1
|
Wei L, Wang H, Özkan M, Damian-Buda AI, Loynachan CN, Liao S, Stellacci F. Efficient Direct Cytosolic Protein Delivery via Protein-Linker Co-engineering. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40302608 DOI: 10.1021/acsami.5c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Protein therapeutics have enormous potential for transforming the treatment of intracellular cell disorders, such as genetic disorders and cancers. Due to proteins' cell-membrane impermeability, protein-based drugs against intracellular targets require efficient cytosolic delivery strategies; however, none of the current approaches are optimal. Here, we present a simple approach to render proteins membrane-permeable. We use arginine-mimicking ligand N,N'-dimethyl-1,3-propanediamine (DMPA) to functionalize the surface of a few representative proteins, varying in isoelectric point and molecular weight. We show that when these proteins have a sufficient number of these ligands on their surface, they acquire the property of penetrating the cell cytosol. Uptake experiments at 37 and 4 °C indicate that one of the penetration pathways is energy independent, with no evidence of pore formation, with inhibition assays indicating the presence of other uptake pathways. Functional tests demonstrate that the modified proteins maintain their main cellular function; specifically, modified ovalbumin (OVA) leads to enhanced antigen presentation and modified cytochrome C (Cyto C) leads to enhanced cell apoptosis. We modified bovine serum albumin (BSA) with ligands featuring different hydrophobicity and end group charges and showed that, to confer cytosolic penetration, the ligands must be cationic and that some hydrophobic content improves the penetration efficiency. This study provides a simple strategy for efficiently delivering proteins directly to the cell cytosol and offers important insights into the design and development of arginine-rich cell-penetrating peptide mimetic small molecules for protein transduction.
Collapse
Affiliation(s)
- Lixia Wei
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Heyun Wang
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Melis Özkan
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department Materials Science and Engineering, Friedrich-Alexander-Universität, Erlangen 91054, Germany
| | - Colleen N Loynachan
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Suiyang Liao
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Francesco Stellacci
- Institute of Materials Science and Engineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Qu S, Yi C, Zhao Q, Ni Y, Ouyang S, Qi H, Cheng GJ, Zhang Y. Single-Cell Synchro-Subtractive-Additive Nanoscale Surgery with Femtosecond Lasers. NANO LETTERS 2024; 24:8801-8808. [PMID: 38989671 DOI: 10.1021/acs.nanolett.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Herein, an in situ "synchro-subtractive-additive" technique of femtosecond laser single-cell surgery (FLSS) is presented to address the inadequacies of existing surgical methods for single-cell manipulation. This process is enabled by synchronized nanoscale three-dimensional (3D) subtractive and additive manufacturing with ultrahigh precision on various parts of the cells, in that the precise removal and modification of a single-cell structure are realized by nonthermal ablation, with synchronously ultrafast solidification of the specially designed hydrogel by two photopolymerizations. FLSS is a minimally invasive technique with a post-operative survival rate of 70% and stable proliferation. It opens avenues for bottom-up synthetic biology, offering new methods for artificially synthesizing organelle-like 3D structures and modifying the physiological activities of cells.
Collapse
Affiliation(s)
- Shuyuan Qu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chenqi Yi
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Simin Ouyang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Haoning Qi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Gary J Cheng
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Unnikrishnan M, Wang Y, Gruebele M, Murphy CJ. Nanoparticle-assisted tubulin assembly is environment dependent. Proc Natl Acad Sci U S A 2024; 121:e2403034121. [PMID: 38954547 PMCID: PMC11252952 DOI: 10.1073/pnas.2403034121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Nanomaterials acquire a biomolecular corona upon introduction to biological media, leading to biological transformations such as changes in protein function, unmasking of epitopes, and protein fibrilization. Ex vivo studies to investigate the effect of nanoparticles on protein-protein interactions are typically performed in buffer and are rarely measured quantitatively in live cells. Here, we measure the differential effect of silica nanoparticles on protein association in vitro vs. in mammalian cells. BtubA and BtubB are a pair of bacterial tubulin proteins identified in Prosthecobacter strains that self-assemble like eukaryotic tubulin, first into dimers and then into microtubules in vitro or in vivo. Förster resonance energy transfer labeling of each of the Btub monomers with a donor (mEGFP) and acceptor (mRuby3) fluorescent protein provides a quantitative tool to measure their binding interactions in the presence of unfunctionalized silica nanoparticles in buffer and in cells using fluorescence spectroscopy and microscopy. We show that silica nanoparticles enhance BtubAB dimerization in buffer due to protein corona formation. However, these nanoparticles have little effect on bacterial tubulin self-assembly in the complex mammalian cellular environment. Thus, the effect of nanomaterials on protein-protein interactions may not be readily translated from the test tube to the cell in the absence of particle surface functionalization that can enable targeted protein-nanoparticle interactions to withstand competitive binding in the nanoparticle corona from other biomolecules.
