1
|
Zhou Y, Ge Q, Wang X, Wang Y, Sun Q, Wang J, Yang T, Wang C. Advances in Lipid Nanoparticle-Based Disease Treatment. ChemMedChem 2025; 20:e202400938. [PMID: 39962990 DOI: 10.1002/cmdc.202400938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/11/2025] [Indexed: 05/09/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as a transformative platform for the targeted delivery of therapeutic agents, revolutionizing treatment paradigms across a spectrum of diseases. Since the inception of liposomes in the 1960s, lipid-based nanotechnology has evolved to address limitations such as poor bioavailability, off-target effects, and instability, thereby enhancing the efficacy and safety of drug administration. This review highlights the latest advancements in LNPs technology, focusing on their application in cancer therapy, gene therapy, infectious disease management, glaucoma, and other clinical areas. Recent studies underscore the potential of LNPs to deliver messenger RNA (mRNA) and small interfering RNA (siRNA) for precise genetic intervention, exemplified by breakthroughs in RNA interference and CRISPR-Cas9 genome editing. Additionally, LNPs have been successfully employed to ameliorate conditions, demonstrating their versatility in addressing both acute and chronic disorders. However, challenges persist concerning large-scale manufacturing, long-term stability, and comprehensive safety evaluations. Future research must focus on optimizing formulations, exploring synergistic combinations with existing therapies, and expanding the scope of treatable diseases. The integration of LNPs into personalized medicine and the exploration of applications in other diseases represent promising avenues for further investigation. LNPs are poised to play an increasingly central role in the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Qiqi Ge
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Xin Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Qianqian Sun
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| | - Tie Yang
- Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, 211100, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China (Jianhao Wang), (Cheng Wang
| |
Collapse
|
2
|
Li F, Yuan R, Zhang J, Su B, Qi X. Advances in nanotechnology for the diagnosis and management of metabolic dysfunction-associated steatotic liver disease. Asian J Pharm Sci 2025; 20:101025. [PMID: 40182137 PMCID: PMC11964547 DOI: 10.1016/j.ajps.2025.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 04/05/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has a high global incidence and associated with increased lipid accumulation in hepatocytes, elevated hepatic enzyme levels, liver fibrosis, and hepatic carcinoma. Despite decades of research and significant advancements, the treatment of MASLD still faces formidable challenges. Nanoprobes for diagnostics and nanomedicine for targeted drug delivery to the liver present promising options for MASLD diagnosis and treatment, enhancing both imaging contrast and bioavailability. Here, we review recent advances in nanotechnology applied to MASLD diagnosis and treatment, specifically focusing on drug delivery systems targeting hepatocytes, hepatic stellate cells, Kupffer cells, and liver sinusoidal endothelial cells. This review aims to provide an overview of nanomedicine's potential in early MASLD diagnosis and therapeutic interventions, addressing related complications.
Collapse
Affiliation(s)
- Fenfen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruyan Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiamin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Su
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaolong Qi
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing 210009, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University; State Key Laboratory of Digital Medical Engineering, Nanjing 210009, China
| |
Collapse
|
3
|
Liang C, Liu X, Sun Z, Wen L, Wu J, Shi S, Liu X, Luo N, Li X. Lipid nanosystems for fatty liver therapy and targeted medication delivery: a comprehensive review. Int J Pharm 2025; 669:125048. [PMID: 39653287 DOI: 10.1016/j.ijpharm.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Fatty liver is considered to be the most common chronic liver disease with a high global incidence, which can lead to cirrhosis and liver cancer in severe cases, and there is no specific drug for the treatment of fatty liver in the clinic. The use of lipid nanosystems has the potential to be an effective means of fatty liver treatment. The pathogenesis and intervening factors associated with the development of fatty liver are reviewed, and the advantages and the disadvantages of different lipid nanosystems for the treatment of fatty liver are comprehensively discussed, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions, and phospholipid complexes. The composition and characterisation of these lipid nanosystems are highlighted and summarised with a view to improving the efficiency of lipid nanosystems for the treatment of fatty liver. In addition, active targeting and passive targeting strategies used for fatty liver therapy are discussed in detail.
