1
|
Norouzi P, Rezaei Kolarijani N, Mahheidari N, Ehterami A, Bit A, Gharravi AM, Yekesadat SM, Aghayan SN, Haghi-Daredeh S, Salehi M. Design and evaluation of sodium alginate-based hydrogel containing green tea for the treatment of diabetic ulcers in rat model. J Biomater Appl 2025:8853282251345004. [PMID: 40398864 DOI: 10.1177/08853282251345004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
A functional and biocompatible biomaterial is essential for accelerating the regeneration of skin tissue at the wound site. Hydrogel scaffolds in three dimensions show promising candidates for this purpose. This study was conducted to design a novel porous cross-linked alginate (Alg) hydrogel containing green tea (GT) and assess its morphology, swelling, weight loss, hemocompatibility, and cytocompatibility. Ultimately, the created hydrogel's therapeutic effectiveness was examined in a complete dermal diabetes wound model. The findings indicated that the hydrogel prepared had significant porosity, with interconnected pores around 75.821 µm in size. The weight loss evaluation indicated that the created hydrogel can be degraded naturally, with a weight loss ratio of about 74% for Alg/GT 80 mg after being incubated for 24 hours. Additionally, the study indicated that hydrogel dressings exhibited greater wound closure compared to gauze-treated wounds, which served as the control. The group with GT at a concentration of 80 mg showed the highest percentage of wound closure. The histopathological studies and IHC evaluation for TGF-β1 confirmed the in vivo finding. This study proposes utilizing 3D Alg hydrogels with GT as a wound dressing, but further studies are needed.
Collapse
Affiliation(s)
- Pirasteh Norouzi
- Department of Physiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nariman Rezaei Kolarijani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Naimeh Mahheidari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Arindam Bit
- Department of Biomedical Engineering, NIT, Raipur, India
| | - Anneh Mohammad Gharravi
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Seyedeh Nazanin Aghayan
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saeed Haghi-Daredeh
- Regenerative Medicine Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Regenerative Medicine Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Zhang Y, Qiao N, Liu L, Shang H, Wei D, Ji Z, Wang R, Ding Y. Advances in the study of polysaccharide-based hydrogel wound dressings. Int J Biol Macromol 2025; 307:142134. [PMID: 40090647 DOI: 10.1016/j.ijbiomac.2025.142134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Due to the complexity of wound healing, the rapid promotion of wound healing has been a major unresolved challenge for the medical community. If a suitable wound dressing is not found, it can easily induce wound infection and slow down the wound repair process. Hydrogels have been recognized as the best alternative to traditional wound dressings due to their unique water-retention properties as well as their drug-carrying properties. We first outlined the entire process of wound healing, while introducing the biological activities of ten different natural polysaccharides and their mechanisms for promoting wound healing. Subsequently, we summarized the advantages and limitations of various polysaccharides in use and proposed corresponding solutions. In addition, wound dressings for a wide range of wounds, including diabetes, burns, and radiation, have also been reviewed, providing a comprehensive understanding of the applications of these hydrogels in different wound types. This paper provides an important reference for the biomedical application and clinical research of natural polysaccharide-based hydrogel in wound dressings.
Collapse
Affiliation(s)
- Yu Zhang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ning Qiao
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Lihua Liu
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Hongzhou Shang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Dingxiang Wei
- College of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Zechao Ji
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ruize Wang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yajie Ding
- College of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
3
|
Chen G, Wu Y, Yao Y, Zhu Y, Shi H, Zhao M, Wang S, Zou M, Cheng G. A sesbania gum/γ-polyglutamic acid photo-crosslinking composite hydrogel loaded with multi-component traditional Chinese medicine extract synergizes microenvironment amelioration in infected diabetic wound healing. Int J Biol Macromol 2025; 305:140965. [PMID: 39952501 DOI: 10.1016/j.ijbiomac.2025.140965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The intricate physiological microenvironment of the diabetic wound characterized by overexpressed reactive oxygen species (ROS), persistent inflammation, angiogenetic dysfunction, and bacterial infection impeded the healing process. Herein, a photo-crosslinking composite hydrogel was fabricated based on the methacrylate modification of sesbania gum (SG) and γ-polyglutamic acid (γ-PGA), which could trigger free radical polymerization to form interpenetrating polymer network under 365 nm UV. Meanwhile, the micronized traditional Chinese medicine Huoxue Tongluo extract (HXTL) was encapsulated into the hydrogel to prepare the wound dressing (H-SGPGA). The 1H NMR and FT-IR successfully confirmed the synthesis of the methacrylate SG (SGMA) and γ-PGA (γ-PGAMA). Then, the enhanced mechanical properties, ROS scavenging (DPPH: 88.2 % ± 0.9 %; ABTS+: 90.5 % ± 0.4 %) and the antibacterial capacity (97.04 % ± 0.58 % against S. aureus) of H-SGPGA was investigated and confirmed in vitro. Finally, in the S. aureus infected diabetic wound model, the in vivo result demonstrated that the H-SGPGA significantly accelerated the diabetic wound repair process (8.31 % ± 5.54 % wound area on day 12) by promoting epidermis regeneration (79.13 % ± 5.99 %), collagen deposition (71.4 % ± 9.1 %), and angiogenesis (294.1 % ± 29.6 % of control group). Therefore, the composite H-SGPGA provided a potential treatment as the hydrogel dressing for the diabetic wound.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yanan Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yichen Yao
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yumeng Zhu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Hongmei Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Minqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Shuo Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Meijuan Zou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Gang Cheng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
4
|
Tavakoli H, Najaflou M, Yarikhosroushahi A. Biomaterial-based chitosan nanohydrogel films: combination of Bistorta officinalis and Ca-doped carbon dots for improved blood clotting. J Biol Eng 2025; 19:31. [PMID: 40211334 PMCID: PMC11987453 DOI: 10.1186/s13036-025-00498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/01/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND Bleeding and traumatic injuries are still a major issue necessitating the development of advanced hemostatic materials that are economical, biocompatible, and effective. Chitosan's (CS) haemostatic and biocompatible properties make it a promising wound-healing material, however, effective cross-linking is essential for appropriate physiochemical properties. In this study, calcium-doped carbon dots (CDs) produced from coriander leaves were used as cross-linking agents to improve the functional performance and structural integrity of nanohydrogel films. Furthermore, extract of the medicinal plant Bistorta officinalis (BEX), a traditional medicinal plant with strong hemostatic and antibacterial qualities, was incorporated into the hydrogel matrix. RESULTS Analysis and characterization of the synthesized CDs thoroughly confirmed that they have monodispersed spherical shape, negative zeta potential, and active functional groups which effectively cross-linked the chitosan matrix and increased the mechanical strength and stability of the film. Cytotoxicity and antibacterial results of the final films showed the desired cytocompatibility against Human skin fibroblast (HFF-1 cells) with over 80% viability at the highest concentration and effective antibacterial activity against gram-positive and gram-negative bacteria (further improved by cross-linking with CDs and incorporating BEX), respectively. The incorporation of BEX and CDs in hydrogel films significantly enhanced the film's blood-clotting ability with negligible hemolysis due to blood clotting index and hemolysis tests. CONCLUSIONS The findings of this study highlight the potential of biomaterial-based nano hydrogel film, composed of CS cross-linked with CDs and containing BEX, as a promising wound dressing with outstanding biocompatibility, minimal cytotoxicity, enhanced hemostatic efficacy, and strong antibacterial properties.
