1
|
Zhang Y, Deng J, Lang M, Shu G, Pan J, Zhang C, Cheng R, Sun SK. Large-scale synthesis of non-ionic bismuth chelate for computed tomography imaging in vivo. Biomaterials 2025; 318:123122. [PMID: 40032441 DOI: 10.1016/j.biomaterials.2025.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
High atomic number elements-based X-ray computed tomography (CT) contrast agents offer a promising solution to address the inherent deficiencies of FDA-approved iodine contrast agents. However, they face substantial challenges in balancing imaging performance, safety, and large-scale production for clinical translation. Herein, inspired by the history of clinical gadolinium- and iodine-based contrast agents, we report a large-scale approach for synthesizing non-ionic bismuth (Bi) chelate for high-performance CT imaging in vivo. Bi-HPDO3A can be easily obtained from low-cost precursor within 4 steps at 6 g-scale. The non-ionic macrocyclic structure endows it with low osmolality, low viscosity, high stability, good renal clearable capability and biocompatibility. Additionally, Bi-HPDO3A realizes superior imaging performance across various in vivo applications, including gastrointestinal imaging, renal imaging, and computed tomography angiography (CTA). Especially, Bi-HPDO3A exhibits superior spectral imaging capability owing to the high K-edge of element Bi, achieving metal artifact-free CTA in vivo. The proposed Bi-HPDO3A that balances overall performance can serve as a high-performance CT contrast agent with potential for clinical translation.
Collapse
Affiliation(s)
- Yuping Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jianqi Deng
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Mingbin Lang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Gang Shu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ran Cheng
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
2
|
Gadour E, Miutescu B, Hassan Z, Aljahdli ES, Raees K. Advancements in the diagnosis of biliopancreatic diseases: A comparative review and study on future insights. World J Gastrointest Endosc 2025; 17:103391. [PMID: 40291132 PMCID: PMC12019128 DOI: 10.4253/wjge.v17.i4.103391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 04/14/2025] Open
Abstract
Owing to the complex and often asymptomatic presentations, the diagnosis of biliopancreatic diseases, including pancreatic and biliary malignancies, remains challenging. Recent technological advancements have remarkably improved the diagnostic accuracy and patient outcomes in these diseases. This review explores key advancements in diagnostic modalities, including biomarkers, imaging techniques, and artificial intelligence (AI)-based technologies. Biomarkers, such as cancer antigen 19-9, KRAS mutations, and inflammatory markers, provide crucial insights into disease progression and treatment responses. Advanced imaging modalities include enhanced computed tomography (CT), positron emission tomography-CT, magnetic resonance cholangiopancreatography, and endoscopic ultrasound. AI integration in imaging and pathology has enhanced diagnostic precision through deep learning algorithms that analyze medical images, automate routine diagnostic tasks, and provide predictive analytics for personalized treatment strategies. The applications of these technologies are diverse, ranging from early cancer detection to therapeutic guidance and real-time imaging. Biomarker-based liquid biopsies and AI-assisted imaging tools are essential for non-invasive diagnostics and individualized patient management. Furthermore, AI-driven models are transforming disease stratification, thus enhancing risk assessment and decision-making. Future studies should explore standardizing biomarker validation, improving AI-driven diagnostics, and expanding the accessibility of advanced imaging technologies in resource-limited settings. The continued development of non-invasive diagnostic techniques and precision medicine approaches is crucial for optimizing the detection and management of biliopancreatic diseases. Collaborative efforts between clinicians, researchers, and industry stakeholders will be pivotal in applying these advancements in clinical practice.
