1
|
Bazgir N, Soltani A, Mohajer Z, Tabari MAK, Eslami V. Adrenal Insufficiency Associated Cardiomyopathy, From Molecule to Clinic: A Comprehensive Review. Health Sci Rep 2025; 8:e70702. [PMID: 40432696 PMCID: PMC12107600 DOI: 10.1002/hsr2.70702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 05/29/2025] Open
Abstract
Background and Aim Adrenal insufficiency (AI), the lack of glucocorticoids (GCs) production or function with or without a lack of mineralocorticoids (MCs) and adrenal androgens, can result in uncommon but life-threatening complications like shock, circulatory failure, syncope, arrhythmias, dilated cardiomyopathy (DCM), and congestive heart failure (CHF). In this article, we aim to comprehensively review the cardiomyopathy (CMP) secondary to AI. Methods This review focused on CMP secondary to AI. A systematic search was conducted in Pubmed, GoogleScholar, and Embase. The relevant articles were included in this review. Results All three kinds of AI-primary, secondary, and tertiary-have been associated with CMP. AI can cause takotsubo CMP, lethal arrhythmias, and DCM. There have been reports of CMP in all three kinds of AI: primary, secondary, and tertiary. AI can manifest as newly developed systolic HF and contribute to cardiovascular disease. When adrenal replacement therapy is started in patients with adrenal failure, heart function improves quickly. Early detection could stop this phenomenon from happening again. Conclusion Herein, we provided an overview of AI-associated CMP regarding underlying causes, pathophysiology, associated symptoms, diagnosis, and treatment of AI-associated CMP. Adrenal replacement therapy can quickly improve heart function. More research is needed to explore the effects of GCs and MCs on the heart and to better understand associated conditions.
Collapse
Affiliation(s)
- Narges Bazgir
- Hearing Disorder Research Center, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Afsaneh Soltani
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Network of Interdisciplinarity in Neonates and Infants (NINI)Universal Scientific Education and Research Network (USERN)TehranIran
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Mohajer
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Network of Interdisciplinarity in Neonates and Infants (NINI)Universal Scientific Education and Research Network (USERN)TehranIran
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Amin Khazeei Tabari
- Network of Interdisciplinarity in Neonates and Infants (NINI)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeMazandaran University of Medical SciencesSariIran
- USERN OfficeMazandaran University of Medical SciencesSariIran
| | - Vahid Eslami
- USERN OfficeShahid Beheshti University of Medical SciencesTehranIran
- Interventional Cardiology, Clinical Research Development Center, Shahid Modarres Educational HospitalShahid Beheshti University of Medical SciencesTehranIran
- Cardiovascular Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Wilhelm D, Perea-Gomez A, Newton A, Chaboissier MC. Gonadal sex determination in vertebrates: rethinking established mechanisms. Development 2025; 152:dev204592. [PMID: 40162719 DOI: 10.1242/dev.204592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sex determination and differentiation are fundamental processes that are not only essential for fertility but also influence the development of many other organs, and hence, are important for species diversity and survival. In mammals, sex is determined by the inheritance of an X or a Y chromosome from the father. The Y chromosome harbours the testis-determining gene SRY, and it has long been thought that its absence is sufficient for ovarian development. Consequently, the ovarian pathway has been treated as a default pathway, in the sense that ovaries do not have or need a female-determining factor. Recently, a female-determining factor has been identified in mouse as the master regulator of ovarian development. Interestingly, this scenario was predicted as early as 1983. In this Review, we discuss the model predicted in 1983, how the mechanisms and genes currently known to be important for sex determination and differentiation in mammals have changed or supported this model, and finally, reflect on what these findings might mean for sex determination in other vertebrates.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Aitana Perea-Gomez
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Axel Newton
- TIGRR Lab, The School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | | |
Collapse
|
3
|
Chu Y, Setayesh J, Dumontet T, Krumeich L, Werner J, Moretti IF, De Sousa K, Kennedy C, La Pensee C, Lerario AM, Hammer GD. Adrenocortical stem cells in health and disease. Nat Rev Endocrinol 2025:10.1038/s41574-025-01091-2. [PMID: 40065108 DOI: 10.1038/s41574-025-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 04/13/2025]
Abstract
The adrenal cortex is the major site of production of steroid hormones, which are essential for life. The normal development and homeostatic renewal of the adrenal cortex depend on capsular stem cells and cortical progenitor cells. These cell populations are highly plastic and support adaptation to physiological demands, injury and disease, linking steroid production and adrenal (organ) homeostasis with systemic endocrine cues and organismal homeostasis. This Review integrates findings from the past decade, outlining the mechanisms that govern the establishment and maintenance of the adrenal stem cell niche under different physiological and pathological conditions. The sophisticated regulation of the stem cell niche by gene regulatory networks, coordinated through paracrine and endocrine signalling, is highlighted in a context-dependent and sex-specific manner. We discuss how dysregulation of this intricate regulatory network is implicated in a wide range of adrenal diseases, and how emerging knowledge from adrenal stem cell research is inspiring the future development of gene-based and cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Yulan Chu
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jordan Setayesh
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Krumeich
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Johanna Werner
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Isabele F Moretti
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Kelly De Sousa
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Kennedy
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Christopher La Pensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Hammer
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Endocrine Oncology Program, Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Marques IF, Domènech-Panicello C, Geurtsen ML, Hoang TT, Richmond R, Polinski K, Sirignano L, Page CM, Binter AC, Everson T, Burt A, Deuschle M, Gilles M, Streit F, Mumford SL, Magnus P, Reiss IKM, Vermeulen MJ, Witt SH, Chaves I, Yeung E, London SJ, Guxens M, Felix JF. Associations of maternal night shift work during pregnancy with DNA methylation in offspring: a meta-analysis in the PACE consortium. Clin Epigenetics 2025; 17:12. [PMID: 39844285 PMCID: PMC11756212 DOI: 10.1186/s13148-024-01810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Night shift work during pregnancy has been associated with differential DNA methylation in placental tissue, but no studies have explored this association in cord blood. We aimed to examine associations of maternal night shift work with cord blood DNA methylation. METHODS A total of 4487 mother-newborn pairs from 7 studies were included. Maternal night shift work during pregnancy was ascertained via questionnaires and harmonized into "any" versus "no". DNA methylation was measured in cord blood using the Illumina Infinium Methylation arrays. Robust linear regression models adjusted for relevant confounders were run in the individual cohorts, and results were meta-analyzed. RESULTS Maternal night shift work during pregnancy ranged from 3.4% to 26.3%. Three CpGs were differentially methylated in relation to maternal night shift work during pregnancy at a false discovery rate adjusted P < 0.05: cg10945885 (estimate (β) 0.38%, standard error (SE) 0.07), cg00773359 (β 0.25%, SE 0.05), and cg21836426 (β - 0.29%, SE 0.05). Associations of the identified CpGs were found in previous literature for gestational age and childhood and adolescent BMI. In a mouse model of prenatal jet lag exposure, information on offspring DNA methylation of ten homologous genes annotated to the 16 CpGs with P < 1 × 10-5 in our analysis was available, of which eight were associated (enrichment P: 1.62 × 10-11). CONCLUSION Maternal night shift work during pregnancy was associated with newborn DNA methylation at 3 CpGs. Top findings overlapped with those in a mouse model of gestational jet lag. This work strengthens evidence that DNA methylation could be a marker or mediator of impacts of circadian rhythm disturbances.
Collapse
Affiliation(s)
- Irene F Marques
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Carola Domènech-Panicello
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Madelon L Geurtsen
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Thanh T Hoang
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Rebecca Richmond
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Oxford Health Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Kristen Polinski
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Aging, Division for Physical and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne-Claire Binter
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Todd Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Sunni L Mumford
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
- Department of Biostatistics, Epidemiology and Informatics and Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Irwin K M Reiss
- Department of Neonatal and Pediatric Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marijn J Vermeulen
- Department of Neonatal and Pediatric Intensive Care, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Inês Chaves
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Edwina Yeung
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- ICREA, Barcelona, Spain
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Jiang W, Cheung RYK, Chung CY, Chan SSC, Choy KW. Genetic Etiology in Pelvic Organ Prolapse: Role of Connective Tissue Homeostasis, Hormone Metabolism, and Oxidative Stress. Genes (Basel) 2024; 16:5. [PMID: 39858552 PMCID: PMC11765207 DOI: 10.3390/genes16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Pelvic organ prolapse (POP) has become a common health problem among the aging population and affects an increasing number of elderly women worldwide. Studies within family and twin pairs provided strong evidence for the contribution of genetic factors to POP. Given the incomplete penetrance, polygenic traits, and small effect sizes of each variant in complex diseases, it is not always easy to evaluate the genetic susceptibility and molecular mechanisms involved in POP. Objectives: This review intends to comprehensively summarize the current studies on genetic variants associated with POP. Methods: We performed a comprehensive review to summarize the genetic findings from genome-linkage studies, genome-wide association studies, candidate association studies, and gene expression analyses. Results: We summarized genetic variants associated with connective tissue homeostasis, hormone metabolism, and oxidative stress, which were potentially related to the pathophysiology of POP. We also reviewed the limited polygenic risk score (PRS) studies generated for each individual's genetic risk stratification and its integration into clinical risk factors for disease prediction. Conclusions: This pooled analysis provides moderate epidemiological credibility for associations of these genetic variants with POP to bridge the gap between genetic research and clinical medicine towards understanding the genetic etiology of POP. It also highlights the potential of PRS as a risk prediction model.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
| | - Rachel Yau Kar Cheung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
| | - Cheuk Yan Chung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
| | - Symphorosa Shing Chee Chan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (W.J.); (R.Y.K.C.); (C.Y.C.); (S.S.C.C.)
