-PTX was slow, with median peak plasma concentrations reached after 3 to 4 h. Median NAB-PTX tumour tissue concentrations suggested accumulation: 14.6 ng/mg, 19.2 ng/mg and 40.8 ng/mg after the first, second and third PIPAC procedure respectively. EORTC QoL and VAS scores remained stable. Overall survival after one year was 57%. Interpretation PIPAC with NAB-PTX results in a favourable PK profile and promising anticancer activity in patients with unresectable PM. The MTD and recommended Phase II clinical trial dose are 140 mg/m2. In patients with impaired hepatobiliary function, a dose of 112.5 mg/m2 is recommended. Funding Kom op tegen Kanker (Flemish League against Cancer).
Collapse
|
26
|
Development of a nanocapsule-loaded hydrogel for drug delivery for intraperitoneal administration. Int J Pharm 2022; 622:121828. [PMID: 35595041 DOI: 10.1016/j.ijpharm.2022.121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
Intraperitoneal (IP) drug delivery of chemotherapeutic agents, administered through hyperthermal intraperitoneal chemotherapy (HIPEC) and pressurized intraperitoneal aerosolized chemotherapy (PIPAC), is effective for the treatment of peritoneal malignancies. However, these therapeutic interventions are cumbersome in terms of surgical practice and are often associated with the formation of peritoneal adhesions, due to the catheters inserted into the peritoneal cavity during these procedures. Hence, there is a need for the development of drug delivery systems that can be administered into the peritoneal cavity. In this study, we have developed a nanocapsule (NCs)-loaded hydrogel for drug delivery in the peritoneal cavity. The hydrogel has been developed using poly(ethylene glycol) (PEG) and thiol-maleimide chemistry. NCs-loaded hydrogels were characterized by rheology and their resistance to dilution and drug release were determined in vitro. Using IVIS® to measure individual organ and recovered gel fluorescence intensity, an in vivo imaging study was performed and demonstrated that NCs incorporated in the PEG gel were retained in the IP cavity for 24 h after IP administration. NCs-loaded PEG gels could find potential applications as biodegradable, drug delivery systems that could be implanted in the IP cavity, for example at a the tumour resection site to prevent recurrence of microscopic tumours.
Collapse
|
27
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
28
|
Wouters R, Westrøm S, Vankerckhoven A, Thirion G, Ceusters J, Claes S, Schols D, Bønsdorff TB, Vergote I, Coosemans A. Effect of Particle Carriers for Intraperitoneal Drug Delivery on the Course of Ovarian Cancer and Its Immune Microenvironment in a Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14040687. [PMID: 35456521 PMCID: PMC9031420 DOI: 10.3390/pharmaceutics14040687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Novel treatment strategies are needed to provide a better prognosis for ovarian cancer. For this purpose, the current study was designed to evaluate the effects of different types of particle drug carriers on tumor response and on the tumor immune microenvironment (TME) after intraperitoneal (IP) administration in a murine tumor model. Mice with ID8-fLuc ovarian cancer were injected IP with pegylated liposomes, hydroxyapatite, polystyrene, poly(lactic-co-glycolic acid) (PLGA) and calcium carbonate (CaCO3) microparticles to evaluate the effect of the candidate carriers without drugs. Our results show that several types of microparticle drug carriers caused hyperproliferation of the tumor when injected IP, as reflected in a reduced survival or an accelerated onset of ascites. Alterations of the product formulation of CaCO3 microparticles could result in less hyperproliferation. The hyperproliferation caused by CaCO3 and PLGA was largely driven by a strong innate immune suppression. A combination with chemotherapy was not able to sufficiently counteract the tumor progression caused by the drug carriers. This research points towards the importance of evaluating a drug carrier before using it in a therapeutic setting, since drug carriers themselves can detrimentally influence tumor progression and immune status of the TME. However, it remains to be determined whether the hyperproliferation in this model will be of relevance in other cancer models or in humans.
Collapse
Affiliation(s)
- Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
- Oncoinvent AS, 0484 Oslo, Norway; (S.W.); (T.B.B.)
- Correspondence:
| | - Sara Westrøm
- Oncoinvent AS, 0484 Oslo, Norway; (S.W.); (T.B.B.)
| | - Ann Vankerckhoven
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Gitte Thirion
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Jolien Ceusters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (S.C.); (D.S.)
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (S.C.); (D.S.)