Collapse
Affiliation(s)
- Eyad Gadour
- Multiorgan Transplant Centre of Excellence, Liver Transplantation Unit, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia
- Internal Medicine, Zamzam University College, School of Medicine, Khartoum 11113, Sudan
| | - Bogdan Miutescu
- Department of Gastroenterology and Hepatology, Victor Babes University of Medicine and Pharmacy, Timisoara 300041, Romania
- Advanced Regional Research Center in Gastroenterology and Hepatology, Victor Babes University of Medicine and Pharmacy, Timisoara 30041, Romania
| | - Zeinab Hassan
- Department of Internal Medicine, Stockport Hospitals NHS Foundation Trust, Manchester SK2 7JE, United Kingdom
| | - Emad S Aljahdli
- Gastroenterology Division, King Abdulaziz University, Faculty of Medicine, Jeddah 21589, Saudi Arabia
- Gastrointestinal Oncology Unit, King Abdulaziz University Hospital, Jeddah 22252, Saudi Arabia
| | - Khurram Raees
- Department of Gastroenterology and Hepatology, Royal Blackburn Hospital, Blackburn BB2 3HH, United Kingdom
| |
Collapse
|
3
|
Qiao J, Dong J, Wang J, Liu S, Wang Y, Li X, Li H, Zhou G. Thermally adaptive iohexol-loaded microcages for local computerized tomography. J Mater Chem B 2025; 13:3669-3676. [PMID: 39960466 DOI: 10.1039/d4tb02531h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
As one of the most used non-invasive imaging modalities, X-ray computed tomography (CT) has many outstanding advantages, but its wide application is still limited owing to various defects of its contrast agents, such as their short in vivo retention time, non-specific distribution, and potential nephrotoxicity. Herein, a non-ionic poly(acrylamide-co-acrylonitrile) copolymer with an upper critical solution temperature (UCST) was utilized to construct novel thermo-responsive microcages (MCs) with a hydrodynamic size of 5-10 μm, which is slightly less than the diameter of a blood vessel, for targeted CT imaging. These MCs exhibited excellent thermo-responsive capability, featuring the appropriate UCST value between 35-40 °C. A reversible UCST-type phase transition endowed these MCs with dramatic expansion above UCST for local embolization in hyperthermia site, and good recovery was observed below UCST for elimination from microvessels after treatments. As a micro-sized carrier, they also exhibited high loading (14.3%) and encapsulation efficiency of iohexol (16.6%) and heat-enhanced release (29.54% in 48 hours), favoring CT imaging with weak signal attenuation. Given their good biocompatibility and biosecurity, these smart MCs are anticipated to develop into facile, effective, safe, and targeted CT contrast agents.
Collapse
Affiliation(s)
- Jie Qiao
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jiao Dong
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jianhao Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangdong University of Pharmacy, Guangzhou, 510699, P. R. China
| | - Shuxuan Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xian Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Pharmaceutical University, Guangzhou, 511436, P. R. China.
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Gunaseelan N, Saha P, Maher N, Pan D. Nanoparticles with " K-edge" Metals Bring "Color" in Multiscale Spectral Photon Counting X-ray Imaging. ACS NANO 2024; 18:34464-34491. [PMID: 39652749 DOI: 10.1021/acsnano.4c11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Preclinical and clinical diagnostics depend greatly on medical imaging, which enables the identification of physiological and pathological processes in living subjects. It is often necessary to use contrast agents to complement anatomical data with functional information or to describe the disease phenotypically. Nanomaterials are used as contrast agents in many advanced bioimaging techniques and applications because of their high payload, physicochemical properties, improved sensitivity, and multimodality. Metals with k-edge energy within the X-ray bandwidth respond to photon counting and spectral X-ray imaging. This Perspective examines the progress made in the emerging area of nanoparticle-based k-edge contrast agents. These nano "k-edge" particles have been explored with spectral photon counting CT (SPCCT) for multiplexed molecular imaging, pushing the boundaries of resolution and capabilities of CT imaging. Design considerations, contrast properties, and biological behavior are discussed in detail. The key applications are highlighted by categorizing these nanomaterials based on their X-ray, k-edge energy, and biological properties, as well as their synthesis, functionalization, and characterization processes. The article delves into the transformative impact of nano "k-edge" particles on early disease detection and other biomedical applications. The review provides further insights into how the "k-edge signatures" of these nanoparticles combined with photon counting technique can be leveraged for quantitative, multicontrast imaging of diseases. We also discuss the status quo of clinically approved nanoparticles for imaging and highlight the challenges such as toxicity and clearance as well as promising clinical perspectives, providing a balanced view of the potential and limitations of these nanomaterials. Furthermore, we discuss the necessary future research efforts required to clinically translate nano "k-edge" particles as SPCCT contrast agents for early disease diagnosis and tracking.