Collapse
Affiliation(s)
- Hassan Tavakoli
- Department of Chemistry, Faculty of Basic Sciences, Imam Ali University, Imam Khomeini Street, P.O. Box 1317893471, Tehran, 1317893471, Iran.
| | - Meysam Najaflou
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 516615731, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 516615731, Iran
| | - Ahmad Yarikhosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 516615731, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 516615731, Iran.
| |
Collapse
|
5
|
Lei Z, Chen X, Chen K, Liu P, Ao M, Gan L, Yu L. Exosome-like vesicles encapsulated with specific microRNAs accelerate burn wound healing and ameliorate scarring. J Nanobiotechnology 2025; 23:264. [PMID: 40176075 PMCID: PMC11963272 DOI: 10.1186/s12951-025-03337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/16/2025] [Indexed: 04/04/2025] Open
Abstract
Burn injuries are prevalent, yet effective treatments remain elusive. Exosomes derived from mesenchymal stem cells (MSC-Ex) possess remarkable pro-regenerative properties for wound healing. Despite their potential, the challenge of mass production limits their clinical application. To address this, preparing exosome-like vesicles has become an international trend. In this study, 28 key microRNAs (miRNAs) with significant pro-proliferation, anti-inflammation, and anti-fibrosis functions were screened from MSC-Ex. These miRNAs were encapsulated into liposomes and then hybridized with extracellular vesicles derived from watermelon to create synthetic exosome-like vesicles. The fabricated vesicles exhibited similar particle size and zeta potential to MSC-Ex, demonstrating high serum stability and effectively resisting the degradation of miRNA by RNase. They were efficiently internalized by cells and enabled a high rate of lysosomal escape for miRNAs post cellular uptake, thereby effectively exerting their pro-proliferative, anti-inflammatory, and anti-fibrotic functions. Further experiments demonstrated that these vesicles efficiently accelerated burn wound healing and reduced scarring, with effects comparable to those of natural MSC-Ex. Based on these findings, the exosome-like vesicles fabricated in this study present a promising alternative to MSC-Ex in burn wound treatment.
Collapse
Affiliation(s)
- Zhiyong Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Xiaojuan Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Kezhuo Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Pan Liu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China.
| |
Collapse
|
6
|
Ghobadi F, Kalantarzadeh R, Ashrafnia Menarbazari A, Salehi G, Fatahi Y, Simorgh S, Orive G, Dolatshahi-Pirouz A, Gholipourmalekabadi M. Innovating chitosan-based bioinks for dermal wound healing: Current progress and future prospects. Int J Biol Macromol 2025; 298:140013. [PMID: 39832576 DOI: 10.1016/j.ijbiomac.2025.140013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The field of three-dimensional (3D) bio/printing, known as additive manufacturing (AM), heavily relies on bioinks possessing suitable mechanical properties and compatibility with living cells. Among the array of potential hydrogel precursor materials, chitosan (CS) has garnered significant attention due to its remarkable physicochemical and biological attributes. These attributes include biodegradability, nontoxicity, antimicrobial properties, wound healing promotion, and immune system activation, making CS a highly appealing hydrogel-based bioink candidate. This review explores the transformative potential of CS-based bioink for enhancing dermal wound healing therapies. We highlight CS's unique qualities that make it an optimal choice for bioink development. Advancements in 3D bio/printing technology for tissue engineering (TE) are discussed, followed by an examination of strategies for CS-based bioink formulation and their impacts on wound healing. To address the progress in translating advanced wound healing from lab to clinic, we highlight the current and ongoing research in CS-based bioink for 3D bio/printing in skin wound healing applications. Finally, we explore current evidence, commercialization prospects, emerging innovations like 4D printing, and the challenges and future directions in this promising field.
Collapse
Affiliation(s)
- Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rooja Kalantarzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Arezoo Ashrafnia Menarbazari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Salehi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Karaj, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Simorgh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
7
|
Shi X, Yin H, Shi X. Bibliometric analysis of literature on natural medicines against chronic kidney disease from 2001 to 2024. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156410. [PMID: 39892309 DOI: 10.1016/j.phymed.2025.156410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a globally common and progressive disease. There has been few bibliometric study to analyze the status, hot spots, and trends in the field of natural medicines (NMs) against CKD. PURPOSE To comprehensively understand the status, hot spots, and trends in the field of NMs against CKD. METHODS The documents concerning NMs against CKD are extracted from the Web of Science Core Collection database (WOSCC). The literature analysis was conducted using VOSviewer 1.6.20 and CiteSpace 6.3.R1 software. RESULTS In total, 641 publications were encompassed, which were produced by 3 548 authors and 823 organizations, 241 journals, and 56 countries/regions. The most productive author, institution, country, and journal were Li, Ping, Nanjing University of Chinese Medicine, China, and Journal of Ethnopharmacology, respectively. The first high-cited article was published in Medicinal Research Reviews with 457 citations authored by Huang and colleagues in 2007. Oxidative stress, anti-inflammatory, renal fibrosis, and gut microbiota were the emerging keywords. Rhubarb, Astragalus, Angelica, and Cordyceps, which contain anthraquinones, cordycepin, adenosine, or various polysaccharides, are promising NMs to prevent or treat CKD. CONCLUSION Currently, the main hot spot is the elucidation of cellular and molecular mechanisms using novel technologies such as network pharmacology, molecular docking, and experimental validation. Future studies are needed to focus on the inherent molecular mechanisms and clinical applications. In addition, potential side effects of the bioactive compounds cannot be ignored.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Nephrology, The First People's Hospital of Jingdezhen, Jiangxi Province, 333000, China
| | - Hongmei Yin
- School of Health, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Jiangxi Province, Nanchang, 330022, China.