Collapse
Affiliation(s)
- Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nini Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
5
|
Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, Sun Y, Duan Q, Xia J, Dong Y, Bai Z, Peng D, Zhang J, Xu Z, Pi J, Yang Z, Zhang Q. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother 2024; 180:117465. [PMID: 39321512 DOI: 10.1016/j.biopha.2024.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90 % of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100 nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - JiaoJiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dongmei Peng
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
6
|
Chen S, Suo J, Wang Y, Tang C, Ma B, Li J, Hou Y, Yan B, Shen T, Zhang Q, Ma B. Cordycepin alleviates diabetes mellitus-associated hepatic fibrosis by inhibiting SOX9-mediated Wnt/β-catenin signal axis. Bioorg Chem 2024; 153:107812. [PMID: 39260158 DOI: 10.1016/j.bioorg.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Diabetes mellitus can induce liver injury and easily progress to liver fibrosis. However, there is still a lack of effective treatments for diabetes-induced hepatic fibrosis. Cordycepin (COR), a natural nucleoside derived from Cordyceps militaris, has demonstrated remarkable efficacy in treating metabolic diseases and providing hepatoprotective effects. However, its protective effect and underlying mechanism in diabetes-induced liver injury remain unclear. This study utilized a high-fat diet/streptozotocin-induced diabetic mouse model, as well as LX-2 and AML-12 cell models exposed to high glucose and TGF-β1, to explore the protective effects and mechanisms of Cordycepin in liver fibrosis associated with diabetes. The results showed that COR lowered blood glucose levels, enhanced liver function, mitigated fibrosis, and suppressed HSC activation in diabetic mice. Mechanistically, COR attenuated the activation of the Wnt/β-catenin pathway by inhibiting β-catenin nuclear translocation, and β-catenin knockdown further intensified this effect. Meanwhile, COR significantly inhibited SOX9 expression in vivo and in vitro. Knockdown of SOX9 downregulated Wnt3a and β-catenin expression at the protein and gene levels to exacerbate the inhibitory action of COR on HG&TGF-β1-induced HSCs activations. These results indicate SOX9 is involved in the mechanism by which COR deactivates the Wnt/β-catenin pathway in hepatic fibrosis induced by diabetes. Moreover, prolonged half-life time, slower metabolism and higher exposure of COR were observed in diabetes-induced liver injury animal model via pharmacokinetics studies. Altogether, COR holds potential as a therapeutic agent for ameliorating hepatic injury and fibrosis in diabetes by suppressing the activation of the SOX9-mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shuang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Jialiang Suo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Yu Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Chenglun Tang
- Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Nanjing 210000, PR China
| | - Beiting Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Yuyang Hou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Bingrong Yan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
7
|
Hou LS, Zhai XP, Zhang YW, Xing JH, Li C, Zhou SY, Zhu XH, Zhang BL. Targeted inhibition of autophagy in hepatic stellate cells by hydroxychloroquine: An effective therapeutic approach for the treatment of liver fibrosis. Liver Int 2024; 44:1937-1951. [PMID: 38606676 DOI: 10.1111/liv.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is a wound-healing reaction which is the main cause of chronic liver diseases worldwide. The activated hepatic stellate cell (aHSC) is the main driving factor in the development of liver fibrosis. Inhibiting autophagy of aHSC can prevent the progression of liver fibrosis, but inhibiting autophagy of other liver cells has opposite effects. Hence, targeted inhibition of autophagy in aHSC is quite necessary for the treatment of liver fibrosis, which prompts us to explore the targeted delivery system of small molecule autophagy inhibitor hydroxychloroquine (HCQ) that can target aHSC and alleviate the liver fibrosis. METHODS The delivery system of HCQ@retinol-liposome nanoparticles (HCQ@ROL-LNPs) targeting aHSC was constructed by the film dispersion and pH-gradient method. TGF-β-induced HSC activation and thioacetamide (TAA)-induced liver fibrosis mice model were established, and the targeting ability and therapeutic effect of HCQ@ROL-LNPs in liver fibrosis were studied subsequently in vitro and in vivo. RESULTS HCQ@ROL-LNPs have good homogeneity and stability. They inhibited the autophagy of aHSC selectively by HCQ and reduced the deposition of extracellular matrix (ECM) and the damage to other liver cells. Compared with the free HCQ and HCQ@LNPs, HCQ@ROL-LNPs had good targeting ability, showing enhanced therapeutic effect and low toxicity to other organs. CONCLUSION Construction of HCQ@ROL-LNPs delivery system lays a theoretical and experimental foundation for the treatment of liver fibrosis and promotes the development of clinical therapeutic drugs for liver diseases.