| | | | - Ignace Vergote
- Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| |
Collapse
|
29
|
Hama S, Nishi T, Isono E, Itakura S, Yoshikawa Y, Nishimoto A, Suzuki S, Kirimura N, Todo H, Kogure K. Intraperitoneal administration of nanoparticles containing tocopheryl succinate prevents peritoneal dissemination. Cancer Sci 2022; 113:1779-1788. [PMID: 35253340 PMCID: PMC9128176 DOI: 10.1111/cas.15321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Intraperitoneal administration of anticancer nanoparticles is a rational strategy for preventing peritoneal dissemination of colon cancer owing to the prolonged retention of nanoparticles in the abdominal cavity. However, instability of nanoparticles in body fluids causes inefficient retention, reducing its anticancer effects. We have previously developed anticancer nanoparticles containing tocopheryl succinate, which showed high in vivo stability and multifunctional anticancer effects. In the present study, we have demonstrated that peritoneal dissemination derived from colon cancer was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. The biodistribution of tocopheryl succinate nanoparticles was evaluated by inductively coupled plasma mass spectroscopy and imaging analysis in mice administered quantum dot encapsulated tocopheryl succinate nanoparticles. Intraperitoneal administration of tocopheryl succinate nanoparticles showed longer retention in the abdominal cavity than by its intravenous administration. Moreover, due to effective biodistribution, tumor growth was prevented by intraperitoneal administration of tocopheryl succinate nanoparticles. Furthermore, the anticancer effect was attributed to the inhibition of cancer cell proliferation and improvement of the intraperitoneal microenvironment, such as decrease in the levels of vascular endothelial growth factor A, interleukin 10, and M2-like phenotype of tumor-associated macrophages. Collectively, intraperitoneal administration of tocopheryl succinate nanoparticles is expected to have multifaceted antitumor effects against colon cancer with peritoneal dissemination.
Collapse
Affiliation(s)
- Susumu Hama
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Takayuki Nishi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Eitaro Isono
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan
| | - Shoko Itakura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, 350-0295, Japan
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, 650-0046, Japan
| | - Akinori Nishimoto
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Satoko Suzuki
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Naoko Kirimura
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, 350-0295, Japan
| | - Kentaro Kogure
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8505, Japan
| |
Collapse
|
30
|
Ding L, Tang S, Yu A, Wang A, Tang W, Jia H, Oupický D. Nanoemulsion-Assisted siRNA Delivery to Modulate the Nervous Tumor Microenvironment in the Treatment of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10015-10029. [PMID: 35188730 PMCID: PMC9153289 DOI: 10.1021/acsami.1c21997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pancreatic cancer (PC) is a fatal human cancer, whose progression is highly dependent on the nervous tumor microenvironment. In the present study, cationic perfluorocarbon nanoemulsions were employed as an intraperitoneal delivery platform to facilitate the delivery and penetration of a therapeutic small interfering RNA (siRNA) to orthotopic pancreatic tumors. The nanoemulsion was used to silence the expression of the nerve growth factor (NGF) as a way of favorably modulating the tumor-neuronal interactions in pancreatic tumors. The nanoemulsions exhibited deep tumor penetration that was dependent on exocytosis and enhanced NGF gene silencing in vitro and in vivo when compared with control polycation/siRNA polyplexes, leading to the effective and safe suppression of tumor growth in orthotopic PC. Overall, emulsion-assisted delivery of NGF siRNA is a promising treatment approach for PC by targeting the interactions between the tumor cells and the nervous microenvironment.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Anlin Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Huizhen Jia
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
31
|
Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. Eur J Pharm Biopharm 2022; 172:16-30. [PMID: 35074555 DOI: 10.1016/j.ejpb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
32
|
Liu D, Wang T, Lu Y. Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Adv Healthc Mater 2022; 11:e2102253. [PMID: 34767306 DOI: 10.1002/adhm.202102253] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Recent advances of untethered microrobots, which navigate the complex regions in vivo for therapeutics, have presented promising multiple applications on future healthcare. Microrobots used for active drug delivery system (DDS) have been demonstrated for advanced targeting distribution, improved delivery efficiency, and reduced systemic side effects. In this review, the therapeutic benefits of active DDS are presented compared to the traditional passive DDS, which illustrate the historical reasons for choosing active DDS. An integrated 5D radar chart analysis model containing the core capabilities of the active DDS is innovatively proposed. It would be a practical tool for measurement and mapping of the field of active delivery, followed by the evolutions and bottlenecks of each technical module. The comprehensive consideration of microrobots before clinical application is also discussed from the aspects of robot ethics, dosage, quality control and stability control in actual production. Gastrointestinal and blood administration, as two major clinical scenes of drug delivery, are discussed in detail as examples of the potential bedside applications of active DDS. Finally, combined with the reported analysis model, the current status and future outlook from the translation prospect to the clinical scenes of microrobots are provided.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
33
|
Abstract
Peritoneal surface malignancies comprise a heterogeneous group of primary tumours, including peritoneal mesothelioma, and peritoneal metastases of other tumours, including ovarian, gastric, colorectal, appendicular or pancreatic cancers. The pathophysiology of peritoneal malignancy is complex and not fully understood. The two main hypotheses are the transformation of mesothelial cells (peritoneal primary tumour) and shedding of cells from a primary tumour with implantation of cells in the peritoneal cavity (peritoneal metastasis). Diagnosis is challenging and often requires modern imaging and interventional techniques, including surgical exploration. In the past decade, new treatments and multimodal strategies helped to improve patient survival and quality of life and the premise that peritoneal malignancies are fatal diseases has been dismissed as management strategies, including complete cytoreductive surgery embedded in perioperative systemic chemotherapy, can provide cure in selected patients. Furthermore, intraperitoneal chemotherapy has become an important part of combination treatments. Improving locoregional treatment delivery to enhance penetration to tumour nodules and reduce systemic uptake is one of the most active research areas. The current main challenges involve not only offering the best treatment option and developing intraperitoneal therapies that are equivalent to current systemic therapies but also defining the optimal treatment sequence according to primary tumour, disease extent and patient preferences. New imaging modalities, less invasive surgery, nanomedicines and targeted therapies are the basis for a new era of intraperitoneal therapy and are beginning to show encouraging outcomes.