Collapse
Affiliation(s)
- Nivetha Gunaseelan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pranay Saha
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nada Maher
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Zhang P, Li Y, Li X, Wang Y, Lin H, Zhang N, Li W, Jing L, Jiao M, Luo X, Hou Y. Shedding light on vascular imaging: the revolutionary role of nanotechnology. J Nanobiotechnology 2024; 22:757. [PMID: 39695727 DOI: 10.1186/s12951-024-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Vascular dysfunction, characterized by changes in anatomy, hemodynamics, and molecular expressions of vasculatures, is closely linked to the onset and development of diseases, emphasizing the importance of its detection. In clinical practice, medical imaging has been utilized as a significant tool in the assessment of vascular dysfunction, however, traditional imaging techniques still lack sufficient resolution for visualizing the complex microvascular systems. Over the past decade, with the rapid advancement of nanotechnology and the emergence of corresponding detection facilities, engineered nanomaterials offer new alternatives to traditional contrast agents. Compared with conventional small molecule counterparts, nanomaterials possess numerous advantages for vascular imaging, holding the potential to significantly advance related technologies. In this review, the latest developments in nanotechnology-assisted vascular imaging research across different imaging modalities, including contrast-enhanced magnetic resonance (MR) angiography, susceptibility-weighted imaging (SWI), and fluorescence imaging in the second near-infrared window (NIR-II) are summarized. Additionally, the advancements of preclinical and clinical studies related to these nanotechnology-enhanced vascular imaging approaches are outlined, with subsequent discussion on the current challenges and future prospects in both basic research and clinical translation.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yao Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaoqi Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yudong Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hua Lin
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wenyue Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
6
|
Shu G, Zhang C, Wen Y, Pan J, Zhang X, Sun SK. Bismuth drug-inspired ultra-small dextran coated bismuth oxide nanoparticles for targeted computed tomography imaging of inflammatory bowel disease. Biomaterials 2024; 311:122658. [PMID: 38901130 DOI: 10.1016/j.biomaterials.2024.122658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Bismuth (Bi)-based computed tomography (CT) imaging contrast agents (CAs) hold significant promise for diagnosing gastrointestinal diseases due to their cost-effectiveness, heightened sensitivity, and commendable biocompatibility. Nevertheless, substantial challenges persist in achieving an easy synthesis process, remarkable water solubility, and effective targeting ability for the potential clinical transformation of Bi-based CAs. Herein, we show Bi drug-inspired ultra-small dextran coated bismuth oxide nanoparticles (Bi2O3-Dex NPs) for targeted CT imaging of inflammatory bowel disease (IBD). Bi2O3-Dex NPs are synthesized through a simple alkaline precipitation reaction using bismuth salts and dextran as the template. The Bi2O3-Dex NPs exhibit ultra-small size (3.4 nm), exceptional water solubility (over 200 mg mL-1), high Bi content (19.75 %), excellent biocompatibility and demonstrate higher X-ray attenuation capacity compared to clinical iohexol. Bi2O3-Dex NPs not only enable clear visualization of the GI tract outline and intestinal loop structures in CT imaging but also specifically target and accumulate at the inflammatory site in colitis mice after oral administration, facilitating a precise diagnosis and enabling targeted CT imaging of IBD. Our study introduces a novel and clinically promising strategy for synthesizing high-performance Bi2O3-Dex NPs for diagnosing gastrointestinal diseases.
Collapse
Affiliation(s)
- Gang Shu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China; Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Cai Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ya Wen
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
7
|
Zhang J, Liu Z, Zhang Z, Yang H, Wang H, Yang Z, Xu Y, Li S, Yang D. Recent Advances in Silica-Based Nanomaterials for Enhanced Tumor Imaging and Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7133-7169. [PMID: 39495482 DOI: 10.1021/acsabm.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cancer remains a formidable challenge, inflicting profound physical, psychological, and financial burdens on patients. In this context, silica-based nanomaterials have garnered significant attention for their potential in tumor imaging and therapy owing to their exceptional properties, such as biocompatibility, customizable porosity, and versatile functionalization capabilities. This review meticulously examines the latest advancements in the application of silica-based nanomaterials for tumor imaging and therapy. It underscores their potential in enhancing various cancer imaging modalities, including fluorescence imaging, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasound imaging, and multimodal imaging approaches. Moreover, the review delves into their therapeutic efficacy in chemotherapy, radiotherapy, phototherapy, immunotherapy, gas therapy, sonodynamic therapy, chemodynamic therapy, starvation therapy, and gene therapy. Critical evaluations of the biosafety profiles and degradation pathways of these nanomaterials within biological environments are also presented. By discussing the current challenges and prospects, this review aims to provide a nuanced perspective on the clinical translation of silica-based nanomaterials, thereby highlighting their promise in revolutionizing cancer diagnostics, enabling real-time monitoring of therapeutic responses, and advancing personalized medicine.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yunjian Xu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
8
|