Collapse
Affiliation(s)
- Mahima Unnikrishnan
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Yuhan Wang
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
4
|
Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing Organoid Engineering for Tissue Regeneration and Biofunctional Reconstruction. Biomater Res 2024; 28:0016. [PMID: 38628309 PMCID: PMC11018530 DOI: 10.34133/bmr.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue damage and functional abnormalities in organs have become a considerable clinical challenge. Organoids are often applied as disease models and in drug discovery and screening. Indeed, several studies have shown that organoids are an important strategy for achieving tissue repair and biofunction reconstruction. In contrast to established stem cell therapies, organoids have high clinical relevance. However, conventional approaches have limited the application of organoids in clinical regenerative medicine. Engineered organoids might have the capacity to overcome these challenges. Bioengineering-a multidisciplinary field that applies engineering principles to biomedicine-has bridged the gap between engineering and medicine to promote human health. More specifically, bioengineering principles have been applied to organoids to accelerate their clinical translation. In this review, beginning with the basic concepts of organoids, we describe strategies for cultivating engineered organoids and discuss the multiple engineering modes to create conditions for breakthroughs in organoid research. Subsequently, studies on the application of engineered organoids in biofunction reconstruction and tissue repair are presented. Finally, we highlight the limitations and challenges hindering the utilization of engineered organoids in clinical applications. Future research will focus on cultivating engineered organoids using advanced bioengineering tools for personalized tissue repair and biofunction reconstruction.
Collapse
Affiliation(s)
- Hairong Jin
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
- Ningxia Medical University, Ningxia 750004, China
| | - Zengqi Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jinnv Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Binbin Ma
- Department of Biology,
The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jianfeng Yang
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
5
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
6
|
Islam MM, Raikwar S. Enhancement of Oral Bioavailability of Protein and Peptide by Polysaccharide-based Nanoparticles. Protein Pept Lett 2024; 31:209-228. [PMID: 38509673 DOI: 10.2174/0109298665292469240228064739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Oral drug delivery is a prevalent and cost-effective method due to its advantages, such as increased drug absorption surface area and improved patient compliance. However, delivering proteins and peptides orally remains a challenge due to their vulnerability to degradation by digestive enzymes, stomach acids, and limited intestinal membrane permeability, resulting in poor bioavailability. The use of nanotechnology has emerged as a promising solution to enhance the bioavailability of these vital therapeutic agents. Polymeric NPs, made from natural or synthetic polymers, are commonly used. Natural polysaccharides, such as alginate, chitosan, dextran, starch, pectin, etc., have gained preference due to their biodegradability, biocompatibility, and versatility in encapsulating various drug types. Their hydrophobic-hydrophilic properties can be tailored to suit different drug molecules.