Collapse
|
34
|
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines 2021; 9:1554. [PMID: 34829783 PMCID: PMC8615601 DOI: 10.3390/biomedicines9111554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer remains as one of the most lethal gynecological cancers to date, with major challenges associated with screening, diagnosis and treatment of the disease and an urgent need for new technologies that can meet these challenges. Nanomaterials provide new opportunities in diagnosis and therapeutic management of many different types of cancers. In this review, we highlight recent promising developments of nanoparticles designed specifically for the detection or imaging of ovarian cancer that have reached the preclinical stage of development. This includes contrast agents, molecular imaging agents and intraoperative aids that have been designed for integration into standard imaging procedures. While numerous nanoparticle systems have been developed for ovarian cancer detection and imaging, specific design criteria governing nanomaterial targeting, biodistribution and clearance from the peritoneal cavity remain key challenges that need to be overcome before these promising tools can accomplish significant breakthroughs into the clinical setting.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- ARC Training Center for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
35
|
Kim J, Shim MK, Cho YJ, Jeon S, Moon Y, Choi J, Kim J, Lee J, Lee JW, Kim K. The safe and effective intraperitoneal chemotherapy with cathepsin B-specific doxorubicin prodrug nanoparticles in ovarian cancer with peritoneal carcinomatosis. Biomaterials 2021; 279:121189. [PMID: 34695659 DOI: 10.1016/j.biomaterials.2021.121189] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
Intraperitoneal (IP) chemotherapy has shown promising efficacy in ovarian cancer with peritoneal carcinomatosis (PC), but in vivo rapid clearance and severe toxicity of free anticancer drugs hinder the effective treatment. Herein, we propose the safe and effective IP chemotherapy with cathepsin B-specific doxorubicin prodrug nanoparticles (PNPs) in ovarian cancer with PC. The PNPs are prepared by self-assembling cathepsin B-specific cleavable peptide (FRRG) and doxorubicin (DOX) conjugates, which are further formulated with pluronic F68. The PNPs exhibit stable spherical structure and cytotoxic DOX is specifically released from PNPs via sequential enzymatic degradation by cathepsin B and intracellular proteases. The PNPs induce cytotoxicity in cathepsin B-overexpressing ovarian (SKOV-3 and HeyA8) and colon (MC38 and CT26) cancer cells, but not in cathepsin B-deficient normal cells in cultured condition. With enhanced cancer-specificity and in vivo residence time, IP injected PNPs efficiently accumulate within PC through two targeting mechanisms of direct penetration (circulation independent) and systemic blood vessel-associated accumulation (circulation dependent). As a result, IP chemotherapy with PNPs efficiently inhibit tumor progression with minimal side effects in peritoneal human ovarian tumor-bearing xenograft (POX) and patient derived xenograft (PDX) models. These results demonstrate that PNPs effectively inhibit progression of ovarian cancer with peritoneal carcinomatosis with minimal local and systemic toxicities by high cancer-specificity and favorable in vivo PK/PD profiles enhancing PC accumulation.
Collapse
Affiliation(s)
- Jinseong Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Man Kyu Shim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sangmin Jeon
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yujeong Moon
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Bioengineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwoong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongrae Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jaewan Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
36
|
Braet H, Rahimi-Gorji M, Debbaut C, Ghorbaniasl G, Van Walleghem T, Cornelis S, Cosyns S, Vervaet C, Willaert W, Ceelen W, De Smedt SC, Remaut K. Exploring High Pressure Nebulization of Pluronic F127 Hydrogels for Intraperitoneal Drug Delivery. Eur J Pharm Biopharm 2021; 169:134-143. [PMID: 34634467 DOI: 10.1016/j.ejpb.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Peritoneal metastasis is an advanced cancer type which can be treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Here, chemotherapeutics are nebulized under high pressure in the intraperitoneal (IP) cavity to obtain a better biodistribution and tumor penetration. To prevent the fast leakage of chemotherapeutics from the IP cavity, however, nebulization of controlled release formulations is of interest. In this study, the potential of the thermosensitive hydrogel Pluronic F127 to be applied by high pressure nebulization is evaluated. Therefore, aerosol formation is experimentally examined by laser diffraction and theoretically simulated by computational fluid dynamics (CFD) modelling. Furthermore, Pluronic F127 hydrogels are subjected to rheological characterization after which the release of fluorescent model nanoparticles from the hydrogels is determined. A delicate equilibrium is observed between controlled release properties and suitability for aerosolization, where denser hydrogels (20% and 25% w/v Pluronic F127) are able to sustain nanoparticle release up to 30 hours, but cannot effectively be nebulized and vice versa. This is demonstrated by a growing aerosol droplet size and exponentially decreasing aerosol cone angle when Pluronic F127 concentration and viscosity increase. Novel nozzle designs or alternative controlled release formulations could move intraperitoneal drug delivery by high pressure nebulization forward.
