1
|
Moosavi Zenooz A, Eterafi M, Azarmi Giglou S, Safarzadeh E. Embracing cancer immunotherapy with manganese particles. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01070-9. [PMID: 40397376 DOI: 10.1007/s13402-025-01070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025] Open
Abstract
A substance integral to the sustenance and functionality of virtually all forms of life is manganese (Mn), classified as an essential trace metal. Its significance lies in its pivotal role in facilitating metabolic processes crucial for survival. Additionally, Mn exerts influence over various biological functions including bone formation and maintenance, as well as regulation within systems governing immunity, nervous signaling, and digestion. Manganese nanoparticles (Mn-NP) stand out as a beacon of promise within the realm of immunotherapy, their focus honed on intricate mechanisms such as triggering immune pathways, igniting inflammasomes, inducing immunogenic cell death (ICD), and sculpting the nuances of the tumor microenvironment. These minuscule marvels have dazzled researchers with their potential in reshaping the landscape of cancer immunotherapy - serving as potent vaccine enhancers, efficient drug couriers, and formidable allies when paired with immune checkpoint inhibitors (ICIs) or cutting-edge photodynamic/photothermal therapies. Herein, we aim to provide a comprehensive review of recent advances in the application of Mn and Mn-NP in the immunotherapy of cancer. We hope that this review will display an insightful view of Mn-NPs and provide guidance for design and application of them in immune-based cancer therapies.
Collapse
Affiliation(s)
- Ali Moosavi Zenooz
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheil Azarmi Giglou
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 5166614711, Iran.
| |
Collapse
|
2
|
Collins JF. Intestinal Iron Transporters Facilitate Manganese Absorption Under Non-physiological Conditions. Cell Mol Gastroenterol Hepatol 2025:101519. [PMID: 40354827 DOI: 10.1016/j.jcmgh.2025.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Affiliation(s)
- James F Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, Florida.
| |
Collapse
|
3
|
Fang S, Clayton PT, Garg D, Yoganathan S, Zaki MS, Helgadottir EA, Palmadottir VK, Landry M, Gospe SM, Mankad K, Bonifati V, Sharma S, Tuschl K. Consensus of Expert Opinion for the Diagnosis and Management of Hypermanganesaemia With Dystonia 1 and 2. J Inherit Metab Dis 2025; 48:e70031. [PMID: 40320765 PMCID: PMC12050909 DOI: 10.1002/jimd.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
Hypermanganesaemia with Dystonia 1 and 2 (HMNDYT1 and 2) are inherited, autosomal recessive disorders caused by pathogenic variants in the genes encoding the manganese transporters SLC30A10 and SLC39A14, respectively. Impaired hepatic and enterocytic manganese uptake (SLC39A14) and excretion (SLC30A10) lead to deposition of manganese in the basal ganglia resulting in childhood-onset dystonia-parkinsonism. HMNDYT1 is characterized by additional features due to manganese accumulation in the liver causing cirrhosis, polycythaemia, and depleted iron stores. High blood manganese levels and pathognomonic MRI brain appearances of manganese deposition resulting in T1 hyperintensity of the basal ganglia are diagnostic clues. Treatment is limited to chelation therapy and iron supplementation that can prevent disease progression. Due to their rarity, the awareness of the inherited manganese transporter defects is limited. Here, we provide consensus expert recommendations for the diagnosis and treatment of patients with HMNDYT1 and 2 in order to facilitate early diagnosis and optimize clinical outcome. These recommendations were developed through an evidence and consensus-based process led by a group of 13 international experts across the disciplines of metabolic medicine, neurology, hematology, genetics, and radiology, and address the clinical presentation, diagnostic investigations, principles of treatment, and monitoring of patients with HMNDYT1 and 2.
Collapse
Affiliation(s)
- Sherry Fang
- Department of Metabolic MedicineGreat Ormond Street Hospital for ChildrenLondonUK
| | - Peter T. Clayton
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| | - Divyani Garg
- Department of NeurologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Sangeetha Yoganathan
- Paediatric Neurology Unit, Department of Neurological SciencesChristian Medical CollegeVelloreIndia
| | - Maha S. Zaki
- Department of Clinical GeneticsHuman Genetics and Genome Research Institute, National Research CentreCairoEgypt
| | | | | | - Maude Landry
- The Moncton Hospital, Horizon Health NetworkMonctonCanada
| | - Sidney M. Gospe
- Department of Neurology and PediatricsUniversity of WashingtonSeattleWashingtonUSA
- Department of PediatricsDuke UniversityDurhamNorth CarolinaUSA
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street Hospital for ChildrenLondonUK
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center RotterdamRotterdamthe Netherlands
| | - Suvasini Sharma
- Department of PediatricsLady Hardinge Medical College and Associated Kalawati Saran Children's HospitalDelhiIndia
| | - Karin Tuschl
- Department of Metabolic MedicineGreat Ormond Street Hospital for ChildrenLondonUK
- Department of Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child Health, University College LondonLondonUK
| |
Collapse
|
4
|
Rodriguez-Antiguedad J, Rajalingam R, Krüger C, Teixeira-dos-Santos D, Sun C, Fernandez-Toledo E, Duarte A, Saffie-Awad P, Barrett MJ, Flanigan JL, Emamikhah M, Patel N, San Luciano M, Cooper C, Bahr N, Oguh O, Buhrmann A, Vater M, Fuchshofen R, Vulinovic F, Parreidt MI, Weissbach A, Lohmann K, Klein C, Marras C, Camargos S. Genotype-Phenotype Relations for the Dystonia-Parkinsonism Genes GLB1, SLC6A3, SLC30A10, SLC39A14, and PLA2G6: MDSGene Systematic Review. Int J Mol Sci 2025; 26:4074. [PMID: 40362326 PMCID: PMC12071818 DOI: 10.3390/ijms26094074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
The Movement Disorders Society recommends the DYT/PARK prefix for genes where dystonia and parkinsonism are prominent in approximately half or more of patients. This systematic review explores the genotype-phenotype correlations of GLB1, SLC6A3, SLC30A10, PLA2G6, and SLC39A14-recently classified as DYT SLC39A14 and historically linked to dystonia-parkinsonism. We searched PubMed and the Human Gene Mutation Database using standardized terms, including English-language, peer-reviewed publications up to February 2024. Following the MDSGene protocol, we extracted individual-level data on patients with biallelic pathogenic variants and at least one movement disorder. Features were marked "missing" if not explicitly reported. Of 1828 articles, 128 were eligible. We identified 386 patients and 262 variants. The median age at onset was 3 years for GLB1, 3 months for SLC6A3, 2.5 years for SLC30A10, 1.5 years for SLC39A14, and 16 years for PLA2G6. Missing data may reflect underreporting of negative findings. Case reports/serie, may bias toward atypical presentations. Our analysis showed dystonia-parkinsonism predominates in SLC6A3 and PLA2G6, while GLB1, SLC30A10, and SLC39A1 show predominantly dystonic phenotypes with a low frequency of parkinsonism. Ataxia was common in GLB1 and PLA2G6. Awareness of these phenotypes is essential for early diagnosis and intervention, particularly in treatable conditions like SLC30A10 or SLC39A14. The predominantly dystonic phenotype in GLB1, SLC30A10, and SLC39A14 suggest that the DYT prefix may be more appropriate, highlighting the need to reconsider their nomenclature, and the importance of systematic reviews.