| | - Xiaodan Shi
- School of Health, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Jiangxi Normal University, Jiangxi Province, Nanchang, 330022, China.
| |
Collapse
|
8
|
Howell M, Sengul T, Kirkland-Kyhn H. Ethnicity, Skin Tones, and Cultural Considerations in Wound Care: Challenges and Solutions. Nurs Clin North Am 2025; 60:165-174. [PMID: 39884789 DOI: 10.1016/j.cnur.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Wound care patients often have a variety of chronic medical conditions that result in poor outcomes, such as delayed healing and nontraumatic limb loss. Many of these suboptimal patient outcomes result from healthcare disparities linked to social determinants of health (SDOH). Race and ethnicity influence SDOH by impacting patients' access to consistent quality healthcare. Understanding and addressing why and how ethnic and cultural factors influence SDOH is crucial for making substantial changes.
Collapse
Affiliation(s)
| | - Tuba Sengul
- Department of Nursing, Koç University School of Nursing, Davutpaşa Street No: 4, 34010 Topkapı, Istanbul, Turkey
| | - Holly Kirkland-Kyhn
- Betty Irene Moore School of Nursing, UC Davis Health, University of California, Davis, Davis, CA, USA
| |
Collapse
|
9
|
Xiang R, Wan H, Sun W, Duan B, Chen W, Cao X, Wang S, Song C, Chen S, Wang Y, Wahab AT, Iqbal Choudhary M, Meng X. TPMGD: A genomic database for the traditional medicines in Pakistan. CHINESE HERBAL MEDICINES 2025; 17:87-93. [PMID: 39949805 PMCID: PMC11814261 DOI: 10.1016/j.chmed.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 02/16/2025] Open
Abstract
Objective In Pakistan, traditional medicines are an important component of the medical system, with numerous varieties and great demands. However, due to the scattered resources and the lack of systematic collection and collation, adulteration of traditional Pakistani medicine (TPM) is common, which severely affects the safety of their medicinal use and the import and export trades. Therefore, it is urgent to systematically organize and unify the management of TPM and establish a set of standards and operable methods for the identification of TPM. Methods We collected and organized the information on 128 TPMs with regard to their medicinal parts, efficacy, usage, and genetic material, based on Pakistan Hamdard Pharmacopoeia of Eastern Medicine: Pharmaceutical Codex. The genetic information of TPM is summarized from national center for biotechnology information (NCBI) and global pharmacopoeia genome database (GPGD). Furthermore, we utilized bioinformatics technology to supplement the chloroplast genome (cp-genome) data of 12 TPMs. To build the web server, we used the Linux + Apache + MySQL + PHP (LAMP) system and constructed the webpage on a PHP: Hypertext Preprocessor (PHP) model view controller (MVC) framework. Results We constructed a new genomic database, the traditional Pakistani medicine genomic database (TPMGD). This database comprises five entries, namely homepage, medicinal species, species identification, basic local alignment search tool (BLAST), and download. Currently, TPMGD contains basic profiles of 128 TPMs and genetic information of 102 TPMs, including 140 cytochrome c oxidase subunit I (COI) sequences and 119 mitochondrial genome sequences from Bombyx mori, 1 396 internal transcribed spacer 2 (ITS2) sequences and 1 074 intergenic region (psbA-trnH) sequences specific to 92 and 83 plant species, respectively. Additionally, TPMGD includes 199 cp-genome sequences of 82 TPMs. Conclusion TPMGD is a multifunctional database that integrates species description, functional information inquiry, genetic information storage, molecular identification of TPM, etc. The database not only provides convenience for TPM information queries but also establishes the scientific basis for the medication safety, species identification, and resource protection of TPM.
Collapse
Affiliation(s)
- Rushuang Xiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Huihua Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Weiqian Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xue Cao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sifan Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chi Song
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Wang
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Atia-tul Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M. Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Xiangxiao Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
10
|
Yan R, Wang Y, Li W, Sun J. Promotion of chronic wound healing by plant-derived active ingredients and research progress and potential of plant polysaccharide hydrogels. CHINESE HERBAL MEDICINES 2025; 17:70-83. [PMID: 39949811 PMCID: PMC11814255 DOI: 10.1016/j.chmed.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Wound healing is a complex biochemical process. The use of herbal medicine in wound healing not only carries forward the wisdom of traditional medicine, with its anti-inflammatory and immune-regulating effects, but also reflects the direction of modern biopharmaceutical technology, such as its potential in developing new biomaterials like hydrogels. This article first outlines the inherent structural properties of healthy skin, along with the physiological characteristics related to chronic wounds in patients with diabetes and burns. Subsequently, the article delves into the latest advancements in clinical and experimental research on the impact of active constituents in herbal medicine on wound tissue regeneration, summarizing existing studies on the mechanisms of various herbal medicines in the healing of diabetic and burn wounds. Finally, the paper thoroughly examines the application and mechanisms of plant polysaccharide hydrogels containing active herbal compounds in chronic wound healing. The primary objective is to provide valuable resources for the clinical application and development of herbal medicine, thereby maximizing its therapeutic potential. It also represents the continuation of traditional medical wisdom, offering new possibilities for advancements in regenerative medicine and wound care.
Collapse
Affiliation(s)
- Ru Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| | - Jialin Sun
- Department of Medicine, Heilongjiang Minzu College, Harbin 150066, China
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin 150006, China
| |
Collapse
|
11
|
Yang G, Liu L, Xiao L, Ke S, Yang H, Lu Q. Accelerated scarless wound healing by dynamical regulation of angiogenesis and inflammation with immobilized asiaticoside and magnesium ions in silk nanofiber hydrogels. J Mater Chem B 2024; 12:11670-11684. [PMID: 39380345 DOI: 10.1039/d4tb01584c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
It remains a challenge to effectively regulate the complicated microenvironment during the wound healing process. The optimization of synergistic action of angiogenesis and inflammation is considered critical for quicker scarless wound regeneration. Here, the silk nanofiber (SNF) acts as a multifunctional carrier to load hydrophobic asiaticoside (AC) and hydrophilic Mg2+, and also serves as an element to assemble injectable hydrogels, forming a bioactive matrix with improved angiogenic and anti-inflammatory capacities (SNF-AC-Mg). Mg2+ and AC distributed homogeneously inside the silk nanofiber hydrogels without compromising the mechanical performance. Both Mg2+ and AC released slowly to continuously tune both angiogenic and inflammatory behaviors. The hydrogels exhibited good biocompatibility, inflammation inhibition, and pro-angiogenic properties in vitro, suggesting the synergistic bioactivity of AC and Mg2+. In vivo analysis revealed that the synergistic action of AC and Mg2+ resulted in better M2-type polarization of macrophages and angiogenesis during the inflammatory phase, while effectively achieving the inhibition of excessive accumulation of collagen and scar formation during the remodeling phases. The quicker scarless regeneration of the defects treated with SNF-AC-Mg implies the priority of SNFs in designing bioactive niches with complicated cues, which will favor the functional recovery of different tissues in the future.