Collapse
Affiliation(s)
- Helena Braet
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium.
| | - Mohammad Rahimi-Gorji
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; IBiTech - bioMMeda, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Charlotte Debbaut
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; IBiTech - bioMMeda, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Ghader Ghorbaniasl
- Department of Mechanical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium.
| | - Thibault Van Walleghem
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Senne Cornelis
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Sarah Cosyns
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium.
| | - Wouter Willaert
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium.
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium.
| |
Collapse
|
37
|
Vos LMC, Aronson SL, van Driel WJ, Huitema ADR, Schagen van Leeuwen JH, Lok CAR, Sonke GS. Translational and pharmacological principles of hyperthermic intraperitoneal chemotherapy for ovarian cancer. Best Pract Res Clin Obstet Gynaecol 2021; 78:86-102. [PMID: 34565676 DOI: 10.1016/j.bpobgyn.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The long-term survival of advanced-stage ovarian cancer patients remains poor, despite extensive cytoreductive surgery, chemotherapy, and the recent addition of poly (ADP-ribose) polymerase inhibitors (PARPi). Hyperthermic intraperitoneal chemotherapy (HIPEC) has shown survival benefit by specifically targeting peritoneal metastases, the primary site of disease recurrence. Different aspects of how HIPEC exerts its effect remain poorly understood. Improved understanding of the effects of hyperthermia on ovarian cancer cells, the synergy of hyperthermia with intraperitoneal chemotherapy, and the pharmacological and pharmacokinetic properties of intraperitoneally administered cisplatin may help identify ways to optimize the efficacy of HIPEC. This review provides an overview of these translational and pharmacological principles of HIPEC and aims to expose knowledge gaps that may direct further research to optimize the HIPEC procedure and ultimately improve survival for women with advanced ovarian cancer.
Collapse
Affiliation(s)
- Laura M C Vos
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - S Lot Aronson
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands; Dept. of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Willemien J van Driel
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Alwin D R Huitema
- Dept. of Pharmacology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Dept. of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Dept. of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Christine A R Lok
- Dept. of Gynecologic Oncology, Center for Gynecologic Oncology, Amsterdam, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gabe S Sonke
- Dept. of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
38
|
Ceelen W, Demuytere J, de Hingh I. Hyperthermic Intraperitoneal Chemotherapy: A Critical Review. Cancers (Basel) 2021; 13:cancers13133114. [PMID: 34206563 PMCID: PMC8268659 DOI: 10.3390/cancers13133114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Patients with cancer of the digestive system or ovarian cancer are at risk of developing peritoneal metastases (PM). In some patients with PM, surgery followed by intraperitoneal (IP) chemotherapy has emerged as a valid treatment option. The addition of hyperthermia is thought to further enhance the efficacy of IP chemotherapy. However, the results of recent clinical trials in large bowel cancer have put into question the use of hyperthermic intraperitoneal chemotherapy (HIPEC). Here, we review the rationale and current results of HIPEC for PM and propose a roadmap to further progress. Abstract With increasing awareness amongst physicians and improved radiological imaging techniques, the peritoneal cavity is increasingly recognized as an important metastatic site in various malignancies. Prognosis of these patients is usually poor as traditional treatment including surgical resection or systemic treatment is relatively ineffective. Intraperitoneal delivery of chemotherapeutic agents is thought to be an attractive alternative as this results in high tumor tissue concentrations with limited systemic exposure. The addition of hyperthermia aims to potentiate the anti-tumor effects of chemotherapy, resulting in the concept of heated intraperitoneal chemotherapy (HIPEC) for the treatment of peritoneal metastases as it was developed about 3 decades ago. With increasing experience, HIPEC has become a safe and accepted treatment offered in many centers around the world. However, standardization of the technique has been poor and results from clinical trials have been equivocal. As a result, the true value of HIPEC in the treatment of peritoneal metastases remains a matter of debate. The current review aims to provide a critical overview of the theoretical concept and preclinical and clinical study results, to outline areas of persisting uncertainty, and to propose a framework to better define the role of HIPEC in the treatment of peritoneal malignancies.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9332-6251
| | - Jesse Demuytere
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Ignace de Hingh
- Department of Surgery, Catharina Cancer Institute, PO Box 1350, 5602 ZA Eindhoven, The Netherlands;
- GROW—School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
39
|
Melchor-Martínez EM, Torres Castillo NE, Macias-Garbett R, Lucero-Saucedo SL, Parra-Saldívar R, Sosa-Hernández JE. Modern World Applications for Nano-Bio Materials: Tissue Engineering and COVID-19. Front Bioeng Biotechnol 2021; 9:597958. [PMID: 34055754 PMCID: PMC8160436 DOI: 10.3389/fbioe.2021.597958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past years, biomaterials-based nano cues with multi-functional characteristics have been engineered with high interest. The ease in fine tunability with maintained compliance makes an array of nano-bio materials supreme candidates for the biomedical sector of the modern world. Moreover, the multi-functional dimensions of nano-bio elements also help to maintain or even improve the patients' life quality most securely by lowering or diminishing the adverse effects of in practice therapeutic modalities. Therefore, engineering highly efficient, reliable, compatible, and recyclable biomaterials-based novel corrective cues with multipurpose applications is essential and a core demand to tackle many human health-related challenges, e.g., the current COVID-19 pandemic. Moreover, robust engineering design and properly exploited nano-bio materials deliver wide-ranging openings for experimentation in the field of interdisciplinary and multidisciplinary scientific research. In this context, herein, it is reviewed the applications and potential on tissue engineering and therapeutics of COVID-19 of several biomaterials. Following a brief introduction is a discussion of the drug delivery routes and mechanisms of biomaterials-based nano cues with suitable examples. The second half of the review focuses on the mainstream applications changing the dynamics of 21st century materials. In the end, current challenges and recommendations are given for a healthy and foreseeable future.