Collapse
Affiliation(s)
- Jon Rodriguez-Antiguedad
- Movement Disorders Unit, Sant Pau Hospital, 08041 Barcelona, Spain;
- Institut de Investigacions Biomèdiques-Sant Pau, 08041 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Rajasumi Rajalingam
- Department of Psychiatry, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA;
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada; (C.S.); (M.E.)
| | - Clara Krüger
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | | | - Christine Sun
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada; (C.S.); (M.E.)
| | - Elias Fernandez-Toledo
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Alexia Duarte
- Department of Internal Medicine, Health Sciences Sector, Federal University of Paraná, Curitiba 81531-980, Brazil;
| | | | - Matthew J. Barrett
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23220, USA;
| | - Joseph L. Flanigan
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Maziar Emamikhah
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada; (C.S.); (M.E.)
| | - Neepa Patel
- RUSH Parkinson’s Disease and Movement Disorders Program, Department of Neurological Sciences, RUSH University Medical Center, Chicago, IL 60612, USA;
| | - Marta San Luciano
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Christine Cooper
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Neurology Service, Ralph H. Johnson VA Medical Center, Charleston, CA 29401, USA
| | - Natascha Bahr
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Odinachi Oguh
- Cleveland Clinic Luo Rico Center of Brain Health, Las Vegas, NV 89106, USA;
| | - Alissa Buhrmann
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Merle Vater
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Rabea Fuchshofen
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Maik-Iven Parreidt
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Anne Weissbach
- Center for Rare Diseases, University Clinic of Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
- Institute of Systems Motor Science, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany; (C.K.); (N.B.); (A.B.); (M.V.); (R.F.); (M.-I.P.); (K.L.); (C.K.)
| | - Connie Marras
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada; (C.S.); (M.E.)
| | - Sarah Camargos
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital das Clínicas, The Federal University of Minas Gerais, Belo Horizonte 30130-100, Brazil
| |
Collapse
|
5
|
Huang L, Nguyen ST, Yang Z, Kirschke CP, Prouteau C, Copin MC, Bonneau D, Blanchet O, Mallebranche C, Pellier I, Coutant R, Miot C, Ziegler A. Reduced AKT activation accompanied with high TP53 expression is implicated in the impaired hematogenesis in Ziegler-Huang syndrome and the Znt7 null mice partially recapitulates the human disease linked to pancytopenia. J Trace Elem Med Biol 2025; 89:127658. [PMID: 40286389 DOI: 10.1016/j.jtemb.2025.127658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Inherited bone marrow failure (IBMF) is a life-threatening condition. Excessive expression of TP53 induces cell cycle arrest and apoptosis of hematopoietic cells in individuals with IBMF. We recently discovered two pathogenic variants, NM_001144884:c.21dup;p.(Asp8ArgfsTer3) and NM_001144884:c.842 + 15 T > C, in ZNT7 associated with IBMF (Ziegler-Huang Syndrome; BMF8). However, the pathophysiologic mechanism of IBMF caused by ZNT7 mutations remained unknown. METHOD We investigated TP53 expression and the activation of its upstream regulator, AKT, in cell lines from affected individuals. We rescued the wild-type phenotype of AKT activation via transduction of wild-type ZNT7 into patient's fibroblasts. We performed fluorescence microscopy to assess co-expression patterns of ZNT7 with hematopoietic cell markers in different human and mouse bone marrow cell types. Finally, we evaluated the hematological features of Znt7 deficient mice. RESULTS The growth of patient's EBV-transformed B (B-EBV) lymphoblasts was impaired. We observed excessive expression of TP53 in the patient's B-EBV lymphoblasts accompanied by a significant decrease in AKT activation. Importantly, overexpression of wild-type ZNT7 in patient's fibroblasts rescued the activation of the AKT pathway by insulin. Additionally, human ZNT7 was expressed in myeloid and lymphoid lineage cells, whereas mouse ZnT7 was mainly expressed in the nucleated hematopoietic cells in the respective bone marrow. Despite these differences, we observed progressive cytopenia in Znt7KO mice, partially recapitulating BMF8 in humans. CONCLUSION Excessive expression of TP53 and down-regulation of AKT activation induced by ZNT7 deficiency might impair cell survival, which may contribute to the pathophysiology of bone marrow failure in affected individuals with BMF8.
