1
|
Zhang Y, Lin S, Yu L, Lin X, Qu S, Ye Q, Yu M, Chen W, Wu W. Gene therapy shines light on congenital stationary night blindness for future cures. J Transl Med 2025; 23:392. [PMID: 40181393 PMCID: PMC11969737 DOI: 10.1186/s12967-025-06392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Congenital Stationary Night Blindness (CSNB) is a non-progressive hereditary eye disease that primarily affects the retinal signal processing, resulting in significantly reduced vision under low-light conditions. CSNB encompasses various subtypes, each with distinct genetic patterns and pathogenic genes. Over the past few decades, gene therapy for retinal genetic disorders has made substantial progress; however, effective clinical therapies for CSNB are yet to be discovered. With the continuous advancement of gene-therapy tools, there is potential for these methods to become effective treatments for CSNB. Nonetheless, challenges remain in the treatment of CSNB, including issues related to delivery vectors, therapeutic efficacy, and possible side effects. This article reviews the clinical diagnosis, pathogenesis, and associated mutated genes of CSNB, discusses existing animal models, and explores the application of gene therapy technologies in retinal genetic disorders, as well as the current state of research on gene therapy for CSNB.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Siqi Lin
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Lingqi Yu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiang Lin
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Shuai Qu
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qingyang Ye
- Hangzhou Bipolar Biotechnology Co., Ltd., Hangzhou, 311199, China
| | - Mengting Yu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350028, China
| | - Wenfeng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
- Department of Biomedical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Wenjie Wu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350028, China.
| |
Collapse
|
2
|
Rodgers J, Hughes S, Ebrahimi AS, Allen AE, Storchi R, Lindner M, Peirson SN, Badea TC, Hankins MW, Lucas RJ. Enhanced restoration of visual code after targeting ON bipolar cells compared with retinal ganglion cells with optogenetic therapy. Mol Ther 2025; 33:1264-1281. [PMID: 39825567 PMCID: PMC11897768 DOI: 10.1016/j.ymthe.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Optogenetic therapy is a promising vision restoration method where light-sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like preclinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent. We address this deficit by comparing stimulus-response characteristics at single-unit resolution in the retina and dorsal lateral geniculate nucleus of retinally degenerate mice genetically engineered to express the opsin ReaChR in Grm6- or Brn3c-expressing cells (ON BC vs. RGCs, respectively). For both targeting strategies, we find ReaChR-evoked responses have equivalent sensitivity and can encode contrast across different background irradiances. Compared with ON BCs, targeting RGCs decreased response reproducibility and resulted in more stereotyped responses with reduced diversity in response polarity, contrast sensitivity, and temporal frequency tuning. Recording ReaChR-driven responses in visually intact retinas confirmed that RGC-targeted ReaChR expression disrupts visual feature selectivity of individual RGCs. Our data show that, while both approaches restore visual responses with impressive fidelity, ON BC targeting produces a richer visual code closer to that of wild-type mice.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Aghileh S Ebrahimi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Annette E Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037 Marburg, Germany; Department of Ophthalmology, University Hospitals of Giessen and Marburg, 35043 Marburg, Germany
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Tudor C Badea
- Neurogenetics Laboratory/ICDT, Transilvania University of Brasov, 500484 Brasov, Romania; National Brain Research Centre/ICIA, Romanian Academy, 050711 Bucharest, Romania
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK.
| | - Robert J Lucas
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
3
|
Igelman AD, White E, Tayyib A, Everett L, Vincent A, Heon E, Zeitz C, Michaelides M, Mahroo OA, Katta M, Webster A, Preising M, Lorenz B, Khateb S, Banin E, Sharon D, Luski S, Van Den Broeck F, Leroy BP, De Baere E, Walraedt S, Stingl K, Kuehlewein L, Kohl S, Reith M, Fulton A, Raghuram A, Meunier I, Dollfus H, Aleman TS, Bedoukian EC, O'Neil EC, Krauss E, Vincent A, Jordan C, Iannaccone A, Sen P, Sundaramurthy S, Nagasamy S, Balikova I, Casteels I, Borooah S, Yassin S, Nagiel A, Schwartz H, Zanlonghi X, Gottlob I, McLean RJ, Munier FL, Stephenson A, Sisk R, Koenekoop R, Wilson LB, Fredrick D, Choi D, Yang P, Pennesi ME. Characterising the refractive error in paediatric patients with congenital stationary night blindness: a multicentre study. Br J Ophthalmol 2025; 109:286-292. [PMID: 39079892 PMCID: PMC11774682 DOI: 10.1136/bjo-2023-323747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND/AAIMS Congenital stationary night blindness (CSNB) is an inherited retinal disease that is often associated with high myopia and can be caused by pathological variants in multiple genes, most commonly CACNA1F, NYX and TRPM1. High myopia is associated with retinal degeneration and increased risk for retinal detachment. Slowing the progression of myopia in patients with CSNB would likely be beneficial in reducing risk, but before interventions can be considered, it is important to understand the natural history of myopic progression. METHODS This multicentre, retrospective study explored CSNB caused by variants in CACNA1F, NYX or TRPM1 in patients who had at least 6 measurements of their spherical equivalent of refraction (SER) before the age of 18. A mixed-effect model was used to predict progression of SER overtime and differences between genotypes were evaluated. RESULTS 78 individuals were included in this study. All genotypes showed a significant myopic predicted SER at birth (-3.076D, -5.511D and -5.386D) for CACNA1F, NYX and TRPM1 respectively. Additionally, significant progression of myopia per year (-0.254D, -0.257D and -0.326D) was observed for all three genotypes CACNA1F, NYX and TRPM1, respectively. CONCLUSIONS Patients with CSNB tend to be myopic from an early age and progress to become more myopic with age. Patients may benefit from long-term myopia slowing treatment in the future and further studies are indicated. Additionally, CSNB should be considered in the differential diagnosis for early-onset myopia.
Collapse
MESH Headings
- Humans
- Night Blindness/genetics
- Night Blindness/physiopathology
- Night Blindness/diagnosis
- Night Blindness/complications
- Retrospective Studies
- Male
- Female
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/physiopathology
- Eye Diseases, Hereditary/complications
- Eye Diseases, Hereditary/diagnosis
- Child
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/physiopathology
- Genetic Diseases, X-Linked/complications
- Genetic Diseases, X-Linked/diagnosis
- TRPM Cation Channels/genetics
- Myopia/genetics
- Myopia/physiopathology
- Myopia/diagnosis
- Adolescent
- Refraction, Ocular/physiology
- Child, Preschool
- Disease Progression
- Calcium Channels, L-Type/genetics
- Genotype
- Proteoglycans
Collapse
Affiliation(s)
- Austin D Igelman
- Oregon Health and Science University Casey Eye Institute, Portland, Oregon, USA
| | - Elizabeth White
- Oregon Health and Science University Casey Eye Institute, Portland, Oregon, USA
| | - Alaa Tayyib
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lesley Everett
- Oregon Health & Science University, Portland, Oregon, USA
| | - Ajoy Vincent
- Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elise Heon
- Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christina Zeitz
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Omar A Mahroo
- Institute of Ophthalmology, University College London, London, UK
- Medical Retina Service, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | | | | | - Birgit Lorenz
- Ophthalmology, Justus-Liebig-University,Universitätsklinikum Gießen und Marburg GmbH, Giessen campus, Giessen, Germany
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Shahar Luski
- Department of Ophthalmology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | | - Bart Peter Leroy
- Department of Ophthalmology and Ctr for Med Genetics, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sophie Walraedt
- Department of Ophthalmology, Ghent University, Gent, Belgium
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Laura Kuehlewein
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Milda Reith
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Anne Fulton
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Aparna Raghuram
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Isabelle Meunier
- Ophthalmology, Reference Centre for Genetic Sensory diseases, University Hospital Centre Montpellier, Montpellier, France
| | - Hélène Dollfus
- Centre des affections rares en génétique ophtalmologique, CHU de Strasbourg, Strasbourg, France
| | - Tomas S Aleman
- Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emma C Bedoukian
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Erin C O'Neil
- Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emily Krauss
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Andrea Vincent
- Ophthalmology, Auckland University, Auckland, New Zealand
| | | | - Alessandro Iannaccone
- Duke University, Durham, North Carolina, USA
- Kittner Eye Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Cell and Gene Therapies, Ophthalmology, Astellas Pharma US, Northbrook, Illinois, USA
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Srilekha Sundaramurthy
- SN ONGC Department of Genetcis and Molecular Biology, Vision Research Foundation, Chennai, Tamil Nadu, India
- Department of Vitreo-Retinal Services, Medical Research Foundation, Chennai, Tamil Nadu, India
| | - Soumittra Nagasamy
- SN ONGC Department of Genetcis and Molecular Biology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Irina Balikova
- Department of Ophthalmology, University Hospital Leuven, Leuven, Belgium
| | | | | | - Shaden Yassin
- University of California San Diego, La Jolla, California, USA
| | - Aaron Nagiel
- USC Keck School of Medicine, Los Angeles, California, USA
| | | | - Xavier Zanlonghi
- Department of Ophthalmology, University Hospital Centre Rennes, Rennes, France
| | - Irene Gottlob
- Ophthalmology Group, University of Leicester, Leicester, Leics, UK
| | | | | | | | - Robert Sisk
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Lorri B Wilson
- Oregon Health and Science University Casey Eye Institute, Portland, Oregon, USA
| | - Douglas Fredrick
- Department of Ophthalmology, Kaiser Permanente, Daly City, California, USA
| | - Dongseok Choi
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| | - Paul Yang
- Oregon Health and Science University Casey Eye Institute, Portland, Oregon, USA
| | - Mark Edward Pennesi
- Oregon Health and Science University Casey Eye Institute, Portland, Oregon, USA
- Retina Foundation of the Southwest, Dallas, Texas, USA
| |
Collapse
|
4
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
5
|
Galindo-Torres P, Rosas C, Ramos-Rodríguez S, Galindo-Sánchez CE. Chronic thermal stress on Octopus maya embryos down-regulates epigenome-related genes and those involved in the nervous system development and morphogenesis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101332. [PMID: 39366120 DOI: 10.1016/j.cbd.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024]
Abstract
Red Octopus maya is strongly influenced by temperature. Recent studies have reported negative reproduction effects on males and females when exposed to temperatures higher than 27 °C. Embryos under thermal stress show morphological and physiological alterations; similar phenotypes have been reported in embryos from stressed females, evidencing transgenerational consequences. Transcriptomic profiles were characterized along embryo development during normal-under thermal stress and epigenetic alterations through DNA methylation and damage quantification. Total RNA in organogenesis, activation, and growth stages in control and thermal stress were sequenced with Illumina RNA-Seq. Similarly, total DNA was used for DNA methylation and damage quantification between temperatures and embryo stages. Differential gene expression analyses showed that embryos express genes associated with oxygen transport, morphogenesis, nervous system, neuroendocrine cell differentiation, spermatogenesis, and male sex differentiation. Conversely, embryos turn off genes involved mainly in nervous system development, morphogenesis, and gene expression regulation when exposed to thermal stress - consistent with O. maya embryo phenotypes showing abnormal arms, eyes, and body development. No significant differences were observed in quantifying DNA methylation between temperatures but they were for DNA damage quantification. Epigenetic alterations are hypothesized to occur since several genes found downregulated belong to the epigenetic machinery but at histone tail level.