Collapse
|
40
|
Freund E, Miebach L, Stope MB, Bekeschus S. Hypochlorous acid selectively promotes toxicity and the expression of danger signals in human abdominal cancer cells. Oncol Rep 2021; 45:71. [PMID: 33760187 PMCID: PMC8020206 DOI: 10.3892/or.2021.8022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Tumors of the abdominal cavity, such as colorectal, pancreatic and ovarian cancer, frequently metastasize into the peritoneum. Large numbers of metastatic nodules hinder curative surgical resection, necessitating lavage with hyperthermic intraperitoneal chemotherapy (HIPEC). However, HIPEC not only causes severe side effects but also has limited therapeutic efficacy in various instances. At the same time, the age of immunotherapies such as biological agents, checkpoint‑ inhibitors or immune‑cell therapies, increasingly emphasizes the critical role of anticancer immunity in targeting malignancies. The present study investigated the ability of three types of long‑lived reactive species (oxidants) to inactivate cancer cells and potentially complement current HIPEC regimens, as well as to increase tumor cell expression of danger signals that stimulate innate immunity. The human abdominal cancer cell lines HT‑29, Panc‑01 and SK‑OV‑3 were exposed to different concentrations of hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite (ONOO‑). Metabolic activity was measured, as well as determination of cell death and danger signal expression levels via flow cytometry and detection of intracellular oxidation via high‑content microscopy. Oxidation of tumor decreased intracellular levels of the antioxidant glutathione and induced oxidation in mitochondria, accompanied by a decrease in metabolic activity and an increase in regulated cell death. At similar concentrations, HOCl showed the most potent effects. Non‑malignant HaCaT keratinocytes were less affected, suggesting the approach to be selective to some extent. Pro‑immunogenic danger molecules were investigated by assessing the expression levels of calreticulin (CRT), and heat‑shock protein (HSP)70 and HSP90. CRT expression was greatest following HOCl and ONOO‑ treatment, whereas HOCl and H2O2 resulted in the greatest increase in HSP70 and HSP90 expression levels. These results suggested that HOCl may be a promising agent to complement current HIPEC regimens targeting peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Eric Freund
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), D-17489 Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, D-17475 Greifswald, Germany
| | - Lea Miebach
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), D-17489 Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, D-17475 Greifswald, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, Bonn University Medical Center, D-53217 Bonn, Germany
| | - Sander Bekeschus
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), D-17489 Greifswald, Germany
| |
Collapse
|
41
|
Hang Y, Tang S, Tang W, Větvička D, Zhang C, Xie Y, Yu F, Yu A, Sil D, Li J, Singh RK, Oupický D. Polycation fluorination improves intraperitoneal siRNA delivery in metastatic pancreatic cancer. J Control Release 2021; 333:139-150. [PMID: 33774121 DOI: 10.1016/j.jconrel.2021.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a growing medical problem associated with extensive metastasis and high mortality. Intraperitoneal (IP) administration of therapeutics promises to help the treatment of cancers originated from organs in the peritoneal cavity. In this study, we evaluated how physicochemical properties of self-assembled polycation/siRNA nanoparticles affect their IP delivery efficacy in an orthotopic PDAC model. We have examined the effect of covalent polycation modification with lipophobic and hydrophobic tetrafluoro-p-toluic acid (TFTA), hydrophobic cholesterol, and hydrophilic poly(ethylene glycol) respectively. The surface charge of the three different nanoparticles was also modulated by coating the surface with serum albumin. We found that positively charged fluorine-containing particles with lipophobic properties based on a mixture of positively charged polymeric AMD3100 CXCR4 antagonist (PAMD) and PAMD modified with TFTA (mPAMD-TFTA)/siRNA displayed the best cell uptake and transfection efficacy in vitro. Biodistribution evaluation of the nanoparticles in a syngeneic orthotopic PDAC model revealed that the fluorine-containing formulation also achieved the highest PDAC tumor accumulation after IP administration. With a combination of CXCR4 inhibition by PAMD and PLK1 downregulation by siRNA, the treatment with mPAMD-TFTA/siPLK1 showed significant inhibition of both primary and metastatic PDAC tumors. Overall, our study provides insights into and guides the design of the nanoparticles for improved IP delivery of siRNA in PDAC.