Wang J, Fu D, Tang C, Shu G, Zhang X, Zhang X, Pan J, Sun SK. Bismuth Chelate-Mediated Digital Subtraction Angiography. Adv Healthc Mater 2024; 13:e2401653. [PMID: 38830126 DOI: 10.1002/adhm.202401653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Indexed: 06/05/2024]
Abstract
Digital subtraction angiography (DSA) is considered the "gold standard" for the diagnosis of vascular diseases. However, the contrast agents used in DSA are limited to iodine (I)-based small molecules, which are unsuitable for patients with contraindications. Here, iodine-free DSA utilizing a bismuth (Bi) chelate, Bi-DTPA Dimeglumine, is proposed for vascular visualization for the first time. Bi-DTPA Dimeglumine possesses a simple synthesis process without the need for purification, large-scale production ability (over 200 g in the lab), superior X-ray imaging capability, renal clearance capacity, and good biocompatibility. Bi-DTPA-enhanced DSA can clearly display the arteries of the rabbit's head and lower limbs, with a minimum vascular resolution of 0.5 mm. The displayed integrity of terminal vessels by Bi-DTPA-enhanced DSA is superior to that of iopromide-enhanced DSA. In a rabbit model of thrombotic disease, Bi-DTPA Dimeglumine-enhanced DSA enables the detection of embolism and subsequent reevaluation of vascular conditions after recanalization therapy. This proposed iodine-free DSA provides a promising and universal approach for diagnosing vascular diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dianxun Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cong Tang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Gang Shu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
9
|
Dong Y, Shu G, Wei Y, Pan J, Li D, Sun SK. Gram-Scale Synthesis of Renal-Clearable Tantalum Nanodots with High Water Solubility for Computed Tomography Imaging In Vivo. ACS NANO 2024; 18:25081-25095. [PMID: 39207307 DOI: 10.1021/acsnano.4c06705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tantalum (Ta) emerges as a promising element for advanced computed tomography (CT) imaging probes owing to its high X-ray attenuation coefficient and excellent biocompatibility. Nevertheless, the synthesis of renally clear Ta-based imaging probes through simple methods remains a significant challenge. Herein, we introduce a simple and gram-scale approach for the synthesis of renal-clearable Ta nanodots with high water solubility for CT imaging in vivo. The Ta nanodots, coordination polymers, are fabricated via coordination reactions involving Ta(OH)5, citric acid (CA), and hydrogen peroxide. The Ta nanodots exhibit an ultrasmall hydrodynamic diameter (2.8 nm), high water solubility (1.88 g/mL, 688 mg Ta/mL), superior X-ray absorption capacity, gram-scale production capability (>10 g in lab synthesis), renal-clearable ability, and good biocompatibility. The Ta nanodots possess superior CT imaging efficacy across diverse tube voltages, enabling highly sensitive gastrointestinal CT imaging, renal CT imaging, and CT angiography (CTA). Moreover, Ta nanodots maintain robust CT imaging capabilities even at high X-ray energies, and Ta nanodots-based spectral CT achieves metallic artifacts-minimized CTA. The proposed Ta nanodots present substantial potential as a potent CT imaging probe for diagnosing various diseases.
Collapse
Affiliation(s)
- Yanzhi Dong
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Gang Shu
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yibo Wei
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dong Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
10
|
Kong Q, Zhu Z, Xu Q, Yu F, Wang Q, Gu Z, Xia K, Jiang D, Kong H. Nature-Inspired Thylakoid-Based Photosynthetic Nanoarchitectures for Biomedical Applications. SMALL METHODS 2024; 8:e2301143. [PMID: 38040986 DOI: 10.1002/smtd.202301143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Indexed: 12/03/2023]
Abstract
"Drawing inspiration from nature" offers a wealth of creative possibilities for designing cutting-edge materials with improved properties and performance. Nature-inspired thylakoid-based nanoarchitectures, seamlessly integrate the inherent structures and functions of natural components with the diverse and controllable characteristics of nanotechnology. These innovative biomaterials have garnered significant attention for their potential in various biomedical applications. Thylakoids possess fundamental traits such as light harvesting, oxygen evolution, and photosynthesis. Through the integration of artificially fabricated nanostructures with distinct physical and chemical properties, novel photosynthetic nanoarchitectures can be catalytically generated, offering versatile functionalities for diverse biomedical applications. In this article, an overview of the properties and extraction methods of thylakoids are provided. Additionally, the recent advancements in the design, preparation, functions, and biomedical applications of a range of thylakoid-based photosynthetic nanoarchitectures are reviewed. Finally, the foreseeable challenges and future prospects in this field is discussed.
Collapse
Affiliation(s)
- Qunshou Kong
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhimin Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Zhihua Gu
- Shanghai Pudong TCM Hospital, Shanghai, 201205, China
| | - Kai Xia
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
- Xiangfu Laboratory, Jiashan, 314102, China
- Shanghai Stomatological Hospital, Fudan University, Shanghai, 200031, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
11
|
Liu Y, Lin Z, Wang Y, Chen L, Wang Y, Luo C. Nanotechnology in inflammation: cutting-edge advances in diagnostics, therapeutics and theranostics. Theranostics 2024; 14:2490-2525. [PMID: 38646646 PMCID: PMC11024862 DOI: 10.7150/thno.91394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 04/23/2024] Open
Abstract