Collapse
Affiliation(s)
- Pavel Galindo-Torres
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigacion (UMDI), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico (UNAM), Puerto DE Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico.
| | - Sadot Ramos-Rodríguez
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Clara E Galindo-Sánchez
- Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| |
Collapse
|
6
|
Yun Y, Jeong H, Laboute T, Martemyanov KA, Lee HH. Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing. Nat Commun 2024; 15:8299. [PMID: 39333506 PMCID: PMC11437087 DOI: 10.1038/s41467-024-52584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
GPR179, an orphan class C GPCR, is expressed at the dendritic tips of ON-bipolar cells in the retina. It plays a pivotal role in the initial synaptic transmission of visual signals from photoreceptors, and its deficiency is known to be the cause of complete congenital stationary night blindness. Here, we present the cryo-electron microscopy structure of human GPR179. Notably, the transmembrane domain (TMD) of GPR179 forms a homodimer through the TM1/7 interface with a single inter-protomer disulfide bond, adopting a noncanonical dimerization mode. Furthermore, the TMD dimer exhibits architecture well-suited for the highly curved membrane of the dendritic tip and distinct from the flat membrane arrangement observed in other class C GPCR dimers. Our structure reveals unique structural features of GPR179 TMD, setting it apart from other class C GPCRs. These findings provide a foundation for understanding signal transduction through GPR179 in visual processing and offers insights into the underlying causes of ocular diseases.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Wilmet B, Michiels C, Zhang J, Callebert J, Sahel JA, Picaud S, Audo I, Zeitz C. Loss of ON-Pathway Function in Mice Lacking Lrit3 Decreases Recovery From Lens-Induced Myopia. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 39250117 PMCID: PMC11385651 DOI: 10.1167/iovs.65.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Purpose To determine whether the Lrit3-/- mouse model of complete congenital stationary night blindness with an ON-pathway defect harbors myopic features and whether the genetic defect influences the recovery from lens-induced myopia. Methods Retinal levels of dopamine (DA) and 3,4 dihydroxyphenylacetic acid (DOPAC) from adult isolated Lrit3-/- retinas were quantified using ultra performance liquid chromatography after light adaptation. Natural refractive development of Lrit3-/- mice was measured from three weeks to nine weeks of age using an infrared photorefractometer. Susceptibility to myopia induction was assessed using a lens-induced myopia protocol with -25 D lenses placed in front of the right eye of the animals for three weeks; the mean interocular shift was measured with an infrared photorefractometer after two and three weeks of goggling and after one and two weeks after removal of goggles. Results Compared to wild-type littermates (Lrit3+/+), both DA and DOPAC were drastically reduced in Lrit3-/- retinas. Natural refractive development was normal but Lrit3-/- mice showed a higher myopic shift and a lower ability to recover from induced myopia. Conclusions Our data consolidate the link between ON pathway defect altered dopaminergic signaling and myopia. We document for the first time the role of ON pathway on the recovery from myopia induction.
Collapse
Affiliation(s)
- Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Jingyi Zhang
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, PA, United States
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
8
|
Saputra F, Kishida M, Hu SY. Nitrate and Nitrite Exposure Induces Visual Impairments in Adult Zebrafish. TOXICS 2024; 12:518. [PMID: 39058170 PMCID: PMC11281020 DOI: 10.3390/toxics12070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Nitrate and nitrite have emerged as increasingly common environmental pollutants, posing significant risks to various forms of life within ecosystems. To understand their impact on the visual system of zebrafish, adult zebrafish were exposed to environmentally relevant concentrations of nitrate (10 mg/L) and nitrite (1 mg/L) for 7 days. Visual behaviors were examined using optomotor and avoidance response. The eyeballs of the zebrafish were collected for H&E staining, IHC, and qPCR. Exposure decreased visual behavior and the thickness of most retinal layers. Exposure decreased expression of pax6a, pax6b, gpx1a, and bcl2a. Exposure increased expression of esr1, esr1a, esr2b, cyp19a1b, sod1a, nos2a, casps3, and tp53, and increased retinal brain aromatase expression by IHC. Collectively, our findings demonstrate that nitrate and nitrite exposure negatively impacted the visual system of adult zebrafish, highlighting the potential hazards of these environmental pollutants on aquatic organisms.
Collapse
Affiliation(s)
- Febriyansyah Saputra
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
9
|
Hasan N, Gregg RG. Cone Synaptic function is modulated by the leucine rich repeat (LRR) adhesion molecule LRFN2. eNeuro 2024; 11:ENEURO.0120-23.2024. [PMID: 38408870 PMCID: PMC10957230 DOI: 10.1523/eneuro.0120-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024] Open
Abstract
Daylight vision is mediated by cone photoreceptors in vertebrates, which synapse with bipolar cells (BCs) and horizontal (HCs) cells. This cone synapse is functionally and anatomically complex, connecting to 8 types of depolarizing BCs (DBCs) and 5 types of hyperpolarizing BCs (HBCs) in mice. The dendrites of DBCs and HCs cells make invaginating ribbon synapses with the cone axon terminal, while HBCs form flat synapses with the cone pedicles. The molecular architecture that underpins this organization is relatively poorly understood. To identify new proteins involved in synapse formation and function we used an unbiased proteomic approach and identified LRFN2 (leucine-rich repeat and fibronectin III domain-containing 2) as a component of the DBC signaling complex. LRFN2 is selectively expressed at cone terminals and co-localizes with PNA, and other DBC signalplex members. In LRFN2 deficient mice, the synaptic markers: LRIT3, ELFN2, mGluR6, TRPM1 and GPR179 are properly localized. Similarly, LRFN2 expression and localization is not dependent on these synaptic proteins. In the absence of LRFN2 the cone-mediated photopic electroretinogram b-wave amplitude is reduced at the brightest flash intensities. These data demonstrate that LRFN2 absence compromises normal synaptic transmission between cones and cone DBCs.Significance Statement Signaling between cone photoreceptors and the downstream bipolar cells is critical to normal vision. Cones synapse with 13 different types of bipolar cells forming an invaginating ribbon synapses with 8 types, and flat synapses with 5 types, to form one of the most complex synapses in the brain. In this report a new protein, LRFN2 (leucine-rich repeat and fibronectin III domain-containing 2), was identified that is expressed at the cone synapse. Using Lrfn2 knockout mice we show LRFN2 is required for the normal cone signaling.
Collapse
Affiliation(s)
- Nazarul Hasan
- Departments of Biochemistry & Molecular Genetics, University of Louisville, Louisville, Kentucky 40202
- Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky 40202
| | - Ronald G. Gregg
- Departments of Biochemistry & Molecular Genetics, University of Louisville, Louisville, Kentucky 40202
- Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
10
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
11
|
Takahashi K, Kwok JC, Sato Y, Aguirre GD, Miyadera K. Extended functional rescue following AAV gene therapy in a canine model of LRIT3-congenital stationary night blindness. Vision Res 2023; 209:108260. [PMID: 37220680 PMCID: PMC10524691 DOI: 10.1016/j.visres.2023.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Congenital stationary night blindness (CSNB) is a group of inherited retinal diseases in which either rod-to-ON-bipolar cell (ON-BC) signaling, or rod function is affected leading to impaired vision under low light conditions. One type of CSNB is associated with defects in genes (NYX, GRM6, TRPM1, GPR179, and LRIT3) involved in the mGluR6 signaling cascade at the ON-BC dendritic tips. We have previously characterized a canine model of LRIT3-CSNB and demonstrated short-term safety and efficacy of an ON-BC targeting AAV-LRIT3 (AAVK9#4-shGRM6-cLRIT3-WPRE) gene therapy. Herein, we demonstrate long-term functional recovery and molecular restoration following subretinal injection of the ON-BC targeting AAV-LRIT3 vector in all eight treated eyes for up to 32 months. Following subretinal administration of the therapeutic vector, expression of the LRIT3 transgene, as well as restoration of mGluR6 signaling cascade member TRPM1, were confirmed in the outer plexiform layer (OPL) of the treated area. However, further investigation of the transgene LRIT3 transcript expression by RNA in situ hybridization (RNA-ISH) revealed off-target expression in non-BCs including the photoreceptors, inner nuclear, and ganglion cell layers, despite the use of a mutant AAVK9#4 capsid and an improved mGluR6 promoter designed to specifically transduce and promote expression in ON-BCs. While the long-term therapeutic potential of AAVK9#4-shGRM6-cLRIT3-WPRE is promising, we highlight the necessity for further optimization of AAV-LRIT3 therapy in the canine CSNB model prior to its clinical application.
Collapse
Affiliation(s)
- Kei Takahashi
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer C Kwok
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Sato
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Patil DN, Pantalone S, Cao Y, Laboute T, Novick SJ, Singh S, Savino S, Faravelli S, Magnani F, Griffin PR, Singh AK, Forneris F, Martemyanov KA. Structure of the photoreceptor synaptic assembly of the extracellular matrix protein pikachurin with the orphan receptor GPR179. Sci Signal 2023; 16:eadd9539. [PMID: 37490546 PMCID: PMC10561654 DOI: 10.1126/scisignal.add9539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Precise synapse formation is essential for normal functioning of the nervous system. Retinal photoreceptors establish selective contacts with bipolar cells, aligning the neurotransmitter release apparatus with postsynaptic signaling cascades. This involves transsynaptic assembly between the dystroglycan-dystrophin complex on the photoreceptor and the orphan receptor GPR179 on the bipolar cell, which is mediated by the extracellular matrix protein pikachurin (also known as EGFLAM). This complex plays a critical role in the synaptic organization of photoreceptors and signal transmission, and mutations affecting its components cause blinding disorders in humans. Here, we investigated the structural organization and molecular mechanisms by which pikachurin orchestrates transsynaptic assembly and solved structures of the human pikachurin domains by x-ray crystallography and of the GPR179-pikachurin complex by single-particle, cryo-electron microscopy. The structures reveal molecular recognition principles of pikachurin by the Cache domains of GPR179 and show how the interaction is involved in the transsynaptic alignment of the signaling machinery. Together, these data provide a structural basis for understanding the synaptic organization of photoreceptors and ocular pathology.