Collapse
Affiliation(s)
- Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Větvička
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Chuhan Zhang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
42
|
Wang P, Qu X, Che X, Luo Q, Tang X, Liu Y. Pharmaceutical strategies in improving anti-tumour efficacy and safety of intraperitoneal therapy for peritoneal metastasis. Expert Opin Drug Deliv 2021; 18:1193-1210. [PMID: 33682562 DOI: 10.1080/17425247.2021.1896493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: In selected patients with limited peritoneal metastasis (PM), favorable tumor biology, and a good clinical condition, there is an indication for combination of cytoreductive surgery (CRS) and subsequent intravenous (IV) or intraperitoneal (IP) chemotherapy. Compared with IV injection, IP therapy can achieve a high drug concentration within the peritoneal cavity with low systemic toxicity, however, the clinical application of IP chemotherapy is limited by the related abdominal pain, infection, and intolerance.Areas covered:To improve the anti-tumor efficacy and safety of IP therapy, various pharmaceutical strategies have been developed and show promising potential. This review discusses the specialized modification of traditional drug delivery systems and demonstrates the preparation of customized drug carriers for IP therapy, including chemotherapy and gene therapy. IP therapy has important clinical significance in the treatment of PM using novel anti-tumor agents as well as conventional drugs in new applications.Expert opinion: Although IP therapy exhibits good performance both in mouse models and in patients with PM in clinical trials, its clinical application remains limited due to the serious side effects and low acceptability. Further investigations, including pharmaceutical strategies, are needed to develop potential IP therapy, focusing on the efficacy and safety thereof.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| |
Collapse
|
43
|
Kuper CF, Pieters RHH, van Bilsen JHM. Nanomaterials and the Serosal Immune System in the Thoracic and Peritoneal Cavities. Int J Mol Sci 2021; 22:ijms22052610. [PMID: 33807632 PMCID: PMC7961545 DOI: 10.3390/ijms22052610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NM on ILCs and other components of the serosal immune system are scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NM may lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NM on the serosal immune system.
Collapse
Affiliation(s)
- C. Frieke Kuper
- Consultant, Haagstraat 13, 3581 SW Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| | - Raymond H. H. Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
- Innovative Testing in Life Sciences & Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, Padualaan 97, 3584 CH Utrecht, The Netherlands
| | - Jolanda H. M. van Bilsen
- Department for Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| |
Collapse
|
44
|
Kim HI, Wilson BC. Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis from Gastrointestinal Cancers: Status, Opportunities, and Challenges. J Gastric Cancer 2020; 20:355-375. [PMID: 33425438 PMCID: PMC7781745 DOI: 10.5230/jgc.2020.20.e39] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
Selective accumulation of a photosensitizer and the subsequent response in only the light-irradiated target are advantages of photodynamic diagnosis and therapy. The limited depth of the therapeutic effect is a positive characteristic when treating surface malignancies, such as peritoneal carcinomatosis. For photodynamic diagnosis (PDD), adjunctive use of aminolevulinic acid- protoporphyrin IX-guided fluorescence imaging detects cancer nodules, which would have been missed during assessment using white light visualization only. Furthermore, since few side effects have been reported, this has the potential to become a vital component of diagnostic laparoscopy. A variety of photosensitizers have been examined for photodynamic therapy (PDT), and treatment protocols are heterogeneous in terms of photosensitizer type and dose, photosensitizer-light time interval, and light source wavelength, dose, and dose rate. Although several studies have suggested that PDT has favorable effects in peritoneal carcinomatosis, clinical trials in more homogenous patient groups are required to identify the true benefits. In addition, major complications, such as bowel perforation and capillary leak syndrome, need to be reduced. In the long term, PDD and PDT are likely to be successful therapeutic options for patients with peritoneal carcinomatosis, with several options to optimize the photosensitizer and light delivery parameters to improve safety and efficacy.
Collapse
Affiliation(s)
- Hyoung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Seoul, Korea
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Van de Sande L, Rahimi‐Gorji M, Giordano S, Davoli E, Matteo C, Detlefsen S, D'Herde K, Braet H, Shariati M, Remaut K, Xie F, Debbaut C, Ghorbaniasl G, Cosyns S, Willaert W, Ceelen W. Electrostatic Intraperitoneal Aerosol Delivery of Nanoparticles: Proof of Concept and Preclinical Validation. Adv Healthc Mater 2020; 9:e2000655. [PMID: 32548967 DOI: 10.1002/adhm.202000655] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing interest in intraperitoneal delivery of chemotherapy as an aerosol in patients with peritoneal metastasis. The currently used technology is hampered by inhomogenous drug delivery throughout the peritoneal cavity because of gravity, drag, and inertial impaction. Addition of an electrical force to aerosol particles, exerted by an electrostatic field, can improve spatial aerosol homogeneity and enhance tissue penetration. A computational fluid dynamics model shows that electrostatic precipitation (EP) results in a significantly improved aerosol distribution. Fluorescent nanoparticles (NPs) remain stable after nebulization in vitro, while EP significantly improves spatial homogeneity of NP distribution. Next, pressurized intraperitoneal chemotherapy with and without EP using NP albumin bound paclitaxel (Nab-PTX) in a novel rat model is examined. EP does not worsen the effects of CO2 insufflation and intraperitoneal Nab-PTX on mesothelial structural integrity or the severity of peritoneal inflammation. Importantly, EP significantly enhances tissue penetration of Nab-PTX in the anatomical regions not facing the nozzle of the nebulizer. Also, the addition of EP leads to more homogenous peritoneal tissue concentrations of Nab-PTX, in parallel with higher plasma concentrations. In conclusion, EP enhances spatial homogeneity and tissue uptake after intraperitoneal nebulization of anticancer NPs.