Collapse
Affiliation(s)
- Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga-142001, Punjab, India
| |
Collapse
|
7
|
Okolo O, Honzel E, Britton WR, Yu VX, Flashner S, Martin C, Nakagawa H, Parikh AS. Experimental Modeling of Host-Bacterial Interactions in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:5810. [PMID: 38136355 PMCID: PMC10742111 DOI: 10.3390/cancers15245810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The microscopic species colonizing the human body, collectively referred to as the microbiome, play a crucial role in the maintenance of tissue homeostasis, immunity, and the development of disease. There is evidence to suggest associations between alterations in the microbiome and the development of head and neck squamous cell carcinomas (HNSCC). The use of two-dimensional (2D) modeling systems has made significant strides in uncovering the role of microbes in carcinogenesis; however, direct mechanistic links remain in their infancy. Patient-derived three-dimensional (3D) HNSCC organoid and organotypic models have recently been described. Compared to 2D models, 3D organoid culture systems effectively capture the genetic and epigenetic features of parent tissue in a patient-specific manner and may offer a more nuanced understanding of the role of host-microbe responses in carcinogenesis. This review provides a topical literature review assessing the current state of the field investigating the role of the microbiome in HNSCC; including in vivo and in vitro modeling methods that may be used to characterize microbiome-epithelial interactions.
Collapse
Affiliation(s)
- Ogoegbunam Okolo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA;
| | - Emily Honzel
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA;
| | - William R. Britton
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA;
| | - Victoria X. Yu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10027, USA
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
| | - Cecilia Martin
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10027, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10027, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Anuraag S. Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10027, USA; (O.O.); (W.R.B.); (V.X.Y.); (S.F.); (C.M.); (H.N.)
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Mavi AK, Kumar M, Singh A, Prajapati MK, Khabiya R, Maru S, Kumar D. Progress in Non‐Viral Delivery of Nucleic Acid. INTEGRATION OF BIOMATERIALS FOR GENE THERAPY 2023:281-322. [DOI: 10.1002/9781394175635.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Omura M, Morimoto K, Araki Y, Hirose H, Kawaguchi Y, Kitayama Y, Goto Y, Harada A, Fujii I, Takatani-Nakase T, Futaki S, Nakase I. Inkjet-Based Intracellular Delivery System that Effectively Utilizes Cell-Penetrating Peptides for Cytosolic Introduction of Biomacromolecules through the Cell Membrane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47855-47865. [PMID: 37792057 PMCID: PMC10592309 DOI: 10.1021/acsami.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
In the drug delivery system, the cytosolic delivery of biofunctional molecules such as enzymes and genes must achieve sophisticated activities in cells, and microinjection and electroporation systems are typically used as experimental techniques. These methods are highly reliable, and they have high intracellular transduction efficacy. However, a high degree of proficiency is necessary, and induced cytotoxicity is considered as a technical problem. In this research, a new intracellular introduction technology was developed through the cell membrane using an inkjet device and cell-penetrating peptides (CPPs). Using the inkjet system, the droplet volume, droplet velocity, and dropping position can be accurately controlled, and minute samples (up to 30 pL/shot) can be carried out by direct administration. In addition, CPPs, which have excellent cell membrane penetration functions, can deliver high-molecular-weight drugs and nanoparticles that are difficult to penetrate through the cell membrane. By using the inkjet system, the CPPs with biofunctional cargo, including peptides, proteins such as antibodies, and exosomes, could be accurately delivered to cells, and efficient cytosolic transduction was confirmed.
Collapse
Affiliation(s)
- Mika Omura
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yurina Araki
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Hisaaki Hirose
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s
University, 11-68, Koshien
Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
10
|
Jiang L, Lin X, Chen F, Qin X, Yan Y, Ren L, Yu H, Chang L, Wang Y. Current research status of tumor cell biomarker detection. MICROSYSTEMS & NANOENGINEERING 2023; 9:123. [PMID: 37811123 PMCID: PMC10556054 DOI: 10.1038/s41378-023-00581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 10/10/2023]
Abstract
With the annual increases in the morbidity and mortality rates of tumors, the use of biomarkers for early diagnosis and real-time monitoring of tumor cells is of great importance. Biomarkers used for tumor cell detection in body fluids include circulating tumor cells, nucleic acids, protein markers, and extracellular vesicles. Among them, circulating tumor cells, circulating tumor DNA, and exosomes have high potential for the prediction, diagnosis, and prognosis of tumor diseases due to the large amount of valuable information on tumor characteristics and evolution; in addition, in situ monitoring of telomerase and miRNA in living cells has been the topic of extensive research to understand tumor development in real time. Various techniques, such as enzyme-linked immunosorbent assays, immunoblotting, and mass spectrometry, have been widely used for the detection of these markers. Among them, the detection of tumor cell markers in body fluids based on electrochemical biosensors and fluorescence signal analysis is highly preferred because of its high sensitivity, rapid detection and portable operation. Herein, we summarize recent research progress in the detection of tumor cell biomarkers in body fluids using electrochemical and fluorescence biosensors, outline the current research status of in situ fluorescence monitoring and the analysis of tumor markers in living cells, and discuss the technical challenges for their practical clinical application to provide a reference for the development of new tumor marker detection methods.