- Baylor College of Medicine Joint Center for Medical Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Yu C, Zheng B, Zhang L, Zhang A, Jia Z, Ding G. Wnt/β-Catenin Signaling and Congenital Abnormalities of Kidney and Urinary Tract. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:588-599. [PMID: 39664338 PMCID: PMC11631108 DOI: 10.1159/000541684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/23/2024] [Indexed: 12/13/2024]
Abstract
Background Precise regulation of cell-cell communication is vital for cell survival and normal function during embryogenesis. The Wnt protein family, a highly conserved and extensively studied group, plays a crucial role in key cell-cell signaling events essential for development and regeneration. Congenital anomalies of the kidney and urinary tract (CAKUT) represent a leading cause of chronic kidney disease in children and young adults, and include a variety of birth abnormalities resulting from disrupted genitourinary tract development during embryonic development. The incidence and progression of CAKUT may be related to the Wnt signal transduction mechanism. Summary This review provides a comprehensive overview of the classical Wnt signaling pathway's role in CAKUT, explores related molecular mechanisms and provides new targets and intervention methods for the future treatment of the disease. Key Messages The Wnt signal is intricately engaged in a variety of differentiation processes throughout kidney development.
Collapse
Affiliation(s)
- Cuicui Yu
- Beijing Jishuitan Hospital, Captial Medical University, Beijing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Luyan Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Benonisdottir S, Straub VJ, Kong A, Mills MC. Genetics of female and male reproductive traits and their relationship with health, longevity and consequences for offspring. NATURE AGING 2024; 4:1745-1759. [PMID: 39672892 DOI: 10.1038/s43587-024-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Substantial shifts in reproductive behaviors have recently taken place in many high-income countries including earlier age at menarche, advanced age at childbearing, rising childlessness and a lower number of children. As reproduction shifts to later ages, genetic factors may become increasingly important. Although monogenic genetic effects are known, the genetics underlying human reproductive traits are complex, with both causal effects and statistical bias often confounded by socioeconomic factors. Here, we review genome-wide association studies (GWASs) of 44 reproductive traits of both female and male individuals from 2007 to early 2024, examining reproductive behavior, reproductive lifespan and aging, infertility and hormonal concentration. Using the GWAS Catalog as a basis, from 159 relevant studies, we isolate 37 genes that harbor association signals for four or more reproductive traits, more than half of which are linked to rare Mendelian disorders, including ten genes linked to reproductive-related disorders: FSHB, MCM8, DNAH2, WNT4, ESR1, IGSF1, THRB, BRWD1, CYP19A1 and PTPRF. We also review the relationship of reproductive genetics to related health and behavioral traits, aging and longevity and the effect of parental age on offspring outcomes as well as reflecting on limitations, open questions and challenges in this fast-moving field.
Collapse
Affiliation(s)
- Stefania Benonisdottir
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
- Institute of Physical Science, University of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vincent J Straub
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Augustine Kong
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Melinda C Mills
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK.
- Department of Genetics, University Medical Centre Groningen, Groningen, the Netherlands.
- Department of Economics, Econometrics and Finance, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Wu J, Tan S, Feng Z, Zhao H, Yu C, Yang Y, Zhong B, Zheng W, Yu H, Li H. Whole-genome de novo sequencing reveals genomic variants associated with differences of sex development in SRY negative pigs. Biol Sex Differ 2024; 15:68. [PMID: 39223676 PMCID: PMC11367908 DOI: 10.1186/s13293-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Differences of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. In more than 50% of human DSD cases, a molecular diagnosis is not available. In intensively farmed pig populations, the incidence of XX DSD pigs is relatively high, leading to economic losses for pig breeders. Interestingly, in the majority of 38, XX DSD pigs, gonads still develop into testis-like structures or ovotestes despite the absence of the testis-determining gene (SRY). However, the current understanding of the molecular background of XX DSD pigs remains limited. METHODS Anatomical and histological characteristics of XX DSD pigs were analysed using necropsy and HE staining. We employed whole-genome sequencing (WGS) with 10× Genomics technology and used de novo assembly methodology to study normal female and XX DSD pigs. Finally, the identified variants were validated in 32 XX DSD pigs, and the expression levels of the candidate variants in the gonads of XX DSD pigs were further examined. RESULTS XX DSD pigs are characterised by the intersex reproductive organs and the absence of germ cells in the seminiferous tubules of the gonads. We identified 4,950 single-nucleotide polymorphisms (SNPs) from non-synonymous mutations in XX DSD pigs. Cohort validation results highlighted two specific SNPs, "c.218T > C" in the "Interferon-induced transmembrane protein 1 gene (IFITM1)" and "c.1043C > G" in the "Newborn ovary homeobox gene (NOBOX)", which were found exclusively in XX DSD pigs. Moreover, we verified 14 candidate structural variants (SVs) from 1,474 SVs, identifying a 70 bp deletion fragment in intron 5 of the WW domain-containing oxidoreductase gene (WWOX) in 62.5% of XX DSD pigs. The expression levels of these three candidate genes in the gonads of XX DSD pigs were significantly different from those of normal female pigs. CONCLUSION The nucleotide changes of IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment of the WWOX were the most dominant variants among XX DSD pigs. This study provides a theoretical basis for better understanding the molecular background of XX DSD pigs. DSD are conditions affecting development of the gonads or genitalia. These disorders can happen in many different types of animals, including pigs, goats, dogs, and people. In people, DSD happens in about 0.02-0.13% of births, and in pigs, the rate is between 0.08% and 0.75%. Pigs have a common type of DSD where the animal has female chromosomes (38, XX) but no SRY gene, which is usually found on the Y chromosome in males. XX DSD pigs may look like both males and females on the outside and have testis-like or ovotestis (a mix of ovary and testis) gonads inside. XX DSD pigs often lead to not being able to have piglets, slower growth, lower chance of survival, and poorer meat quality. Here, we used a method called whole-genome de novo sequencing to look for variants in the DNA of XX DSD pigs. We then checked these differences in a larger group of pigs. Our results reveal the nucleotide changes in IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment in intron 5 of the WWOX, all linked to XX DSD pigs. The expression levels of these three genes were also different in the gonads of XX DSD pigs compared to normal female pigs. These variants are expected to serve as valuable molecular markers for XX DSD pigs. Because pigs are a lot like humans in their genes, physiology, and body structure, this research could help us learn more about what causes DSD in people.
Collapse
Affiliation(s)
- Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Shuwen Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Yin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Bingzhou Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Wenxiao Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| |
Collapse
|
9
|
Ogoshi T, Yatera K, Mukae H, Tsutsui M. Role of Nitric Oxide Synthases in Respiratory Health and Disease: Insights from Triple Nitric Oxide Synthases Knockout Mice. Int J Mol Sci 2024; 25:9317. [PMID: 39273265 PMCID: PMC11395504 DOI: 10.3390/ijms25179317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The system of nitric oxide synthases (NOSs) is comprised of three isoforms: nNOS, iNOS, and eNOS. The roles of NOSs in respiratory diseases in vivo have been studied by using inhibitors of NOSs and NOS-knockout mice. Their exact roles remain uncertain, however, because of the non-specificity of inhibitors of NOSs and compensatory up-regulation of other NOSs in NOS-KO mice. We addressed this point in our triple-n/i/eNOSs-KO mice. Triple-n/i/eNOSs-KO mice spontaneously developed pulmonary emphysema and displayed exacerbation of bleomycin-induced pulmonary fibrosis as compared with wild-type (WT) mice. Triple-n/i/eNOSs-KO mice exhibited worsening of hypoxic pulmonary hypertension (PH), which was reversed by treatment with sodium nitrate, and WT mice that underwent triple-n/i/eNOSs-KO bone marrow transplantation (BMT) also showed aggravation of hypoxic PH compared with those that underwent WT BMT. Conversely, ovalbumin-evoked asthma was milder in triple-n/i/eNOSs-KO than WT mice. These results suggest that the roles of NOSs are different in different pathologic states, even in the same respiratory diseases, indicating the diversity of the roles of NOSs. In this review, we describe these previous studies and discuss the roles of NOSs in respiratory health and disease. We also explain the current state of development of inorganic nitrate as a new drug for respiratory diseases.
Collapse
Affiliation(s)
- Takaaki Ogoshi
- Department of Respiratory Medicine, Kokura Memorial Hospital, 1-1 Asano, Kokura-kita-ku, Kitakyushu 803-0802, Japan;
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan;
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Japan;
| | - Hiroshi Mukae
- Department of Respiratory Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan;
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
10
|
Grégoire É, De Cian MC, Detti M, Gillot I, Perea-Gomez A, Chaboissier MC. [Sex determination, it is all about timing]. Med Sci (Paris) 2024; 40:627-633. [PMID: 39303114 DOI: 10.1051/medsci/2024095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
The sex of an individual is determined at the time of fertilization. The mother passes on one sex chromosome, the X chromosome, and the father transmits the second sex chromosome, X or Y. Thus, an XX embryo becomes a female, whereas an XY individual becomes a male. A process known as "primary sex determination" allows the bipotential gonad to become a testis or an ovary in XY and XX embryos, respectively. In 1990, the Sry gene, located on the Y chromosome, was found to be necessary and sufficient to induce the male developmental program. At this time, the scientific community thought that other genes involved in the process of sex determination would be rapidly identified. However, it took more than 30 years to identify the ovarian determining factor. This factor is one variant of WT1, denoted -KTS, which is required to induce ovarian development in XX mice and can prevent male development of the gonad when it is prematurely activated in XY embryos. Because the -KTS variant of WT1 acts very early during development, this discovery opens new avenues for research on ovarian development, as it happened for SRY for testis development. It will also lead to a better understanding of the regulatory gene networks implicated in many unresolved cases of sex development disorders.