Collapse
Affiliation(s)
- Gongwen Yang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
| | - Lutong Liu
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing 100176, People's Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Shiyu Ke
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Huaxiang Yang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
12
|
Aydinli A, Deniz Doğan S. Traditional and complementary treatment use in wound care: A descriptive study in Turkey. J Tissue Viability 2024; 33:864-870. [PMID: 39079819 DOI: 10.1016/j.jtv.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVES This study was conducted to determine the use of traditional and complementary treatment in wound care and the opinions of individuals in Turkey. METHODS The descriptive study was completed with 536 adult individuals. The research data were collected using the "Personal Information Form", "Questionnaire on Traditional and Complementary Treatment Methods Used in Wound Care" and "Questionnaire on Opinions Regarding the Use of Traditional and Complementary Treatment in Wound Care" prepared in line with the literature. Descriptive statistics were used in the evaluation of the data. RESULTS When a wound occurs on the body, 31 % of the participants reported that they first applied traditional and complementary treatment. It was determined that the participants experienced surgical wounds (55.7 %) and burn wounds (46.1 %) the most. The first three biological-based approaches used by individuals in wound care were hypericum perforatum (60.8 %), aloe vera (39.6 %), and honey (36.8 %). In other approaches used by individuals in wound care, the first three methods are prayer (54.1 %), vaseline application (47.1 %), and massage (37.8 %), respectively. In addition, 64.7 % of the individuals reported that they thought these methods were useful in wound care, 60.1 % reported that they accelerated healing, and 46.8 % reported that they prevented scarring. CONCLUSION It was determined that individuals commonly used various traditional and complementary treatment methods in wound care. It is also noteworthy that these methods are highly accepted by individuals. Therefore, it is important for nurses, who play a key role in wound care, to know the methods commonly used in society and to follow the developments in this field.
Collapse
Affiliation(s)
- Ayşe Aydinli
- Suleyman Demirel University, Faculty of Health Sciences, Department of Fundamental Nursing, Isparta, Turkey.
| | - Sevgi Deniz Doğan
- Isparta University of Applied Sciences, Uluborlu Selahattin Karasoy Vocational School, Health Services Department, Isparta, Turkey
| |
Collapse
|
13
|
Sharifi M, Bahrami SH. Review on application of herbal extracts in biomacromolecules-based nanofibers as wound dressings and skin tissue engineering. Int J Biol Macromol 2024; 277:133666. [PMID: 38971295 DOI: 10.1016/j.ijbiomac.2024.133666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.
Collapse
Affiliation(s)
- Mohaddeseh Sharifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Baali F, Boudjelal A, Smeriglio A, Righi N, Djemouai N, Deghima A, Bouafia Z, Trombetta D. Phlomis crinita Cav. From Algeria: A source of bioactive compounds possessing antioxidant and wound healing activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118295. [PMID: 38710460 DOI: 10.1016/j.jep.2024.118295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phlomis crinita Cav. (Lamiaceae), locally known as "El Khayata" or "Kayat El Adjarah", is traditionally used in Algeria for its wound-healing properties. AIM OF THE STUDY Investigate, for the first time, the phytochemical profile, safety, antioxidant and wound-healing activities of the flowering tops methanolic extract of P. crinita (PCME) collected from Bouira Province in the North of Algeria. MATERIALS AND METHODS Preliminary phytochemical assays were carried out on PCME to quantify the main classes of bioactive compounds, such as total phenols, flavonoids, and tannins. An in-depth LC-DAD-ESI-MS analysis was carried out to elucidate the phytochemical profile of this plant species. Antioxidant activity was investigated by several colorimetric and fluorimetric assays (DPPH, TEAC, FRAP, ORAC, β-carotene bleaching and ferrozine assay). The acute oral toxicity of PCME (2000 mg/kg b.w.) was tested in vivo on Swiss albino mice, whereas the acute dermal toxicity and wound-healing properties of the PCME ointment (1-5% PCMO) were tested in vivo on Wistar albino rats. Biochemical and histological analyses were carried out on biological samples. RESULTS The phytochemical screening highlighted a high content of phenolic compounds (175.49 ± 0.8 mg of gallic acid equivalents/g of dry extract), mainly flavonoids (82.28 ± 0.44 mg of quercetin equivalents/g of dry extract). Fifty-seven compounds were identified by LC-DAD-ESI-MS analysis, belonging mainly to the class of flavones (32.27%), with luteolin 7-(6″-acetylglucoside) as the most abundant compound and phenolic acids (32.54%), with salvianolic acid C as the most abundant compound. A conspicuous presence of phenylethanoids (15.26%) was also found, of which the major constituent is forsythoside B. PCME showed a strong antioxidant activity with half-inhibitory activity (IC50) ranging from 1.88 to 37.88 μg/mL and a moderate iron chelating activity (IC50 327.44 μg/mL). PCME appears to be safe with Lethal Dose 50 (LD50) ≥ 2000 mg/kg b.w. No mortality or toxicity signs, including any statistically significant changes in body weight gain and relative organs' weight with respect to the control group, were recorded. A significant (p < 0.001) wound contraction was observed in the 5% PCMO-treated group with respect to the untreated and petroleum jelly groups between 8 and 20 days, whereas no statistically significant results were observed at the two lower doses (1 and 2% PCMO). In addition, the 5% PCMO-treated group showed a statistically significant (p < 0.05) wound healing activity with respect to the reference drug-treated group, showing, at the end of the study, the highest wound contraction percentage (88.00 ± 0.16%). CONCLUSION PCME was safe and showed strong antioxidant and wound-healing properties, suggesting new interesting pharmaceutical applications for P. crinita based on its traditional use.