Collapse
Affiliation(s)
- Liping Huang
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA; Graduate Group of Nutritional Biology, Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA 95616, USA; Integrative Genetics and Genomics, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| | - Steven T Nguyen
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | - Zhongyue Yang
- Graduate Group of Nutritional Biology, Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Catherine P Kirschke
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | - Clément Prouteau
- Department of Genetics, University Hospital of Angers, 4 rue Larrey, Cedex 9, Angers 49333, France
| | | | - Dominique Bonneau
- Department of Genetics, University Hospital of Angers, 4 rue Larrey, Cedex 9, Angers 49333, France
| | - Odile Blanchet
- Biobank Resource Center, CHU Angers, University Hospital of Angers, 4 rue Larrey, Cedex 9, BB-0033-00038, 49333, France; University Angers Nantes Université CHU Angers INSERM CNRS CRCI2NA SFR ICAT, Cedex 9, Angers 49333, France
| | - Coralie Mallebranche
- University Angers Nantes Université CHU Angers INSERM CNRS CRCI2NA SFR ICAT, Cedex 9, Angers 49333, France
| | - Isabelle Pellier
- University Angers Nantes Université CHU Angers INSERM CNRS CRCI2NA SFR ICAT, Cedex 9, Angers 49333, France
| | - Régis Coutant
- Department of Pediatric Endocrinology, University Hospital of Angers, Cedex 9, Angers 49333, France; Reference Center for Rare Pituitary Diseases, University of Hospital of Angers, Cedex 9, Angers 49333, France
| | - Charline Miot
- University Angers Nantes Université CHU Angers INSERM CNRS CRCI2NA SFR ICAT, Cedex 9, Angers 49333, France; Immunology and Allergology Laboratory, University Hospital of Angers, 4 rue Larrey, Cedex 9, Angers 49333, France
| | - Alban Ziegler
- Department of Genetics, University Hospital of Angers, 4 rue Larrey, Cedex 9, Angers 49333, France; Deparment of Medical Genetics, University Hospital of Toulouse, Toulouse 31100, France.
| |
Collapse
|
6
|
Stefan K, Puri S, Rafehi M, Latambale G, Neif M, Tägl F, Arlt NS, Yazdi ZN, Bakos É, Chen X, Zhang B, Ismail Al-Khalil W, Busch H, Chen ZS, Özvegy-Laczka C, Namasivayam V, Juvale K, Stefan SM. Functional and structural polypharmacology of indazole-based privileged ligands to tackle the undruggability of membrane transporters. Eur J Med Chem 2025; 287:117234. [PMID: 39892094 DOI: 10.1016/j.ejmech.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025]
Abstract
Despite the significant roles of solute carrier (SLC) and ATP-binding cassette (ABC) transporters in human health and disease, most remain poorly characterized as intrinsic and/or xenobiotic ligands are unknown, rendering them as 'undruggable'. Polypharmacology, defined as the simultaneous engagement of multiple targets by a single ligand, offers a promising avenue for discovering novel lead compounds addressing these emerging pharmacological challenges - a major focus in contemporary medicinal chemistry. While common structural motifs among phylogenetically diverse proteins have been proposed to underlie polypharmacology through the concept of 'multitarget binding sites', a comprehensive analysis of these functional and structural aspects from a medicinal chemistry perspective has yet to be undertaken. In our study, we synthesized 65 distinct indazole derivatives and evaluated their activity across a broad biological assessment platform encompassing 17 specific and polyspecific SLC and ABC transporters. Notably, ten indazoles exhibited cross-target activity against challenging transporter targets associated with neurodegeneration (ABCA1), metabolic reprogramming (MCT4), and cancer multidrug resistance (ABCC10). Furthermore, molecular blind docking experiments and advanced binding site analyses revealed, for the first time, conserved binding motifs across monocarboxylate transporters (MCTs), organic anion transporting polypeptides (OATPs), organic cation transporters (OCTs), and ABC transporters, characterized by specific and recurring residues of tyrosine, phenylalanine, serine, and threonine. These findings highlight not only the potential of polypharmacology in drug discovery but also provide insights into the structural underpinnings of ligand binding across membrane transporters.
Collapse
Affiliation(s)
- Katja Stefan
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Sachin Puri
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India; SVKM's NMIMS, School of Pharmacy & Technology Management, Plot no. B4, Green Industrial Park, Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Dist. Telangana 509 301, Hyderabad, 509301, India
| | - Muhammad Rafehi
- University Hospital of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; Department of Medical Education Augsburg, Faculty of Medicine, University of Augsburg, Am Medizincampus 2, 86156, Augsburg, Germany; University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ganesh Latambale
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Maria Neif
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Franziska Tägl
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Nike Sophia Arlt
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Zeinab Nezafat Yazdi
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Éva Bakos
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Xiang Chen
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Bohan Zhang
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Wouroud Ismail Al-Khalil
- University Medical Center Göttingen, Institute of Clinical Pharmacology, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Hauke Busch
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medical Systems Biology, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Zhe-Sheng Chen
- St. John's University, College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York City, New York, USA
| | - Csilla Özvegy-Laczka
- Institute for Molecular Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2., H-1117, Budapest, Hungary
| | - Vigneshwaran Namasivayam
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cellbiological Chemistry, An der Immenburg 4, 53121, Bonn, Germany.
| | - Kapil Juvale
- SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Sven Marcel Stefan
- University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck Institute of Experimental Dermatology, Medicinal Chemistry and Systems Polypharmacology, Ratzeburger Allee 160, 23538, Lübeck, Germany; University of Oslo and Oslo University Hospital, Department of Pathology, Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway; Medical University of Lublin, Department of Biopharmacy, Chodzki 4a, 20-093, Lublin, Poland.