Collapse
Affiliation(s)
- Élodie Grégoire
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | - Marie-Cécile De Cian
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | - Mélanie Detti
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | - Isabelle Gillot
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | - Aitana Perea-Gomez
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose (iBV), Nice, France
| | | |
Collapse
|
11
|
Lundgaard Riis M, Delpouve G, Nielsen JE, Melau C, Langhoff Thuesen L, Juul Hare K, Dreisler E, Aaboe K, Tutein Brenøe P, Albrethsen J, Frederiksen H, Juul A, Giacobini P, Jørgensen A. Inhibition of WNT/β-catenin signalling during sex-specific gonadal differentiation is essential for normal human fetal testis development. Cell Commun Signal 2024; 22:330. [PMID: 38879537 PMCID: PMC11180390 DOI: 10.1186/s12964-024-01704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Sex-specific gonadal differentiation is directed by complex signalling promoting development in either male or female direction, while simultaneously inhibiting the opposite pathway. In mice, the WNT/β-catenin pathway promotes ovarian development and the importance of actively inhibiting this pathway to ensure normal testis development has been recognised. However, the implications of alterations in the tightly regulated WNT/β-catenin signalling during human fetal gonad development has not yet been examined in detail. Thus, the aim of this study was to examine the consequences of dysregulating the WNT/β-catenin signalling pathway in the supporting cell lineage during sex-specific human fetal gonad development using an established and extensively validated ex vivo culture model. Inhibition of WNT/β-catenin signalling in human fetal ovary cultures resulted in only minor effects, including reduced secretion of RSPO1 and reduced cell proliferation although this was not consistently found in all treatment groups. In contrast, promotion of WNT/β-catenin signalling in testes severely affected development and function. This included disrupted seminiferous cord structures, reduced cell proliferation, reduced expression of SOX9/AMH, reduced secretion of Inhibin B and AMH as well as loss of the germ cell population. Additionally, Leydig cell function was markedly impaired with reduced secretion of testosterone, androstenedione and INSL3. Together, this study suggests that dysregulated WNT/β-catenin signalling during human fetal gonad development severely impairs testicular development and function. Importantly, our study highlights the notion that sufficient inhibition of the opposite pathway during sex-specific gonadal differentiation is essential to ensure normal development and function also applies to human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Gaspard Delpouve
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, University of Lille, CHU Lille, UMR-S 1172, FHU 1000 days for health, Inserm, Lille, France
| | - John E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Cecilie Melau
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Lea Langhoff Thuesen
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Kristine Juul Hare
- Department of Obstetrics and Gynaecology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Eva Dreisler
- Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kasper Aaboe
- Department of Gynaecology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Pia Tutein Brenøe
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Jakob Albrethsen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, University of Lille, CHU Lille, UMR-S 1172, FHU 1000 days for health, Inserm, Lille, France
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- International centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.
| |
Collapse
|
12
|
Stancampiano MR, Meroni SLC, Bucolo C, Russo G. 46,XX Differences of Sex Development outside congenital adrenal hyperplasia: pathogenesis, clinical aspects, puberty, sex hormone replacement therapy and fertility outcomes. Front Endocrinol (Lausanne) 2024; 15:1402579. [PMID: 38841305 PMCID: PMC11150773 DOI: 10.3389/fendo.2024.1402579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The term 'differences of sex development' (DSD) refers to a group of congenital conditions that are associated with atypical development of chromosomal, gonadal, and/or anatomical sex. DSD in individuals with a 46,XX karyotype can occur due to fetal or postnatal exposure to elevated amount of androgens or maldevelopment of internal genitalia. Clinical phenotype could be quite variable and for this reason these conditions could be diagnosed at birth, in newborns with atypical genitalia, but also even later in life, due to progressive virilization during adolescence, or pubertal delay. Understand the physiological development and the molecular bases of gonadal and adrenal structures is crucial to determine the diagnosis and best management and treatment for these patients. The most common cause of DSD in 46,XX newborns is congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, determining primary adrenal insufficiency and androgen excess. In this review we will focus on the other rare causes of 46,XX DSD, outside CAH, summarizing the most relevant data on genetic, clinical aspects, puberty and fertility outcomes of these rare diseases.
Collapse
|
13
|
Yavas Abalı Z, Guran T. Diagnosis and management of non-CAH 46,XX disorders/differences in sex development. Front Endocrinol (Lausanne) 2024; 15:1354759. [PMID: 38812815 PMCID: PMC11134272 DOI: 10.3389/fendo.2024.1354759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prenatal-onset androgen excess leads to abnormal sexual development in 46,XX individuals. This androgen excess can be caused endogenously by the adrenals or gonads or by exposure to exogenous androgens. The most common cause of 46,XX disorders/differences in sex development (DSD) is congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, comprising >90% of 46,XX DSD cases. Deficiencies of 11β-hydroxylase, 3β-hydroxysteroid dehydrogenase, and P450-oxidoreductase (POR) are rare types of CAH, resulting in 46,XX DSD. In all CAH forms, patients have normal ovarian development. The molecular genetic causes of 46,XX DSD, besides CAH, are uncommon. These etiologies include primary glucocorticoid resistance (PGCR) and aromatase deficiency with normal ovarian development. Additionally, 46,XX gonads can differentiate into testes, causing 46,XX testicular (T) DSD or a coexistence of ovarian and testicular tissue, defined as 46,XX ovotesticular (OT)-DSD. PGCR is caused by inactivating variants in NR3C1, resulting in glucocorticoid insensitivity and the signs of mineralocorticoid and androgen excess. Pathogenic variants in the CYP19A1 gene lead to aromatase deficiency, causing androgen excess. Many genes are involved in the mechanisms of gonadal development, and genes associated with 46,XX T/OT-DSD include translocations of the SRY; copy number variants in NR2F2, NR0B1, SOX3, SOX9, SOX10, and FGF9, and sequence variants in NR5A1, NR2F2, RSPO1, SOX9, WNT2B, WNT4, and WT1. Progress in cytogenetic and molecular genetic techniques has significantly improved our understanding of the etiology of non-CAH 46,XX DSD. Nonetheless, uncertainties about gonadal function and gender outcomes may make the management of these conditions challenging. This review explores the intricate landscape of diagnosing and managing these conditions, shedding light on the unique aspects that distinguish them from other types of DSD.
Collapse
Affiliation(s)
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Türkiye
| |
Collapse
|
14
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Du X, Wang C, Liu J, Yu M, Ju H, Xue S, Li Y, Liu J, Dai R, Chen J, Zhai Y, Rao J, Wang X, Sun Y, Sun L, Wu X, Xu H, Shen Q. GEN1 as a risk factor for human congenital anomalies of the kidney and urinary tract. Hum Genomics 2024; 18:41. [PMID: 38654324 PMCID: PMC11041010 DOI: 10.1186/s40246-024-00606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) are prevalent birth defects. Although pathogenic CAKUT genes are known, they are insufficient to reveal the causes for all patients. Our previous studies indicated GEN1 as a pathogenic gene of CAKUT in mice, and this study further investigated the correlation between GEN1 and human CAKUT. METHODS In this study, DNA from 910 individuals with CAKUT was collected; 26 GEN1 rare variants were identified, and two GEN1 (missense) variants in a non-CAKUT group were found. Mainly due to the stability results of the predicted mutant on the website, in vitro, 10 variants (eight CAKUT, two non-CAKUT) were selected to verify mutant protein stability. In addition, mainly based on the division of the mutation site located in the functional region of the GEN1 protein, 8 variants (six CAKUT, two non-CAKUT) were selected to verify enzymatic hydrolysis, and the splice variant GEN1 (c.1071 + 3(IVS10) A > G) was selected to verify shear ability. Based on the results of in vitro experiments and higher frequency, three sites with the most significant functional change were selected to build mouse models. RESULTS Protein stability changed in six variants in the CAKUT group. Based on electrophoretic mobility shift assay of eight variants (six CAKUT, two non-CAKUT), the enzymatic hydrolysis and DNA-binding abilities of mutant proteins were impaired in the CAKUT group. The most serious functional damage was observed in the Gen1 variant that produced a truncated protein. A mini-gene splicing assay showed that the variant GEN1 (c.1071 + 3(IVS10) A > G) in the CAKUT group significantly affected splicing function. An abnormal exon10 was detected in the mini-gene splicing assay. Point-mutant mouse strains were constructed (Gen1: c.1068 + 3 A > G, p.R400X, and p.T105R) based on the variant frequency in the CAKUT group and functional impairment in vitro study and CAKUT phenotypes were replicated in each. CONCLUSION Overall, our findings indicated GEN1 as a risk factor for human CAKUT.
Collapse
Affiliation(s)
- Xuanjin Du
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Chunyan Wang
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Haixin Ju
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Shanshan Xue
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Yaxin Li
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jiaojiao Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Rufeng Dai
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Yihui Zhai
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jia Rao
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Yubo Sun
- Department of Urology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Lei Sun
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, 200433, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, 200433, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China.
- National Key Laboratory of Kidney Diseases, 201102, Shanghai, China.
| | - Qian Shen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China.
| |
Collapse
|
16
|
Ferrari MTM, Silva ESDN, Nishi MY, Batista RL, Mendonca BB, Domenice S. Testicular differentiation in 46,XX DSD: an overview of genetic causes. Front Endocrinol (Lausanne) 2024; 15:1385901. [PMID: 38721146 PMCID: PMC11076692 DOI: 10.3389/fendo.2024.1385901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 01/18/2025] Open
Abstract
In mammals, the development of male or female gonads from fetal bipotential gonads depends on intricate genetic networks. Changes in dosage or temporal expression of sex-determining genes can lead to differences of gonadal development. Two rare conditions are associated with disruptions in ovarian determination, including 46,XX testicular differences in sex development (DSD), in which the 46,XX gonads differentiate into testes, and 46,XX ovotesticular DSD, characterized by the coexistence of ovarian and testicular tissue in the same individual. Several mechanisms have been identified that may contribute to the development of testicular tissue in XX gonads. This includes translocation of SRY to the X chromosome or an autosome. In the absence of SRY, other genes associated with testis development may be overexpressed or there may be a reduction in the activity of pro-ovarian/antitesticular factors. However, it is important to note that a significant number of patients with these DSD conditions have not yet recognized a genetic diagnosis. This finding suggests that there are additional genetic pathways or epigenetic mechanisms that have yet to be identified. The text will provide an overview of the current understanding of the genetic factors contributing to 46,XX DSD, specifically focusing on testicular and ovotesticular DSD conditions. It will summarize the existing knowledge regarding the genetic causes of these differences. Furthermore, it will explore the potential involvement of other factors, such as epigenetic mechanisms, in developing these conditions.