Collapse
Affiliation(s)
- Dipak N. Patil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Serena Pantalone
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Yan Cao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Scott J. Novick
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Shikha Singh
- Department of Biological Sciences, Columbia University New York, NY 10027, USA
| | - Simone Savino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Francesca Magnani
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Appu K. Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata, 9A, I-27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
13
|
Gregg RG, Hasan N, Borghuis BG. LRIT3 expression in cone photoreceptors restores post-synaptic bipolar cell signalplex assembly and partial function in Lrit3 -/- mice. iScience 2023; 26:106499. [PMID: 37091241 PMCID: PMC10113827 DOI: 10.1016/j.isci.2023.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Complete congenital stationary night blindness (cCSNB) is a heterogeneous disorder characterized by poor dim-light vision, myopia, and nystagmus that is caused by mutations in genes critical for signal transmission between photoreceptors and depolarizing bipolar cells (DBCs). One such gene, LRIT3, is required for assembly of the post-synaptic signaling complex (signalplex) at the dendritic tips of DBCs, although the number of signalplex components impacted is greater in cone DBCs (all components) than in rod bipolar cells (only TRPM1 and Nyctalopin). Here we show that rAAV-mediated expression of LRIT3 in cones results in robust rescue of cone DBC signalplex components and partially restores downstream visual function, as measured by the light-adapted electroretinogram (ERG) b-wave and electrophysiological recordings of bipolar cells (BCs) and RGCs. These data show that LRIT3 successfully restores partial function to cone DBCs most likely in a trans-synaptic manner, potentially paving the way for therapeutic intervention in LRIT3-associated cCSNB.
Collapse
Affiliation(s)
- Ronald G. Gregg
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292, USA
- Corresponding author
| | - Nazarul Hasan
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Bart G. Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
- Corresponding author
| |
Collapse
|
14
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
15
|
Franchini L, Orlandi C. Probing the orphan receptors: Tools and directions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:47-76. [PMID: 36707155 DOI: 10.1016/bs.pmbts.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endogenous ligands activating a large fraction of the G Protein Coupled Receptor (GPCR) family members have yet to be identified. These receptors are commonly labeled as orphans (oGPCRs), and because of the absence of available pharmacological tools they are currently understudied. Nonetheless, genome wide association studies, together with research using animal models identified many physiological functions regulated by oGPCRs. Similarly, mutations in some oGPCRs have been associated with rare genetic disorders or with an increased risk of developing pathologies. The once underestimated pharmacological potential of targeting oGPCRs is increasingly being exploited by the development of novel tools to understand their biology and by drug discovery endeavors aimed at identifying new modulators of their activity. Here, we summarize recent advancements in the field of oGPCRs and future directions.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
16
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
17
|
Wilmet B, Callebert J, Duvoisin R, Goulet R, Tourain C, Michiels C, Frederiksen H, Schaeffel F, Marre O, Sahel JA, Audo I, Picaud S, Zeitz C. Mice Lacking Gpr179 with Complete Congenital Stationary Night Blindness Are a Good Model for Myopia. Int J Mol Sci 2022; 24:ijms24010219. [PMID: 36613663 PMCID: PMC9820543 DOI: 10.3390/ijms24010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mutations in GPR179 are one of the most common causes of autosomal recessive complete congenital stationary night blindness (cCSNB). This retinal disease is characterized in patients by impaired dim and night vision, associated with other ocular symptoms, including high myopia. cCSNB is caused by a complete loss of signal transmission from photoreceptors to ON-bipolar cells. In this study, we hypothesized that the lack of Gpr179 and the subsequent impaired ON-pathway could lead to myopic features in a mouse model of cCSNB. Using ultra performance liquid chromatography, we show that adult Gpr179-/- mice have a significant decrease in both retinal dopamine and 3,4-dihydroxyphenylacetic acid, compared to Gpr179+/+ mice. This alteration of the dopaminergic system is thought to be correlated with an increased susceptibility to lens-induced myopia but does not affect the natural refractive development. Altogether, our data added a novel myopia model, which could be used to identify therapeutic interventions.
Collapse
Affiliation(s)
- Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Correspondence: (B.W.); (C.Z.); Tel.: +33-1-53-46-25-26 (B.W.); +33-1-53-46-25-40 (C.Z.)
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, AP-HP, 75010 Paris, France
| | - Robert Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruben Goulet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, 75270 Paris, France
| | - Christelle Michiels
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4056 Basel, Switzerland
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
- Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012 Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France
- Académie des Sciences, Institut de France, 75006 Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Correspondence: (B.W.); (C.Z.); Tel.: +33-1-53-46-25-26 (B.W.); +33-1-53-46-25-40 (C.Z.)
| |
Collapse
|
18
|
Cao Y, Fajardo D, Guerrero-Given D, Samuel MA, Ohtsuka T, Boye SE, Kamasawa N, Martemyanov KA. Post-developmental plasticity of the primary rod pathway allows restoration of visually guided behaviors. Curr Biol 2022; 32:4783-4796.e3. [PMID: 36179691 PMCID: PMC9691582 DOI: 10.1016/j.cub.2022.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 01/24/2023]
Abstract
The formation of neural circuits occurs in a programmed fashion, but proper activity in the circuit is essential for refining the organization necessary for driving complex behavioral tasks. In the retina, sensory deprivation during the critical period of development is well known to perturb the organization of the visual circuit making the animals unable to use vision for behavior. However, the extent of plasticity, molecular factors involved, and malleability of individual channels in the circuit to manipulations outside of the critical period are not well understood. In this study, we selectively disconnected and reconnected rod photoreceptors in mature animals after completion of the retina circuit development. We found that introducing synaptic rod photoreceptor input post-developmentally allowed their integration into the circuit both anatomically and functionally. Remarkably, adult mice with newly integrated rod photoreceptors gained high-sensitivity vision, even when it was absent from birth. These observations reveal plasticity of the retina circuit organization after closure of the critical period and encourage the development of vision restoration strategies for congenital blinding disorders.
Collapse
Affiliation(s)
- Yan Cao
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Debbie Guerrero-Given
- The Imaging Center, Electron Microscopy Core Facility, Max Planck Florida Institute, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Naomi Kamasawa
- The Imaging Center, Electron Microscopy Core Facility, Max Planck Florida Institute, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, UF Scripps Biomedical Research, Jupiter, FL 33458, USA.
| |
Collapse
|
19
|
Barboni MTS, Joachimsthaler A, Roux MJ, Nagy ZZ, Ventura DF, Rendon A, Kremers J, Vaillend C. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog Retin Eye Res 2022:101137. [DOI: 10.1016/j.preteyeres.2022.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
20
|
Fu X, Wei S, Wang T, Fan H, Zhang Y, Costa CD, Brandner S, Yang G, Pan Y, He Y, Li N. Research Status of the Orphan G Protein Coupled Receptor 158 and Future Perspectives. Cells 2022; 11:cells11081334. [PMID: 35456013 PMCID: PMC9027133 DOI: 10.3390/cells11081334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) remain one of the most successful targets for therapeutic drugs approved by the US Food and Drug Administration (FDA). Many novel orphan GPCRs have been identified by human genome sequencing and considered as putative targets for refractory diseases. Of note, a series of studies have been carried out involving GPCR 158 (or GPR158) since its identification in 2005, predominantly focusing on the characterization of its roles in the progression of cancer and mental illness. However, advances towards an in-depth understanding of the biological mechanism(s) involved for clinical application of GPR158 are lacking. In this paper, we clarify the origin of the GPR158 evolution in different species and summarize the relationship between GPR158 and different diseases towards potential drug target identification, through an analysis of the sequences and substructures of GPR158. Further, we discuss how recent studies set about unraveling the fundamental features and principles, followed by future perspectives and thoughts, which may lead to prospective therapies involving GPR158.
Collapse
Affiliation(s)
- Xianan Fu
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Shoupeng Wei
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Tao Wang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Hengxin Fan
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Ying Zhang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Clive Da Costa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK;
| | - Guang Yang
- Department of Burn and Plastic Surgery, Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518039, China;
| | - Yihang Pan
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
| | - Yulong He
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
- Center for Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China
- Correspondence: (Y.H.); (N.L.)
| | - Ningning Li
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd., Guangming Dist., Shenzhen 518107, China; (X.F.); (S.W.); (T.W.); (H.F.); (Y.Z.); (Y.P.)
- China-UK Institute for Frontier Science, Shenzhen 518107, China
- Correspondence: (Y.H.); (N.L.)
| |
Collapse
|
21
|
Miyadera K, Santana E, Roszak K, Iffrig S, Visel M, Iwabe S, Boyd RF, Bartoe JT, Sato Y, Gray A, Ripolles-Garcia A, Dufour VL, Byrne LC, Flannery JG, Beltran WA, Aguirre GD. Targeting ON-bipolar cells by AAV gene therapy stably reverses LRIT3-congenital stationary night blindness. Proc Natl Acad Sci U S A 2022; 119:e2117038119. [PMID: 35316139 PMCID: PMC9060458 DOI: 10.1073/pnas.2117038119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 01/08/2023] Open
Abstract
SignificanceCanine models of inherited retinal diseases have helped advance adeno-associated virus (AAV)-based gene therapies targeting specific cells in the outer retina for treating blinding diseases in patients. However, therapeutic targeting of diseases such as congenital stationary night blindness (CSNB) that exhibit defects in ON-bipolar cells (ON-BCs) of the midretina remains underdeveloped. Using a leucine-rich repeat, immunoglobulin-like and transmembrane domain 3 (LRIT3) mutant canine model of CSNB exhibiting ON-BC dysfunction, we tested the ability of cell-specific AAV capsids and promotors to specifically target ON-BCs for gene delivery. Subretinal injection of one vector demonstrated safety and efficacy with robust and stable rescue of electroretinography signals and night vision up to 1 y, paving the way for clinical trials in patients.
Collapse
Affiliation(s)
- Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Evelyn Santana
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Karolina Roszak
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sommer Iffrig
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Meike Visel
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Simone Iwabe
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI 49071
| | - Ryan F. Boyd
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI 49071
| | - Joshua T. Bartoe
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI 49071
| | - Yu Sato
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa Gray
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ana Ripolles-Garcia
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Valérie L. Dufour
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leah C. Byrne
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - John G. Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gustavo D. Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
22
|
Cohen A, Popowitz J, Delbridge-Perry M, Rowe CJ, Connaughton VP. The Role of Estrogen and Thyroid Hormones in Zebrafish Visual System Function. Front Pharmacol 2022; 13:837687. [PMID: 35295340 PMCID: PMC8918846 DOI: 10.3389/fphar.2022.837687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Visual system development is a highly complex process involving coordination of environmental cues, cell pathways, and integration of functional circuits. Consequently, a change to any step, due to a mutation or chemical exposure, can lead to deleterious consequences. One class of chemicals known to have both overt and subtle effects on the visual system is endocrine disrupting compounds (EDCs). EDCs are environmental contaminants which alter hormonal signaling by either preventing compound synthesis or binding to postsynaptic receptors. Interestingly, recent work has identified neuronal and sensory systems, particularly vision, as targets for EDCs. In particular, estrogenic and thyroidogenic signaling have been identified as critical modulators of proper visual system development and function. Here, we summarize and review this work, from our lab and others, focusing on behavioral, physiological, and molecular data collected in zebrafish. We also discuss different exposure regimes used, including long-lasting effects of developmental exposure. Overall, zebrafish are a model of choice to examine the impact of EDCs and other compounds targeting estrogen and thyroid signaling and the consequences of exposure in visual system development and function.