| |
Collapse
|
7
|
Magro G, Laterza V, Tosto F, Torrente A. Manganese Neurotoxicity: A Comprehensive Review of Pathophysiology and Inherited and Acquired Disorders. J Xenobiot 2025; 15:54. [PMID: 40278159 PMCID: PMC12028444 DOI: 10.3390/jox15020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Manganese (Mn) is an essential trace element and a cofactor for several key enzymes, such as mitochondrial superoxide dismutase. Consequently, it plays an important defense role against reactive oxygen species. Despite this, Mn chronic overexposure can result in a neurological disorder referred to as manganism, which shares some similarities with Parkinson's disease. Mn levels seem regulated by many transporters responsible for its uptake and efflux. These transporters play an established role in many inherited disorders of Mn metabolism and neurotoxicity. Some inherited Mn metabolism disorders, caused by mutations of SLC30A10 and SLC39A14, assume crucial importance since earlier treatment results in a better prognosis. Physicians should be familiar with the clinical presentation of these disorders as the underlying cause of dystonia/parkinsonism and look for other accompanying features, such as liver disease and polycythemia, which are typically associated with SLC30A10 mutations. This review aims to highlight the currently known Mn transporters, Mn-related neurotoxicity, and its consequences, and it provides an overview of inherited and acquired disorders of Mn metabolism. Currently available treatments are also discussed, focusing on the most frequently encountered presentations.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Neuroscience, “Giovanni Paolo II” Hospital, Lamezia Terme, 88100 Catanzaro, Italy
| | - Vincenzo Laterza
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Federico Tosto
- Department of Neuroscience, “Giovanni Paolo II” Hospital, Lamezia Terme, 88100 Catanzaro, Italy
| | - Angelo Torrente
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, 90129 Palermo, Italy;
| |
Collapse
|
8
|
Chen R, Petrazzini BO, Duffy Á, Rocheleau G, Jordan D, Bansal M, Do R. Trans-ancestral rare variant association study with machine learning-based phenotyping for metabolic dysfunction-associated steatotic liver disease. Genome Biol 2025; 26:50. [PMID: 40065360 PMCID: PMC11892324 DOI: 10.1186/s13059-025-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified common variants associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, rare coding variant studies have been limited by phenotyping challenges and small sample sizes. We test associations of rare and ultra-rare coding variants with proton density fat fraction (PDFF) and MASLD case-control status in 736,010 participants of diverse ancestries from the UK Biobank, All of Us, and BioMe and performed a trans-ancestral meta-analysis. We then developed models to accurately predict PDFF and MASLD status in the UK Biobank and tested associations with these predicted phenotypes to increase statistical power. RESULTS The trans-ancestral meta-analysis with PDFF and MASLD case-control status identifies two single variants and two gene-level associations in APOB, CDH5, MYCBP2, and XAB2. Association testing with predicted phenotypes, which replicates more known genetic variants from GWAS than true phenotypes, identifies 16 single variants and 11 gene-level associations implicating 23 additional genes. Two variants were polymorphic only among African ancestry participants and several associations showed significant heterogeneity in ancestry and sex-stratified analyses. In total, we identified 27 genes, of which 3 are monogenic causes of steatosis (APOB, G6PC1, PPARG), 4 were previously associated with MASLD (APOB, APOC3, INSR, PPARG), and 23 had supporting clinical, experimental, and/or genetic evidence. CONCLUSIONS Our results suggest that trans-ancestral association analyses can identify ancestry-specific rare and ultra-rare coding variants in MASLD pathogenesis. Furthermore, we demonstrate the utility of machine learning in genetic investigations of difficult-to-phenotype diseases in trans-ancestral biobanks.
Collapse
Affiliation(s)
- Robert Chen
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ben Omega Petrazzini
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Áine Duffy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meena Bansal
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Prajapati M, Zhang JZ, Chong GS, Chiu L, Mercadante CJ, Kowalski HL, Antipova O, Lai B, Ralle M, Jackson BP, Punshon T, Guo S, Aghajan M, Bartnikas TB. Studies of Slc30a10 Deficiency in Mice Reveal That Intestinal Iron Transporters Dmt1 and Ferroportin Transport Manganese. Cell Mol Gastroenterol Hepatol 2025; 19:101489. [PMID: 40024532 DOI: 10.1016/j.jcmgh.2025.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND & AIMS SLC11A2 (DMT1) and SLC40A1 (ferroportin) are essential for dietary iron absorption, but their role in manganese transport is debated. SLC30A10 deficiency causes severe manganese excess due to loss of gastrointestinal manganese excretion. Patients are treated with chelators but also respond to oral iron, suggesting that iron can outcompete manganese for absorption in this disease. Here, we determine if divalent metal transport 1 (Dmt1) and ferroportin can transport manganese using Slc30a10-deficient mice as a model. METHODS Manganese absorption and levels and other disease parameters were assessed in Slc30a10-/- mice with and without intestinal Dmt1 and ferroportin deficiency using gastric gavage, surgical bile collections, multiple metal assays, and other techniques. The contribution of intestinal Slc30a10 deficiency to ferroportin-dependent manganese absorption was explored by determining if intestinal Slc30a10 deficiency increases manganese absorption in a mouse model of hereditary hemochromatosis, a disease of iron excess due to ferroportin upregulation. RESULTS Manganese absorption was increased in Slc30a10-deficient mice despite manganese excess. Intestinal Dmt1 and ferroportin deficiency attenuated manganese absorption and excess in Slc30a10-deficient mice. Intestinal Slc30a10 deficiency increased manganese absorption and levels in the hemochromatosis mouse model. CONCLUSIONS Aberrant absorption contributes prominently to SLC30A10 deficiency, a disease previously attributed to impaired excretion, and is dependent upon intestinal Dmt1 and ferroportin and exacerbated by loss of intestinal Slc30a10. This work expands our understanding of overlaps between manganese and iron transport and the mechanisms by which the body regulates absorption of 2 nutrients that can share transport pathways. We propose that a reconsideration of the role of Dmt1 and ferroportin in manganese homeostasis is warranted.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Jared Z Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Grace S Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Courtney J Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island; Currently at Ensoma, Boston, Massachusetts
| | - Heather L Kowalski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island; Currently at BlueRock Therapeutics, Cambridge, Massachusetts
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Brian P Jackson
- Biomedical National Elemental Imaging Resource, Dartmouth College, Hanover, New Hampshire
| | - Tracy Punshon
- Biomedical National Elemental Imaging Resource, Dartmouth College, Hanover, New Hampshire
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, California
| | | | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island.