Collapse
Affiliation(s)
- Maria Tereza Martins Ferrari
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Elinaelma Suelane do Nascimento Silva
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mirian Yumie Nishi
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Loch Batista
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sorahia Domenice
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Kirschen GW, Blakemore K, Al-Kouatly HB, Fridkis G, Baschat A, Gearhart J, Jelin AC. The genetic etiologies of bilateral renal agenesis. Prenat Diagn 2024; 44:205-221. [PMID: 38180355 PMCID: PMC10932914 DOI: 10.1002/pd.6516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE The goal of this study was to review and analyze the medical literature for cases of prenatal and/or postnatally diagnosed bilateral renal agenesis (BRA) and create a comprehensive summary of the genetic etiologies known to be associated with this condition. METHODS A literature search was conducted as a scoping review employing Online Mendeliain Inheritance in Man, PubMed, and Cochrane to identify cases of BRA with known underlying genetic (chromosomal vs. single gene) etiologies and those described in syndromes without any known genetic etiology. The cases were further categorized as isolated versus non-isolated, describing additional findings reported prenatally, postnatally, and postmortem. Inheritance pattern was also documented when appropriate in addition to the reported timing of diagnosis and sex. RESULTS We identified six cytogenetic abnormalities and 21 genes responsible for 20 single gene disorders associated with BRA. Five genes have been reported to associate with BRA without other renal anomalies; sixteen others associate with both BRA as well as unilateral renal agenesis. Six clinically recognized syndromes/associations were identified with an unknown underlying genetic etiology. Genetic etiologies of BRA are often phenotypically expressed as other urogenital anomalies as well as complex multi-system syndromes. CONCLUSION Multiple genetic etiologies of BRA have been described, including cytogenetic abnormalities and monogenic syndromes. The current era of the utilization of exome and genome-wide sequencing is likely to significantly expand our understanding of the underlying genetic architecture of BRA.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Karin Blakemore
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Jefferson Health, Philadelphia, New York, USA
| | - Gila Fridkis
- Physician Affiliate Group of New York, P.C. (PAGNY), Department of Pediatrics, Metropolitan Hospital Center, New York, New York, USA
| | - Ahmet Baschat
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Gearhart
- Department of Urology, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Angie C Jelin
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Han F, Zhang Y, Song N, Gao T. TLR pathway signaling molecules in burbot (Lota lota): molecular characterization, basal expression, and their response to Poly(I:C). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108939. [PMID: 37451526 DOI: 10.1016/j.fsi.2023.108939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Burbot (Lota lota), a fish species of economic and ecological significance found across northern hemisphere freshwater ecosystems, was the focus of this study. We characterized 19 Toll-like receptor (TLR) genes in burbot, tracing their expression patterns following pathogen exposure. TLR genes, crucial to the innate immune system, including TLR13-1/2/3, TLR2/2-2/2-3/2-4/2-5, and TLR22a/22b/22c/22d, were discovered to be tandemly repeated, signifying an evolution in the fish's immune system. Notably, different TLR subfamilies displayed tissue-specific expressions, with TLR1 primarily in spleen and head kidney, TLR13 in head kidney, trunk kidney, and heart, TLR22 in trunk kidney and liver, and TLR3 and TLR9 predominantly in spleen and head kidney, but also in trunk kidney. Further, we investigated the response of TLR genes in burbot to pathogen exposure using qRT-PCR. This involved measuring mRNA expressions of identified TLR genes in spleen and liver tissues after injecting Poly(I:C) to simulate a double-stranded RNA viral infection. The results revealed a time and tissue-specific expression pattern. Specifically, LoTLR3 reached peak expression in the spleen 12 h post-injection, declining thereafter, while TLR2 subfamily members only began expressing after 24 h. In the liver, activation of the TLR3-IRF7 and TLR3-IRF3 signaling pathways was noted. Integrating these results with transcriptomic data illuminated the pivotal role of TLR genes in the burbot's immune response. Such findings are vital in shaping future disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Fei Han
- Fishery College, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 510301, China
| | - Na Song
- Fishery College, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
19
|
Cooney RA, Saal ML, Geraci KP, Maynard C, Cleaver O, Hoang ON, Moore TT, Hwang RF, Axelrod JD, Vladar EK. A WNT4- and DKK3-driven canonical to noncanonical Wnt signaling switch controls multiciliogenesis. J Cell Sci 2023; 136:jcs260807. [PMID: 37505110 PMCID: PMC10482387 DOI: 10.1242/jcs.260807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Multiciliated cells contain hundreds of cilia whose directional movement powers the mucociliary clearance of the airways, a vital host defense mechanism. Multiciliated cell specification requires canonical Wnt signaling, which then must be turned off. Next, ciliogenesis and polarized ciliary orientation are regulated by noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling. The mechanistic relationship between the Wnt pathways is unknown. We show that DKK3, a secreted canonical Wnt regulator and WNT4, a noncanonical Wnt ligand act together to facilitate a canonical to noncanonical Wnt signaling switch during multiciliated cell formation. In primary human airway epithelial cells, DKK3 and WNT4 CRISPR knockout blocks, whereas ectopic expression promotes, multiciliated cell formation by inhibiting canonical Wnt signaling. Wnt4 and Dkk3 single-knockout mice also display defective ciliated cells. DKK3 and WNT4 are co-secreted from basal stem cells and act directly on multiciliated cells via KREMEN1 and FZD6, respectively. We provide a novel mechanism that links specification to cilium biogenesis and polarization for proper multiciliated cell formation.
Collapse
Affiliation(s)
- Riley A. Cooney
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maxwell L. Saal
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kara P. Geraci
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Caitlin Maynard
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Oanh N. Hoang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Todd T. Moore
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rosa F. Hwang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Liaqat A, Salisu IB, Bakhsh A, Ali Q, Imran A, Ali MA, Farooq AM, Rao AQ, Shahid AA. A sub-chronic feeding study of dual toxin insect-resistant transgenic maize (CEMB-413) on Wistar rats. PLoS One 2023; 18:e0285090. [PMID: 37556453 PMCID: PMC10411795 DOI: 10.1371/journal.pone.0285090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/14/2023] [Indexed: 08/11/2023] Open
Abstract
Genetically modified (GM) crops expressing insecticidal crystal proteins are widely accepted worldwide, but their commercial utilization demands comprehensive risk assessment studies. A 90-day risk assessment study was conducted on Wistar rats fed with GM maize (CEMB-413) expressing binary insect-resistant genes (cry1Ac and cry2Ab) at low (30%) and high (50%) dose along with a control diet group. The study used fifty Wistar rats randomly distributed in five treatment groups. Our study revealed that compared to controls, GM diet had no adverse effects on animal's health, including body weight, food consumption, clinical pathological parameters, serum hormone levels and histological parameters of testes and ovaries of rats. Differences were observed in transcripts levels of fertility related genes, but these were independent of treatment with GM diet.
Collapse
Affiliation(s)
- Ayesha Liaqat
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ibrahim Bala Salisu
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Department of Animal Science, Faculty of Agriculture, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Qasim Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ayesha Imran
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Azam Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Abdul Munim Farooq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
21
|
Hernández-García A, Pendleton KE, Kim S, Li Y, Kim BJ, Zaveri HP, Jordan VK, Berry AM, Ljungberg MC, Chen R, Lanz RB, Scott DA. SOX7 deficiency causes ventricular septal defects through its effects on endocardial-to-mesenchymal transition and the expression of Wnt4 and Bmp2. Hum Mol Genet 2023; 32:2152-2161. [PMID: 37000005 PMCID: PMC10281751 DOI: 10.1093/hmg/ddad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
SOX7 is a transcription factor-encoding gene located in a region on chromosome 8p23.1 that is recurrently deleted in individuals with ventricular septal defects (VSDs). We have previously shown that Sox7-/- embryos die of heart failure around E11.5. Here, we demonstrate that these embryos have hypocellular endocardial cushions with severely reduced numbers of mesenchymal cells. Ablation of Sox7 in the endocardium also resulted in hypocellular endocardial cushions, and we observed VSDs in rare E15.5 Sox7flox/-;Tie2-Cre and Sox7flox/flox;Tie2-Cre embryos that survived to E15.5. In atrioventricular explant studies, we showed that SOX7 deficiency leads to a severe reduction in endocardial-to-mesenchymal transition (EndMT). RNA-seq studies performed on E9.5 Sox7-/- heart tubes revealed severely reduced Wnt4 transcript levels. Wnt4 is expressed in the endocardium and promotes EndMT by acting in a paracrine manner to increase the expression of Bmp2 in the myocardium. Both WNT4 and BMP2 have been previously implicated in the development of VSDs in individuals with 46,XX sex reversal with dysgenesis of kidney, adrenals and lungs (SERKAL) syndrome and in individuals with short stature, facial dysmorphism and skeletal anomalies with or without cardiac anomalies 1 (SSFSC1) syndrome, respectively. We now show that Sox7 and Wnt4 interact genetically in the development of VSDs through their additive effects on endocardial cushion development with Sox7+/-;Wnt4+/- double heterozygous embryos having hypocellular endocardial cushions and perimembranous and muscular VSDs not seen in their Sox7+/- and Wnt4+/- littermates. These results provide additional evidence that SOX7, WNT4 and BMP2 function in the same pathway during mammalian septal development and that their deficiency can contribute to the development of VSDs in humans.