Collapse
Affiliation(s)
- Liying Jiang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xinyi Lin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Fenghua Chen
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Xiaoyun Qin
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Yanxia Yan
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Linjiao Ren
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002 China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lingqian Chang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
| | - Yang Wang
- key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083 China
- School of Engineering Medicine, Beihang University, Beijing, 100083 China
| |
Collapse
|
11
|
Zhang A, Fang J, Wang J, Xie X, Chen HJ, He G. Interrogation on the Cellular Nano-Interface and Biosafety of Repeated Nano-Electroporation by Nanostraw System. BIOSENSORS 2022; 12:522. [PMID: 35884325 PMCID: PMC9313307 DOI: 10.3390/bios12070522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cell perforation is a critical step for intracellular drug delivery and real-time biosensing of intracellular signals. In recent years, the nanostraws system has been developed to achieve intracellular drug delivery with minimal invasiveness to the cells. Repeated cell perforation via nano-system could allow delivery of multiple drugs into cells for cell editing, but the biosafety is rarely explored. In this work, a nanostraw-mediated nano-electroporation system was developed, which allowed repeated perforation of the same set of cells in a minimally invasive manner, while the biosafety aspect of this system was investigated. Highly controllable fabrication of Al2O3 nanostraw arrays based on a porous polyethylene terephthalate (PET) membrane was integrated with a microfluidic device to construct the nanostraw-electroporation system. The pulse conditions and intervals of nano-electroporation were systematically optimized to achieve efficient cells perforation and maintain the viability of the cells. The cells proliferation, the early apoptosis activities after nanostraw-electroporation and the changes of gene functions and gene pathways of cells after repeated nano-electroporation were comprehensively analyzed. These results revealed that the repeated nanostraw-electroporation did not induce obvious negative effects on the cells. This work demonstrates the feasibility of repeated nano-electroporation on cells and provides a promising strategy for future biomedical applications.
Collapse
Affiliation(s)
- Aihua Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
| | - Ji Wang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information, Technology, Sun Yat-sen University, Guangzhou 510006, China; (A.Z.); (J.F.); (X.X.)
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
12
|
Kim MB, Hwangbo S, Jang S, Jo YK. Bioengineered Co-culture of organoids to recapitulate host-microbe interactions. Mater Today Bio 2022; 16:100345. [PMID: 35847376 PMCID: PMC9283667 DOI: 10.1016/j.mtbio.2022.100345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
The recent spike in the instances of complex physiological host-microbe interactions has raised the demand for developing in vitro models that recapitulate the microbial microenvironment in the human body. Organoids are steadily emerging as an in vitro culture system that closely mimics the structural, functional, and genetic features of complex human organs, particularly for better understanding host-microbe interactions. Recent advances in organoid culture technology have become new avenues for assessing the pathogenesis of symbiotic interactions, pathogen-induced infectious diseases, and various other diseases. The co-cultures of organoids with microbes have shown great promise in simulating host-microbe interactions with a high level of complexity for further advancement in related fields. In this review, we provide an overview of bioengineering approaches for microbe-co-cultured organoids. Latest developments in the applications of microbe-co-cultured organoids to study human physiology and pathophysiology are also highlighted. Further, an outlook on future research on bioengineered organoid co-cultures for various applications is presented.