Collapse
Affiliation(s)
- Annastelle Cohen
- Department of Biology, American University, Washington, DC, WA, United States
| | - Jeremy Popowitz
- Department of Biology, American University, Washington, DC, WA, United States
| | | | - Cassie J. Rowe
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States,*Correspondence: Victoria P. Connaughton,
| |
Collapse
|
23
|
Baba K, Tosini G. Assessing the Role of Melatonin in the Modulation of Visual Functions in the Mouse. Methods Mol Biol 2022; 2550:377-389. [PMID: 36180707 DOI: 10.1007/978-1-0716-2593-4_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electroretinogram (ERG) is a noninvasive method to evaluate retinal function. It can be applied to patients to be diagnosed a variety of retinal pathologies such as photoreceptor dystrophy, diabetic retinopathy, macular degeneration, and glaucoma. ERG has also been a reliable tool to assess retinal functions in animal studies that range from fish to humans. Melatonin is a neurohormone that regulates several retinal functions within the retina, and previous studies have shown that melatonin plays an important role in the modulation of the ERG in humans and other vertebrates. This chapter describes experimental methods to evaluate retinal function using ERG in the mouse and how to assess the contribution of melatonin. An introduction is provided for materials, environmental settings, recording procedures, and analysis necessary for ERG measurements.
Collapse
Affiliation(s)
- Kenkichi Baba
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA.
| | - Gianluca Tosini
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
24
|
Agosto MA, Adeosun AAR, Kumar N, Wensel TG. The mGluR6 ligand-binding domain, but not the C-terminal domain, is required for synaptic localization in retinal ON-bipolar cells. J Biol Chem 2021; 297:101418. [PMID: 34793838 PMCID: PMC8671642 DOI: 10.1016/j.jbc.2021.101418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
Signals from retinal photoreceptors are processed in two parallel channels-the ON channel responds to light increments, while the OFF channel responds to light decrements. The ON pathway is mediated by ON type bipolar cells (BCs), which receive glutamatergic synaptic input from photoreceptors via a G-protein-coupled receptor signaling cascade. The metabotropic glutamate receptor mGluR6 is located at the dendritic tips of all ON-BCs and is required for synaptic transmission. Thus, it is critically important for delivery of information from photoreceptors into the ON pathway. In addition to detecting glutamate, mGluR6 participates in interactions with other postsynaptic proteins, as well as trans-synaptic interactions with presynaptic ELFN proteins. Mechanisms of mGluR6 synaptic targeting and functional interaction with other synaptic proteins are unknown. Here, we show that multiple regions in the mGluR6 ligand-binding domain are necessary for both synaptic localization in BCs and ELFN1 binding in vitro. However, these regions were not required for plasma membrane localization in heterologous cells, indicating that secretory trafficking and synaptic localization are controlled by different mechanisms. In contrast, the mGluR6 C-terminus was dispensable for synaptic localization. In mGluR6 null mice, localization of the postsynaptic channel protein TRPM1 was compromised. Introducing WT mGluR6 rescued TRPM1 localization, while a C-terminal deletion mutant had significantly reduced rescue ability. We propose a model in which trans-synaptic ELFN1 binding is necessary for mGluR6 postsynaptic localization, whereas the C-terminus has a role in mediating TRPM1 trafficking. These findings reveal different sequence determinants of the multifunctional roles of mGluR6 in ON-BCs.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
| | - Abiodun Adefola R Adeosun
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Pharmacology and Chemical Biology Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - Nitin Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Pharmacology and Chemical Biology Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
25
|
Varin J, Bouzidi N, Gauvain G, Joffrois C, Desrosiers M, Robert C, De Sousa Dias MM, Neuillé M, Michiels C, Nassisi M, Sahel JA, Picaud S, Audo I, Dalkara D, Zeitz C. Substantial restoration of night vision in adult mice with congenital stationary night blindness. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:15-25. [PMID: 34401402 PMCID: PMC8339357 DOI: 10.1016/j.omtm.2021.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
Complete congenital stationary night blindness (cCSNB) due to mutations in TRPM1, GRM6, GPR179, NYX, or leucine-rich repeat immunoglobulin-like transmembrane domain 3 (LRIT3) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. Since the disease is non-degenerative and stable, treatment could theoretically be administrated at any time in life, making it a promising target for gene therapy. Until now, adeno-associated virus (AAV)-mediated therapies lead to significant functional improvements only in newborn cCSNB mice. Here we aimed to restore protein localization and function in adult Lrit3 -/ - mice. LRIT3 localizes in the outer plexiform layer and is crucial for TRPM1 localization at the dendritic tips of ON-BCs and the electroretinogram (ERG)-b-wave. AAV2-7m8-Lrit3 intravitreal injections were performed targeting either ON-BCs, photoreceptors (PRs), or both. Protein localization of LRIT3 and TRPM1 at the rod-to-rod BC synapse, functional rescue of scotopic responses, and ON-responses detection at the ganglion cell level were achieved in a few mice when ON-BCs alone or both PRs and ON-BCs, were targeted. More importantly, a significant number of treated adult Lrit3 -/- mice revealed an ERG b-wave recovery under scotopic conditions, improved optomotor responses, and on-time ON-responses at the ganglion cell level when PRs were targeted. Functional rescue was maintained for at least 4 months after treatment.
Collapse
Affiliation(s)
- Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gregory Gauvain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Corentin Joffrois
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Robert
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Marion Neuillé
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Academie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, UK
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
26
|
Kim HM, Joo K, Han J, Woo SJ. Clinical and Genetic Characteristics of Korean Congenital Stationary Night Blindness Patients. Genes (Basel) 2021; 12:genes12060789. [PMID: 34064005 PMCID: PMC8224030 DOI: 10.3390/genes12060789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 01/27/2023] Open
Abstract
In this study, we investigated the clinical and genetic characteristics of 19 Korean patients with congenital stationary night blindness (CSNB) at two tertiary hospitals. Clinical evaluations, including fundus photography, spectral-domain optical coherence tomography, and electroretinography, were performed. Genetic analyses were conducted using targeted panel sequencing or whole exome sequencing. The median age was 5 (3–21) years at the initial examination, 2 (1–8) years at symptom onset, and 11 (5–28) years during the final visit. Genetic mutations were identified as CNGB1 and GNAT1 for the Riggs type (n = 2), TRPM1 and NYX for the complete type (n = 3), and CACNA1F (n = 14) for the incomplete type. Ten novel variants were identified, and best-corrected visual acuity (BCVA) and spherical equivalents (SE) were related to each type of CSNB. The Riggs and TRPM1 complete types presented mild myopia and good BCVA without strabismus and nystagmus, whereas the NYX complete and incomplete types showed mixed SE and poor BCVA with strabismus and nystagmus. This is the first case series of Korean patients with CSNB, and further studies with a larger number of subjects should be conducted to correlate the clinical and genetic aspects of CSNB.
Collapse
Affiliation(s)
- Hyeong-Min Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (H.-M.K.); (K.J.)
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (H.-M.K.); (K.J.)
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: (J.H.); (S.-J.W.); Tel.: +82-2-2019-3445 (J.H.); +82-31-787-7377 (S.-J.W.); Fax: +82-2-3463-1049 (J.H.); +82-31-787-4057 (S.-J.W.)
| | - Se-Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (H.-M.K.); (K.J.)
- Correspondence: (J.H.); (S.-J.W.); Tel.: +82-2-2019-3445 (J.H.); +82-31-787-7377 (S.-J.W.); Fax: +82-2-3463-1049 (J.H.); +82-31-787-4057 (S.-J.W.)
| |
Collapse
|
27
|
Watkins LR, Orlandi C. In vitro profiling of orphan G protein coupled receptor (GPCR) constitutive activity. Br J Pharmacol 2021; 178:2963-2975. [PMID: 33784795 DOI: 10.1111/bph.15468] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Members of the GPCR family are targeted by a significant fraction of the available FDA-approved drugs. However, the physiological role and pharmacological properties of many GPCRs remain unknown, representing untapped potential in drug design. Of particular interest are ~100 less-studied GPCRs known as orphans because their endogenous ligands are unknown. Intriguingly, disease-causing mutations identified in patients, together with animal studies, have demonstrated that many orphan receptors play crucial physiological roles and, thus, represent attractive drug targets. EXPERIMENTAL APPROACH The majority of deorphanized GPCRs demonstrate coupling to Gi/o . However, a limited number of techniques allow the detection of intrinsically small constitutive activity associated with Gi/o protein activation, which represents a significant barrier in our ability to study orphan GPCR signalling. Using luciferase reporter assays, we effectively detected constitutive Gs , Gq and G12/13 protein signalling by unliganded receptors and introducing various G protein chimeras, we provide a novel, highly sensitive tool capable of identifying Gi/o coupling in unliganded orphan GPCRs. KEY RESULTS Using this approach, we measured the constitutive activity of the entire class C GPCR family that includes eight orphan receptors and a subset of 20 prototypical class A GPCR members, including 11 orphans. Excitingly, this approach illuminated the G protein coupling profile of eight orphan GPCRs (GPR22, GPR137b, GPR88, GPR156, GPR158, GPR179, GPRC5D and GPRC6A) previously linked to pathophysiological processes. CONCLUSION AND IMPLICATIONS We provide a new platform that could be utilized in ongoing studies in orphan receptor signalling and de-orphanization efforts.