| |
Collapse
|
10
|
Gokhale A, Mendez-Vazquez H, Sampson MM, Moctezuma FGR, Harbuzariu A, Sing A, Zlatic SA, Roberts AM, Prajapati M, Roberts BR, Bartnikas TB, Wood LB, Sloan SA, Faundez V, Werner E. Mitochondrially Transcribed dsRNA Mediates Manganese-induced Neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638529. [PMID: 40027638 PMCID: PMC11870567 DOI: 10.1101/2025.02.16.638529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Manganese (Mn) is an essential trace element required for various biological functions, but excessive Mn levels are neurotoxic and lead to significant health concerns. The mechanisms underlying Mn-induced neurotoxicity remain poorly understood. Neuropathological studies of affected brain regions reveal astrogliosis, and neuronal loss, along with evidence of neuroinflammation. Here, we present a novel Mn-dependent mechanism linking mitochondrial dysfunction to neuroinflammation. We found that Mn disrupts mitochondrial transcriptome processing, resulting in the accumulation of complementary RNAs that form double-stranded RNA (dsRNA). This dsRNA is released to the cytoplasm, where it activates cytosolic sensor pathways, triggering type I interferon responses and inflammatory cytokine production. This mechanism is present in 100-day human cerebral organoids, where Mn-induced inflammatory responses are observed predominantly in mature astrocytes. Similar effects were observed in vivo in a mouse model carrying mutations in the SLC30A10 gene, which results in Mn accumulation. These findings highlight a previously unrecognized role for mitochondrial dsRNA in Mn-induced neuroinflammation and provide insights into the molecular basis of manganism. We propose that this mitochondrial dsRNA-induced inflammatory pathway has broad implications in for neurodegenerative diseases caused by environmental or genetic insults.
Collapse
Affiliation(s)
- Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | | | - Maureen M. Sampson
- Department of Human Genetics, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Felix G Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Adriana Harbuzariu
- Emory Stem Cell and Organoids Core, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Anson Sing
- Department of Human Genetics, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Stephanie A. Zlatic
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Anne M. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Steven A. Sloan
- Department of Human Genetics, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| |
Collapse
|
11
|
Dolgin V, Chabosseau P, Bistritzer J, Noyman I, Staretz‐Chacham O, Wormser O, Hadar N, Eskin‐Schwartz M, Kanengisser‐Pines B, Narkis G, Abramsky R, Shany E, Rutter GA, Marks K, Birk OS. Severe neonatal hypotonia due to SLC30A5 variant affecting function of ZnT5 zinc transporter. JIMD Rep 2025; 66:e12465. [PMID: 39790720 PMCID: PMC11712426 DOI: 10.1002/jmd2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
The tightly-regulated spatial and temporal distribution of zinc ion concentrations within cellular compartments is controlled by two groups of Zn2+ transporters: the 14-member ZIP/SLC39 family, facilitating Zn2+ influx into the cytoplasm from the extracellular space or intracellular organelles; and the 10-member ZnT/SLC30 family, mobilizing Zn2+ in the opposite direction. Genetic aberrations in most zinc transporters cause human syndromes. Notably, previous studies demonstrated osteopenia and male-specific cardiac death in mice lacking the ZnT5/SLC30A5 zinc transporter, and suggested association of two homozygous frameshift SLC30A5 variants with perinatal mortality in humans, due to hydrops fetalis and hypertrophic cardiomyopathy. We set out to decipher the molecular basis of a severe hypotonia syndrome. Combining homozygosity mapping and exome sequencing studies of consanguineous Bedouin kindred, as well as transfection experiments and zinc monitoring in HEK293 cells, we demonstrate that a bi-allelic in-frame 3bp deletion variant in SLC30A5, deleting isoleucine within the highly conserved cation efflux domain of the encoded ZnT5, results in lower cytosolic zinc concentrations, causing a syndrome of severe non-progressive neonatal axial and limb hypotonia with high-arched palate and respiratory failure. There was no evidence of hydrops fetalis, cardiomyopathy or multi-organ involvement. Affected infants required nasogastric tube or gastrostomy feeding, suffered from various degrees of respiratory compromise and failure to thrive and died in infancy. Thus, a biallelic variant in SLC30A5 (ZnT5), affecting cytosolic zinc concentrations, causes a severe hypotonia syndrome with respiratory insufficiency and failure to thrive, lethal by 1 year of age.
Collapse
Affiliation(s)
- Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
| | | | - Jacob Bistritzer
- Pediatric Neurology Unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Iris Noyman
- Pediatric Neurology Unit, Division of Pediatrics, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Orna Staretz‐Chacham
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
- Metabolic Clinic, Division of Pediatrics, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
| | - Noam Hadar
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
| | - Marina Eskin‐Schwartz
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
| | | | - Ginat Narkis
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
| | - Ramy Abramsky
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
| | - Eilon Shany
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Guy A. Rutter
- CRCHUM and Department of MedicineUniversité de MontréalMontréalQCCanada
- Department of Diabetes, Endocrinology and Medicine, Faculty of MedicineImperial CollegeLondonUK
- LKC School of MedicineNanyang Technological CollegeSingaporeSingapore
| | - Kyla Marks
- Department of Neonatology, Soroka University Medical Center, Faculty of Health SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Ohad S. Birk
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health SciencesBen Gurion UniversityBeer‐ShevaIsrael
- Soroka Medical CenterGenetics InstituteBeer‐ShevaIsrael
- The Danek Gertner Institute of Human GeneticsSheba Medical CenterTel‐HashomerRamat GanIsrael
| |
Collapse
|
12
|
Adella A, Gommers LMM, Bos C, Leermakers PA, de Baaij JHF, Hoenderop JGJ. Characterization of intestine-specific TRPM6 knockout C57BL/6 J mice: effects of short-term omeprazole treatment. Pflugers Arch 2025; 477:99-109. [PMID: 39266724 PMCID: PMC11711252 DOI: 10.1007/s00424-024-03017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The transient receptor potential melastatin type 6 (TRPM6) is a divalent cation channel pivotal for gatekeeping Mg2+ balance. Disturbance in Mg2+ balance has been associated with the chronic use of proton pump inhibitors (PPIs) such as omeprazole. In this study, we investigated if TRPM6 plays a role in mediating the effects of short-term (4 days) omeprazole treatment on intestinal Mg2+ malabsorption using intestine-specific TRPM6 knockout (Vill1-TRPM6-/-) mice. To do this, forty-eight adult male C57BL/6 J mice (50% TRPM6fl/fl and 50% Vill1-TRPM6-/-) were characterized, and the distal colon of these mice was subjected to RNA sequencing. Moreover, these mice were exposed to 20 mg/kg bodyweight omeprazole or placebo for 4 days. Vill1-TRPM6-/- mice had a significantly lower 25Mg2+ absorption compared to control TRPM6fl/fl mice, accompanied by lower Mg2+ serum levels, and urinary Mg2+ excretion. Furthermore, renal Slc41a3, Trpm6, and Trpm7 gene expressions were higher in these animals, indicating a compensatory mechanism via the kidney. RNA sequencing of the distal colon revealed a downregulation of the Mn2+ transporter Slc30a10. However, no changes in Mn2+ serum, urine, and feces levels were observed. Moreover, 4 days omeprazole treatment did not affect Mg2+ homeostasis as no changes in serum 25Mg2+ and total Mg2+ were seen. In conclusion, we demonstrate here for the first time that Vill1-TRPM6-/- mice have a lower Mg2+ absorption in the intestines. Moreover, short-term omeprazole treatment does not alter Mg2+ absorption in both Vill1-TRPM6-/- and TRPM6fl/fl mice. This suggests that TRPM6-mediated Mg2+ absorption in the intestines is not affected by short-term PPI administration.