Collapse
|
13
|
Fang J, Huang S, Liu F, He G, Li X, Huang X, Chen HJ, Xie X. Semi-Implantable Bioelectronics. NANO-MICRO LETTERS 2022; 14:125. [PMID: 35633391 PMCID: PMC9148344 DOI: 10.1007/s40820-022-00818-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of "Semi-implantable bioelectronics", summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
14
|
Cho YH, Park YG, Kim S, Park JU. 3D Electrodes for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005805. [PMID: 34013548 DOI: 10.1002/adma.202005805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Indexed: 05/08/2023]
Abstract
In recent studies related to bioelectronics, significant efforts have been made to form 3D electrodes to increase the effective surface area or to optimize the transfer of signals at tissue-electrode interfaces. Although bioelectronic devices with 2D and flat electrode structures have been used extensively for monitoring biological signals, these 2D planar electrodes have made it difficult to form biocompatible and uniform interfaces with nonplanar and soft biological systems (at the cellular or tissue levels). Especially, recent biomedical applications have been expanding rapidly toward 3D organoids and the deep tissues of living animals, and 3D bioelectrodes are getting significant attention because they can reach the deep regions of various 3D tissues. An overview of recent studies on 3D bioelectronic devices, such as the use of electrical stimulations and the recording of neural signals from biological subjects, is presented. Subsequently, the recent developments in materials and fabrication processing to 3D micro- and nanostructures are introduced, followed by broad applications of these 3D bioelectronic devices at various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Yo Han Cho
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Fus-Kujawa A, Prus P, Bajdak-Rusinek K, Teper P, Gawron K, Kowalczuk A, Sieron AL. An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Front Bioeng Biotechnol 2021; 9:701031. [PMID: 34354988 PMCID: PMC8330802 DOI: 10.3389/fbioe.2021.701031] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transfection is a powerful analytical tool enabling studies of gene products and functions in eukaryotic cells. Successful delivery of genetic material into cells depends on DNA quantity and quality, incubation time and ratio of transfection reagent to DNA, the origin, type and the passage of transfected cells, and the presence or absence of serum in the cell culture. So far a number of transfection methods that use viruses, non-viral particles or physical factors as the nucleic acids carriers have been developed. Among non-viral carriers, the cationic polymers are proposed as the most attractive ones due to the possibility of their chemical structure modification, low toxicity and immunogenicity. In this review the delivery systems as well as physical, biological and chemical methods used for eukaryotic cells transfection are described and discussed.
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Pawel Prus
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students’ Scientific Society, Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksander L. Sieron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
16
|
Zhang Q, Shao Y, Li B, Wu Y, Dong J, Zhang D, Wang Y, Yan Y, Wang X, Pu Q, Guo G. Visually precise, low-damage, single-cell spatial manipulation with single-pixel resolution. Chem Sci 2021; 12:4111-4118. [PMID: 34163682 PMCID: PMC8179525 DOI: 10.1039/d0sc05534d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The analysis of single living cells, including intracellular delivery and extraction, is essential for monitoring their dynamic biochemical processes and exploring intracellular heterogeneity. However, owing to the 2D view in bright-field microscopy and optical distortions caused by the cell shape and the variation in the refractive index both inside and around the cells, achieving spatially undistorted imaging for high-precision manipulation within a cell is challenging. Here, an accurate and visual system is developed for single-cell spatial manipulation by correcting the aberration for simultaneous bright-field triple-view imaging. Stereo information from the triple view enables higher spatial resolution that facilitates the precise manipulation of single cells. In the bright field, we resolved the spatial locations of subcellular structures of a single cell suspended in a medium and measured the random spatial rotation angle of the cell with a precision of ±5°. Furthermore, we demonstrated the visual manipulation of a probe to an arbitrary spatial point of a cell with an accuracy of <1 pixel. This novel system is more accurate and less destructive for subcellular content extraction and drug delivery. We achieved the low-damage spatial puncture of single cells at specific visual points with an accuracy of <65 nm.![]()
Collapse
Affiliation(s)
- Qi Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yunlong Shao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Boye Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yuanyuan Wu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Jingying Dong
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yanan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yong Yan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Qiaosheng Pu