Collapse
Affiliation(s)
- Faiza Baali
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria.
| | - Amel Boudjelal
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Nadjat Righi
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University of Ferhat Abbas Setif 1, 19000, Algeria.
| | - Nadjette Djemouai
- Department of Biology, Faculty of Nature and Life Sciences and Earth Sciences, University of Ghardaia, BP 455, Ghardaïa, 47000, Algeria; Microbial Systems Biology Laboratory (LBSM), Higher Normal School of Kouba, B.P. 92, 16050, Kouba, Algiers, Algeria.
| | - Amirouche Deghima
- Department of Nature and Life Sciences, Faculty of Exact Nature and Life Sciences, University of Biskra, 7000, Algeria.
| | - Zineb Bouafia
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M'Sila, 28000, Algeria; Laboratory of Biology: Applications in Health and Environment, University Mohamed Boudiaf of M'Sila, 28000, Algeria.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
15
|
Johari N, Rahimi F, Azami H, Rafati F, Nokhbedehghan Z, Samadikuchaksaraei A, Moroni L. The impact of copper nanoparticles surfactant on the structural and biological properties of chitosan/sodium alginate wound dressings. BIOMATERIALS ADVANCES 2024; 162:213918. [PMID: 38880016 DOI: 10.1016/j.bioadv.2024.213918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Multifunctional wound dressings based on hydrogels are an efficacious and practicable strategy in therapeutic processes and accelerated chronic wound healing. Here, copper (Cu) nanoparticles were added to chitosan/sodium alginate (CS/SA) hydrogels to improve the antibacterial properties of the prepared wound dressings. Due to the super-hydrophobicity of Cu nanoparticles, polyethylene glycol (PEG) was used as a surfactant, and then added to the CS/SA-based hydrogels. The CS/SA/Cu hydrogels were synthesized with 0, 2, 3.5, and 5 wt% Cu nanoparticles. The structural and morphological properties in presence of PEG were evaluated using Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM). The biodegradation and swelling properties of the hydrogels were investigated in phosphate buffer saline (PBS) at 37 °C for up to 30 days. Cell viability and adhesion, as well as antibacterial behavior, were investigated via MTT assay, FESEM, and disk diffusion method, respectively. The obtained results showed that PEG provided new intra- and intermolecular bonds that affected significantly the hydrogels' degradation and swelling ratio, which increased up to ~1200 %. Cell viability reached ~110 % and all samples showed remarkable antibacterial behavior when CS/SA/Cu containing 2 wt% was introduced. This study provided new insights regarding the use of PEG as a surfactant for Cu nanoparticles in CS/SA hydrogel wound dressing, ultimately affecting the chemical bonding and various properties of the prepared hydrogels.
Collapse
Affiliation(s)
- Narges Johari
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
| | - Faezeh Rahimi
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Haniyeh Azami
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Fatemeh Rafati
- Materials Engineering group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| | - Zeinab Nokhbedehghan
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
16
|
Borges A, Calvo MLM, Vaz JA, Calhelha RC. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4199. [PMID: 39274589 PMCID: PMC11395905 DOI: 10.3390/ma17174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Wound healing, a complex physiological process orchestrating intricate cellular and molecular events, seeks to restore tissue integrity. The burgeoning interest in leveraging the therapeutic potential of natural substances for advanced wound dressings is a recent phenomenon. Notably, Sericin, a silk-derived protein, and Chelidonium majus L. (C. majus), a botanical agent, have emerged as compelling candidates, providing a unique combination of natural elements that may revolutionize conventional wound care approaches. Sericin, renowned for its diverse properties, displays unique properties that accelerate the wound healing process. Simultaneously, C. majus, with its diverse pharmacological compounds, shows promise in reducing inflammation and promoting tissue regeneration. As the demand for innovative wound care solutions increases, understanding the therapeutic potential of natural products becomes imperative. This review synthesizes current knowledge on Sericin and C. majus, envisioning their future roles in advancing wound management strategies. The exploration of these natural substances as constituents of wound dressings provides a promising avenue for developing sustainable, effective, and biocompatible materials that could significantly impact the field of wound healing.
Collapse
Affiliation(s)
- Ana Borges
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Desarrollo y Evaluación de Formas Farmacéuticas y Sistemas de Liberación Controlada, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - María Luisa Martín Calvo
- Grupo de Investigación en Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Josiana A Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
17
|
Vinchhi P, Wui WT, Patel MM. Healing with herbs: an alliance with 'nano' for wound management. Expert Opin Drug Deliv 2024; 21:1115-1141. [PMID: 39095934 DOI: 10.1080/17425247.2024.2388214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Wound healing is an intricate and continual process influenced by numerous factors that necessitate suitable environments to attain healing. The natural ability of wound healing often gets altered by several external and intrinsic factors, leading to chronic wound occurrence. Numerous wound dressings have been developed; however, the currently available alternatives fail to coalesce in all conditions obligatory for rapid skin regeneration. AREA COVERED An extensive review of articles on herbal nano-composite wound dressings was conducted using PubMed, Scopus, and Google Scholar databases, from 2006 to 2024. This review entails the pathophysiology and factors leading to non-healing wounds, wound dressing types, the role of herbal bio-actives for wound healing, and the advantages of employing nanotechnology to deliver herbal actives. Numerous nano-composite wound dressings incorporated with phytoconstituents, herbal extracts, and essential oils are discussed. EXPERT OPINION There is a strong substantiation that several herbal bio-actives possess anti-inflammatory, antimicrobial, antioxidant, analgesic, and angiogenesis promoter activities that accelerate the wound healing process. Nanotechnology is a promising strategy to deliver herbal bio-actives as it ascertains their controlled release, enhances bioavailability, improves permeability to underlying skin layers, and promotes wound healing. A combination of herbal actives and nano-based dressings offers a novel arena for wound management.
Collapse
Affiliation(s)
| | - Wong Tin Wui
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
18
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
19
|
Li A, Ma B, Hua S, Ping R, Ding L, Tian B, Zhang X. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydr Polym 2024; 333:121952. [PMID: 38494217 DOI: 10.1016/j.carbpol.2024.121952] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Different types of clinical wounds are difficult to treat while infected by bacteria. Wound repair involves multiple cellular and molecular interactions, which is a complicated process. However, wound repair often suffers from abnormal cellular functions or pathways that result in unavoidable side effects, so there is an urgent need for a material that can heal wounds quickly and with few side effects. Based on these needs, hydrogels with injectable properties have been confirmed to be able to undergo self-healing, which provides favorable conditions for wound healing. Notably, as a biopolymer with excellent easy-to-modify properties from a wide range of natural sources, chitosan can be used to prepare injectable hydrogel with multifunction for wound healing because of its outstanding flowability and injectability. Especially, chitosan-based hydrogels with marked biocompatibility, non-toxicity, and bio-adhesion properties are ideal for facilitating wound healing. In this review, the characteristics and healing mechanisms of different wounds are briefly summarized. In addition, the preparation and characterization of injectable chitosan hydrogels in recent years are classified. Additionally, the bioactive properties of this type of hydrogel in vitro and in vivo are demonstrated, and future trend in wound healing is prospected.