Collapse
Affiliation(s)
- Li-Shuang Hou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xiao-Pei Zhai
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yao-Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jie-Hua Xing
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Chen Li
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiao-Hong Zhu
- Department of Drug Quality Management, Shannxi Institute for Food and Drug Control, Xi'an, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Liu MX, Cai YT, Wang RJ, Zhu PF, Liu YC, Sun H, Ling Y, Zhu WZ, Chen J, Zhang XL. Aggregation-Induced Emission CN-Based Nanoparticles to Alleviate Hypoxic Liver Fibrosis via Triggering HSC Ferroptosis and Enhancing Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33021-33037. [PMID: 38888460 DOI: 10.1021/acsami.4c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Hypoxia can lead to liver fibrosis and severely limits the efficacy of photodynamic therapy (PDT). Herein, carbon nitride (CN)-based hybrid nanoparticles (NPs) VPSGCNs@TSI for light-driven water splitting were utilized to solve this problem. CNs were doped with selenide glucose (Se-glu) to enhance their red/NIR region absorption. Then, vitamin A-poly(ethylene glycol) (VA-PEG) fragments and aggregation-induced emission (AIE) photosensitizers TSI were introduced into Se-glu-doped CN NPs (VPSGCNs) to construct VPSGCNs@TSI NPs. The introduction of VA-PEG fragments enhanced the targeting of the NPs to activated hepatic stellate cells (HSCs) and reduced their toxicity to ordinary liver cells. VPSGCN units could trigger water splitting to generate O2 under 660 nm laser irradiation, improve the hypoxic environment of the fibrosis site, downregulate HIF-1α expression, and activate HSC ferroptosis via the HIF-1α/SLC7A11 pathway. In addition, generated O2 could also increase the reactive oxygen species (ROS) production of TSI units in a hypoxic environment, thereby completely reversing hypoxia-triggered PDT resistance to enhance the PDT effect. The combination of water-splitting materials and photodynamic materials showed a 1 + 1 > 2 effect in increasing oxygen levels in liver fibrosis, promoting ferroptosis of activated HSCs and reversing PDT resistance caused by hypoxia.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yu-Ting Cai
- School of Pharmacy, Nantong University, Nantong 226001, PR China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Ruo-Jia Wang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Peng-Fei Zhu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yan-Chao Liu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Hao Sun
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Wei-Zhong Zhu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| |
Collapse
|
9
|
Tie S. Microgel delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:147-171. [PMID: 39218501 DOI: 10.1016/bs.afnr.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microgels delivery system have great potential in functional substances encapsulation, protection, release, precise delivery and nutritional intervention. Microgel is a three-dimensional network structure formed by physical or chemical crosslinking of biopolymers, whose characteristics include dispersion and swelling, stable structure, small volume and high specific surface area, and is a special kind of colloid. In this chapter, the common wall materials for preparing food grade microgels, and the main preparation principles, methods, advantages and disadvantages of microgels loaded with functional substances were firstly reviewed. Then the main characteristics of microgel as delivery system, such as deformability, high encapsulation, stimulus-responsive release and targeted delivery, and its potential benefits in intervening chronic diseases were summarized. Finally, the applications of microgel delivery system for functional substance in the field of precision nutrition were discussed. This chapter will help to design of next-generation advanced targeting microgel delivery system, and realize precision nutrition intervention of food functional substances on body health.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, P.R. China.
| |
Collapse
|
10
|
Lei L, Pan W, Shou X, Shao Y, Ye S, Zhang J, Kolliputi N, Shi L. Nanomaterials-assisted gene editing and synthetic biology for optimizing the treatment of pulmonary diseases. J Nanobiotechnology 2024; 22:343. [PMID: 38890749 PMCID: PMC11186260 DOI: 10.1186/s12951-024-02627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
The use of nanomaterials in gene editing and synthetic biology has emerged as a pivotal strategy in the pursuit of refined treatment methodologies for pulmonary disorders. This review discusses the utilization of nanomaterial-assisted gene editing tools and synthetic biology techniques to promote the development of more precise and efficient treatments for pulmonary diseases. First, we briefly outline the characterization of the respiratory system and succinctly describe the principal applications of diverse nanomaterials in lung ailment treatment. Second, we elaborate on gene-editing tools, their configurations, and assorted delivery methods, while delving into the present state of nanomaterial-facilitated gene-editing interventions for a spectrum of pulmonary diseases. Subsequently, we briefly expound on synthetic biology and its deployment in biomedicine, focusing on research advances in the diagnosis and treatment of pulmonary conditions against the backdrop of the coronavirus disease 2019 pandemic. Finally, we summarize the extant lacunae in current research and delineate prospects for advancement in this domain. This holistic approach augments the development of pioneering solutions in lung disease treatment, thereby endowing patients with more efficacious and personalized therapeutic alternatives.
Collapse
Affiliation(s)
- Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Wenjie Pan
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xin Shou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Shuxuan Ye
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liyun Shi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
11
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
12
|
Kommera SP, Kumar A, Chitkara D, Mittal A. Pramlintide an Adjunct to Insulin Therapy: Challenges and Recent Progress in Delivery. J Pharmacol Exp Ther 2024; 388:81-90. [PMID: 37863489 DOI: 10.1124/jpet.123.001679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Dysregulation of various glucoregulatory hormones lead to failure of insulin monotherapy in patients with diabetes mellitus due to various reasons, including severe hypoglycemia, glycemic hypervariability, and an increased risk of microvascular complications. However, pramlintide as an adjunct to insulin therapy enhances glucagon suppression and thereby offers improved glycemic control. Clinical studies have shown that pramlintide improves glycemic control, reduces postprandial glucose excursions, and promotes weight loss in patients with type 1 and type 2 diabetes. Although clinical benefits of pramlintide are well reported, there still exists a high patient resistance for the therapy, as separate injections for pramlintide and insulin must be administered. Although marketed insulin formulations generally demonstrate a peak action in 60-90 minutes, pramlintide elicits its peak concentration at around 20-30 minutes after administration. Thus, owing to the significant differences in pharmacokinetics of exogenously administered pramlintide and insulin, the therapy fails to elicit its action otherwise produced by the endogenous hormones. Hence, strategies such as delaying the release of pramlintide by using inorganic polymers like silica, synthetic polymers like polycaprolactone, and lipids have been employed. Also, approaches like noncovalent conjugation, polyelectrolyte complexation, and use of amphiphilic excipients for codelivery of insulin and pramlintide have been explored to address the issues with pramlintide delivery and improve patient adherence to the therapy. This approach may usher in a new era of diabetes management, offering patients multiple options to tailor their treatment and improve their quality of life. SIGNIFICANCE STATEMENT: To our knowledge, this is the first report that summarizes various challenges in insulin and pramlintide codelivery and strategies to overcome them. The paper also provides deeper insights into various novel formulation strategies for pramlintide that could further broaden the reader's understanding of peptide codelivery.