Collapse
Affiliation(s)
- Leen Van de Sande
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Mohammad Rahimi‐Gorji
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- IBiTech – bioMMedaGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Silvia Giordano
- Mass Spectrometry LaboratoryIstituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2 Milan 20156 Italy
| | - Enrico Davoli
- Mass Spectrometry LaboratoryIstituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2 Milan 20156 Italy
| | - Cristina Matteo
- Cancer Pharmacology LaboratoryIstituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2 Milan 20156 Italy
| | - Sönke Detlefsen
- Department of PathologyOdense University Hospital J.B. Winsløws Vej 4 Odense 5000 Denmark
- Department of Clinical ResearchUniversity of Southern Denmark Winsløwsparken 19 Odense 5000 Denmark
| | - Katharina D'Herde
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Helena Braet
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Molood Shariati
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Katrien Remaut
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Feifan Xie
- Laboratory of Medical Biochemistry and Clinical AnalysisFaculty of Pharmaceutical SciencesGhent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Charlotte Debbaut
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- IBiTech – bioMMedaGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Ghader Ghorbaniasl
- Department of Mechanical EngineeringVrije Universiteit Brussel (VUB) Pleinlaan 2 Brussels 1050 Belgium
| | - Sarah Cosyns
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Wouter Willaert
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| | - Wim Ceelen
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Cancer Research Institute Ghent (CRIG)Ghent University Corneel Heymanslaan 10 Ghent 9000 Belgium
- Department of Human Structure and RepairGhent University Corneel Heymanslaan 10 Ghent 9000 Belgium
| |
Collapse
|
46
|
Shariati M, Lollo G, Matha K, Descamps B, Vanhove C, Van de Sande L, Willaert W, Balcaen L, Vanhaecke F, Benoit JP, Ceelen W, De Smedt SC, Remaut K. Synergy between Intraperitoneal Aerosolization (PIPAC) and Cancer Nanomedicine: Cisplatin-Loaded Polyarginine-Hyaluronic Acid Nanocarriers Efficiently Eradicate Peritoneal Metastasis of Advanced Human Ovarian Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29024-29036. [PMID: 32506916 DOI: 10.1021/acsami.0c05554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intra-abdominal dissemination of peritoneal nodules, a condition known as peritoneal carcinomatosis (PC), is typically diagnosed in ovarian cancer patients at the advanced stages. The current treatment of PC consists of perioperative systemic chemotherapy and cytoreductive surgery, followed by intra-abdominal flushing with solutions of chemotherapeutics such as cisplatin and oxaliplatin. In this study, we developed cisplatin-loaded polyarginine-hyaluronic acid nanoscale particles (Cis-pARG-HA NPs) with high colloidal stability, marked drug loading efficiency, unimpaired biological activity, and tumor-targeting ability. Injected Cis-pARG-HA NPs showed enhanced antitumor activity in a rat model of PC, compared to injection of the free cisplatin drug. The activity of Cis-pARG-HA NPs could even be further improved when administered by an intra-abdominal aerosol therapy, referred to as pressurized intraperitoneal aerosol chemotherapy (PIPAC). PIPAC is hypothesized to ensure a more homogeneous drug distribution together with a deeper drug penetration into peritoneal tumor nodules within the abdominal cavity. Using fluorescent pARG-HA NPs, this enhanced nanoparticle deposit on tumors could indeed be observed in regions opposite the aerosolization nozzle. Therefore, this study demonstrates that nanoparticles carrying chemotherapeutics can be synergistically combined with the PIPAC technique for IP therapy of disseminated advanced ovarian tumors, while this synergistic effect was not observed for the administration of free cisplatin.
Collapse
Affiliation(s)
- Molood Shariati
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Giovanna Lollo
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Univ Lyon, Université Lyon 1, CNRS, UMR5007, 43 bd du 11 Novembre 1918, F-69622 Lyon, France
| | - Kevin Matha
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
- Département Pharmacie, CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Benedicte Descamps
- Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Christian Vanhove
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Leen Van de Sande
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital and Laboratory for Experimental Surgery, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Wouter Willaert
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital and Laboratory for Experimental Surgery, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lieve Balcaen
- Department of Analytical Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Campus Sterre, Ghent University, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Campus Sterre, Ghent University, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Jean-Pierre Benoit
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
- Département Pharmacie, CHU Angers, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital and Laboratory for Experimental Surgery, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
47
|
Van de Sande L, Cosyns S, Willaert W, Ceelen W. Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review. Drug Deliv 2020; 27:40-53. [PMID: 31858848 PMCID: PMC6968566 DOI: 10.1080/10717544.2019.1704945] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Albumin is a remarkable carrier protein with multiple cellular receptor and ligand binding sites, which are able to bind and transport numerous endogenous and exogenous compounds. The development of albumin-bound drugs is gaining increased importance in the targeted delivery of cancer therapy. Intraperitoneal (IP) drug delivery represents an attractive strategy for the local treatment of peritoneal metastasis (PM). PM is characterized by the presence of widespread metastatic tumor nodules on the peritoneum, mostly originating from gastro-intestinal or gynaecological cancers. Albumin as a carrier for chemotherapy holds considerable promise for IP delivery in patients with PM. Data from recent (pre)clinical trials suggest that IP albumin-bound chemotherapy may result in superior efficacy in the treatment of PM compared to standard chemotherapy formulations. Here, we review the evidence on albumin-bound chemotherapy with a focus on IP administration and its efficacy in PM.