Collapse
Affiliation(s)
- Lyndsay R Watkins
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
28
|
Rodgers J, Bano‐Otalora B, Belle MDC, Paul S, Hughes R, Wright P, McDowell R, Milosavljevic N, Orlowska‐Feuer P, Martial FP, Wynne J, Ballister ER, Storchi R, Allen AE, Brown T, Lucas RJ. Using a bistable animal opsin for switchable and scalable optogenetic inhibition of neurons. EMBO Rep 2021; 22:e51866. [PMID: 33655694 PMCID: PMC8097317 DOI: 10.15252/embr.202051866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/09/2022] Open
Abstract
There is no consensus on the best inhibitory optogenetic tool. Since Gi/o signalling is a native mechanism of neuronal inhibition, we asked whether Lamprey Parapinopsin ("Lamplight"), a Gi/o-coupled bistable animal opsin, could be used for optogenetic silencing. We show that short (405 nm) and long (525 nm) wavelength pulses repeatedly switch Lamplight between stable signalling active and inactive states, respectively, and that combining these wavelengths can be used to achieve intermediate levels of activity. These properties can be applied to produce switchable neuronal hyperpolarisation and suppression of spontaneous spike firing in the mouse hypothalamic suprachiasmatic nucleus. Expressing Lamplight in (predominantly) ON bipolar cells can photosensitise retinas following advanced photoreceptor degeneration, with 405 and 525 nm stimuli producing responses of opposite sign in the output neurons of the retina. We conclude that bistable animal opsins can co-opt endogenous signalling mechanisms to allow optogenetic inhibition that is scalable, sustained and reversible.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | | | - Mino D C Belle
- Institute of Biomedical and Clinical SciencesUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Sarika Paul
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Rebecca Hughes
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Phillip Wright
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Richard McDowell
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Nina Milosavljevic
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Patrycja Orlowska‐Feuer
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Department of Neurophysiology and ChronobiologyInstitute of Zoology and Biomedical ResearchJagiellonian University in KrakowKrakowPoland
| | - Franck P Martial
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Jonathan Wynne
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Edward R Ballister
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Department of Biomedical EngineeringColumbia UniversityNew YorkNYUSA
| | - Riccardo Storchi
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Annette E Allen
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Timothy Brown
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Robert J Lucas
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
29
|
Orhan E, Neuillé M, de Sousa Dias M, Pugliese T, Michiels C, Condroyer C, Antonio A, Sahel JA, Audo I, Zeitz C. A New Mouse Model for Complete Congenital Stationary Night Blindness Due to Gpr179 Deficiency. Int J Mol Sci 2021; 22:ijms22094424. [PMID: 33922602 PMCID: PMC8122890 DOI: 10.3390/ijms22094424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/24/2023] Open
Abstract
Mutations in GPR179 lead to autosomal recessive complete congenital stationary night blindness (cCSNB). This condition represents a signal transmission defect from the photoreceptors to the ON-bipolar cells. To confirm the phenotype, better understand the pathogenic mechanism in vivo, and provide a model for therapeutic approaches, a Gpr179 knock-out mouse model was genetically and functionally characterized. We confirmed that the insertion of a neo/lac Z cassette in intron 1 of Gpr179 disrupts the same gene. Spectral domain optical coherence tomography reveals no obvious retinal structure abnormalities. Gpr179 knock-out mice exhibit a so-called no-b-wave (nob) phenotype with severely reduced b-wave amplitudes in the electroretinogram. Optomotor tests reveal decreased optomotor responses under scotopic conditions. Consistent with the genetic disruption of Gpr179, GPR179 is absent at the dendritic tips of ON-bipolar cells. While proteins of the same signal transmission cascade (GRM6, LRIT3, and TRPM1) are correctly localized, other proteins (RGS7, RGS11, and GNB5) known to regulate GRM6 are absent at the dendritic tips of ON-bipolar cells. These results add a new model of cCSNB, which is important to better understand the role of GPR179, its implication in patients with cCSNB, and its use for the development of therapies.
Collapse
Affiliation(s)
- Elise Orhan
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Marion Neuillé
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Miguel de Sousa Dias
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Thomas Pugliese
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Christelle Michiels
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Christel Condroyer
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - Aline Antonio
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
| | - José-Alain Sahel
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC1423, F-75012 Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, F-75019 Paris, France
- Academie des Sciences, Institut de France, F-75006 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Isabelle Audo
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC1423, F-75012 Paris, France
- Institute of Ophthalmology, University College of London, London EC1V 9EL, UK
| | - Christina Zeitz
- Institut de la Vision, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, F-75012 Paris, France; (E.O.); (M.N.); (M.d.S.D.); (T.P.); (C.M.); (C.C.); (A.A.); (J.-A.S.); (I.A.)
- Correspondence: ; Tel.: +33-1-53-46-25-40
| |
Collapse
|
30
|
Hayashi T, Murakami Y, Mizobuchi K, Koyanagi Y, Sonoda KH, Nakano T. Complete congenital stationary night blindness associated with a novel NYX variant (p.Asn216Lys) in middle-aged and older adult patients. Ophthalmic Genet 2021; 42:412-419. [PMID: 33769208 DOI: 10.1080/13816810.2021.1904422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Complete congenital stationary night blindness (CSNB) is a retinal disorder thought to be non-progressive. The purpose of this study was to characterize the clinical and genetic findings of middle-aged and older adult patients with X-linked complete CSNB. METHODS Three male CSNB patients (aged 62, 72, and 51 years) and one unaffected female carrier in a Japanese family were included in this study. Whole-exome sequencing (WES) was performed to determine the disease-causing variants. Co-segregation was confirmed in the family members. We performed a comprehensive ophthalmic examination on each patient. RESULTS In the 62-year-old patient, a novel hemizygous variant (c.648 C > A; p.Asn216Lys) of the NYX gene was identified by WES analysis. The other two patients carried the variant hemizygously, and the unaffected carrier harbored the variant heterozygously. The clinical and electroretinography (ERG) findings were very similar among all three patients. Fundus images exhibited high myopic chorioretinal atrophy with long axial length. Ultra-wide field fundus autofluorescence images showed no retinal degenerative changes except for changes resulting from high myopia and previous retinal diseases. The ERG findings showed no response in rod ERG, electronegative configuration with preserved a-waves in standard/bright-flash ERG, and preserved responses in cone and 30-Hz flicker ERG, which were compared with age-matched controls with high myopia. CONCLUSIONS We identified a novel missense NYX variant in a Japanese family with complete CSNB. Our clinical findings indicated that photoreceptor mediated ERG responses are well preserved even in middle-aged and older adult patients.
Collapse
Affiliation(s)
- Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Varin J, Bouzidi N, Dias MMDS, Pugliese T, Michiels C, Robert C, Desrosiers M, Sahel JA, Audo I, Dalkara D, Zeitz C. Restoration of mGluR6 Localization Following AAV-Mediated Delivery in a Mouse Model of Congenital Stationary Night Blindness. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 33729473 PMCID: PMC7980044 DOI: 10.1167/iovs.62.3.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Complete congenital stationary night blindness (cCSNB) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. GRM6 mutations are the third most prevalent cause of cCSNB. The Grm6-/- mouse model mimics the human phenotype, showing no b-wave in the electroretinogram (ERG) and a loss of mGluR6 and other proteins of the same cascade at the outer plexiform layer (OPL). Our aim was to restore protein localization and function in Grm6-/- adult mice targeting specifically ON-BCs or the whole retina. Methods Adeno-associated virus-encoding Grm6 under two different promoters (GRM6-Grm6 and CAG-Grm6) were injected intravitreally in P15 Grm6-/- mice. ERG recordings at 2 and 4 months were performed in Grm6+/+, untreated and treated Grm6-/- mice. Similarly, immunolocalization studies were performed on retinal slices before or after treatment using antibodies against mGluR6, TRPM1, GPR179, RGS7, RGS11, Gβ5, and dystrophin. Results Following treatment, mGluR6 was localized to the dendritic tips of ON-BCs when expressed with either promoter. The relocalization efficiency in mGluR6-transduced retinas at the OPL was 2.5% versus 11% when the GRM6-Grm6 and CAG-Grm6 were used, respectively. Albeit no functional rescue was seen in ERGs, relocalization of TRPM1, GPR179, and Gβ5 was also noted using both constructs. The restoration of the localization of RGS7, RGS11, and dystrophin was more obvious in retinas treated with GRM6-Grm6 than in retinas treated with CAG-Grm6. Conclusions Our findings show the potential of treating cCSNB with GRM6 mutations; however, it appears that the transduction rate must be improved to restore visual function.
Collapse
Affiliation(s)
- Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Thomas Pugliese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Robert
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Academie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
32
|
Delle Fave M, Cordonnier M, Vallee L, Condroyer C, Zeitz C, Balikova I. Congenital stationary night blindness in a patient with mild learning disability due to a compound heterozygous microdeletion of 15q13 and a missense mutation in TRPM1. Ophthalmic Genet 2021; 42:296-299. [PMID: 33691579 DOI: 10.1080/13816810.2021.1897846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The complete form of congenital stationary night blindness (cCSNB) represents a non-progressive retinal disorder characterized by night vision problems and often congenital nystagmus, reduced vision, high myopia, strabismus and normal fundus appearance. Clinically this form of CSNB can be diagnosed by full-field electroretinogram. The mode of inheritance can be X-linked and autosomal recessive with mutations in genes coding for proteins mainly present at the dendritic tips of ON-bipolar cells. Mutations in NYX, GRM6, GPR179, LRIT3 and TRPM1 lead to this condition. The latter gene defect represents the major form underlying cCSNBC. It codes for the melastatin-related transient receptor 1 expressed in the inner nuclear layer of the retina, with the protein localized in ON-bipolar cells. To date, various homozygous or compound heterozygous mutations in TRPM1 have been reported. Small chromosomal rearrangements are frequent cause of mental retardation. In rare cases deletions can overlap with a mutation on the remaining chromosome and lead to a recessive disorder. Here, we describe a patient with mild neurological deficiencies and cCSNB caused by a microdeletion on 15q32 overlapping with a TRPM1 variant.
Collapse
Affiliation(s)
- M Delle Fave
- Ophthalmology Service, CUB Hopital Erasme, Brussels, Belgium
| | - M Cordonnier
- Ophthalmology Service, CUB Hopital Erasme, Brussels, Belgium
| | - L Vallee
- Neuropediatric Service, University Hospital Lille, Lille, France
| | - C Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - C Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - I Balikova
- Ophthalmology Service, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
33
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2021; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
34
|
Hayashi T, Mizobuchi K, Kikuchi S, Nakano T. Novel biallelic TRPM1 variants in an elderly patient with complete congenital stationary night blindness. Doc Ophthalmol 2020; 142:265-273. [PMID: 33068213 DOI: 10.1007/s10633-020-09798-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Little is known about whether patients with complete congenital stationary night blindness (CSNB) maintain visual function throughout their lifetime. The purpose of this report was to describe clinical and genetic features of an elderly female patient with complete CSNB that we followed for 5 years. METHODS Molecular genetic analysis using whole-exome sequencing (WES) was performed to detect disease-causing variants. We performed a comprehensive ophthalmic examination including full-field electroretinography (ERG). RESULTS In the patient, WES identified two novel variants (c.1034delT; p.Phe345SerfsTer16 and c.1880T>A; p.Met627Lys) in the TRPM1 gene. Her unaffected daughter has one of the variants. The patient reported that her visual acuity has remained unchanged since elementary school. At the age of 68 years old, fundus and fundus autofluorescence imaging showed no remarkable findings except for mild myopic changes. Goldmann perimetry showed preserved visual fields with all V-4e, I-4e, I-3e and I-2e isopters. Optical coherence tomography demonstrated preserved retinal thickness and lamination. Rod ERG showed no response; bright-flash ERG showed an electronegative configuration with minimally reduced a-waves, and cone and 30-Hz flicker ERG showed minimally reduced responses. Overall, the ERG findings of ON bipolar pathway dysfunction were consistent with complete CSNB. CONCLUSIONS This is the oldest reported patient with complete CSNB and biallelic TRPM1 variants. Our ophthalmic findings suggest that some patients with TRPM1-related CSNB may exhibit preserved retinal function later in life.