- Department of Chemistry, Lanzhou University Lanzhou Gansu 730000 China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
17
|
Egloff S, Runser A, Klymchenko A, Reisch A. Size-Dependent Electroporation of Dye-Loaded Polymer Nanoparticles for Efficient and Safe Intracellular Delivery. SMALL METHODS 2021; 5:e2000947. [PMID: 34927896 DOI: 10.1002/smtd.202000947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Indexed: 06/14/2023]
Abstract
Efficient and safe delivery of nanoparticles (NPs) into the cytosol of living cells constitutes a major methodological challenge in bio-nanotechnology. Electroporation allows direct transfer of NPs into the cytosol by forming transient pores in the cell membrane, but it is criticized for invasiveness, and the applicable particle sizes are not well defined. Here, in order to establish principles for efficient delivery of NPs into the cytosol with minimal cytotoxicity, the influence of the size of NPs on their electroporation and intracellular behavior is investigated. For this study, fluorescent dye-loaded polymer NPs with core sizes between 10 and 40 nm are prepared. Optimizing the electroporation protocol allows minimizing contributions of endocytosis and to study directly the effect of NP size on electroporation. NPs of <20 nm hydrodynamic size are efficiently delivered into the cytosol, whereas this is not the case for NPs of >30 nm. Moreover, only particles of core size <15 nm diffuse freely throughout the cytosol. While electroporation at excessive electric fields induces cytotoxicity, the use of small NPs <20 nm allows efficient delivery at mild electroporation conditions. These results give clear methodological and design guidelines for the safe delivery of NPs for intracellular applications.
Collapse
Affiliation(s)
- Sylvie Egloff
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg, F-67000, France
| | - Anne Runser
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg, F-67000, France
| | - Andrey Klymchenko
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg, F-67000, France
| | - Andreas Reisch
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg, F-67000, France
| |
Collapse
|
18
|
Souza SO, Lira RB, Cunha CRA, Santos BS, Fontes A, Pereira G. Methods for Intracellular Delivery of Quantum Dots. Top Curr Chem (Cham) 2021; 379:1. [PMID: 33398442 DOI: 10.1007/s41061-020-00313-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Quantum dots (QDs) have attracted considerable attention as fluorescent probes for life sciences. The advantages of using QDs in fluorescence-based studies include high brilliance, a narrow emission band allowing multicolor labeling, a chemically active surface for conjugation, and especially, high photostability. Despite these advantageous features, the size of the QDs prevents their free transport across the plasma membrane, limiting their use for specific labeling of intracellular structures. Over the years, various methods have been evaluated to overcome this issue to explore the full potential of the QDs. Thus, in this review, we focused our attention on physical and biochemical QD delivery methods-electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes-discussing the benefits and drawbacks of each strategy, as well as presenting recent studies in the field. We hope that this review can be a useful reference source for researches that already work or intend to work in this area. Strategies for the intracellular delivery of quantum dots discussed in this review (electroporation, microinjection, cell-penetrating peptides, molecular coatings, and liposomes).
Collapse
Affiliation(s)
- Sueden O Souza
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, CB, UFPE, Av. Prof. Moraes Rego, S/N, Recife, PE, 50670-901, Brazil
| | - Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Cássia R A Cunha
- Laboratório Federal de Defesa Agropecuária em Pernambuco, Recife, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, CB, UFPE, Av. Prof. Moraes Rego, S/N, Recife, PE, 50670-901, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, CCEN, UFPE, Av. Jornalista Anibal Fernandes, S/N, Recife, 50740-560, PE, Brazil.
| |
Collapse
|
19
|
Liu Z, Liang X, Liu H, Wang Z, Jiang T, Cheng Y, Wu M, Xiang D, Li Z, Wang ZL, Li L. High-Throughput and Self-Powered Electroporation System for Drug Delivery Assisted by Microfoam Electrode. ACS NANO 2020; 14:15458-15467. [PMID: 32991146 DOI: 10.1021/acsnano.0c06100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electroporation is an effective approach for drug and gene delivery, but it is still limited by its low-throughput and severe cell damage. Herein, with a self-powered triboelectric nanogenerator as the power source, we demonstrated a high-throughput electroporation system based on the design of biocompatible and flexible polypyrrole microfoam as the electrode within the flow channel. In particular, to lower the imposed voltage, one-dimensional (1D) Ag nanowires were modified on the microfoam electrode to build up a locally enhanced electric field and reduce cell damage. The self-powered electroporation system realized a successful delivery of small and large biomolecules into different cell lines with efficiency up to 86% and cell viability over 88%. The handle throughput achieved as high as 105 cells min-1 on continuously flowed cells. The high-throughput and self-powered electroporation system is expected to have potential applications in the fields of high-throughput drug and gene delivery for in vitro isolated cells.