Inflammatory dysregulation is intimately associated with the occurrence and progression of many life-threatening diseases. Accurate detection and timely therapeutic intervention on inflammatory dysregulation are crucial for the effective therapy of inflammation-associated diseases. However, the clinical outcomes of inflammation-involved disorders are still unsatisfactory. Therefore, there is an urgent need to develop innovative anti-inflammatory strategies by integrating emerging technological innovations with traditional therapeutics. Biomedical nanotechnology is one of the promising fields that can potentially transform the diagnosis and treatment of inflammation. In this review, we outline recent advances in biomedical nanotechnology for the diagnosis and treatment of inflammation, with special attention paid to nanosensors and nanoprobes for precise diagnosis of inflammation-related diseases, emerging anti-inflammatory nanotherapeutics, as well as nanotheranostics and combined anti-inflammatory applications. Moreover, the prospects and challenges for clinical translation of nanoprobes and anti-inflammatory nanomedicines are highlighted.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Ziqi Lin
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Liuhui Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
12
|
Shu G, Zhao L, Li F, Jiang Y, Zhang X, Yu C, Pan J, Sun SK. Metallic artifacts-free spectral computed tomography angiography based on renal clearable bismuth chelate. Biomaterials 2024; 305:122422. [PMID: 38128318 DOI: 10.1016/j.biomaterials.2023.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Computed tomography angiography (CTA) is one of the most important diagnosis techniques for various vascular diseases in clinic. However, metallic artifacts caused by metal implants and calcified plaques in more and more patients severely hinder its wide applications. Herein, we propose an improved metallic artifacts-free spectral CTA technique based on renal clearable bismuth chelate (Bi-DTPA dimeglumine) for the first time. Bi-DTPA dimeglumine owns the merits of ultra-simple synthetic process, approximately 100% of yield, large-scale production capability, good biocompatibility, and favorable renal clearable ability. More importantly, Bi-DTPA dimeglumine shows superior contrast-enhanced effect in CTA compared with clinical iohexol at a wide range of X-ray energies especially in higher X-ray energy. In rabbits' model with metallic transplants, Bi-DTPA dimeglumine assisted-spectral CTA can not only effectively mitigate metallic artifacts by reducing beam hardening effect under high X-ray energy, but also enables accurate delineation of vascular structure. Our proposed strategy opens a revolutionary way to solve the bottleneck problem of metallic artifacts in CTA examinations.
Collapse
Affiliation(s)
- Gang Shu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China; Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fengtan Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingjian Jiang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
13
|
Li X, Lin Y, Yang Z, Guan L, Wang Z, Liu A, Yang B, Tang L, Lin Q. Cancer cell membrane biomimetic nanosystem for homologous targeted dual-mode imaging and combined therapy. J Colloid Interface Sci 2023; 652:770-779. [PMID: 37619256 DOI: 10.1016/j.jcis.2023.08.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
HYPOTHESIS The use of tumor cell membrane-camouflaged nanoparticles, specifically the multifunctional biomimetic core-shell nanosystem MPCONPs, can enhance the targeting ability and immune escape functionality of traditional chemotherapy, leading to more precise drug delivery and improved treatment outcomes. EXPERIMENTS Preparation of MPCONPs: Autologous tumor cell membrane (CM) fragments are collected and used to create a shell for the nanoparticles. A trypsin-sensitive cationic polylysine framework is synthesized and embedded with oxaliplatin (l-OHP) and Ce6-AuNDs (a singlet oxygen generator). The MPCONPs are formed by assembling these components. FINDINGS MPCONPs, as nanoparticles camouflaged with tumor CM, have enhanced cellular uptake in cancer cells and improved the efficacy of photodynamic therapy (PDT) and chemotherapy (CT). This offers great potential for their use as individualized therapeutic agents for clinical oncology treatment.
Collapse
Affiliation(s)
- Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yangliu Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Annan Liu
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lu Tang
- Breast Surgery Department, China- Japan Union hospital of Jilin University, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
14
|
Ji X, Zhu L, Hsu JC, Wang H, Zhou J, Wang Q, Li Y, Cai W, Ni D, Wu Z. Tungsten-based nanoparticles as contrast agents for liver tumor detection using dual-energy computed tomography. Biomater Sci 2023; 11:7817-7825. [PMID: 37873585 PMCID: PMC10873050 DOI: 10.1039/d3bm01068f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Dual-energy computed tomography (DECT) is a commonly used imaging technique for detecting and diagnosing liver cancer. Currently, it is performed using clinically approved iodinated small molecule contrast agents (CAs). However, these iodinated CAs have several drawbacks, including sub-optimal contrast generation and contra-indication in patients with renal insufficiency. Herein, we synthesized tungsten-based CAs (i.e., WO3-x NPs) with excellent biocompatibility and investigated their effectiveness in DECT imaging. WO3-x NPs significantly enhanced the contrast between liver tumors and normal liver tissues as indicated by in vivo DECT imaging. Furthermore, WO3-x NPs exhibited excellent biocompatibility and minimal systemic toxicity. This study introduces a novel class of CAs for DECT and presents a promising method for accurate early diagnosis of liver tumors.
Collapse
Affiliation(s)
- Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, P. R. China.
| | - Lan Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China.
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, USA.
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, P. R. China.
| | - Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Rd., Huangpu District, Shanghai 200011, People's Republic of China
| | - Qingbing Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China.
| | - Yuhan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, P. R. China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, USA.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, P. R. China.