Collapse
Affiliation(s)
- Aiqin Li
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Day Ward, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Bin Ma
- Department of Spine Surgery, Yinchuan Guolong Orthopedic Hospital, Yinchuan, Ningxia 750001, China
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Rui Ping
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia 750001, China
| | - Lu Ding
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
20
|
Qian Y, Wei X, Wang Y, Yin S, Chen J, Dong J. Development of a novel human stratum corneum mimetic phospholipid -vesicle-based permeation assay models for in vitro permeation studies. Drug Dev Ind Pharm 2024; 50:410-419. [PMID: 38497274 DOI: 10.1080/03639045.2024.2331242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To develop and evaluate a novel human stratum corneum (SC) mimetic phospholipid vesicle-based permeation assay (PVPASC) model for in vitro permeation studies. SIGNIFICANCE Due to the increasing restrictions on the use of human and animal skins, artificial skin models have attracted substantial interest in pharmaceuticals and cosmetic industries. In this study, a modified PVPASC model containing both SC lipids and proteins was developed. METHODS The PVPASC model was optimized by altering the lipid composition and adding keratin in the formulation of large liposomes. The barrier properties were monitored by measuring the electrical resistance (ER) and permeability of Rhodamine B (RB). The modified PVPASC model was characterized in terms of the surface topography, solvent influence and storage stability. The permeation studies of the active components in Compound Nanxing Zhitong Plaster (CNZP) were performed to examine the capability of PVPASC in the application of skin penetration. RESULTS The ER and Papp values of RB obtained from the optimized PVPASC model indicated a similar barrier property to porcine ear skin. Scanning electron microscope analysis demonstrated a mimic 'brick-and-mortar' structure. The PVPASC model can be stored for three weeks at -20 °C, and withstand the presence of different receptor medium for 24 h. The permeation studies of the active components demonstrated a good correlation (r2 = 0.9136) of Papp values between the drugs' permeation through the PVPASC model and porcine ear skin. CONCLUSION Keratin contained composite phospholipid vesicle-based permeation assay models have been proven to be potential skin tools in topical/transdermal permeation studies.
Collapse
Affiliation(s)
- Yuerong Qian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xuchao Wei
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
21
|
He X, Wu W, Hu Y, Wu M, Li H, Ding L, Huang S, Fan Y. Visualizing the global trends of peptides in wound healing through an in-depth bibliometric analysis. Int Wound J 2024; 21:e14575. [PMID: 38116897 PMCID: PMC10961903 DOI: 10.1111/iwj.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Wound healing is a complicated and multistage biological process for the repair of damaged/injured tissues, which requires intelligent designs to provide comprehensive and convenient treatment. Peptide-based wound dressings have received extensive attention for further development and application due to their excellent biocompatibility and multifunctionality. However, the current lack of intuitive analysis of the development trend and research hotspots of peptides applied in wound healing, as well as detailed elaboration of possible research hotspots, restricted obtaining a comprehensive understanding and development in this field. The present study analysed publications from the Web of Science (WOS) Core Collection database and visualized the hotspots and current trends of peptide research in wound healing. Data between January 1st, 2003, and December 31st, 2022, were collected and subjected to a bibliometric analysis. The countries, institutions, co-authorship, co-citation reference, and co-occurrence of keywords in this subject were examined using VOSviewer and CiteSpace. We provided an intuitive, timely, and logical overview of the development prospects and challenges of peptide application in wound healing and some solutions to the major obstacles, which will help researchers gain insights into the investigation of this promising field.
Collapse
Affiliation(s)
- Xinyan He
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Wen Wu
- Chongqing key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yuchen Hu
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Meiling Wu
- Université de Lorraine, CITHEFOR, Nancy, France
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ling Ding
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Shiqin Huang
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Ying Fan
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
22
|
Geng X, Wang Y, Li H, Song L, Luo C, Gu X, Zhong H, Chen H, Chen X, Wang J, Pan Z. Total iridoid glycoside extract of Lamiophlomis rotata (Benth) Kudo accelerates diabetic wound healing by the NRF2/COX2 axis. Chin Med 2024; 19:53. [PMID: 38519940 PMCID: PMC10960394 DOI: 10.1186/s13020-024-00921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Lamiophlomis rotata (Benth.) Kudo (L. rotata), the oral Traditional Tibetan herbal medicine, is adopted for treating knife and gun wounds for a long time. As previously demonstrated, total iridoid glycoside extract of L. rotata (IGLR) induced polarization of M2 macrophage to speed up wound healing. In diabetic wounds, high levels inflammatory and chemotactic factors are usually related to high reactive oxygen species (ROS) levels. As a ROS target gene, nuclear factor erythroid 2-related factor 2 (NRF2), influences the differentiation of monocytes to M1/M2 macrophages. Fortunately, iridoid glycosides are naturally occurring active compounds that can be used as the oxygen radical scavenger. Nevertheless, the influence of IGLR in diabetic wound healing and its associated mechanism is largely unclear. MATERIALS AND METHODS With macrophages and dermal fibroblasts in vitro, as well as a thickness excision model of db/db mouse in vivo, the role of IGLR in diabetic wound healing and the probable mechanism of the action were investigated. RESULTS Our results showed that IGLR suppressed oxidative distress and inflammation partly through the NRF2/cyclooxygenase2 (COX2) signaling pathway in vitro. The intercellular communication between macrophages and dermal fibroblasts was investigated by the conditioned medium (CM) of IGLR treatment cells. The CM increased the transcription and translation of collagen I (COL1A1) and alpha smooth muscle actin (α-SMA) within fibroblasts. With diabetic wound mice, the data demonstrated IGLR activated the NRF2/KEAP1 signaling and the downstream targets of the pathway, inhibited COX2/PEG2 signaling and decreased the interaction inflammatory targets of the axis, like interleukin-1beta (IL-1β), interleukin 6 (IL-6), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase1 (caspase1) and NOD-like receptor-containing protein 3 (NLRP3).In addition, the deposition of COL1A1, and the level of α-SMA, and Transforming growth factor-β1 (TGF-β1) obviously elevated, whereas that of pro-inflammatory factors reduced in the diabetic wound tissue with IGLR treatment. CONCLUSION IGLR suppressed oxidative distress and inflammation mainly through NRF2/COX2 axis, thus promoting paracrine and accelerating wound healing in diabetes mice.