Collapse
Affiliation(s)
- Anastasia Adella
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisanne M M Gommers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter A Leermakers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Choi EK, Aring L, Peng Y, Correia AB, Lieberman AP, Iwase S, Seo YA. Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis. JCI Insight 2024; 9:e168440. [PMID: 39435657 PMCID: PMC11530126 DOI: 10.1172/jci.insight.168440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Solute carrier family 39, member 8 (SLC39A8), is a transmembrane transporter that mediates the cellular uptake of zinc, iron, and manganese (Mn). Human genetic studies document the involvement of SLC39A8 in Mn homeostasis, brain development, and function. However, the role and pathophysiological mechanisms of SLC39A8 in the central nervous system remain elusive. We generated Slc39a8 neuron-specific knockout (Slc39a8-NSKO) mice to study SLC39A8 function in neurons. The Slc39a8-NSKO mice displayed markedly decreased Mn levels in the whole brain and brain regions, especially the cerebellum. Radiotracer studies using 54Mn revealed that Slc39a8-NSKO mice had impaired brain uptake of Mn. Slc39a8-NSKO cerebellums exhibited morphological defects and abnormal dendritic arborization of Purkinje cells. Reduced neurogenesis and increased apoptotic cell death occurred in the cerebellar external granular layer of Slc39a8-NSKO mice. Brain Mn deficiency in Slc39a8-NSKO mice was associated with motor dysfunction. Unbiased RNA-Seq analysis revealed downregulation of key pathways relevant to neurodevelopment and synaptic plasticity, including cAMP signaling pathway genes. We further demonstrated that Slc39a8 was required for the optimal transcriptional response to the cAMP-mediated signaling pathway. In summary, our study highlighted the essential roles of SLC39A8 in brain Mn uptake and cerebellum development and functions.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Yujie Peng
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Xia Z, Tang B, Li X, Li X, Jia Y, Jiang J, Chen J, Song J, Liu S, Min J, Wang F. A Novel Role for the Longevity-Associated Protein SLC39A11 as a Manganese Transporter. RESEARCH (WASHINGTON, D.C.) 2024; 7:0440. [PMID: 39114488 PMCID: PMC11304475 DOI: 10.34133/research.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
The identification of aging- and longevity-associated genes is important for promoting healthy aging. By analyzing a large cohort of Chinese centenarians, we previously found that single-nucleotide polymorphisms (SNPs) in the SLC39A11 gene (also known as ZIP11) are associated with longevity in males. However, the function of the SLC39A11 protein remains unclear. Here, we found that SLC39A11 expression is significantly reduced in patients with Hutchinson-Gilford progeria syndrome (HGPS). In addition, we found that zebrafish with a mutation in slc39a11 that significantly reduces its expression have an accelerated aging phenotype, including a shortened average lifespan, muscle atrophy and reduced swimming, impaired muscle regeneration, gut damage, and abnormal morphology in the reproductive system. Interestingly, these signs of premature aging were more pronounced in male zebrafish than in females. RNA-sequencing analysis revealed that cellular senescence may serve as a potential mechanism for driving this slc39a11 deficiency-induced phenotype in mutant zebrafish. Moreover, immunofluorescence showed significantly increased DNA damage and reactive oxygen species signaling in slc39a11 mutant zebrafish. Using inductively coupled plasma mass spectrometry (ICP-MS), we found that manganese significantly accumulates in slc39a11 mutant zebrafish, as well as in the serum of both global Slc39a11 knockout and hepatocyte-specific Slc39a11 knockout mice, suggesting that this metal transporter regulates systemic manganese levels. Finally, using cultured human fibroblasts, we found that both knocking down SLC39A11 and exposure to high extracellular manganese increased cellular senescence. These findings provide compelling evidence that SLC39A11 serves to protect against the aging process, at least in part by regulating cellular manganese homeostasis.