Collapse
Affiliation(s)
- Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan. .,Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, 6-41-2 Aoto, Katsushika-ku, Tokyo, 125-8506, Japan.
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shinsuke Kikuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.,Kikuchi Eye Clinic, Tokyo, 192-0904, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
35
|
Di Scipio M, Tavares E, Deshmukh S, Audo I, Green-Sanderson K, Zubak Y, Zine-Eddine F, Pearson A, Vig A, Tang CY, Mollica A, Karas J, Tumber A, Yu CW, Billingsley G, Wilson MD, Zeitz C, Héon E, Vincent A. Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 32881472 PMCID: PMC7443117 DOI: 10.1167/iovs.61.10.36] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. Methods Affected members from three pedigrees with classical enhanced S-cone syndrome (ESCS; Pedigree 1), congenital stationary night blindness (CSNB; Pedigree 2), and achromatopsia (ACHM; Pedigree 3), respectively, underwent detailed ophthalmologic evaluation, optical coherence tomography, and electroretinography. The probands underwent panel-based genetic testing followed by GS analysis. Minigene constructs (NR2E3, GPR179 and CNGB3) and patient-derived cDNA experiments (NR2E3 and GPR179) were performed to assess the functional effect of the deep intronic variants. Results The electrophysiological findings confirmed the clinical diagnosis of ESCS, CSNB, and ACHM in the respective pedigrees. Panel-based testing revealed heterozygous pathogenic variants in NR2E3 (NM_014249.3; c.119-2A>C; Pedigree 1) and CNGB3 (NM_019098.4; c.1148delC/p.Thr383Ilefs*13; Pedigree 3). The GS revealed heterozygous deep intronic variants in Pedigrees 1 (NR2E3; c.1100+1124G>A) and 3 (CNGB3; c.852+4751A>T), and a homozygous GPR179 variant in Pedigree 2 (NM_001004334.3; c.903+343G>A). The identified variants segregated with the phenotype in all pedigrees. All deep intronic variants were predicted to generate a splice acceptor gain causing aberrant exonization in NR2E3 [89 base pairs (bp)], GPR179 (197 bp), and CNGB3 (73 bp); splicing defects were validated through patient-derived cDNA experiments and/or minigene constructs and rescued by antisense oligonucleotide treatment. Conclusions Deep intronic mutations contribute to missing heritability in retinal dystrophies. Combining results from phenotype-directed gene panel testing, GS, and in silico splice prediction tools can help identify these difficult-to-detect pathogenic deep intronic variants.
Collapse
Affiliation(s)
- Matteo Di Scipio
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Erika Tavares
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Shriya Deshmukh
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, Paris, France
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Kit Green-Sanderson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yuliya Zubak
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Fayçal Zine-Eddine
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Alexander Pearson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anjali Vig
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Chen Yu Tang
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Antonio Mollica
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jonathan Karas
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Caberry W. Yu
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Gail Billingsley
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Michael D. Wilson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elise Héon
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Agosto MA, Wensel TG. LRRTM4 is a member of the transsynaptic complex between rod photoreceptors and bipolar cells. J Comp Neurol 2020; 529:221-233. [PMID: 32390181 DOI: 10.1002/cne.24944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Leucine rich repeat transmembrane (LRRTM) proteins are synaptic adhesion molecules with roles in synapse formation and signaling. LRRTM4 transcripts were previously shown to be enriched in rod bipolar cells (BCs), secondary neurons of the retina that form synapses with rod photoreceptors. Using two different antibodies, LRRTM4 was found to reside primarily at rod BC dendritic tips, where it colocalized with the transduction channel protein, TRPM1. LRRTM4 was not detected at dendritic tips of ON-cone BCs. Following somatic knockout of LRRTM4 in BCs by subretinal injection and electroporation of CRISPR/Cas9, LRRTM4 was abolished or reduced in the dendritic tips of transfected cells. Knockout cells had a normal complement of TRPM1 at their dendritic tips, while GPR179 accumulation was partially reduced. In experiments with heterologously expressed protein, the extracellular domain of LRRTM4 was found to engage in heparan-sulfate dependent binding with pikachurin. These results implicate LRRTM4 in the GPR179-pikachurin-dystroglycan transsynaptic complex at rod synapses.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
37
|
Varin J, Reynolds MM, Bouzidi N, Tick S, Wohlschlegel J, Becquart O, Michiels C, Dereure O, Duvoisin RM, Morgans CW, Sahel JA, Samaran Q, Guillot B, Pulido JS, Audo I, Zeitz C. Identification and characterization of novel TRPM1 autoantibodies from serum of patients with melanoma-associated retinopathy. PLoS One 2020; 15:e0231750. [PMID: 32324760 PMCID: PMC7179873 DOI: 10.1371/journal.pone.0231750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma-associated retinopathy (MAR) is a rare paraneoplastic retinal disorder usually occurring in the context of metastatic melanoma. Patients present with night blindness, photopsias and a constriction of the visual field. MAR is an auto-immune disorder characterized by the production of autoantibodies targeting retinal proteins, especially autoantibodies reacting to the cation channel TRPM1 produced in melanocytes and ON-bipolar cells. TRPM1 has at least three different isoforms which vary in the N-terminal region of the protein. In this study, we report the case of three new MAR patients presenting different anti-TRPM1 autoantibodies reacting to the three isoforms of TRPM1 with variable binding affinity. Two sera recognized all isoforms of TRPM1, while one recognized only the two longest isoforms upon immunolocalization studies on overexpressing cells. Similarly, the former two sera reacted with all TRPM1 isoforms on western blot, but an immunoprecipitation enrichment step was necessary to detect all isoforms with the latter serum. In contrast, all sera labelled ON-bipolar cells on Tprm1+/+ but not on Trpm1-/- mouse retina as shown by co-immunolocalization. This confirms that the MAR sera specifically detect TRPM1. Most likely, the anti-TRPM1 autoantibodies of different patients vary in affinity and concentration. In addition, the binding of autoantibodies to TRPM1 may be conformation-dependent, with epitopes being inaccessible in some constructs (truncated polypeptides versus full-length TRPM1) or applications (western blotting versus immunohistochemistry). Therefore, we propose that a combination of different methods should be used to test for the presence of anti-TRPM1 autoantibodies in the sera of MAR patients.
Collapse
Affiliation(s)
- Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Margaret M. Reynolds
- Department of Ophthalmology, Washington University, Saint Louis, MO, United States of America
| | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Sarah Tick
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | | | - Ondine Becquart
- Department of Dermatology and INSERM U1058 “Pathogenesis and control of chronic infections”, University of Montpellier, Montpellier, France
| | | | - Olivier Dereure
- Department of Dermatology and INSERM U1058 “Pathogenesis and control of chronic infections”, University of Montpellier, Montpellier, France
| | - Robert M. Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, United States of America
| | - Catherine W. Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, United States of America
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Académie des Sciences, Institut de France, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Quentin Samaran
- Department of Dermatology and INSERM U1058 “Pathogenesis and control of chronic infections”, University of Montpellier, Montpellier, France
| | - Bernard Guillot
- Department of Dermatology and INSERM U1058 “Pathogenesis and control of chronic infections”, University of Montpellier, Montpellier, France
| | - José S. Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States of America
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
- Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Furukawa T, Ueno A, Omori Y. Molecular mechanisms underlying selective synapse formation of vertebrate retinal photoreceptor cells. Cell Mol Life Sci 2020; 77:1251-1266. [PMID: 31586239 PMCID: PMC11105113 DOI: 10.1007/s00018-019-03324-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
Abstract
In vertebrate central nervous systems (CNSs), highly diverse neurons are selectively connected via synapses, which are essential for building an intricate neural network. The vertebrate retina is part of the CNS and is comprised of a distinct laminar organization, which serves as a good model system to study developmental synapse formation mechanisms. In the retina outer plexiform layer, rods and cones, two types of photoreceptor cells, elaborate selective synaptic contacts with ON- and/or OFF-bipolar cell terminals as well as with horizontal cell terminals. In the mouse retina, three photoreceptor subtypes and at least 15 bipolar subtypes exist. Previous and recent studies have significantly progressed our understanding of how selective synapse formation, between specific subtypes of photoreceptor and bipolar cells, is designed at the molecular level. In the ON pathway, photoreceptor-derived secreted and transmembrane proteins directly interact in trans with the GRM6 (mGluR6) complex, which is localized to ON-bipolar cell dendritic terminals, leading to selective synapse formation. Here, we review our current understanding of the key factors and mechanisms underlying selective synapse formation of photoreceptor cells with bipolar and horizontal cells in the retina. In addition, we describe how defects/mutations of the molecules involved in photoreceptor synapse formation are associated with human retinal diseases and visual disorders.
Collapse
Affiliation(s)
- Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
39
|
Hasan N, Pangeni G, Ray TA, Fransen KM, Noel J, Borghuis BG, McCall MA, Gregg RG. LRIT3 is Required for Nyctalopin Expression and Normal ON and OFF Pathway Signaling in the Retina. eNeuro 2020; 7:ENEURO.0002-20.2020. [PMID: 31959619 PMCID: PMC7031853 DOI: 10.1523/eneuro.0002-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 12/20/2022] Open
Abstract
The first retinal synapse, photoreceptor→bipolar cell (BC), is both anatomically and functionally complex. Within the same synaptic region, a change in presynaptic glutamate release is sensed by both ON BCs (DBCs) via the metabotropic glutamate receptor 6 (mGluR6), and OFF BCs (HBCs) via ionotropic glutamate receptors to establish parallel signaling pathways that preferentially encode light increments (ON) or decrements (OFF), respectively. The synaptic structural organization of ON and OFF-type BCs at the photoreceptor terminal differs. DBCs make an invaginating synapse that contains a diverse but incompletely understood complex of interacting proteins (signalplex). HBCs make primarily flat contacts that contain an apparent different set of proteins that is equally uncharacterized. LRIT3 is a synaptic protein known to be essential for ON pathway visual function. In both male and female mice, we demonstrate that LRIT3 interacts with and is required for expression of nyctalopin, and thus TRPM1 at all DBC dendritic tips, but DBC signalplex components are not required for LRIT3 expression. Using whole-cell and multielectrode array (MEA) electrophysiology and glutamate imaging, we demonstrate that the loss of LRIT3 impacts both ON and OFF signaling pathway function. Without LRIT3, excitatory input to type 1 BCs is reduced, as are the visually evoked responses of many OFF retinal ganglion cells (RGCs). We conclude that the absence of LRIT3 expression disrupts excitatory input to OFF BCs and, thus disrupts the normal function of OFF RGCs.