Collapse
Affiliation(s)
- Leen Van de Sande
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Sarah Cosyns
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wouter Willaert
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
48
|
Alavi S, Haeri A, Mahlooji I, Dadashzadeh S. Tuning the Physicochemical Characteristics of Particle-Based Carriers for Intraperitoneal Local Chemotherapy. Pharm Res 2020; 37:119. [DOI: 10.1007/s11095-020-02818-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
|
49
|
Zhao G, Dong R, Teng J, Yang L, Liu T, Wu X, He Y, Wang Z, Pu H, Wang Y. N-Acetyl-l-cysteine Enhances the Effect of Selenium Nanoparticles on Cancer Cytotoxicity by Increasing the Production of Selenium-Induced Reactive Oxygen Species. ACS OMEGA 2020; 5:11710-11720. [PMID: 32478262 PMCID: PMC7254790 DOI: 10.1021/acsomega.0c01034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/04/2020] [Indexed: 05/27/2023]
Abstract
Peritoneal carcinomatosis (PC) has an extremely poor prognosis, which leads to a significantly decreased overall survival in patients with peritoneal implantation of cancer cells. Administration of sodium selenite by intraperitoneal injection is highly effective in inhibiting PC. Our previous study found that selenium nanoparticles (SeNPs) have higher redox activity and safety than sodium selenite. In the present study, we examined the therapeutic effect of SeNPs on PC and elucidated the potential mechanism. Our results revealed that intraperitoneal delivery of SeNPs to cancer cells in the peritoneal cavity of mice at a tolerable dose was beneficial for prolonging the survival time of mice, even better than the optimal dose of cisplatin. The underlying mechanism involved in SeNP-induced reactive oxygen species (ROS) production caused protein degradation and apoptotic response in cancer cells. Interestingly, N-acetyl-l-cysteine (NAC), recognized as a ROS scavenger, without reducing the efficacy of SeNPs, enhanced ROS production and cytotoxicity. The effect of NAC was associated with the following mechanisms: (1) the thiol groups in NAC can increase the biosynthesis of endogenous glutathione (GSH), thus increasing the production of SeNP-induced ROS and cytotoxicity and (2) redox cycling of SeNPs was directly driven by thiol groups in NAC to produce ROS. Moreover, NAC, without increasing the systematic toxicity of SeNPs, decreased SeNP-induced lethality in healthy mice. Overall, we demonstrated that SeNPs exert a potential cytotoxicity effect by inducing ROS production in cancer cells; NAC effectively heightens the property of SeNPs in vitro and in vivo.
Collapse
Affiliation(s)
- Guangshan Zhao
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ruixia Dong
- Department
of Forestry and Technology, Lishui Vocational
and Technical College, Lishui, Zhejiang 323000, P. R. China
| | - Jianyuan Teng
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Lian Yang
- Guangdong
Provincial Engineering Center of Topical Precise Drug Delivery System,
School of Pharmacy, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510006, P. R. China
| | - Tao Liu
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ximing Wu
- Laboratory
of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization,
School of Tea & Food Science, Anhui
Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Yufeng He
- Laboratory
of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization,
School of Tea & Food Science, Anhui
Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zhiping Wang
- Guangdong
Provincial Engineering Center of Topical Precise Drug Delivery System,
School of Pharmacy, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510006, P. R. China
| | - Hanlin Pu
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yifei Wang
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
50
|
Ceelen W, Braet H, van Ramshorst G, Willaert W, Remaut K. Intraperitoneal chemotherapy for peritoneal metastases: an expert opinion. Expert Opin Drug Deliv 2020; 17:511-522. [PMID: 32142389 DOI: 10.1080/17425247.2020.1736551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Introduction: The rationale for intraperitoneal (IP) drug delivery for patients with peritoneal metastases (PM) is based on the pharmacokinetic advantage resulting from the peritoneal-plasma barrier, and on the potential to adequately treat small, poorly vascularized PM. Despite a history of more than three decades, many aspects of IP drug delivery remain poorly studied.Areas covered: We outline the anatomy and physiology of the peritoneal cavity, including the pharmacokinetics of IP drug delivery. We discuss transport mechanisms governing tissue penetration of IP chemotherapy, and how these are affected by the biomechanical properties of the tumor stroma. We provide an overview of the current clinical evidence on IP chemotherapy in ovarian, colorectal, and gastric cancer. We discuss the current limitations of IP drug delivery and propose several potential areas of progress.Expert opinion: The potential of IP drug delivery is hampered by off-label use of drugs developed for systemic therapy. The efficacy of IP chemotherapy for PM depends on cancer type, disease extent, and mode of drug delivery. Results from ongoing randomized trials will allow to better delineate the potential of IP chemotherapy. Promising approaches include IP aerosol therapy, prolonged delivery platforms such as gels or biomaterials, and the use of nanomedicine.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Helena Braet
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | | | - Wouter Willaert
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Katrien Remaut
- Cancer Research Institute Ghent (CRIG), Belgium
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|