Collapse
Affiliation(s)
- Sai Pradyuth Kommera
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, India
| | - Ankur Kumar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, India
| |
Collapse
|
13
|
Domingues I, Leclercq IA, Beloqui A. Nonalcoholic fatty liver disease: Current therapies and future perspectives in drug delivery. J Control Release 2023; 363:415-434. [PMID: 37769817 DOI: 10.1016/j.jconrel.2023.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25% of the adult population worldwide. This pathology can progress into end-stage liver disease with life-threatening complications, and yet no pharmacologic therapy has been approved. NAFLD is commonly characterized by excessive fat accumulation in the liver and is in closely associated with insulin resistance and metabolic disorders, which suggests that NAFLD is the hepatic manifestation of metabolic syndrome. Regarding treatment options, the current validated strategy relies on lifestyle modifications (exercise and diet restrictions). Although there are no approved drug-based treatments, several clinical trials are ongoing. Novel targets are being discovered, and the repurposing of drugs that show promising effects in NAFLD is starting to gain more interest. The field of nanotechnology has been growing at an increasing rate, with new and more efficient drug delivery strategies being developed for NAFLD treatment. Nanocarriers can easily encapsulate drugs that need to be better protected from the organism to exert their effect or that need help at reaching their target, thereby helping achieve a better bioavailability. Drug delivery systems can also be designed to target the site of the disease, in this case, the liver. In this review, we focus on the current knowledge of NAFLD pathology, the targets being considered for clinical trials, and the current guidelines and ongoing clinical trials, with a specific focus on potential oral treatments for NAFLD using promising drug delivery strategies.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200 Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
14
|
Liu MX, Xu L, Cai YT, Wang RJ, Gu YY, Liu YC, Zou YJ, Zhao YM, Chen J, Zhang XL. Carbon Nitride-Based siRNA Vectors with Self-Produced O 2 Effects for Targeting Combination Therapy of Liver Fibrosis via HIF-1α-Mediated TGF-β1/Smad Pathway. Adv Healthc Mater 2023; 12:e2301485. [PMID: 37463681 DOI: 10.1002/adhm.202301485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Hypoxia is an important feature, which can upregulate the hypoxia-inducible factor-1α (HIF-1α) expression and promote the activation of hepatic stellate cells (HSCs), leading to liver fibrosis. Currently, effective treatment for liver fibrosis is extremely lacking. Herein, a safe and effective method is established to downregulate the expression of HIF-1α in HSCs via targeted delivery of VA-PEG-modified CNs-based nanosheets-encapsulated (VA-PEG-CN@GQDs) HIF-1α small interfering RNA (HIF-1α-siRNA). Due to the presence of lipase in the liver, the reversible release of siRNA can be promoted to complete the transfection process. Simultaneously, VA-PEG-CN@GQD nanosheets enable trigger the water splitting process to produce O2 under near-infrared (NIR) irradiation, thereby improving the hypoxic environment of the liver fibrosis site and maximizing the downregulation of HIF-1α expression to improve the therapeutic effect, as demonstrated in liver fibrosis mice. Such combination therapy can inhibit the activation of HSCs via HIF-1α-mediated TGF-β1/Smad pathway, achieving outstanding therapeutic effects in liver fibrosis mice. In conclusion, this study proposes a novel strategy for the treatment of liver fibrosis by regulating the hypoxic environment and the expression of HIF-1α at lesion site.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Li Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yu-Ting Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Ruo-Jia Wang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Ying-Ying Gu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yan-Chao Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Yu-Jin Zou
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yong-Mei Zhao
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
15
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
16
|
Pei Q, Yi Q, Tang L. Liver Fibrosis Resolution: From Molecular Mechanisms to Therapeutic Opportunities. Int J Mol Sci 2023; 24:ijms24119671. [PMID: 37298621 DOI: 10.3390/ijms24119671] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The liver is a critical system for metabolism in human beings, which plays an essential role in an abundance of physiological processes and is vulnerable to endogenous or exogenous injuries. After the damage to the liver, a type of aberrant wound healing response known as liver fibrosis may happen, which can result in an excessive accumulation of extracellular matrix (ECM) and then cause cirrhosis or hepatocellular carcinoma (HCC), seriously endangering human health and causing a great economic burden. However, few effective anti-fibrotic medications are clinically available to treat liver fibrosis. The most efficient approach to liver fibrosis prevention and treatment currently is to eliminate its causes, but this approach's efficiency is too slow, or some causes cannot be fully eliminated, which causes liver fibrosis to worsen. In cases of advanced fibrosis, the only available treatment is liver transplantation. Therefore, new treatments or therapeutic agents need to be explored to stop the further development of early liver fibrosis or to reverse the fibrosis process to achieve liver fibrosis resolution. Understanding the mechanisms that lead to the development of liver fibrosis is necessary to find new therapeutic targets and drugs. The complex process of liver fibrosis is regulated by a variety of cells and cytokines, among which hepatic stellate cells (HSCs) are the essential cells, and their continued activation will lead to further progression of liver fibrosis. It has been found that inhibiting HSC activation, or inducing apoptosis, and inactivating activated hepatic stellate cells (aHSCs) can reverse fibrosis and thus achieve liver fibrosis regression. Hence, this review will concentrate on how HSCs become activated during liver fibrosis, including intercellular interactions and related signaling pathways, as well as targeting HSCs or liver fibrosis signaling pathways to achieve the resolution of liver fibrosis. Finally, new therapeutic compounds targeting liver fibrosis are summarized to provide more options for the therapy of liver fibrosis.