Collapse
Affiliation(s)
- Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine E Pendleton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sangbae Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bum J Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aliska M Berry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rainer B Lanz
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
23
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Ragitha TS, Sunish KS, Gilvaz S, Daniel S, Varghese PR, Raj S, Francis J, Suresh Kumar R. Mutation analysis of WNT4 gene in SRY negative 46,XX DSD patients with Mullerian agenesis and/or gonadal dysgenesis- An Indian study. Gene 2023; 861:147236. [PMID: 36738897 DOI: 10.1016/j.gene.2023.147236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Developmental disruption of the Mullerian duct and gonads in females leads to Mullerian agenesis and gonadal dysgenesis, respectively. These two structural abnormalities are coming under the 46,XX DSD (Disorders of Sexual Development) classification, the majority of cases the aetiology remains elusive. Without the SRY gene, WNT4 plays a key role in female reproductive structure development. Since there are no studies that explored the involvement of the WNT4 gene in Indian 46,XX DSD patients, we analysed the role of WNT4 in Indian 46,XX DSD patients with Mullerian agenesis and/or Gonadal dysgenesis. In our study, we recruited 103 adolescent girls with primary amenorrhea. After the cytogenetic and SRY gene analysis, we included thirty-two 46,XX DSD patients with Mullerian agenesis and/or gonadal dysgenesis for WNT4 gene mutation analysis. PCR sequencing was performed for all the coding exons of the WNT4 gene. Bioinformatic tools like Mutation Taster, Human Splicing Finder, and miRDB were used. We observed single nucleotide variations in three patients. One patient showed a known synonymous polymorphism (c.861C > T; p.G287G, rs544988174). miRDB data revealed the absence of microRNA regulatory sites in this region. The other two cases carried a nucleotide substitution in intronic regions and did not affect the normal splicing mechanism. In conclusion, we could not find any indication about WNT4 involvement in the disease condition. In the future, WNT4 promoter analysis in these patients and molecular characterization of the WNT4 coding and promoter region in more patients are needed to link WNT4 variants with these structural abnormalities.
Collapse
Affiliation(s)
- T S Ragitha
- Maharaja's College (Government- Autonomous), Ernakulam, Kerala, India; Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - K S Sunish
- Maharaja's College (Government- Autonomous), Ernakulam, Kerala, India
| | - Sareena Gilvaz
- Department of Obstetrics and Gynaecology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Saley Daniel
- Department of Obstetrics and Gynaecology, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - P R Varghese
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Soumya Raj
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Jijo Francis
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - R Suresh Kumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| |
Collapse
|
25
|
Reyes AP, León NY, Frost ER, Harley VR. Genetic control of typical and atypical sex development. Nat Rev Urol 2023:10.1038/s41585-023-00754-x. [PMID: 37020056 DOI: 10.1038/s41585-023-00754-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.
Collapse
Affiliation(s)
- Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Genetics Department, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Emily R Frost
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Lucas C, Sauter KS, Steigert M, Mallet D, Wilmouth J, Olabe J, Plotton I, Morel Y, Aeberli D, Wagner F, Clevers H, Pandey AV, Val P, Roucher-Boulez F, Flück CE. Loss of LGR4/GPR48 causes severe neonatal salt wasting due to disrupted WNT signaling altering adrenal zonation. J Clin Invest 2023; 133:164915. [PMID: 36538378 PMCID: PMC9927937 DOI: 10.1172/jci164915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Disorders of isolated mineralocorticoid deficiency, which cause potentially life-threatening salt-wasting crisis early in life, have been associated with gene variants of aldosterone biosynthesis or resistance; however, in some patients no such variants are found. WNT/β-catenin signaling is crucial for differentiation and maintenance of the aldosterone-producing adrenal zona glomerulosa (zG). Herein, we describe a highly consanguineous family with multiple perinatal deaths and infants presenting at birth with failure to thrive, severe salt-wasting crises associated with isolated hypoaldosteronism, nail anomalies, short stature, and deafness. Whole exome sequencing revealed a homozygous splice variant in the R-SPONDIN receptor LGR4 gene (c.618-1G>C) regulating WNT signaling. The resulting transcripts affected protein function and stability and resulted in loss of Wnt/β-catenin signaling in vitro. The impact of LGR4 inactivation was analyzed by adrenal cortex-specific ablation of Lgr4, using Lgr4fl/fl mice mated with Sf1:Cre mice. Inactivation of Lgr4 within the adrenal cortex in the mouse model caused decreased WNT signaling, aberrant zonation with deficient zG, and reduced aldosterone production. Thus, human LGR4 mutations establish a direct link between LGR4 inactivation and decreased canonical WNT signaling, which results in abnormal zG differentiation and endocrine function. Therefore, variants in WNT signaling and its regulators should systematically be considered in familial hyperreninemic hypoaldosteronism.
Collapse
Affiliation(s)
- Cécily Lucas
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Kay-Sara Sauter
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Michael Steigert
- Department of Pediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Delphine Mallet
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - James Wilmouth
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Julie Olabe
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Ingrid Plotton
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Yves Morel
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Daniel Aeberli
- Department of Rheumatology and Clinical Immunology/Allergology and
| | - Franca Wagner
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, Netherlands
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Pierre Val
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Florence Roucher-Boulez
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Abstract
The adrenal cortex undergoes multiple structural and functional rearrangements to satisfy the systemic needs for steroids during fetal life, postnatal development, and adulthood. A fully functional adrenal cortex relies on the proper subdivision in regions or 'zones' with distinct but interconnected functions, which evolve from the early embryonic stages to adulthood, and rely on a fine-tuned gene network. In particular, the steroidogenic activity of the fetal adrenal is instrumental in maintaining normal fetal development and growth. Here, we review and discuss the most recent advances in our understanding of embryonic and fetal adrenal development, including the known causes for adrenal dys-/agenesis, and the steroidogenic pathways that link the fetal adrenal with the hormone system of the mother through the fetal-placental unit. Finally, we discuss what we think are the major open questions in the field, including, among others, the impact of osteocalcin, thyroid hormone, and other hormone systems on adrenal development and function, and the reliability of rodents as models of adrenal pathophysiology.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Therina du Toit
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Christa E Flück
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
28
|
Nakamura M, Kanda S, Kajiho Y, Hinata M, Tomonaga K, Fujishiro J, Harita Y. A case of right hypodysplastic kidney and ectopic ureter associated with bicornuate uterus in a prepubertal girl. CEN Case Rep 2023; 12:122-129. [PMID: 36056295 PMCID: PMC9892399 DOI: 10.1007/s13730-022-00730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are frequently associated with Mullerian anomalies. This can be explained by the fact that Mullerian duct elongation depends on the preformed Wolffian duct during embryogenesis. While CAKUT such as unilateral renal agenesis and multicystic dysplastic kidney are commonly identified prenatally by routine ultrasound, the diagnosis of Mullerian anomalies is often delayed, increasing the risk of complications such as endometriosis or pelvic inflammatory disease. Herein, we report a case of a premenarchal girl who had initially been diagnosed with right multicystic dysplastic kidney. She presented with continuous urinary incontinence at 4 years old and further evaluation by contrast-enhanced computed tomography, cystoscopy, colposcopy, ureterography, and hysterosalpingography led to the final diagnosis of right hypodysplastic kidney and ectopic ureter associated with bicornuate uterus. A strong family history of uterine malformations prompted the examination of the uterus. Genetic testing was suggested but the family declined. She is planned to be referred to a gynecologist at puberty for further assessment. The recognition and screening rate of concurrent Mullerian anomalies in CAKUT patients varies between institutions. Screening for Mullerian anomalies in prediagnosed CAKUT girls may enable to provide timely counseling and to prevent gynecological complications.