Collapse
Affiliation(s)
- Zhidan Xia
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
| | - Biyao Tang
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
- School of Public Health, Basic Medical Sciences, The First Affiliated Hospital, Hengyang Medical School,
University of South China, Hengyang, China
- School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital,
Xinxiang Medical University, Xinxiang, China
| | - Xiaopeng Li
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
| | - Xinran Li
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
| | - Yangfan Jia
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Jiang
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyao Chen
- The Core Facilities,
Zhejiang University School of Medicine, Hangzhou, China
| | - Jingshu Song
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
| | - Siyi Liu
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
| | - Junxia Min
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang Provincial Key Laboratory of Bioelectromagnetics, State Key Laboratory of Experimental Hematology,
Zhejiang University School of Medicine, Hangzhou, China
- School of Public Health, Basic Medical Sciences, The First Affiliated Hospital, Hengyang Medical School,
University of South China, Hengyang, China
- School of Public Health, School of Basic Medical Sciences, The First Affiliated Hospital,
Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
15
|
Almatrafi AM, Alayoubi AM, Alluqmani M, Hashmi JA, Basit S. Exome Sequence Analysis to Characterize Undiagnosed Family Segregating Motor Impairment and Dystonia. J Clin Med 2024; 13:4252. [PMID: 39064292 PMCID: PMC11278008 DOI: 10.3390/jcm13144252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Hypermanganesemia with dystonia 1 (HMNDYT1) is a rare genetic disorder characterized by elevated blood manganese levels. This condition is associated with polycythemia, motor neurodegeneration with extrapyramidal features, and hepatic dysfunction, which can progress to cirrhosis in some patients. Materials and Methods: In this study, a consanguineous Saudi family with two affected individuals exhibiting symptoms of severe motor impairment, spastic paraparesis, postural instability, and dystonia was studied. Clinical and radiographic evaluations were conducted on the affected individuals. Whole exome sequencing (WES) was performed to diagnose the disease and to determine the causative variant underlying the phenotype. Moreover, Sanger sequencing was used for validation and segregation analysis of the identified variant. Bioinformatics tools were utilized to predict the pathogenicity of candidate variants based on ACMG criteria. Results: Exome sequencing detected a recurrent homozygous missense variant (c.266T>C; p.L89P) in exon 1 of the SLC30A10 gene. Sanger sequencing was employed to validate the segregation of the discovered variant in all available family members. Bioinformatics tools predicted that the variant is potentially pathogenic. Moreover, conservation analysis showed that the variant is highly conserved in vertebrates. Conclusions: This study shows that exome sequencing is instrumental in diagnosing undiagnosed neurodevelopmental disorders. Moreover, this study expands the mutation spectrum of SLC30A10 in distinct populations.
Collapse
Affiliation(s)
- Ahmad M. Almatrafi
- Department of Biology, College of Science, Taibah University, Medina 42353, Saudi Arabia
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia;
| | - Abdulfatah M. Alayoubi
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
| | - Majed Alluqmani
- Department of Neurology, College of Medicine, Taibah University, Medina 42353, Saudi Arabia;
| | - Jamil A. Hashmi
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia;
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia;
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
| |
Collapse
|
16
|
Prajapati M, Zhang JZ, Chong GS, Chiu L, Mercadante CJ, Kowalski HL, Antipova O, Lai B, Ralle M, Jackson BP, Punshon T, Guo S, Aghajan M, Bartnikas TB. Manganese transporter SLC30A10 and iron transporters SLC40A1 and SLC11A2 impact dietary manganese absorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603814. [PMID: 39071439 PMCID: PMC11275741 DOI: 10.1101/2024.07.17.603814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
SLC30A10 deficiency is a disease of severe manganese excess attributed to loss of SLC30A10-dependent manganese excretion via the gastrointestinal tract. Patients develop dystonia, cirrhosis, and polycythemia. They are treated with chelators but also respond to oral iron, suggesting that iron can outcompete manganese for absorption in this disease. Here we explore the latter observation. Intriguingly, manganese absorption is increased in Slc30a10-deficient mice despite manganese excess. Studies of multiple mouse models indicate that increased dietary manganese absorption reflects two processes: loss of manganese export from enterocytes into the gastrointestinal tract lumen by SLC30A10, and increased absorption of dietary manganese by iron transporters SLC11A2 (DMT1) and SLC40A1 (ferroportin). Our work demonstrates that aberrant absorption contributes prominently to SLC30A10 deficiency and expands our understanding of biological interactions between iron and manganese. Based on these results, we propose a reconsideration of the role of iron transporters in manganese homeostasis is warranted.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Jared Z. Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Grace S. Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Courtney J. Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Heather L. Kowalski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Olga Antipova
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brian P. Jackson
- Biomedical National Elemental Imaging Resource, Dartmouth College, Hanover, NH, 03755, USA
| | - Tracy Punshon
- Biomedical National Elemental Imaging Resource, Dartmouth College, Hanover, NH, 03755, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | | | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
17
|
Kahali S, Das SK, Kumar R, Gupta K, Kundu R, Bhattacharya B, Nath A, Venkatramani R, Datta A. A water-soluble, cell-permeable Mn(ii) sensor enables visualization of manganese dynamics in live mammalian cells. Chem Sci 2024; 15:10753-10769. [PMID: 39027293 PMCID: PMC11253179 DOI: 10.1039/d4sc00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Central roles of Mn2+ ions in immunity, brain function, and photosynthesis necessitate probes for tracking this essential metal ion in living systems. However, developing a cell-permeable, fluorescent sensor for selective imaging of Mn2+ ions in the aqueous cellular milieu has remained a challenge. This is because Mn2+ is a weak binder to ligand-scaffolds and Mn2+ ions quench fluorescent dyes leading to turn-off sensors that are not applicable for in vivo imaging. Sensors with a unique combination of Mn2+ selectivity, μM sensitivity, and response in aqueous media are necessary for not only visualizing labile cellular Mn2+ ions live, but also for measuring Mn2+ concentrations in living cells. No sensor has achieved this combination thus far. Here we report a novel, completely water-soluble, reversible, fluorescent turn-on, Mn2+ selective sensor, M4, with a K d of 1.4 μM for Mn2+ ions. M4 entered cells within 15 min of direct incubation and was applied to image Mn2+ ions in living mammalian cells in both confocal fluorescence intensity and lifetime-based set-ups. The probe was able to visualize Mn2+ dynamics in live cells revealing differential Mn2+ localization and uptake dynamics under pathophysiological versus physiological conditions. In a key experiment, we generated an in-cell Mn2+ response curve for the sensor which allowed the measurement of the endogenous labile Mn2+ concentration in HeLa cells as 1.14 ± 0.15 μM. Thus, our computationally designed, selective, sensitive, and cell-permeable sensor with a 620 nM limit of detection for Mn2+ in water provides the first estimate of endogenous labile Mn2+ levels in mammalian cells.