Collapse
Affiliation(s)
- Qiying Pei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
17
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
18
|
Mukherjee S, Diéguez C, Fernø J, López M. Obesity wars: hypothalamic sEVs a new hope. Trends Mol Med 2023:S1471-4914(23)00088-6. [PMID: 37210227 DOI: 10.1016/j.molmed.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
There are currently several pharmacological therapies available for the treatment of obesity, targeting both the central nervous system (CNS) and peripheral tissues. In recent years, small extracellular vesicles (sEVs) have been shown to be involved in many pathophysiological conditions. Because of their special nanosized structure and contents, sEVs can activate receptors and trigger intracellular pathways in recipient cells. Notably, in addition to transferring molecules between cells, sEVs can also alter their phenotypic characteristics. The purpose of this review is to discuss how sEVs can be used as a CNS-targeted strategy for treating obesity. Furthermore, we will evaluate current findings, such as the sEV-mediated targeting of hypothalamic AMP-activated protein kinase (AMPK), and discuss how they can be translated into clinical application.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
19
|
Chen L, Wang Y. Interdisciplinary advances reshape the delivery tools for effective NASH treatment. Mol Metab 2023; 73:101730. [PMID: 37142161 DOI: 10.1016/j.molmet.2023.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH), a severe systemic and inflammatory subtype of nonalcoholic fatty liver disease, eventually develops into cirrhosis and hepatocellular carcinoma with few options for effective treatment. Currently potent small molecules identified in preclinical studies are confronted with adverse effects and long-term ineffectiveness in clinical trials. Nevertheless, highly specific delivery tools designed from interdisciplinary concepts may address the significant challenges by either effectively increasing the concentrations of drugs in target cell types, or selectively manipulating the gene expression in liver to resolve NASH. SCOPE OF REVIEW We focus on dissecting the detailed principles of the latest interdisciplinary advances and concepts that direct the design of future delivery tools to enhance the efficacy. Recent advances have indicated that cell and organelle-specific vehicles, non-coding RNA research (e.g. saRNA, hybrid miRNA) improve the specificity, while small extracellular vesicles and coacervates increase the cellular uptake of therapeutics. Moreover, strategies based on interdisciplinary advances drastically elevate drug loading capacity and delivery efficiency and ameliorate NASH and other liver diseases. MAJOR CONCLUSIONS The latest concepts and advances in chemistry, biochemistry and machine learning technology provide the framework and strategies for the design of more effective tools to treat NASH, other pivotal liver diseases and metabolic disorders.
Collapse
Affiliation(s)
- Linshan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health.