Collapse
Affiliation(s)
- Xiaoyu Geng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Huan Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Chen Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaojie Gu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Haixin Zhong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Huilin Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xinzhu Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, China
| | - Zheng Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, China.
| |
Collapse
|
23
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
24
|
Andleeb A, Khan H, Andleeb A, Khan M, Tariq M. Advances in Chronic Wound Management: From Conventional Treatment to Novel Therapies and Biological Dressings. Crit Rev Biomed Eng 2024; 52:29-62. [PMID: 38884212 DOI: 10.1615/critrevbiomedeng.2024053066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Chronic wounds can be classified as diabetic foot ulcers, pressure ulcers, or venous leg ulcers. Chronic wound management has become a threat to clinicians and constitutes a major healthcare burden. The healing process of chronic wounds requires many factors to work in concert to achieve optimal healing. Various treatment options, ranging from hypoxia to infection, have evolved considerably to address the challenges associated with chronic wound healing. The conventional and accelerating treatments for chronic wounds still represent an unmet medical need due to the complex pathophysiology of the chronic wound microenvironment. In clinical settings, traditional chronic wound care practices rely on nonspecific topical treatment, which can reduce pain and alleviate disease progression with varying levels of success but fail to completely cure the wounds. Conventional wound dressings, such as hydrocolloids, gauze, foams, and films, have also shown limited success for the treatment of chronic wounds and only act as a physical barrier and absorb wound exudates. Emerging advances in treatment approaches, including novel therapies (stem cells, microRNAs, and nanocarrier-based delivery systems) and multifunctional biological dressings, have been reported for chronic wound repair. This review summarizes the challenges offered by chronic wounds and discusses recent advancements in chronic wound treatment.
Collapse
Affiliation(s)
- Anisa Andleeb
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Hamza Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aneeta Andleeb
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Khan
- Centre for Biotechnology and Microbiology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, Mirpur, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
25
|
Bahari H, Taheri S, Namkhah Z, Barghchi H, Arzhang P, Nattagh-Eshtivani E. Effects of sumac supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2024; 38:241-252. [PMID: 37864474 DOI: 10.1002/ptr.8046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
This systematic review aimed to gather data on the effects of sumac supplementation on lipid profile. A systematic literature search was carried out using electronic databases (PubMed, Scopus, and Web of Science) up to March 2023 to identify eligible randomized controlled trials (RCTs) assessing the effects of sumac intake on lipid profile as an outcome. All participants enrolled in our study were adult individuals who consumed sumac, in various forms, as an intervention. The included articles were assessed using the Cochrane risk of bias assessment tool. Heterogeneity tests of the selected trials were performed using the I2 statistic. Random effects models were assessed based on the heterogeneity tests, and pooled data were determined as the weighted mean difference with a 95% confidence interval. In total, seven RCTs with a total sample size of 570 subjects were included. This study found a significant decrease in total cholesterol (TC) (weighted mean difference [WMD]: -10.01 mg/dL; 95% CI: -18.67, -1.34), triglyceride (TG) (WMD: -8.52 mg/dL; 95% CI: -14.79, -2.25), and low-density lipoprotein (LDL)-C levels (WMD: -9.25 mg/dL; 95% CI: -14.56, -3.93); Moreover, a significant increase was observed in high-density lipoprotein (HDL)-C concentration (WMD: 2.97 mg/dL; 95% CI: 0.75, 5.19). The reduction in TG and TC was greater in studies with a duration of ≥12 compared to <12 weeks. The increase in HDL-C was greater in participants with an intervention duration of ≥12 compared to <12 weeks. Moreover, subgroup analysis based on the dose of sumac suggested a significant reduction in TC and LDL, specifically for doses below 3 g. Consumption of sumac significantly decreased serum TC, LDL-C, and TG concentrations. This study suggested significantly positive effects on HDL-C by intake of sumac. Longer interventions (>12 weeks) have a more favorable impact on TC, LDL-C, and HDL-C, while sumac doses below 3 g/day show greater effects on TC and LDL-C. These findings underscore the potential of sumac supplementation as a valuable approach to lipid profile management.
Collapse
Affiliation(s)
- Hossein Bahari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Taheri
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Namkhah
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Barghchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pishva Arzhang
- Qods Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elyas Nattagh-Eshtivani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| |
Collapse
|
26
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
27
|
Oliveira MX, Canafístula FVC, Ferreira CRN, Fernandes LVO, de Araújo AR, Ribeiro FOS, Souza JMT, Lima IC, Assreuy AMS, Silva DA, Filho JDBM, Araújo AJ, Maciel JS, Feitosa JPA. Hydrogels dressings based on guar gum and chitosan: Inherent action against resistant bacteria and fast wound closure. Int J Biol Macromol 2023; 253:127281. [PMID: 37806422 DOI: 10.1016/j.ijbiomac.2023.127281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Hydrogels made with depolymerized guar gum, oxidized with theoretical oxidation degrees of 20, 35 and 50 %, were obtained via Schiff's base reaction with N-succinyl chitosan. The materials obtained were subjected to characterization by FT-IR, rheology, swelling, degradation, and morphology. Additionally, their gelation time categorized all three hydrogels as injectable. The materials' swelling degrees in Phosphate-Buffered Saline (PBS) were in the range of 26-35 g of fluid/g gel and their pore size distribution was heterogeneous, with pores varying from 67 to 93 μm. All hydrogels degraded in PBS solution, but maintained around 40 % of their initial mass after 28 days, which was more than enough time for wound healing. The biomaterials were also flexible, self-repairing, adhesive and cytocompatible and presented intrinsic actions, regardless of the presence of additives or antibiotics, against gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative bacteria (Escherichia coli). However, the most pronounced bactericidal effect was against resistant Staphylococcus aureus - MRSA. In vivo assays, performed with 50 % oxidized gum gel, demonstrated that this material exerted anti-inflammatory effects, accelerating the healing process and restoring tissues by approximately 99 % within 14 days. In conclusion, these hydrogels have unique characteristics, making them excellent candidates for wound-healing dressings.