Collapse
Affiliation(s)
- Nazarul Hasan
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292
| | - Gobinda Pangeni
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292
| | - Thomas A Ray
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292
| | - Kathryn M Fransen
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292
| | - Jennifer Noel
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292
| | - Ronald G Gregg
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292
| |
Collapse
|
40
|
Orlandi C, Omori Y, Wang Y, Cao Y, Ueno A, Roux MJ, Condomitti G, de Wit J, Kanagawa M, Furukawa T, Martemyanov KA. Transsynaptic Binding of Orphan Receptor GPR179 to Dystroglycan-Pikachurin Complex Is Essential for the Synaptic Organization of Photoreceptors. Cell Rep 2020; 25:130-145.e5. [PMID: 30282023 PMCID: PMC6203450 DOI: 10.1016/j.celrep.2018.08.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 01/05/2023] Open
Abstract
Establishing synaptic contacts between neurons is paramount for nervous system function. This process involves transsynaptic interactions between a host of cell adhesion molecules that act in cooperation with the proteins of the extracellular matrix to specify uniquephysiological propertiesofindividual synaptic connections. However, understanding of the molecular mechanisms that generate functional diversity in an input-specific fashion is limited. In this study, we identify that major components of the extracellular matrix proteins present in the synaptic cleft—members oftheheparansulfateproteoglycan (HSPG) family—associate with the GPR158/179 group of orphan receptors. Using the mammalian retina as a model system, we demonstrate that the HSPG member Pikachurin, released by photoreceptors, recruits a key post-synaptic signaling complex of downstream ON-bipolar neurons in coordination with the presynaptic dystroglycan glycoprotein complex. We further demonstrate that this transsynaptic assembly plays an essential role in synaptic transmission of photoreceptor signals. Orlandi et al. identify transsynaptic assembly at photoreceptor synapses involving pre-synaptic dystrophindystroglycan complex and the postsynaptic orphan receptor GPR179 bridged by HSPG protein Pikachurin in the cleft and demonstrate its role in shaping transmission of photoreceptor signals.
Collapse
Affiliation(s)
- Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Centre National de la Recherche Scientifique, UMR7104, INSERM, U1258, Illkirch, France
| | - Giuseppe Condomitti
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
41
|
Kinoshita J, Hasan N, Bell BA, Peachey NS. Reduced expression of the nob8 gene does not normalize the distribution or function of mGluR6 in the mouse retina. Mol Vis 2019; 25:890-901. [PMID: 32025181 PMCID: PMC6982428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Purpose The Grm6nob8 mouse carries a missense mutation in the Grm6 gene (p.Met66Leu), and exhibits a reduced b-wave of the electroretinogram (ERG), abnormal localization of metabotropic glutamate receptor 6 (mGluR6) to the depolarizing bipolar cell (DBC) soma, and a reduced level of mGluR6 at the DBC dendritic tips. Although the underlying mechanism remains unknown, one possible explanation is that DBCs cannot efficiently traffic the mutant mGluR6. In that scenario, reducing the total amount of mutant mGluR6 protein might normalize localization, and thus, improve the ERG phenotype as well. The second purpose of this study was to determine whether the abnormal cellular distribution of mutant mGluR6 in Grm6nob8 retinas might induce late onset DBC degeneration. Methods We crossed Grm6nob8 animals with Grm6nob3 mice, which carry a null mutation in Grm6, to generate Grm6nob3/nob8 compound heterozygotes. We used western blotting to measure the total mGluR6 content, and immunohistochemistry to document mGluR6 localization within DBCs. In addition, we examined outer retinal function with ERG and retinal architecture in vivo with spectral domain optical coherence tomography (SD-OCT). Results The retinal content of mGluR6 was reduced in the retinas of the Grm6nob3/nob8 compound heterozygotes compared to the Grm6nob8 homozygotes. The cellular distribution of mGluR6 in the Grm6nob3/nob8 compound heterozygotes matched that of the Grm6nob8 homozygotes, with extensive expression throughout the DBC cell body and limited expression at the DBC dendritic tips. The dark-adapted ERG b-waves of the Grm6nob3/nob8 mice were reduced in comparison to those of the Grm6nob8 homozygotes at postnatal day 21 and 28. The overall ERG waveforms obtained from 4- through 68-week old Grm6nob8 mice were in general agreement for dark- and light-adapted conditions. The maximum response and sensitivity of the dark-adapted ERG b-wave did not change statistically significantly with age. SD-OCT revealed the maintained laminar structure of the retina, including a clear inner nuclear layer (INL) at each age examined (from 11 to 57 weeks old), although the INL in the mice older than 39 weeks of age was somewhat thinner than that seen at 11 weeks. Conclusions Mislocalization of mutant mGluR6 is not normalized by reducing the total mGluR6. Mislocalized mutant mGluR6 does not trigger substantial loss of DBCs.
Collapse
Affiliation(s)
| | - Nazarul Hasan
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY
| | | | - Neal S. Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| |
Collapse
|
42
|
Liu HY, Huang J, Xiao H, Zhang MJ, Shi FF, Jiang YH, Du H, He Q, Wang ZY. Pseudodominant inheritance of autosomal recessive congenital stationary night blindness in one family with three co-segregating deleterious GRM6 variants identified by next-generation sequencing. Mol Genet Genomic Med 2019; 7:e952. [PMID: 31677249 PMCID: PMC6900388 DOI: 10.1002/mgg3.952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The congenital stationary night blindness (CSNB) affects the patients' dim light vision or dark adaption by impairing the normal function of retina. It is a clinically and genetically heterogeneous disorder and can be inherited in an X-linked, autosomal dominant or autosomal recessive pattern. Several genetic alterations to the genes involved in visual signal transduction of photoreceptors and/or bipolar cells underlie its pathogenesis. METHODS In this study, we used Sanger sequencing and next-generation sequencing (NGS)-based gene panel screening to investigate a family of three patients with CSNB inherited in an apparent autosomal dominant pattern. We expected to find out the disease-causing gene defects carried by this family. RESULTS We found that the patients in this family did not carry the RHO, GNAT1, or PDE6B mutation, but carried compound heterozygotes mutations of GRM6. Three deleterious GRM6 variants, p.Arg621Ter, p.Gly51Val, and p.Gly464Arg, were found to be co-segregating with the disease, causing a pseudodominant inheritance of GRM6-related autosomal recessive complete CSNB. CONCLUSION This study presents a rare case of autosomal recessive CSNB (arCSNB) pseudodominant inheritance, which potentially leads us to expand our gene candidate list in future genetic testing for apparent dominant pedigrees. The discovery of the two novel likely pathogenic variants p.Gly51Val and p.Gly464Arg could broaden our knowledge about the genetics of CSNB and provide insights into the structure and function of the GRM6 protein.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Jia Huang
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Hai Xiao
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Ming-Jie Zhang
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Fei-Fei Shi
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Ying-Hai Jiang
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Han Du
- Institute of Medical Genetics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | | | | |
Collapse
|
43
|
Das RG, Becker D, Jagannathan V, Goldstein O, Santana E, Carlin K, Sudharsan R, Leeb T, Nishizawa Y, Kondo M, Aguirre GD, Miyadera K. Genome-wide association study and whole-genome sequencing identify a deletion in LRIT3 associated with canine congenital stationary night blindness. Sci Rep 2019; 9:14166. [PMID: 31578364 PMCID: PMC6775105 DOI: 10.1038/s41598-019-50573-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023] Open
Abstract
Congenital stationary night blindness (CSNB), in the complete form, is caused by dysfunctions in ON-bipolar cells (ON-BCs) which are secondary neurons of the retina. We describe the first disease causative variant associated with CSNB in the dog. A genome-wide association study using 12 cases and 11 controls from a research colony determined a 4.6 Mb locus on canine chromosome 32. Subsequent whole-genome sequencing identified a 1 bp deletion in LRIT3 segregating with CSNB. The canine mutant LRIT3 gives rise to a truncated protein with unaltered subcellular expression in vitro. Genetic variants in LRIT3 have been associated with CSNB in patients although there is limited evidence regarding its apparently critical function in the mGluR6 pathway in ON-BCs. We determine that in the canine CSNB retina, the mutant LRIT3 is correctly localized to the region correlating with the ON-BC dendritic tips, albeit with reduced immunolabelling. The LRIT3-CSNB canine model has direct translational potential enabling studies to help understand the CSNB pathogenesis as well as to develop new therapies targeting the secondary neurons of the retina.
Collapse
Affiliation(s)
- Rueben G Das
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Doreen Becker
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America.,Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Orly Goldstein
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Evelyn Santana
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Kendall Carlin
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Raghavi Sudharsan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - Yuji Nishizawa
- Department of Biomedical Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Gustavo D Aguirre
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America.
| |
Collapse
|
44
|
Dunn HA, Orlandi C, Martemyanov KA. Beyond the Ligand: Extracellular and Transcellular G Protein-Coupled Receptor Complexes in Physiology and Pharmacology. Pharmacol Rev 2019; 71:503-519. [PMID: 31515243 PMCID: PMC6742926 DOI: 10.1124/pr.119.018044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) remain one of the most successful targets of U.S. Food and Drug Administration-approved drugs. GPCR research has predominantly focused on the characterization of the intracellular interactome's contribution to GPCR function and pharmacology. However, emerging evidence uncovers a new dimension in the biology of GPCRs involving their extracellular and transcellular interactions that critically impact GPCR function and pharmacology. The seminal examples include a variety of adhesion GPCRs, such as ADGRLs/latrophilins, ADGRBs/brain angiogenesis inhibitors, ADGRG1/GPR56, ADGRG6/GPR126, ADGRE5/CD97, and ADGRC3/CELSR3. However, recent advances have indicated that class C GPCRs that contain large extracellular domains, including group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, mGluR8), γ-aminobutyric acid receptors, and orphans GPR158 and GPR179, can also participate in this form of transcellular regulation. In this review, we will focus on a variety of identified extracellular and transcellular GPCR-interacting partners, including teneurins, neurexins, integrins, fibronectin leucine-rich transmembranes, contactin-6, neuroligin, laminins, collagens, major prion protein, amyloid precursor protein, complement C1q-likes, stabilin-2, pikachurin, dystroglycan, complement decay-accelerating factor CD55, cluster of differentiation CD36 and CD90, extracellular leucine-rich repeat and fibronectin type III domain containing 1, and leucine-rich repeat, immunoglobulin-like domain and transmembrane domains. We provide an account on the diversity of extracellular and transcellular GPCR complexes and their contribution to key cellular and physiologic processes, including cell migration, axon guidance, cellular and synaptic adhesion, and synaptogenesis. Furthermore, we discuss models and mechanisms by which extracellular GPCR assemblies may regulate communication at cellular junctions. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) continue to be the prominent focus of pharmacological intervention for a variety of human pathologies. Although the majority of GPCR research has focused on the intracellular interactome, recent advancements have identified an extracellular dimension of GPCR modulation that alters accepted pharmacological principles of GPCRs. Herein, we describe known endogenous allosteric modulators acting on GPCRs both in cis and in trans.