| |
Collapse
|
20
|
Zhou P, Yan B, Wei B, Fu L, Wang Y, Wang W, Zhang L, Mao Y. Quercetin-solid lipid nanoparticle-embedded hyaluronic acid functionalized hydrogel for immunomodulation to promote bone reconstruction. Regen Biomater 2023; 10:rbad025. [PMID: 37077623 PMCID: PMC10110271 DOI: 10.1093/rb/rbad025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/21/2023] Open
Abstract
Bone defects are a persistent challenge in clinical practice. Although repair therapies based on tissue-engineered materials, which are known to have a crucial role in defective bone regeneration, have gathered increased attention, the current treatments for massive bone defects have several limitations. In the present study, based on the immunomodulatory inflammatory microenvironment properties of quercetin, we encapsulated quercetin-solid lipid nanoparticles (SLNs) in a hydrogel. Temperature-responsive poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) modifications were coupled to the main chain of hyaluronic acid hydrogel, constructing a novel, injectable bone immunomodulatory hydrogel scaffold. Extensive in vitro and in vivo data showed that this bone immunomodulatory scaffold forms an anti-inflammatory microenvironment by decreasing M1 polarization, while elevating the M2 polarization. Synergistic effects on angiogenesis and anti-osteoclastic differentiation were observed. These findings further proved that administering quercetin SLNs encapsulated in a hydrogel can aid bone defect reconstruction in rats, providing new insights for large-scale bone defect repair.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Bomin Yan
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Bangguo Wei
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Liangmin Fu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Ying Wang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Wenrui Wang
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Anhui 233030, China
| | - Li Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Yingji Mao
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
- Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
21
|
Vyas K, Patel MM. Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci 2023; 18:100779. [PMID: 36845840 PMCID: PMC9950450 DOI: 10.1016/j.ajps.2023.100779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Complications of the liver are amongst the world's worst diseases. Liver fibrosis is the first stage of liver problems, while cirrhosis is the last stage, which can lead to death. The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver's metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting. Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis; nevertheless, the working mechanism of anti-fibrotic medications is not fully understood, and there is a need to design delivery systems that are well-understood and can aid in cirrhosis. Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery. As a result, the capability of nanoparticles in hepatic delivery was explored. Another approach is targeted drug delivery, which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells (HSCs). We have addressed numerous delivery strategies that target HSCs, which can eventually aid in fibrosis. Recently genetics have proved to be useful, and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted. To summarize, this review paper sheds light on the most recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Kunj Vyas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| |
Collapse
|
22
|
Research Progress of Fecal Microbiota Transplantation in Liver Diseases. J Clin Med 2023; 12:jcm12041683. [PMID: 36836218 PMCID: PMC9960958 DOI: 10.3390/jcm12041683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A growing body of evidence suggested that gut microbiota is associated with liver diseases through the gut-liver axis. The imbalance of gut microbiota could be correlated with the occurrence, development, and prognosis of a series of liver diseases, including alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), viral hepatitis, cirrhosis, primary sclerosing cholangitis (PSC), and hepatocellular carcinoma (HCC). Fecal microbiota transplantation (FMT) seems to be a method to normalize the patient's gut microbiota. This method has been traced back to the 4th century. In recent decade, FMT has been highly regarded in several clinical trials. As a novel approach to reconstruct the intestinal microecological balance, FMT has been used to treat the chronic liver diseases. Therefore, in this review, the role of FMT in the treatment of liver diseases was summarized. In addition, the relationship between gut and liver was explored through the gut-liver axis, and the definition, objectives, advantages, and procedures of FMT were described. Finally, the clinical value of FMT therapy in liver transplant (LT) recipients was briefly discussed.
Collapse
|
23
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Nasiri-Ansari N, Androutsakos T, Flessa CM, Kyrou I, Siasos G, Randeva HS, Kassi E, Papavassiliou AG. Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells 2022; 11:2511. [PMID: 36010588 PMCID: PMC9407007 DOI: 10.3390/cells11162511] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. It is strongly associated with obesity, type 2 diabetes (T2DM), and other metabolic syndrome features. Reflecting the underlying pathogenesis and the cardiometabolic disorders associated with NAFLD, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has recently been proposed. Indeed, over the past few years, growing evidence supports a strong correlation between NAFLD and increased cardiovascular disease (CVD) risk, independent of the presence of diabetes, hypertension, and obesity. This implies that NAFLD may also be directly involved in the pathogenesis of CVD. Notably, liver sinusoidal endothelial cell (LSEC) dysfunction appears to be implicated in the progression of NAFLD via numerous mechanisms, including the regulation of the inflammatory process, hepatic stellate activation, augmented vascular resistance, and the distortion of microcirculation, resulting in the progression of NAFLD. Vice versa, the liver secretes inflammatory molecules that are considered pro-atherogenic and may contribute to vascular endothelial dysfunction, resulting in atherosclerosis and CVD. In this review, we provide current evidence supporting the role of endothelial cell dysfunction in the pathogenesis of NAFLD and NAFLD-associated atherosclerosis. Endothelial cells could thus represent a "golden target" for the development of new treatment strategies for NAFLD and its comorbid CVD.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, ‘Sotiria’ Thoracic Diseases General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
25
|