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China.
| |
Collapse
|
15
|
Yang S, Song Y, Dong H, Hu Y, Jiang J, Chang S, Shao J, Yang D. Stimuli-Actuated Turn-On Theranostic Nanoplatforms for Imaging-Guided Antibacterial Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304127. [PMID: 37649207 DOI: 10.1002/smll.202304127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Antibacterial theranostic nanoplatforms, which integrate diagnostic and therapeutic properties, exhibit gigantic application prospects in precision medicine. However, traditional theranostic nanoplatforms usually present an always-on signal output, which leads to poor specificity or selectivity in the treatment of bacterial infections. To address this challenge, stimuli-actuated turn-on nanoplatforms are developed for simultaneous activation of diagnostic signals (e.g., fluorescent, photoacoustic, magnetic signals) and initiation of antibacterial treatment. Specifically, by combining the infection microenvironment-responsive activation of visual signals and antibacterial activity, these theranostic nanoplatforms exert both higher accurate diagnosis rates and more effective treatment effects. In this review, the imaging and treatment strategies that are commonly used in the clinic are first briefly introduced. Next, the recent progress of stimuli-actuated turn-on theranostic nanoplatforms for treating bacterial infectious diseases is summarized in detail. Finally, current bottlenecks and future opportunities of antibacterial theranostic nanoplatforms are also outlined and discussed.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Yingnan Song
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yanling Hu
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jingai Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Siyuan Chang
- College of life and health, Nanjing Polytechnic Institute, Nanjing, 210048, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
16
|
Huang W, Tao Z, Younis MH, Cai W, Kang L. Nuclear medicine radiomics in digestive system tumors: Concept, applications, challenges, and future perspectives. VIEW 2023; 4:20230032. [PMID: 38179181 PMCID: PMC10766416 DOI: 10.1002/viw.20230032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/20/2023] [Indexed: 01/06/2024] Open
Abstract
Radiomics aims to develop novel biomarkers and provide relevant deeper subvisual information about pathology, immunophenotype, and tumor microenvironment. It uses automated or semiautomated quantitative analysis of high-dimensional images to improve characterization, diagnosis, and prognosis. Recent years have seen a rapid increase in radiomics applications in nuclear medicine, leading to some promising research results in digestive system oncology, which have been driven by big data analysis and the development of artificial intelligence. Although radiomics advances one step further toward the non-invasive precision medical analysis, it is still a step away from clinical application and faces many challenges. This review article summarizes the available literature on digestive system tumors regarding radiomics in nuclear medicine. First, we describe the workflow and steps involved in radiomics analysis. Subsequently, we discuss the progress in clinical application regarding the utilization of radiomics for distinguishing between various diseases and evaluating their prognosis, and demonstrate how radiomics advances this field. Finally, we offer our viewpoint on how the field can progress by addressing the challenges facing clinical implementation.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zihao Tao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Muhsin H. Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
17
|
Hu X, Luo S, Leng J, Wang C, Chen Y, Chen J, Li X, Zeng H. Density-discriminating chromatic x-ray imaging based on metal halide nanocrystal scintillators. SCIENCE ADVANCES 2023; 9:eadh5081. [PMID: 37713492 PMCID: PMC10881070 DOI: 10.1126/sciadv.adh5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
X-ray imaging based on a single gray level shows visual blind parts and affects accurate judgment in some situations. Color-cognized x-ray imaging will boost the recognition capability, which has not yet been reported. Here, we propose a quartz-assisted chromatic x-ray imaging model based on metal halide nanocrystal (NC) stacked scintillators. Mutually inactive (BA)2PbBr4:Mn and Cs3Cu2I5:Tl enable x-ray energy- or density-dependent radioluminescence (RL) color variation. The upper scintillator light yield and the bottom scintillator transmittance are enhanced by elaborate in situ passivation of phenethylamine bromide and NC orientation regulation, respectively. Imaging targets with different densities are distinguished on RL spectra, and the color coordinates shift linearly on CIE 1931. An algorithm balances the image details of different gray areas and enhances the visual perception by color filling. This work provides color recognition between objects with different densities and takes a step toward chromatic x-ray imaging applied to practical scenarios.