Collapse
Affiliation(s)
- Matheus X Oliveira
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | | | - Carlos Rhamon N Ferreira
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Ludmila Virna O Fernandes
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Alyne R de Araújo
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Fábio Oliveira S Ribeiro
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Jessica Maria T Souza
- Cell Culture Laboratory of the Delta, LCCDelta, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Iásly C Lima
- Superior Institute of Biomedical Sciences, State University of Ceará, UECE, Fortaleza, CE, Brazil
| | - Ana Maria S Assreuy
- Superior Institute of Biomedical Sciences, State University of Ceará, UECE, Fortaleza, CE, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology, BIOTEC, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - José Delano Barreto M Filho
- Cell Culture Laboratory of the Delta, LCCDelta, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Ana Jérsia Araújo
- Cell Culture Laboratory of the Delta, LCCDelta, Parnaiba Delta Federal University, UFDPar, Parnaíba, PI, Brazil
| | - Jeanny S Maciel
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil
| | - Judith Pessoa A Feitosa
- Department of Organic and Inorganic Chemistry, Polymer Laboratory, Federal University of Ceará, UFC, Fortaleza, CE, Brazil.
| |
Collapse
|
28
|
Torrecillas-Baena B, Camacho-Cardenosa M, Carmona-Luque MD, Dorado G, Berenguer-Pérez M, Quesada-Gómez JM, Gálvez-Moreno MÁ, Casado-Díaz A. Comparative Study of the Efficacy of EHO-85, a Hydrogel Containing Olive Tree ( Olea europaea) Leaf Extract, in Skin Wound Healing. Int J Mol Sci 2023; 24:13328. [PMID: 37686133 PMCID: PMC10487427 DOI: 10.3390/ijms241713328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Olive tree (Olea europaea) leaf extract (OELE) has important antioxidant and anti-inflammatory properties, supporting its use in human clinical practice. We recently designed an amorphous hydrogel called EHO-85 (EHO indicates olive leaf extract in Spanish) containing OELE for skin ulcer treatments. Yet, its effectiveness has not been previously compared with other products used in routine clinical practice. This is necessary to evaluate its potential translation to the human clinic. Thus, in this study, the effect of EHO-85 on healing was evaluated in comparison with treatments containing Indian/Asiatic pennywort (Centella asiatica), hyaluronic acid, or dexpanthenol in a rat model. The speed of wound closure and histological parameters after seven and 14 days were analyzed. All treatments accelerated wound closure, but there were differences between them. Dexpanthenol after seven days produced the highest epithelialization and the lowest inflammation and vascularization. EHO-85 also promoted epithelialization and reduced vascularization. After 14 days, wounds treated with EHO-85 showed less inflammation and higher levels of collagen in the extracellular matrix. This indicates a higher degree of maturity in the regenerated tissue. In conclusion, the effect of EHO-85 on healing was equal to or superior to that of other treatments routinely used in human clinical practice. Therefore, these results, together with previous data on the effects of this hydrogel on ulcer healing in humans, indicate that EHO-85 is a suitable, low-cost, and efficient therapeutic option for wound healing.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Marta Camacho-Cardenosa
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - María Dolores Carmona-Luque
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Cellular Therapy Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Gabriel Dorado
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Miriam Berenguer-Pérez
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain;
| | - José Manuel Quesada-Gómez
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
| | - María Ángeles Gálvez-Moreno
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Antonio Casado-Díaz
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
29
|
Tao L, Liao J, Zheng R, Zhang X, Shang H. Association of Drinking Herbal Tea with Activities of Daily Living among Elderly: A Latent Class Analysis. Nutrients 2023; 15:2796. [PMID: 37375699 DOI: 10.3390/nu15122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to explore whether drinking herbal tea and tea would positively benefit activities of daily living (ADL) in the elderly. We used data from the Chinese longitudinal healthy longevity survey (CLHLS) to explore the association. Drinking herbal tea and drinking tea were divided into three groups using latent class analysis (LCA): frequently, occasionally, and rarely. ADL disability was measured by the ADL score. Multivariate COX proportional hazards models with competing risks were used to explore the impact of drinking herbal tea and tea on ADL disability, statistically adjusted for a range of potential confounders. A total of 7441 participants (mean age 81.8 years) were included in this study. The proportions of frequently and occasionally drinking herbal tea were 12.0% and 25.7%, respectively. Additionally, 29.6% and 28.2% of participants reported drinking tea, respectively. Multivariate COX regression showed that compared with rarely drinking, frequently drinking herbal tea could effectively reduce the incidence of ADL disability (HR = 0.85, 95% CI = 0.77-0.93, p = 0.005), whereas tea drinking had a relatively weaker effect (HR = 0.92, 95% CI = 0.83-0.99, p = 0.040). Subgroup analysis found that frequently drinking herbal tea was more protective for males under 80 years old (HR = 0.74 and 0.79, respectively), while frequently drinking tea was somewhat protective for women (HR = 0.92). The results indicate that drinking herbal tea and tea may be associated with a lower incidence of ADL disability. However, the risks associated with using Chinese herb plants still deserve attention.
Collapse
Affiliation(s)
- Liyuan Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Jiaojiao Liao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Xiaoyu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
30
|
Fan L, Sun J, He D. Advances in microneedles for delivery of active ingredients of natural herbals. Biointerphases 2022; 19:061003. [PMID: 39535264 DOI: 10.1116/6.0004073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The active ingredients of natural herbs have been extracted to act on different targets in the body to exert multiple effects. However, traditional oral administration and intravenous injection of herbal medicines are also susceptible to many side effects. Transdermal drug delivery by microneedles can overcome the shortcomings of these traditional drug delivery systems. The active ingredients of natural herbs can be delivered to the dermis or the connective tissue layer by five types of microneedles: solid, hollow, coated, dissolving, and hydrogel. Subsequently, the herbal ingredients are delivered to different target points of the body through body circulation to exert their effects. In this study, we classified the microneedles that can deliver the active ingredients of natural herbs and summarized their advantages and disadvantages as well as their preparation methods and applications, to guide the development and clinical applications of other herbal transdermal microneedles.
Collapse
Affiliation(s)
- Lin Fan
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, 935Changjiang Rd, Shahekou District, Dalian 116021, China
| | - Jiang Sun
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, 935Changjiang Rd, Shahekou District, Dalian 116021, China
| | - Dawei He
- Department of Periodontics and Oral Mucosa Disease, Dalian Stomatological Hospital, 935Changjiang Rd, Shahekou District, Dalian 116021, China
| |
Collapse
|