Sun X, Wu J, Liu L, Chen Y, Tang Y, Liu S, Chen H, Jiang Y, Liu Y, Yuan H, Lu Y, Chen Z, Cai J. Transcriptional switch of hepatocytes initiates macrophage recruitment and T-cell suppression in endotoxemia. J Hepatol 2022; 77:436-452. [PMID: 35276271 DOI: 10.1016/j.jhep.2022.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The liver plays crucial roles in the regulation of immune defense during acute systemic infections. However, the roles of liver cellular clusters and intercellular communication in the progression of endotoxemia have not been well-characterized. METHODS Single-cell RNA sequencing analysis was performed, and the transcriptomes of 19,795 single liver cells from healthy and endotoxic mice were profiled. The spatial and temporal changes in hepatocytes and non-parenchymal cell types were validated by multiplex immunofluorescence staining, bulk transcriptomic sequencing, or flow cytometry. Furthermore, we used an adeno-associated virus delivery system to confirm the major mechanisms mediating myeloid cell infiltration and T-cell suppression in septic murine liver. RESULTS We identified a proinflammatory hepatocyte (PIH) subpopulation that developed primarily from periportal hepatocytes and to a lesser extent from pericentral hepatocytes and played key immunoregulatory roles in endotoxemia. Multicellular cluster modeling of ligand-receptor interactions revealed that PIHs play a crucial role in the recruitment of macrophages via the CCL2-CCR2 interaction. Recruited macrophages (RMs) released cytokines (e.g., IL6, TNFα, and IL17) to induce the expression of inhibitory ligands, such as PD-L1, on hepatocytes. Subsequently, RM-stimulated hepatocytes led to the suppression of CD4+ and memory T-cell subsets partly via the PD-1/PD-L1 interaction in endotoxemia. Furthermore, sinusoidal endothelial cells expressed the highest levels of proapoptotic and inflammatory genes around the periportal zone. This pattern of gene expression facilitated increases in the number of fenestrations and infiltration of immune cells in the periportal zone. CONCLUSIONS Our study elucidates unanticipated aspects of the cellular and molecular effects of endotoxemia on liver cells at the single-cell level and provides a conceptual framework for the development of novel therapeutic approaches for acute infection. LAY SUMMARY The liver plays a crucial role in the regulation of immune defense during acute systemic infections. We identified a proinflammatory hepatocyte subpopulation and demonstrated that the interactions of this subpopulation with recruited macrophages are pivotal in the immune response during endotoxemia. These novel findings provide a conceptual framework for the discovery of rational therapeutic targets in acute infection.
Collapse
Affiliation(s)
- Xuejing Sun
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Junru Wu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lun Liu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Chen
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yan Tang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Suzhen Liu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Youxiang Jiang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yuanyuan Liu
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hong Yuan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yao Lu
- The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhaoyang Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China; The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
26
|
Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B 2022; 12:4098-4121. [DOI: 10.1016/j.apsb.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
|
27
|
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022; 39:2673-2698. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.
Collapse
|
28
|
Kandregula B, Narisepalli S, Chitkara D, Mittal A. Exploration of Lipid-Based Nanocarriers as Drug Delivery Systems in Diabetic Foot Ulcer. Mol Pharm 2022; 19:1977-1998. [PMID: 35481377 DOI: 10.1021/acs.molpharmaceut.1c00970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a chronic manifestation characterized by high levels of glucose in the blood resulting in several complications including diabetic wounds and ulcers, which predominantly require a longer duration of treatment and adversely affect the quality of life of the patients. Nanotechnology-based therapeutics (both intrinsic and extrinsic types) have emerged as a promising treatment in diabetic foot ulcer/chronic wounds owing to their unique characteristics and specific functional properties. In this review, we have focused on the significance of the use of lipids in the healing of diabetic ulcers, their interaction with the injured skin, and recent trends in lipid-based nanocarriers for the healing of diabetic wounds. Lipid nanocarriers are also being investigated for gene therapy in diabetic wound healing to encapsulate nucleic acids such as siRNA and miRNA, which could silence the expression of inflammatory cytokines overexpressed in chronic wounds. Additionally, these are also being explored for encapsulating proteins, peptides, growth factors, and other biological genetic material as therapeutic agents. Lipid-based nanocarriers encompassing a wide variety of carriers such as liposomes, niosomes, ethosomes, solid lipid nanoparticles, and lipidoid nanoparticles that are explored for the treatment of foot ulcers supplemented with relevant research studies have been discussed in the present review. Lipid-based nanodrug delivery systems have demonstrated promising wound healing potential, particularly in diabetic conditions due to the enhanced efficacy of the entrapped active molecules.
Collapse
Affiliation(s)
- Bhaskar Kandregula
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Saibhargav Narisepalli
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.,Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
29
|
Sun R, Dai J, Ling M, Yu L, Yu Z, Tang L. Delivery of triptolide: a combination of traditional Chinese medicine and nanomedicine. J Nanobiotechnology 2022; 20:194. [PMID: 35443712 PMCID: PMC9020428 DOI: 10.1186/s12951-022-01389-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
As a natural product with various biological activities, triptolide (TP) has been reported in anti-inflammatory, anti-tumor and anti-autoimmune studies. However, the narrow therapeutic window, poor water solubility, and fast metabolism limit its wide clinical application. To reduce its adverse effects and enhance its efficacy, research and design of targeted drug delivery systems (TDDS) based on nanomaterials is one of the most viable strategies at present. This review summarizes the reports and studies of TDDS combined with TP in recent years, including passive and active targeting of drug delivery systems, and specific delivery system strategies such as polymeric micelles, solid lipid nanoparticles, liposomes, and stimulus-responsive polymer nanoparticles. The reviewed literature presented herein indicates that TDDS is a multifunctional and efficient method for the delivery of TP. In addition, the advantages and disadvantages of TDDS are sorted out, aiming to provide reference for the combination of traditional Chinese medicine and advanced nano drug delivery systems (NDDS) in the future.