Collapse
Affiliation(s)
- Xudong Hu
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Sihan Luo
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Jing Leng
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Chujie Wang
- Hangzhou TiRay Technology Co. Ltd., 366 Tongyun Street, Hangzhou 311112, P. R. China
| | - Yiyang Chen
- Hangzhou TiRay Technology Co. Ltd., 366 Tongyun Street, Hangzhou 311112, P. R. China
| | - Jun Chen
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Xiaoming Li
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| |
Collapse
|
18
|
Feng C, Xiong Z, Sun X, Zhou H, Wang T, Wang Y, Bai HX, Lei P, Liao W. Beyond antioxidation: Harnessing the CeO 2 nanoparticles as a renoprotective contrast agent for in vivo spectral CT angiography. Biomaterials 2023; 299:122164. [PMID: 37229807 DOI: 10.1016/j.biomaterials.2023.122164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
It is a challenging task to develop a contrast agent that not only provides excellent image contrast but also protects impaired kidneys from oxidative-related stress during angiography. Clinically approved iodinated CT contrast media are associated with potential renal toxicity, making it necessary to develop a renoprotective contrast agent. Here, we develop a CeO2 nanoparticles (NPs)-mediated three-in-one renoprotective imaging strategy, namely, i) renal clearable CeO2 NPs serve as a one-stone-two-birds antioxidative contrast agent, ii) low contrast media dose, and iii) spectral CT, for in vivo CT angiography (CTA). Benefiting from the merits of advanced sensitivity of spectral CT and K-edge energy of Cerium (Ce, 40.4 keV), an improved image quality of in vivo CTA is successfully achieved with a 10 times reduction of contrast agent dosage. In parallel, the sizes of CeO2 NPs and broad catalytic activities are suitable to be filtered via glomerulus thus directly alleviating the oxidative stress and the accompanying inflammatory injury of the kidney tubules. In addition, the low dosage of CeO2 NPs reduces the hypoperfusion stress of renal tubules induced by concentrated contrast agents used in angiography. This three-in-one renoprotective imaging strategy helps prevent kidney injury from being worsened during the CTA examination.
Collapse
Affiliation(s)
- Cai Feng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zongling Xiong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xianting Sun
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hao Zhou
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tianming Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ying Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Harrison X Bai
- Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Peng Lei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Molecular Imaging Research Center of Central South University, Changsha, 410008, China.
| |
Collapse
|
19
|
Xing B, Shawn Chen X. Preface in Special Theme: Functional Inorganic Nanomaterials for Cutting-edge Theranostic Applications. Adv Drug Deliv Rev 2023:114991. [PMID: 37414363 DOI: 10.1016/j.addr.2023.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Affiliation(s)
- Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, S637371 Singapore, Singapore; School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| | - Xiaoyuan Shawn Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074 Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
20
|
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 2023; 22:94. [PMID: 37312116 PMCID: PMC10262535 DOI: 10.1186/s12943-023-01797-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
21
|
Cademartiri F, Meloni A, Pistoia L, Degiorgi G, Clemente A, Gori CD, Positano V, Celi S, Berti S, Emdin M, Panetta D, Menichetti L, Punzo B, Cavaliere C, Bossone E, Saba L, Cau R, Grutta LL, Maffei E. Dual-Source Photon-Counting Computed Tomography-Part I: Clinical Overview of Cardiac CT and Coronary CT Angiography Applications. J Clin Med 2023; 12:jcm12113627. [PMID: 37297822 DOI: 10.3390/jcm12113627] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The photon-counting detector (PCD) is a new computed tomography detector technology (photon-counting computed tomography, PCCT) that provides substantial benefits for cardiac and coronary artery imaging. Compared with conventional CT, PCCT has multi-energy capability, increased spatial resolution and soft tissue contrast with near-null electronic noise, reduced radiation exposure, and optimization of the use of contrast agents. This new technology promises to overcome several limitations of traditional cardiac and coronary CT angiography (CCT/CCTA) including reduction in blooming artifacts in heavy calcified coronary plaques or beam-hardening artifacts in patients with coronary stents, and a more precise assessment of the degree of stenosis and plaque characteristic thanks to its better spatial resolution. Another potential application of PCCT is the use of a double-contrast agent to characterize myocardial tissue. In this current overview of the existing PCCT literature, we describe the strengths, limitations, recent applications, and promising developments of employing PCCT technology in CCT.
Collapse
Affiliation(s)
| | - Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Giulia Degiorgi
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Department of Bioengineering, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Sergio Berti
- Cardiology Unit, Ospedale del Cuore, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Michele Emdin
- Department of Cardiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy
| | - Luca Saba
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Riccardo Cau
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Ludovico La Grutta
- Department of Radiology, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| |
Collapse
|
22
|
Cademartiri F, Meloni A, Pistoia L, Degiorgi G, Clemente A, De Gori C, Positano V, Celi S, Berti S, Emdin M, Panetta D, Menichetti L, Punzo B, Cavaliere C, Bossone E, Saba L, Cau R, Grutta LL, Maffei E. Dual Source Photon-Counting Computed Tomography-Part II: Clinical Overview of Neurovascular Applications. J Clin Med 2023; 12:jcm12113626. [PMID: 37297821 DOI: 10.3390/jcm12113626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Photon-counting detector (PCD) is a novel computed tomography detector technology (photon-counting computed tomography-PCCT) that presents many advantages in the neurovascular field, such as increased spatial resolution, reduced radiation exposure, and optimization of the use of contrast agents and material decomposition. In this overview of the existing literature on PCCT, we describe the physical principles, the advantages and the disadvantages of conventional energy integrating detectors and PCDs, and finally, we discuss the applications of the PCD, focusing specifically on its implementation in the neurovascular field.