Collapse
Affiliation(s)
- Misako Nakamura
- Department of Pediatrics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shoichiro Kanda
- Department of Pediatrics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yuko Kajiho
- Department of Pediatrics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Munetoshi Hinata
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kotaro Tomonaga
- Department of Pediatric Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yutaka Harita
- Department of Pediatrics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
29
|
Zhang X, Li J, Wang X, Jie Y, Sun C, Zheng J, Li J, Yang N, Chen S. ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken. Epigenetics Chromatin 2023; 16:2. [PMID: 36617567 PMCID: PMC9827654 DOI: 10.1186/s13072-022-00476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Sex determination and differentiation are complex and delicate processes. In female chickens, the process of sex differentiation is sensitive and prone to be affected by the administration of aromatase inhibitors, which result in chicken sex reversal and infertility. However, the molecular mechanisms underlying sex differentiation and infertility in chicken sex reversal remain unclear. Therefore, we established a sex-reversed chicken flock by injecting an aromatase inhibitor, fadrozole, and constructed relatively high-resolution profiles of the gene expression and chromatin accessibility of embryonic gonads. RESULTS We revealed that fadrozole affected the transcriptional activities of several genes, such as DMRT1, SOX9, FOXL2, and CYP19A1, related to sex determination and differentiation, and the expression of a set of gonadal development-related genes, such as FGFR3 and TOX3, by regulating nearby open chromatin regions in sex-reversed chicken embryos. After sexual maturity, the sex-reversed chickens were confirmed to be infertile, and the possible causes of this infertility were further investigated. We found that the structure of the gonads and sperm were greatly deformed, and we identified several promising genes related to spermatogenesis and infertility, such as SPEF2, DNAI1, and TACR3, through RNA-seq. CONCLUSIONS This study provides clear insights into the exploration of potential molecular basis underlying sex differentiation and infertility in sex-reversed chickens and lays a foundation for further research into the sex development of birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jianbo Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuchen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Heterozygous variants in the DVL2 interaction region of DACT1 cause CAKUT and features of Townes-Brocks syndrome 2. Hum Genet 2023; 142:73-88. [PMID: 36066768 PMCID: PMC9839807 DOI: 10.1007/s00439-022-02481-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Most patients with congenital anomalies of the kidney and urinary tract (CAKUT) remain genetically unexplained. In search of novel genes associated with CAKUT in humans, we applied whole-exome sequencing in a patient with kidney, anorectal, spinal, and brain anomalies, and identified a rare heterozygous missense variant in the DACT1 (dishevelled binding antagonist of beta catenin 1) gene encoding a cytoplasmic WNT signaling mediator. Our patient's features overlapped Townes-Brocks syndrome 2 (TBS2) previously described in a family carrying a DACT1 nonsense variant as well as those of Dact1-deficient mice. Therefore, we assessed the role of DACT1 in CAKUT pathogenesis. Taken together, very rare (minor allele frequency ≤ 0.0005) non-silent DACT1 variants were detected in eight of 209 (3.8%) CAKUT families, significantly more frequently than in controls (1.7%). All seven different DACT1 missense variants, predominantly likely pathogenic and exclusively maternally inherited, were located in the interaction region with DVL2 (dishevelled segment polarity protein 2), and biochemical characterization revealed reduced binding of mutant DACT1 to DVL2. Patients carrying DACT1 variants presented with kidney agenesis, duplex or (multi)cystic (hypo)dysplastic kidneys with hydronephrosis and TBS2 features. During murine development, Dact1 was expressed in organs affected by anomalies in patients with DACT1 variants, including the kidney, anal canal, vertebrae, and brain. In a branching morphogenesis assay, tubule formation was impaired in CRISPR/Cas9-induced Dact1-/- murine inner medullary collecting duct cells. In summary, we provide evidence that heterozygous hypomorphic DACT1 variants cause CAKUT and other features of TBS2, including anomalies of the skeleton, brain, distal digestive and genital tract.
Collapse
|
31
|
Seth A, Bournat JC, Medina-Martinez O, Rivera A, Moore J, Flores H, Rosenfeld JA, Hu L, Jorgez CJ. Loss of WNT4 in the gubernaculum causes unilateral cryptorchidism and fertility defects. Development 2022; 149:dev201093. [PMID: 36448532 PMCID: PMC10112923 DOI: 10.1242/dev.201093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022]
Abstract
Undescended testis (UDT) affects 6% of male births. Despite surgical correction, some men with unilateral UDT may experience infertility with the contralateral descended testis (CDT) showing no A-dark spermatogonia. To improve our understanding of the etiology of infertility in UDT, we generated a novel murine model of left unilateral UDT. Gubernaculum-specific Wnt4 knockout (KO) mice (Wnt4-cKO) were generated using retinoic acid receptor β2-cre mice and were found to have a smaller left-unilateral UDT. Wnt4-cKO mice with abdominal UDT had an increase in serum follicle-stimulating hormone and luteinizing hormone and an absence of germ cells in the undescended testicle. Wnt4-cKO mice with inguinal UDT had normal hormonal profiles, and 50% of these mice had no sperm in the left epididymis. Wnt4-cKO mice had fertility defects and produced 52% fewer litters and 78% fewer pups than control mice. Wnt4-cKO testes demonstrated increased expression of estrogen receptor α and SOX9, upregulation of female gonadal genes, and a decrease in male gonadal genes in both CDT and UDT. Several WNT4 variants were identified in boys with UDT. The presence of UDT and fertility defects in Wnt4-cKO mice highlights the crucial role of WNT4 in testicular development.
Collapse
Affiliation(s)
- Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Surgery, Nemours Children's Health, Orlando, FL 32827, USA
| | - Juan C. Bournat
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Armando Rivera
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua Moore
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hunter Flores
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carolina J. Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW To provide an update on the current understanding of the role of wingless/integrase-1 (Wnt) signaling in pediatric allergic asthma and other pediatric lung diseases. RECENT FINDINGS The Wnt signaling pathway is critical for normal lung development. Genetic and epigenetic human studies indicate a link between Wnt signaling and the development and severity of asthma in children. Mechanistic studies using animal models of allergic asthma demonstrate a key role for Wnt signaling in allergic airway inflammation and remodeling. More recently, data on bronchopulmonary dysplasia (BPD) pathogenesis points to the Wnt signaling pathway as an important regulator. SUMMARY Current data indicates that the Wnt signaling pathway is an important mediator in allergic asthma and BPD pathogenesis. Further studies are needed to characterize the roles of individual Wnt signals in childhood disease, and to identify potential novel therapeutic targets to slow or prevent disease processes.
Collapse
Affiliation(s)
- Nooralam Rai
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Jeanine D’Armiento
- Department of Anesthesiology, Medicine, and Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
33
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
34
|
Fetal germ cell development in humans, a link with infertility. Semin Cell Dev Biol 2022; 131:58-65. [PMID: 35431137 DOI: 10.1016/j.semcdb.2022.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Gametes are cells that have the unique ability to give rise to new individuals as well as transmit (epi)genetic information across generations. Generation of functionally competent gametes, oocytes and sperm cells, depends to some extent on several fundamental processes that occur during fetal development. Direct studies on human fetal germ cells remain hindered by ethical considerations and inaccessibility to human fetal material. Therefore, the majority of our current knowledge of germ cell development still comes from an invaluable body of research performed using different mammalian species. During the last decade, our understanding of human fetal germ cells has increased due to the successful use of human pluripotent stem cells to model aspects of human early gametogenesis and advancements on single-cell omics. Together, this has contributed to determine the cell types and associated molecular signatures in the developing human gonads. In this review, we will put in perspective the knowledge obtained from several mammalian models (mouse, monkey, pig). Moreover, we will discuss the main events during human fetal (female) early gametogenesis and how the dysregulation of this highly complex and lengthy process can link to infertility later in life.
Collapse
|
35
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
36
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
37
|
Lundgaard Riis M, Jørgensen A. Deciphering Sex-Specific Differentiation of Human Fetal Gonads: Insight From Experimental Models. Front Cell Dev Biol 2022; 10:902082. [PMID: 35721511 PMCID: PMC9201387 DOI: 10.3389/fcell.2022.902082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-specific gonadal differentiation is initiated by the expression of SRY in male foetuses. This promotes a signalling pathway directing testicular development, while in female foetuses the absence of SRY and expression of pro-ovarian factors promote ovarian development. Importantly, in addition to the initiation of a sex-specific signalling cascade the opposite pathway is simultaneously inhibited. The somatic cell populations within the gonads dictates this differentiation as well as the development of secondary sex characteristics via secretion of endocrine factors and steroid hormones. Opposing pathways SOX9/FGF9 (testis) and WNT4/RSPO1 (ovary) controls the development and differentiation of the bipotential mouse gonad and even though sex-specific gonadal differentiation is largely considered to be conserved between mice and humans, recent studies have identified several differences. Hence, the signalling pathways promoting early mouse gonad differentiation cannot be directly transferred to human development thus highlighting the importance of also examining this signalling in human fetal gonads. This review focus on the current understanding of regulatory mechanisms governing human gonadal sex differentiation by combining knowledge of these processes from studies in mice, information from patients with differences of sex development and insight from manipulation of selected signalling pathways in ex vivo culture models of human fetal gonads.
Collapse
Affiliation(s)
- Malene Lundgaard Riis
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
38
|
An Update on Genetics of Adrenal Gland and Associated Disorders. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The intricacies of human adrenal development have been under scrutiny for decades. Each year marks the identification of new genes and new interactions between gene products that ultimately will act to produce the fully functioning adult gland. Due to the complexity of this process, genetic missteps may lead to a constellation of pathologies. Recent years have identified several novel genetic causes of adrenal dysgenesis and provided new insights into previously delineated processes. SF1, DAX1 (NR0B1), CDKN1C, SAMD9, GLI3, TPIT, MC2R, MRAP, NNT, TXNRD2, AAAS, and MCM4 are among the genes which have had significant contributions to our understanding of the development and function of both adrenals and gonads. Collection and elucidation of these genetic and clinical insights are valuable tools for clinicians who diagnose and manage cases of adrenal dysfunction.
Collapse
|
39
|
Sudhakaran G, Guru A, Hari Deva Muthu B, Murugan R, Arshad A, Arockiaraj J. Evidence-based hormonal, mutational, and endocrine-disrupting chemical-induced zebrafish as an alternative model to study PCOS condition similar to mammalian PCOS model. Life Sci 2022; 291:120276. [PMID: 34990650 DOI: 10.1016/j.lfs.2021.120276] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022]
Abstract
Polycystic ovarian syndrome (PCOS) causes swollen ovaries in women at reproductive age due to hormonal disorder with small cysts on the outer edges. The cause of the disorder is still yet to be found. Multiple factors have increased PCOS prevalence, hyperandrogenism, oxidative stress, inflammation, and insulin resistance. Various animal PCOS models have been developed to imitate the pathophysiology of PCOS in humans. Zebrafish is one of the most versatile animal experimental models because of the transparency of the embryos, small size, and rapid growth. The zebrafish similarity to higher vertebrates made it a useful non-mammalian model for PCOS drug testing and screening. This review provides an insight into the usage of zebrafish, a non-mammalian model for PCOS, as an opportunity for evaluating future initiatives in such a research domain.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - B Hari Deva Muthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India; Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai 600 097, Tamil Nadu, India.
| |
Collapse
|
40
|
Qin S, Wang X, Wang J. Identification of an SRY-negative 46,XX infertility male with a heterozygous deletion downstream of SOX3 gene. Mol Cytogenet 2022; 15:2. [PMID: 35164824 PMCID: PMC8842887 DOI: 10.1186/s13039-022-00580-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A male individual with a karyotype of 46,XX is very rare. We explored the genetic aetiology of an infertility male with a kayrotype of 46,XX and SRY negative.