Collapse
Affiliation(s)
- Henry A Dunn
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | | |
Collapse
|
45
|
Winkelman BHJ, Howlett MHC, Hölzel MB, Joling C, Fransen KH, Pangeni G, Kamermans S, Sakuta H, Noda M, Simonsz HJ, McCall MA, De Zeeuw CI, Kamermans M. Nystagmus in patients with congenital stationary night blindness (CSNB) originates from synchronously firing retinal ganglion cells. PLoS Biol 2019; 17:e3000174. [PMID: 31513577 PMCID: PMC6741852 DOI: 10.1371/journal.pbio.3000174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Congenital nystagmus, involuntary oscillating small eye movements, is commonly thought to originate from aberrant interactions between brainstem nuclei and foveal cortical pathways. Here, we investigated whether nystagmus associated with congenital stationary night blindness (CSNB) results from primary deficits in the retina. We found that CSNB patients as well as an animal model (nob mice), both of which lacked functional nyctalopin protein (NYX, nyx) in ON bipolar cells (BCs) at their synapse with photoreceptors, showed oscillating eye movements at a frequency of 4-7 Hz. nob ON direction-selective ganglion cells (DSGCs), which detect global motion and project to the accessory optic system (AOS), oscillated with the same frequency as their eyes. In the dark, individual ganglion cells (GCs) oscillated asynchronously, but their oscillations became synchronized by light stimulation. Likewise, both patient and nob mice oscillating eye movements were only present in the light when contrast was present. Retinal pharmacological and genetic manipulations that blocked nob GC oscillations also eliminated their oscillating eye movements, and retinal pharmacological manipulations that reduced the oscillation frequency of nob GCs also reduced the oscillation frequency of their eye movements. We conclude that, in nob mice, synchronized oscillations of retinal GCs, most likely the ON-DCGCs, cause nystagmus with properties similar to those associated with CSNB in humans. These results show that the nob mouse is the first animal model for a form of congenital nystagmus, paving the way for development of therapeutic strategies.
Collapse
Affiliation(s)
- Beerend H. J. Winkelman
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Maj-Britt Hölzel
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Coen Joling
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Kathryn H. Fransen
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Gobinda Pangeni
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | | | - Hiraki Sakuta
- National Institute for Basic Biology, Okazaki, Japan
| | - Masaharu Noda
- National Institute for Basic Biology, Okazaki, Japan
| | - Huibert J. Simonsz
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands
| | - Maureen A. McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States of America
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Department of Biomedical Physics, Academic Medical Center, University of Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
46
|
Hasan N, Pangeni G, Cobb CA, Ray TA, Nettesheim ER, Ertel KJ, Lipinski DM, McCall MA, Gregg RG. Presynaptic Expression of LRIT3 Transsynaptically Organizes the Postsynaptic Glutamate Signaling Complex Containing TRPM1. Cell Rep 2019; 27:3107-3116.e3. [PMID: 31189098 PMCID: PMC6628893 DOI: 10.1016/j.celrep.2019.05.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022] Open
Abstract
Throughout the CNS, interactions between pre- and postsynaptic adhesion molecules establish normal synaptic structure and function. Leucine-rich repeat (LRR) domain-containing proteins are a large family that has a diversity of ligands, and their absence can cause disease. At the first retinal synapse, the absence of LRIT3 expression leads to the disassembly of the postsynaptic glutamate signaling complex (signalplex) expressed on depolarizing bipolar cell (DBC) dendrites. The prevalent view is that assembly of the signalplex results from direct postsynaptic protein:protein interactions. In contrast, we demonstrate that LRIT3 is expressed presynaptically, in rod photoreceptors (rods), and when we restore LRIT3 expression in Lrit3-/- rods, we restore expression of the postsynaptic glutamate signalplex and rod-driven vision. Our results demonstrate that, in the retina, the LRR-containing protein LRIT3 acts as a transsynaptic organizer of the postsynaptic complex required for normal synaptic function.
Collapse
Affiliation(s)
- Nazarul Hasan
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Gobinda Pangeni
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292, USA
| | - Catherine A Cobb
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Thomas A Ray
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Emily R Nettesheim
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina J Ertel
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel M Lipinski
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | - Ronald G Gregg
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA; Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40292, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
47
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
48
|
Itakura T, Webster A, Chintala SK, Wang Y, Gonzalez JM, Tan JC, Vranka JA, Acott T, Craft CM, Sibug Saber ME, Jeong S, Stamer WD, Martemyanov KA, Fini ME. GPR158 in the Visual System: Homeostatic Role in Regulation of Intraocular Pressure. J Ocul Pharmacol Ther 2019; 35:203-215. [PMID: 30855200 DOI: 10.1089/jop.2018.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose: GPR158 is a newly characterized family C G-protein-coupled receptor, previously identified in functional screens linked with biological stress, including one for susceptibility to ocular hypertension/glaucoma induced by glucocorticoid stress hormones. In this study, we investigated GPR158 function in the visual system. Methods: Gene expression and protein immunolocalization analyses were performed in mouse and human brain and eye to identify tissues where GPR158 might function. Gene expression was perturbed in mice, and in cultures of human trabecular meshwork cells of the aqueous outflow pathway, to investigate function and mechanism. Results: GPR158 is highly expressed in the brain, and in this study, we show prominent expression specifically in the visual center of the cerebral cortex. Expression was also observed in the eye, including photoreceptors, ganglion cells, and trabecular meshwork. Protein was also localized to the outer plexiform layer of the neural retina. Gpr158 deficiency in knockout (KO) mice conferred short-term protection against the intraocular pressure increase that occurred with aging, but this was reversed over time. Most strikingly, the pressure lowering effect of the acute stress hormone, epinephrine, was negated in KO mice. In contrast, no disruption of the electroretinogram was observed. Gene overexpression in cell cultures enhanced cAMP production in response to epinephrine, suggesting a mechanism for intraocular pressure regulation. Overexpression also increased survival of cells subjected to oxidative stress linked to ocular hypertension, associated with TP53 pathway activation. Conclusions: These findings implicate GPR158 as a homeostatic regulator of intraocular pressure and suggest GPR158 could be a pharmacological target for managing ocular hypertension.
Collapse
Affiliation(s)
- Tatsuo Itakura
- 1 USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Andrew Webster
- 1 USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Shravan K Chintala
- 1 USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Yuchen Wang
- 2 Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Jose M Gonzalez
- 3 Doheny Eye Institute and Department of Ophthalmology, University of California Los Angeles, Los Angeles, California
| | - J C Tan
- 3 Doheny Eye Institute and Department of Ophthalmology, University of California Los Angeles, Los Angeles, California
| | - Janice A Vranka
- 4 Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Ted Acott
- 4 Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Cheryl Mae Craft
- 5 USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California.,6 Department of Integrative Anatomical Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Maria E Sibug Saber
- 7 Department of Pathology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Shinwu Jeong
- 8 USC Institute for Genetic Medicine, Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - W Daniel Stamer
- 9 Department of Ophthalmology, Duke University, Durham, North Carolina
| | | | - M Elizabeth Fini
- 1 USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| |
Collapse
|
49
|
Orlandi C, Sutton LP, Muntean BS, Song C, Martemyanov KA. Homeostatic cAMP regulation by the RGS7 complex controls depression-related behaviors. Neuropsychopharmacology 2019; 44:642-653. [PMID: 30546127 PMCID: PMC6333837 DOI: 10.1038/s41386-018-0238-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 01/27/2023]
Abstract
Affective disorders arise from abnormal responses of the brain to prolonged exposure to challenging environmental stimuli. Recent work identified the orphan receptor GPR158 as a molecular link between chronic stress and depression. Here we reveal a non-canonical mechanism by which GPR158 exerts its effects on stress-induced depression by the complex formation with Regulator of G protein Signaling 7 (RGS7). Chronic stress promotes membrane recruitment of RGS7 via GPR158 in the medial prefrontal cortex (mPFC). The resultant complex suppresses homeostatic regulation of cAMP by inhibitory GPCRs in the region. Accordingly, RGS7 loss in mice induces an antidepressant-like phenotype and resiliency to stress, whereas its restoration within the mPFC is sufficient to rescue this phenotype in a GPR158-dependent way. These findings mechanistically link the unusual orphan receptor-RGS complex to a major stress mediator, the cAMP system and suggest new avenues for pharmacological interventions in affective disorders.
Collapse
Affiliation(s)
- Cesare Orlandi
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Laurie P. Sutton
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Brian S. Muntean
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Chenghui Song
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Kirill A. Martemyanov
- 0000000122199231grid.214007.0Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
50
|
Piano I, Baba K, Claudia Gargini, Tosini G. Heteromeric MT 1/MT 2 melatonin receptors modulate the scotopic electroretinogram via PKCζ in mice. Exp Eye Res 2018; 177:50-54. [PMID: 30059666 PMCID: PMC6261696 DOI: 10.1016/j.exer.2018.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 01/12/2023]
Abstract
Melatonin plays an important role in the regulation of retinal functions, and previous studies have also reported that the action of melatonin on photoreceptors is mediated by melatonin receptor heterodimers. Furthermore, it has been reported that the melatonin-induced increase in the amplitude of the a- and b-wave is significantly blunted by inhibition of PKC. Previous work has also shown that PKCζ is present in the photoreceptors, thus suggesting that PCKζ may be implicated in the modulation of melatonin signaling in photoreceptors. To investigate the role PKCζ plays in the modulation of the melatonin effect on the scotopic ERG, mice were injected with melatonin and with specific inhibitors of different PKC isoforms. PKCζ knockout mice were also used in this study. PKCζ activation in photoreceptors following melatonin injection was also investigated with immunocytochemistry. Inhibition of PKCζ by PKCζ-pseudosubstrate inhibitor (20 μM) significantly reduced the melatonin-induced increase in the amplitude of the a- and b-wave. To further investigate the role of different PKCs in the modulation of the ERGs, we tested whether intra-vitreal injection of Enzastaurin (a potent inhibitor of PCKα, PKCβ, PKCγ, and PKCε) has any effect on the melatonin-induced increase in the a- and b-wave of the scotopic ERGs. Enzastaurin (100 nM) did not prevent the melatonin-induced increase in the amplitude of the a-wave, thus suggesting that PCKα, PKCβ, PKCγ, and PKCε are not involved in this phenomenon. Finally, our data indicated that, in mice lacking PKCζ, melatonin injection failed to increase the amplitude of the a- and b-waves of the scotopic ERGs. An increase in PKCζ phosphorylation in the photoreceptors was also observed by immunocytochemistry. Our data indicate that melatonin signaling does indeed use the PKCζ pathway to increase the amplitude of the a- and b-wave of the scotopic ERG.
Collapse
Affiliation(s)
- Ilaria Piano
- Neuroscience Institute, Department of Pharmacology and Toxicology Morehouse School of Medicine, Atlanta, GA, USA; Dipartimento di Farmacia, Universita di Pisa, Pisa, Italy
| | - Kenkichi Baba
- Neuroscience Institute, Department of Pharmacology and Toxicology Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Gianluca Tosini
- Neuroscience Institute, Department of Pharmacology and Toxicology Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|