Collapse
Affiliation(s)
- Rui Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Jingyue Dai
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Mingjian Ling
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ling Yu
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.
| | - Longguang Tang
- The People's Hospital of Gaozhou, Maoming, 525200, China.
| |
Collapse
|
30
|
Zhan QW, Gao J, Li D, Huang Y. High throughput onion-like liposome formation with efficient protein encapsulation under flash antisolvent mixing. J Colloid Interface Sci 2022; 618:185-195. [PMID: 35338925 DOI: 10.1016/j.jcis.2022.03.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Achieving a high encapsulation efficiency and loading capacity of proteins in lecithin-based liposomes has always been a challenge. Here, we use Flash Nano-Precipitation (FNP) to produce liposomes and investigated the encapsulation of model protein (Bovine Serum Albumin, BSA). Through rapid turbulent mixing, we obtained liposomes with small size, low polydispersity, and good batch repeatability at a high production rate. We demonstrated that the bilayer of liposomes prepared solely using lecithin was defective, which led to the fusion, and increased size and polydispersity. When cholesterol was added to reach a lecithin-to-cholesterol molar ratio of 5:3, a compact bilayer formed to effectively inhibit liposome fusion. The encapsulation efficiency and loading capacity of BSA was as high as ∼ 68% and ∼ 6% in lecithin-cholesterol liposome, respectively, far exceeding the values reported in the literature. Further study by Quartz Crystal Microbalance with Dissipation (QCM-D) revealed that the highly effective encapsulation was due to the rapid mutual adsorption between BSA and defective/curved lecithin double layers during the liposome formation. Such rapid mutual adsorption leads to the layer-by-layer assembly and formation of onion-like compact liposome structure as revealed by Cryo-TEM. This simple FNP method provides a scalable manufacturing approach for liposomes with efficient protein encapsulation. The revealed adsorption mechanism between protein and lecithin bilayers could also serve as a guide for similar studies.
Collapse
Affiliation(s)
- Qiang-Wei Zhan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jun Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Dongcui Li
- InCipirit Tech (Guangzhou) Co., Ltd., Guangzhou, Guangdong, China
| | - Yan Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
31
|
Abstract
Non-alcoholic fatty liver disease is comprised of either simple steatosis (non-alcoholic fatty liver) or a more advanced inflammatory and fibrogenic stage (non-alcoholic steatohepatitis [NASH]). NASH affects a growing proportion of the global adult and pediatric population, leading to rising rates of liver fibrosis and hepatocellular carcinoma. NASH is a multifactorial disease that is part of a systemic metabolic disorder. Here, we provide an overview of the metabolic underpinnings of NASH pathogenesis and established drivers of inflammation and fibrosis. Clarification of underlying fibrogenic and inflammatory mechanisms will advance the development of novel treatment strategies as there are no approved therapies at present. We discuss emerging experimental approaches and potential novel investigational strategies derived from animal models including the inflammasome, epigenetic reprogramming, Hippo signaling, Notch signaling, engineered T cells to remove fibrogenic HSCs, and HSC-specific targeting therapies. Recently completed and ongoing clinical trials and antifibrotics are discussed, illuminating the growing expectation that one or more therapies will yield clinical benefit in NASH in the coming years.
Collapse
Affiliation(s)
- Youngmin A. Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
32
|
Han H, Jiang Y, Wang M, Melaku M, Liu L, Zhao Y, Everaert N, Yi B, Zhang H. Intestinal dysbiosis in nonalcoholic fatty liver disease (NAFLD): focusing on the gut-liver axis. Crit Rev Food Sci Nutr 2021; 63:1689-1706. [PMID: 34404276 DOI: 10.1080/10408398.2021.1966738] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders in humans, partly because it is closely related to metabolic disorders of the liver with increasing prevalence. NAFLD begins with hepatic lipid accumulation, which may cause inflammation and eventually lead to fibrosis in the liver. Numerous studies have demonstrated the close relationship between gut dysfunction (especially the gut microbiota and its metabolites) and the occurrence and progression of NAFLD. The bidirectional communication between the gut and liver, named the gut-liver axis, is mainly mediated by the metabolites derived from both the liver and gut through the biliary tract, portal vein, and systemic circulation. Herein, we review the effects of the gut-liver axis on the pathogenesis of NAFLD. We also comprehensively describe the potential molecular mechanisms from the perspective of the role of liver-derived metabolites and gut-related components in hepatic metabolism and inflammation and gut health, respectively. The study provides insights into the mechanisms underlying current summarizations that support the intricate interactions between a disordered gut and NAFLD and can provide novel strategies to lessen the prevalence and consequence of NAFLD.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yi Jiang
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mebratu Melaku
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Animal Production and Technology, College of Agriculture, Woldia University, Woldia, Ethiopia
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|