Methods
The peripheral blood sample was collected from the patient and subjected to a few genetic testing, including chromosomal karyotyping, azoospermia factor (AZF) deletion, short tandem repeat (STR) analysis for AMELX, AMELY and SRY, fluorescence in situ hybridization (FISH) with specific probes for CSP 18/CSP X/CSP Y/SRY, chromosomal microarray analysis (CMA) for genomic copy number variations(CNVs), whole-genome analysis(WGA) for genomic SNV&InDel mutation, and X chromosome inactivation (XCI) analysis.
Results
The patient had a karyotype of 46,XX. AZF analysis showed that he missed the AZF region (including a, b and c) and SRY gene. STR assay revealed he possessed the AMELX in the X chromosome, but he had no the AMELY and SRY in the Y chromosome. FISH analysis with CSP X/CSP Y/SRY showed only two X centromeric signals, but none Y chromosome and SRY. The above results of the karyotype, FISH and STR analysis did not suggest a Y chromosome chimerism existed in the patient's peripheral blood. The result of the CMA indicated a heterozygous deletion with an approximate size of 867 kb in Xq27.1 (hg19: chrX: 138,612,879–139,480,163 bp), located at 104 kb downstream of SOX3 gene, including F9, CXorf66, MCF2 and ATP11C. WGA also displayed the above deletion fragment but did not present known pathogenic or likely pathogenic SNV&InDel mutation responsible for sex determination and development. XCI assay showed that he had about 75% of the X chromosome inactivated.
Conclusions
Although the pathogenicity of 46,XX male patients with SRY negative remains unclear, SOX3 expression of the acquired function may be associated with partial testis differentiation of these patients. Therefore, the CNVs analysis of the SOX3 gene and its regulatory region should be performed routinely for these patients.
Collapse
|
41
|
Wang J, Kimura E, Mongan M, Xia Y. Genetic Control of MAP3K1 in Eye Development and Sex Differentiation. Cells 2021; 11:cells11010034. [PMID: 35011600 PMCID: PMC8750206 DOI: 10.3390/cells11010034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
The MAP3K1 is responsible for transmitting signals to activate specific MAP2K-MAPK cascades. Following the initial biochemical characterization, genetic mouse models have taken center stage to elucidate how MAP3K1 regulates biological functions. To that end, mice were generated with the ablation of the entire Map3k1 gene, the kinase domain coding sequences, or ubiquitin ligase domain mutations. Analyses of the mutants identify diverse roles that MAP3K1 plays in embryonic survival, maturation of T/B cells, and development of sensory organs, including eye and ear. Specifically in eye development, Map3k1 loss-of-function was found to be autosomal recessive for congenital eye abnormalities, but became autosomal dominant in combination with Jnk and RhoA mutations. Additionally, Map3k1 mutation increased eye defects with an exposure to environmental agents such as dioxin. Data from eye developmental models reveal the nexus role of MAP3K1 in integrating genetic and environmental signals to control developmental activities. Here, we focus the discussions on recent advances in understanding the signaling mechanisms of MAP3K1 in eye development in mice and in sex differentiation from human genomics findings. The research works featured here lead to a deeper understanding of the in vivo signaling network, the mechanisms of gene-environment interactions, and the relevance of this multifaceted protein kinase in disease etiology and pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Ying Xia
- Correspondence: ; Tel.: +1-513-558-0371
| |
Collapse
|
42
|
Глазова ОВ, Воронцова МВ, Шевкова ЛВ, Сакр Н, Онянов НА, Казиахмедова СА, Волчков ПЮ. [Adrenal glands stem cells: general signaling pathways]. PROBLEMY ENDOKRINOLOGII 2021; 67:90-97. [PMID: 35018765 PMCID: PMC9753809 DOI: 10.14341/probl12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Nowadays stem cells of adult type are attractive in case of active development of cell and genome technologies. They are the target of new therapeutic approaches, which are based on correction of mutations or replenishment of organs, that were damaged by autoimmune reactions, aging or other pathological processes. Also stem cells, including patient-specific (induced Pluripotent Stem Cells, iPSCs), and obtained by differentiation from them tissue cultures and organoids are the closest models to in vivo researches on humans, which gives an opportunity to get more relevant data while testing different therapeutic approaches and pharmacological drugs. The main molecular pathways, that are essential for homeostasis of a cortex of a adrenal gland - compound, structurally and functionally heterogeneous organ, is described the presented review. The adrenal cortex is renewing during the organism's ontogenesis at the expense of the pool of stem and progenitors cells, which are in tight junctions with differentiated steroidogenic cells and which are under constant control of endocrine and paracrine signals. The understanding of signaling pathways and interactions of different cell types will give an opportunity to develop the most suitable protocols for obtaining cells of adrenal gland cortex in a different stages of differentiation to use them in scientific and medical purposes.
Collapse
Affiliation(s)
- О. В. Глазова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - М. В. Воронцова
- Национальный медицинский исследовательский центр эндокринологии
| | - Л. В. Шевкова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - Н. Сакр
- Московский физико-технический институт (национальный исследовательский университет)
| | - Н. А. Онянов
- Московский физико-технический институт (национальный исследовательский университет)
| | - С. А. Казиахмедова
- Московский физико-технический институт (национальный исследовательский университет)
| | - П. Ю. Волчков
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| |
Collapse
|
43
|
Kyei-Barffour I, Margetts M, Vash-Margita A, Pelosi E. The Embryological Landscape of Mayer-Rokitansky-Kuster-Hauser Syndrome: Genetics and Environmental Factors. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:657-672. [PMID: 34970104 PMCID: PMC8686787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a disorder caused by Müllerian ducts dysgenesis affecting 1 in 5000 women with a typical 46,XX karyotype. The etiology of MRKH syndrome is complex and largely unexplained. Familial clustering suggests a genetic component and the spectrum of clinical presentations seems consistent with an inheritance pattern characterized by incomplete penetrance and variable expressivity. Mutations of several candidate genes have been proposed as possible causes based on genetic analyses of human patients and animal models. In addition, studies of monozygotic twins with discordant phenotypes suggest a role for epigenetic changes following potential exposure to environmental compounds. The spectrum of clinical presentations is consistent with intricate disruptions of shared developmental pathways or signals during early organogenesis. However, the lack of functional validation and translational studies have limited our understanding of the molecular mechanisms involved in this condition. The clinical management of affected women, including early diagnosis, genetic testing of MRKH syndrome, and the implementation of counseling strategies, is significantly impeded by these knowledge gaps. Here, we illustrate the embryonic development of tissues and organs affected by MRKH syndrome, highlighting key pathways that could be involved in its pathogenesis. In addition, we will explore the genetics of this condition, as well as the potential role of environmental factors, and discuss their implications to clinical practice.
Collapse
Affiliation(s)
- Isaac Kyei-Barffour
- Department of Biomedical Sciences, University of Cape
Coast, Cape Coast, Ghana
| | - Miranda Margetts
- Center for American Indian and Rural Health Equity,
Montana State University, Bozeman, MT, USA
| | - Alla Vash-Margita
- Department of Obstetrics, Gynecology and Reproductive
Sciences, Division of Pediatric and Adolescent Gynecology, Yale University
School of Medicine, New Haven, CT, USA
| | - Emanuele Pelosi
- Centre for Clinical Research, The University of
Queensland, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Spontaneous pulmonary emphysema in mice lacking all three nitric oxide synthase isoforms. Sci Rep 2021; 11:22088. [PMID: 34764368 PMCID: PMC8586362 DOI: 10.1038/s41598-021-01453-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
The roles of endogenous nitric oxide (NO) derived from the entire NO synthases (NOSs) system have yet to be fully elucidated. We addressed this issue in mice in which all three NOS isoforms were deleted. Under basal conditions, the triple n/i/eNOSs−/− mice displayed significantly longer mean alveolar linear intercept length, increased alveolar destructive index, reduced lung elastic fiber content, lower lung field computed tomographic value, and greater end-expiratory lung volume as compared with wild-type (WT) mice. None of single NOS−/− or double NOSs−/− genotypes showed such features. These findings were observed in the triple n/i/eNOSs−/− mice as early as 4 weeks after birth. Cyclopaedic and quantitative comparisons of mRNA expression levels between the lungs of WT and triple n/i/eNOSs−/− mice by cap analysis of gene expression (CAGE) revealed that mRNA expression levels of three Wnt ligands and ten Wnt/β-catenin signaling components were significantly reduced in the lungs of triple n/i/eNOSs−/− mice. These results provide the first direct evidence that complete disruption of all three NOS genes results in spontaneous pulmonary emphysema in juvenile mice in vivo possibly through down-regulation of the Wnt/β-catenin signaling pathway, demonstrating a novel preventive role of the endogenous NO/NOS system in the occurrence of pulmonary emphysema.
Collapse
|
45
|
Syryn H, Van De Vijver K, Cools M. Ovotesticular Difference of Sex Development: Genetic Background, Histological Features, and Clinical Management. Horm Res Paediatr 2021; 96:180-189. [PMID: 34469891 DOI: 10.1159/000519323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ovotesticular disorder/difference of sex development (DSD) refers to the co-presence of testicular and ovarian tissue in one individual. Childhood management is challenging as there are many uncertainties regarding etiology, gonadal function, and gender outcome. SUMMARY Ovotesticular DSD should mainly be considered in 46,XX children with atypical genitalia and normal adrenal steroid profiles. Various underlying genetic mechanisms have been described. Histological assessment of ovotestes requires expert revision and has many pitfalls. Neonatal sex assignment is essential, but as gender outcome is unpredictable, this should be regarded as provisional until a stable gender identity has developed. Therefore, it is crucial not to perform any irreversible medical or surgical procedure in affected individuals until adolescents can give their full informed consent. Gonadal function mostly allows for spontaneous pubertal development; however, fertility is compromised, especially in boys. Specific long-term outcome data for ovotesticular DSD are lacking but can be extrapolated from studies in other DSD populations. Key Messages: Management of ovotesticular DSD has changed in recent years, prioritizing the child's future right for autonomy and self-determination. The benefits and pitfalls of this new approach have not been documented yet and require intensive monitoring on an international scale.