Collapse
Affiliation(s)
| | - Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Giulia Degiorgi
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Department of Bioengineering, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Sergio Berti
- Cardiology Unit, Ospedale del Cuore, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Michele Emdin
- Department of Cardiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy
| | - Luca Saba
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Riccardo Cau
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties-ProMISE, Department of Radiology, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| |
Collapse
|
23
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Nanomaterials: Breaking through the bottleneck of tumor immunotherapy. Int J Biol Macromol 2023; 230:123159. [PMID: 36610572 DOI: 10.1016/j.ijbiomac.2023.123159] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Immunotherapy exerts its excellent anti-tumor effects by stimulating and enhancing the immune response of the body, and has become another important class of anti-tumor therapy besides chemotherapy, targeted therapy and radiotherapy. Various types of immunotherapeutic drugs have gained their clinical values, but the in vivo delivery of drugs still faces many challenges, such as poor tumor permeability and low tumor cell uptake rate. In recent years, owing to highly targeting properties, better biocompatibility, and easy functionalization, nanomaterials have been widely applicated in tumor treatment, especially in tumor immunotherapy. Furthermore, nanomaterials have large drug loading capacity, strong tumor targeting and easy modification, which can effectively overcome the drawbacks of traditional immunotherapy. This paper reviews the progress of nanomaterial-based tumor immunotherapy in recent years and provides a theoretical basis for exploring new nanomaterial-based tumor immunotherapy strategies.
Collapse
|
25
|
Borges AP, Antunes C, Curvo-Semedo L. Pros and Cons of Dual-Energy CT Systems: "One Does Not Fit All". Tomography 2023; 9:195-216. [PMID: 36828369 PMCID: PMC9964233 DOI: 10.3390/tomography9010017] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Dual-energy computed tomography (DECT) uses different energy spectrum x-ray beams for differentiating materials with similar attenuation at a certain energy. Compared with single-energy CT, it provides images with better diagnostic performance and a potential reduction of contrast agent and radiation doses. There are different commercially available DECT technologies, with machines that may display two x-ray sources and two detectors, a single source capable of fast switching between two energy levels, a specialized detector capable of acquiring high- and low-energy data sets, and a filter splitting the beam into high- and low-energy beams at the output. Sequential acquisition at different tube voltages is an alternative approach. This narrative review describes the DECT technique using a Q&A format and visual representations. Physical concepts, parameters influencing image quality, postprocessing methods, applicability in daily routine workflow, and radiation considerations are discussed. Differences between scanners are described, regarding design, image quality variabilities, and their advantages and limitations. Additionally, current clinical applications are listed, and future perspectives for spectral CT imaging are addressed. Acknowledging the strengths and weaknesses of different DECT scanners is important, as these could be adapted to each patient, clinical scenario, and financial capability. This technology is undoubtedly valuable and will certainly keep improving.
Collapse
Affiliation(s)
- Ana P. Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
- Correspondence:
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Luís Curvo-Semedo
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
26
|
Wei Q, Xu D, Li T, He X, Wang J, Zhao Y, Chen L. Recent Advances of NIR-II Emissive Semiconducting Polymer Dots for In Vivo Tumor Fluorescence Imaging and Theranostics. BIOSENSORS 2022; 12:bios12121126. [PMID: 36551093 PMCID: PMC9775418 DOI: 10.3390/bios12121126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 05/31/2023]
Abstract
Accurate diagnosis and treatment of tumors, one of the top global health problems, has always been the research focus of scientists and doctors. Near-infrared (NIR) emissive semiconducting polymers dots (Pdots) have demonstrated bright prospects in field of in vivo tumor fluorescence imaging owing to some of their intrinsic advantages, including good water-dispersibility, facile surface-functionalization, easily tunable optical properties, and good biocompatibility. During recent years, much effort has been devoted to developing Pdots with emission bands located in the second near-infrared (NIR-II, 1000-1700 nm) region, which hold great advantages of higher spatial resolution, better signal-to-background ratios (SBR), and deeper tissue penetration for solid-tumor imaging in comparison with the visible region (400-680 nm) and the first near-infrared (NIR-I, 680-900 nm) window, by virtue of the reduced tissue autofluorescence, minimal photon scattering, and low photon absorption. In this review, we mainly summarize the latest advances of NIR-II emissive semiconducting Pdots for in vivo tumor fluorescence imaging, including molecular engineering to improve the fluorescence quantum yields and surface functionalization to elevate the tumor-targeting capability. We also present several NIR-II theranostic Pdots used for integrated tumor fluorescence diagnosis and photothermal/photodynamic therapy. Finally, we give our perspectives on future developments in this field.
Collapse
Affiliation(s)
- Qidong Wei
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dingshi Xu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Tianyu Li
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xuehan He
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yi Zhao
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|