Collapse
Affiliation(s)
- Zhirong Liu
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xi Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huanhuan Liu
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- Department of Biological Sciences, School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Zhuo Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tao Jiang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuanyuan Cheng
- Department of Biological Sciences, School of Life Science, Anhui University, Hefei 230601, P.R. China
| | - Mengqi Wu
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Deli Xiang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
| | - Zhou Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhong Lin Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Linlin Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
20
|
He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201910566] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/16/2020] [Indexed: 01/04/2025]
Abstract
AbstractBiopharmaceuticals have emerged to play a vital role in disease treatment and have shown promise in the rapidly expanding pharmaceutical market due to their high specificity and potency. However, the delivery of these biologics is hindered by various physiological barriers, owing primarily to the poor cell membrane permeability, low stability, and increased size of biologic agents. Since many biological drugs are intended to function by interacting with intracellular targets, their delivery to intracellular targets is of high relevance. In this review, the authors summarize and discuss the use of nanocarriers for intracellular delivery of biopharmaceuticals via endosomal escape and, especially, the routes of direct cytosolic delivery by means including the caveolae‐mediated pathway, contact release, intermembrane transfer, membrane fusion, direct translocation, and membrane disruption. Strategies with high potential for translation are highlighted. Finally, the authors conclude with the clinical translation of promising carriers and future perspectives.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xuyang Xing
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xiaoling Wang
- School of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China School of Pharmacy Fudan University Shanghai 201203 China
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
21
|
Yin Y, Deng H, Wu K, He B, Dai W, Zhang H, Fu J, Le Y, Wang X, Zhang Q. A multiaspect study on transcytosis mechanism of sorafenib nanogranules engineered by high-gravity antisolvent precipitation. J Control Release 2020; 323:600-612. [PMID: 32278828 DOI: 10.1016/j.jconrel.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Nanotechniques show significant merits in terms of improving the oral bioavailability of poorly water-soluble drugs. However, the mechanisms behind are not clear yet. For instance, what is the contribution of free drug released during nanogranule transcytosis, as well as the impact of drug transporter and chylomicron? To address these issues, sorafenib nanogranules (SFN-NGs) were prepared as model by the high-gravity antisolvent precipitation method which approaches to practical mass production. Then, a multiaspect study on the transcytosis mechanism of SFN-NGs was conducted in Caco-2 cells and rats, including paracellular transport, endocytosis, intracellular trafficking, transmembrane pathway, as well as the involvement of transporter and chylomicron. Pharmacokinetics in rats demonstrated an obvious superiority of SFN-NGs in oral absorption and lymphatic transfer over SFN crude drugs. Different from free SFN, SFN-NGs could be internalized in cells in early stage by caveolin/lipid raft or clathrin induced endocytosis, and transported intactly through the polarized cell monolayers. While in late stage, transporter-mediated transport of free SFN began to play a vital role on the transmembrane of SFN-NGs. No paracellular transport of SFN-NGs was found, and the trafficking of SFN-NGs was affected by the pathway of ER-Golgi complexes. Surprisedly, the intracellular free SFN was the main source of transmembrane for SFN-NGs, which was entrapped into chylomicrons and then secreted into the extracellular space. Generally, the findings in current study may shed light on the absorption mechanism of oral nanoformulations.