Collapse
Affiliation(s)
- Hannes Syryn
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University and Pediatric Endocrinology Service, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
46
|
Abstract
Resident progenitor and/or stem cell populations in the adult adrenal cortex enable cortical cells to undergo homeostatic renewal and regeneration after injury. Renewal occurs predominantly in the outer layers of the adrenal gland but newly formed cells undergo centripetal migration, differentiation and lineage conversion in the process of forming the different functional steroidogenic zones. Over the past 10 years, advances in the genetic characterization of adrenal diseases and studies of mouse models with altered adrenal phenotypes have helped to elucidate the molecular pathways that regulate adrenal tissue renewal, several of which are fine-tuned via complex paracrine and endocrine influences. Moreover, the adrenal gland is a sexually dimorphic organ, and testicular androgens have inhibitory effects on cell proliferation and progenitor cell recruitment in the adrenal cortex. This Review integrates these advances, including the emerging role of sex hormones, into existing knowledge on adrenocortical cell renewal. An in-depth understanding of these mechanisms is expected to contribute to the development of novel therapies for severe endocrine diseases, for which current treatments are unsatisfactory.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France
| | - Andreas Schedl
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
47
|
Pitzer LM, Moroney MR, Nokoff NJ, Sikora MJ. WNT4 Balances Development vs Disease in Gynecologic Tissues and Women's Health. Endocrinology 2021; 162:6272210. [PMID: 33963381 PMCID: PMC8197283 DOI: 10.1210/endocr/bqab093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The WNT family of proteins is crucial in numerous developmental pathways and tissue homeostasis. WNT4, in particular, is uniquely implicated in the development of the female phenotype in the fetus, and in the maintenance of müllerian and reproductive tissues. WNT4 dysfunction or dysregulation can drive sex-reversal syndromes, highlighting the key role of WNT4 in sex determination. WNT4 is also critical in gynecologic pathologies later in life, including several cancers, uterine fibroids, endometriosis, and infertility. The role of WNT4 in normal decidualization, implantation, and gestation is being increasingly appreciated, while aberrant activation of WNT4 signaling is being linked both to gynecologic and breast cancers. Notably, single-nucleotide polymorphisms (SNPs) at the WNT4 gene locus are strongly associated with these pathologies and may functionally link estrogen and estrogen receptor signaling to upregulation and activation of WNT4 signaling. Importantly, in each of these developmental and disease states, WNT4 gene expression and downstream WNT4 signaling are regulated and executed by myriad tissue-specific pathways. Here, we review the roles of WNT4 in women's health with a focus on sex development, and gynecologic and breast pathologies, and our understanding of how WNT4 signaling is controlled in these contexts. Defining WNT4 functions provides a unique opportunity to link sex-specific signaling pathways to women's health and disease.
Collapse
Affiliation(s)
- Lauren M Pitzer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Marisa R Moroney
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- Correspondence: Matthew J. Sikora, PhD; Department of Pathology, University of Colorado Anschutz Medical Campus, Mail Stop 8104, Research Complex 1 South, Rm 5117, 12801 E 17th Ave, Aurora, CO 80045, USA. . Twitter: @mjsikora
| |
Collapse
|
48
|
Ibba A, Del Pistoia M, Balsamo A, Baronio F, Capalbo D, Russo G, DE Sanctis L, Bizzarri C. Differences of sex development in the newborn: from clinical scenario to molecular diagnosis. Minerva Pediatr (Torino) 2021; 73:606-620. [PMID: 34152117 DOI: 10.23736/s2724-5276.21.06512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Differences/disorders of sex development (DSD) are defined as a group of congenital conditions in which the development of chromosomal, gonadal or anatomical sex is atypical. The incidence of DSD is 1:4500 births. The current classification divides DSDs into 3 categories according to chromosomal sex: 46,XX DSD, 46,XY DSD and sex chromosome DSD. DSD phenotypes can be concordant with the genotype (apparently normal external genitalia associated with gonadal dysgenesis), or can range from simply hypospadias to completely masculinised or feminised genitalia with a discordant karyotype. Numerous genes implicated in genital development have been reported. The search of genetic variants represents a central element of the extended investigation, as an improved knowledge of the genetic aetiology helps the immediate and long-term management of children with DSDs, in term of sex of rearing, hormone therapy, surgery, fertility and cancer risk. This review aims to assess the current role of molecular diagnosis in DSD management.
Collapse
Affiliation(s)
- Anastasia Ibba
- Pediatric Endocrine Unit and Neonatal Screening Centre, Pediatric Hospital Microcitemico A. Cao, ARNAS Brotzu, Cagliari, Italy -
| | - Marta Del Pistoia
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Santa Chiara University Hospital, Pisa, Italy
| | - Antonio Balsamo
- Pediatric Unit, Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Federico Baronio
- Pediatric Unit, Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Donatella Capalbo
- Department of Mother and Child, Paediatric Endocrinology Unit, University Hospital Federico II, Naples, Italy
| | - Gianni Russo
- Endocrine Unit, Department of Pediatrics, Scientific Institute San Raffaele, Milan, Italy
| | - Luisa DE Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Carla Bizzarri
- Unit of Endocrinology, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| |
Collapse
|
49
|
Overeem AW, Chang YW, Spruit J, Roelse CM, Chuva De Sousa Lopes SM. Ligand-Receptor Interactions Elucidate Sex-Specific Pathways in the Trajectory From Primordial Germ Cells to Gonia During Human Development. Front Cell Dev Biol 2021; 9:661243. [PMID: 34222234 PMCID: PMC8253161 DOI: 10.3389/fcell.2021.661243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
The human germ cell lineage originates from primordial germ cells (PGCs), which are specified at approximately the third week of development. Our understanding of the signaling pathways that control this event has significantly increased in recent years and that has enabled the generation of PGC-like cells (PGCLCs) from pluripotent stem cells in vitro. However, the signaling pathways that drive the transition of PGCs into gonia (prospermatogonia in males or premeiotic oogonia in females) remain unclear, and we are presently unable to mimic this step in vitro in the absence of gonadal tissue. Therefore, we have analyzed single-cell transcriptomics data of human fetal gonads to map the molecular interactions during the sex-specific transition from PGCs to gonia. The CellPhoneDB algorithm was used to identify significant ligand–receptor interactions between germ cells and their sex-specific neighboring gonadal somatic cells, focusing on four major signaling pathways WNT, NOTCH, TGFβ/BMP, and receptor tyrosine kinases (RTK). Subsequently, the expression and intracellular localization of key effectors for these pathways were validated in human fetal gonads by immunostaining. This approach provided a systematic analysis of the signaling environment in developing human gonads and revealed sex-specific signaling pathways during human premeiotic germ cell development. This work serves as a foundation to understand the transition from PGCs to premeiotic oogonia or prospermatogonia and identifies sex-specific signaling pathways that are of interest in the step-by-step reconstitution of human gametogenesis in vitro.
Collapse
Affiliation(s)
- Arend W Overeem
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| | - Yolanda W Chang
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| | - Jeroen Spruit
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| | - Celine M Roelse
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands.,Ghent-Fertility and Stem Cell Team (G-FAST), Department of Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
50
|
Zhang YJ, Jimenez L, Azova S, Kremen J, Chan YM, Elhusseiny AM, Saeed H, Goldsmith J, Al-Ibraheemi A, O'Connell AE, Kovbasnjuk O, Rodan L, Agrawal PB, Thiagarajah JR. Novel variants in the stem cell niche factor WNT2B define the disease phenotype as a congenital enteropathy with ocular dysgenesis. Eur J Hum Genet 2021; 29:998-1007. [PMID: 33526876 PMCID: PMC8187348 DOI: 10.1038/s41431-021-00812-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
WNT2B is a member of the Wnt family, a group of signal transduction proteins involved in embryologic development and stem cell renewal and maintenance. We recently reported homozygous nonsense variants in WNT2B in three individuals with severe, neonatal-onset diarrhea, and intestinal failure. Here we present a fourth case, from a separate family, with neonatal diarrhea associated with novel compound heterozygous WNT2B variants. One of the two variants was a frameshift variant (c.423del [p.Phe141fs]), while the other was a missense change (c.722 G > A [p.G241D]) that we predict through homology modeling to be deleterious, disrupting post-translational acylation. This patient presented as a neonate with severe diet-induced (osmotic) diarrhea and growth failure resulting in dependence on parenteral nutrition. Her gastrointestinal histology revealed abnormal cellular architecture particularly in the stomach and colon, including oxyntic atrophy, abnormal distribution of enteroendocrine cells, and a paucity of colonic crypt glands. In addition to her gastrointestinal findings, she had bilateral corneal clouding and atypical genital development later identified as a testicular 46,XX difference/disorder of sexual development. Upon review of the previously reported cases, two others also had anterior segment ocular anomalies though none had atypical genital development. This growing case series suggests that variants in WNT2B are associated with an oculo-intestinal (and possibly gonadal) syndrome, due to the protein's putative involvement in multiple developmental and stem cell maintenance pathways.
Collapse
Affiliation(s)
- Yanjia Jason Zhang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lissette Jimenez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, USA
| | - Svetlana Azova
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Kremen
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Boston Children's Hospital and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Hajirah Saeed
- Department of Ophthalmology, Boston Children's Hospital and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Goldsmith
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amy E O'Connell
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga Kovbasnjuk
- Department of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|