Collapse
Affiliation(s)
- Yajie Yin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kai Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jijun Fu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
22
|
Pan F, Chen S, Jiao Y, Guan Z, Shakoor A, Sun D. Automated High-Productivity Microinjection System for Adherent Cells. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2965870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Nie D, Dai Z, Li J, Yang Y, Xi Z, Wang J, Zhang W, Qian K, Guo S, Zhu C, Wang R, Li Y, Yu M, Zhang X, Shi X, Gan Y. Cancer-Cell-Membrane-Coated Nanoparticles with a Yolk-Shell Structure Augment Cancer Chemotherapy. NANO LETTERS 2020; 20:936-946. [PMID: 31671946 DOI: 10.1021/acs.nanolett.9b03817] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite rapid advancements in antitumor drug delivery, insufficient intracellular transport and subcellular drug accumulation are still issues to be addressed. Cancer cell membrane (CCM)-camouflaged nanoparticles (NPs) have shown promising potential in tumor therapy due to their immune escape and homotypic binding capacities. However, their efficacy is still limited due to inefficient tumor penetration and compromised intracellular transportation. Herein, a yolk-shell NP with a mesoporous silica nanoparticle (MSN)-supported PEGylated liposome yolk and CCM coating, CCM@LM, was developed for chemotherapy and exhibited a homologous tumor-targeting effect. The yolk-shell structure endowed CCM@LM with moderate rigidity, which might contribute to the frequent transformation into an ellipsoidal shape during infiltration, leading to facilitated penetration throughout multicellular spheroids in vitro (up to a 23.3-fold increase compared to the penetration of membrane vesicles). CCM@LM also exhibited a cellular invasion profile mimicking an enveloped virus invasion profile. CCM@LM was directly internalized by membrane fusion, and the PEGylated yolk (LM) was subsequently released into the cytosol, indicating the execution of an internalization pathway similar to that of an enveloped virus. The incoming PEGylated LM further underwent efficient trafficking throughout the cytoskeletal filament network, leading to enhanced perinuclear aggregation. Ultimately, CCM@LM, which co-encapsulated low-dose doxorubicin and the poly(ADP-ribose) polymerase inhibitor, mefuparib hydrochloride, exhibited a significantly stronger antitumor effect than the first-line chemotherapeutic drug Doxil. Our findings highlight that NPs that can undergo facilitated tumor penetration and robust intracellular trafficking have a promising future in cancer chemotherapy.
Collapse
Affiliation(s)
- Di Nie
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhuo Dai
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Jialin Li
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Yiwei Yang
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ziyue Xi
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Jie Wang
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Wei Zhang
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Kun Qian
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shiyan Guo
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Chunliu Zhu
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Rui Wang
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Yiming Li
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Miaorong Yu
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinghua Shi
- University of Chinese Academy of Sciences , Beijing 100049 , China
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yong Gan
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
24
|
Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019; 309:106-124. [PMID: 31323244 DOI: 10.1016/j.jconrel.2019.07.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The selective infiltration of cell membranes and tissue barriers often blocks the entry of most active molecules. This natural defense mechanism prevents the invasion of exogenous substances and limits the therapeutic value of most available molecules. Therefore, it is particularly important to find appropriate ways of membrane translocation and therapeutic agent delivery to its target site. Cell penetrating peptides (CPPs) are a group of short peptides harnessed in this condition, possessing a significant capacity for membrane transduction and could be exploited to transfer various biologically active cargoes into the cells. Since their discovery, CPPs have been employed for delivery of a wide variety of therapeutic molecules to treat various disorders including cranial nerve involvement, ocular inflammation, myocardial ischemia, dermatosis and cancer. The promising results of CPPs-derived therapeutics in various tumor models demonstrated a potential and worthwhile scope of CPPs in chemotherapy. This review describes the detailed description of CPPs and CPPs-assisted molecular delivery against various tissues and organs disorders. An emphasis is focused on summarizing the novel insights and achievements of CPPs in surmounting the natural membrane barriers during the last 5 years.
Collapse
Affiliation(s)
- Jiangkang Xu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Manfei Fu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Rujuan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
25
|
Wang CH, Xu XY, Zhan W, Davoodi P. 3D-Bioprinting and Micro-/Nano-Technology: Emerging Technologies in Biomedical Sciences. Adv Drug Deliv Rev 2018; 132:1-2. [PMID: 30409246 DOI: 10.1016/j.addr.2018.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Wenbo Zhan
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Pooya Davoodi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|