Collapse
Affiliation(s)
- Smitaroopa Kahali
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Sujit Kumar Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Ravinder Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Kunika Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Rajasree Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Baivabi Bhattacharya
- Department of Developmental Biology and Genetics, Indian Institute of Science Bangalore 560012 India
| | - Arnab Nath
- Department of Developmental Biology and Genetics, Indian Institute of Science Bangalore 560012 India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| |
Collapse
|
18
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
19
|
Wang S, Lyu Y, Ji S, Liu N, Wu B, Zhao F, Li Z, Qu Y, Zhu Y, Xie L, Li Y, Zhang Z, Song H, Hu X, Qiu Y, Zheng X, Zhang W, Yang Y, Li F, Cai J, Zhu Y, Cao Z, Tan F, Shi X. Heavy metals and metalloids exposure and liver function in Chinese adults - A nationally representative cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 252:118653. [PMID: 38518907 DOI: 10.1016/j.envres.2024.118653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND In China, the effects of heavy metals and metalloids (HMMs) on liver health are not consistently documented, despite their prevalent environmental presence. OBJECTIVE Our research assessed the association between HMMs and liver function biomarkers in a comprehensive sample of Chinese adults. METHODS We analyzed data from 9445 participants in the China National Human Biomonitoring survey. Blood and urine were evaluated for HMM concentrations, and liver health was gauged using serum albumin (ALB), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) metrics. Various statistical methods were employed to understand the relationship between 11 HMMs and liver function, adjusting for multiple factors. We also explored interactions with alcohol intake, gender, and age. RESULTS Among HMMs, selenium in blood [weighted geometric mean (GM) = 95.56 μg/L] and molybdenum in urine (GM = 46.44 μg/L) showed the highest concentrations, while lead in blood (GM = 21.92 μg/L) and arsenic in urine (GM = 19.80 μg/L) had the highest levels among risk HMMs. Manganese and thallium consistently indicated potential risk factor to liver in both sample types, while selenium displayed potential liver protection. Blood HMM mixtures were negatively associated with ALB (β = -0.614, 95% CI: -0.809, -0.418) and positively with AST (β = 0.701, 95% CI: 0.290, 1.111). No significant associations were found in urine HMM mixtures. Manganese, tin, nickel, and selenium were notable in blood mixture associations, with selenium and cobalt being significant in urine. The relationship of certain HMMs varied based on alcohol consumption. CONCLUSION This research highlights the complex relationship between HMM exposure and liver health in Chinese adults, particularly emphasizing metals like manganese, thallium, and selenium. The results suggest a need for public health attention to low dose HMM exposure and underscore the potential benefits of selenium for liver health. Further studies are essential to establish causality.
Collapse
Affiliation(s)
- Shiyu Wang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuebin Lyu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nankun Liu
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Linna Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Institute of Environmental Health, School of Public Health, and Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwei Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangyu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Tan
- Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Xiaoming Shi
- Chinese Center for Disease Control and Prevention, Beijing, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Hutchens S, Melkote A, Jursa T, Shawlot W, Trasande L, Smith DR, Mukhopadhyay S. Elevated thyroid manganese reduces thyroid iodine to induce hypothyroidism in mice, but not rats, lacking SLC30A10 transporter. Metallomics 2024; 16:mfae029. [PMID: 38866719 PMCID: PMC11216084 DOI: 10.1093/mtomcs/mfae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Elevated manganese (Mn) accumulates in the brain and induces neurotoxicity. SLC30A10 is an Mn efflux transporter that controls body Mn levels. We previously reported that full-body Slc30a10 knockout mice (1) recapitulate the body Mn retention phenotype of humans with loss-of-function SLC30A10 mutations and (2) unexpectedly develop hypothyroidism induced by Mn accumulation in the thyroid, which reduces intra-thyroid thyroxine. Subsequent analyses of National Health and Nutrition Examination Survey data identified an association between serum Mn and subclinical thyroid changes. The emergence of thyroid deficits as a feature of Mn toxicity suggests that changes in thyroid function may be an underappreciated, but critical, modulator of Mn-induced disease. To better understand the relationship between thyroid function and Mn toxicity, here we further defined the mechanism of Mn-induced hypothyroidism using mouse and rat models. Slc30a10 knockout mice exhibited a profound deficit in thyroid iodine levels that occurred contemporaneously with increases in thyroid Mn levels and preceded the onset of overt hypothyroidism. Wild-type Mn-exposed mice also exhibited increased thyroid Mn levels, an inverse correlation between thyroid Mn and iodine levels, and subclinical hypothyroidism. In contrast, thyroid iodine levels were unaltered in newly generated Slc30a10 knockout rats despite an increase in thyroid Mn levels, and the knockout rats were euthyroid. Thus, Mn-induced thyroid dysfunction in genetic or Mn exposure-induced mouse models occurs due to a reduction in thyroid iodine subsequent to an increase in thyroid Mn levels. Moreover, rat and mouse thyroids have differential sensitivities to Mn, which may impact the manifestations of Mn-induced disease in these routinely used animal models.
Collapse
Affiliation(s)
- Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Ashvini Melkote
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - William Shawlot
- Mouse Genetic Engineering Facility, The University of Texas at Austin, Austin, TX, USA
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics and Departments of Population Health and Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
- New York University Wagner School of Public Service, New York, NY, USA
- New York University College of Global Public Health, New York, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
21
|
Gurol KC, Jursa T, Cho EJ, Fast W, Dalby KN, Smith DR, Mukhopadhyay S. PHD2 enzyme is an intracellular manganese sensor that initiates the homeostatic response against elevated manganese. Proc Natl Acad Sci U S A 2024; 121:e2402538121. [PMID: 38905240 PMCID: PMC11214094 DOI: 10.1073/pnas.2402538121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024] Open
Abstract
Intracellular sensors detect changes in levels of essential metals to initiate homeostatic responses. But, a mammalian manganese (Mn) sensor is unknown, representing a major gap in understanding of Mn homeostasis. Using human-relevant models, we recently reported that: 1) the primary homeostatic response to elevated Mn is upregulation of hypoxia-inducible factors (HIFs), which increases expression of the Mn efflux transporter SLC30A10; and 2) elevated Mn blocks the prolyl hydroxylation of HIFs by prolyl hydroxylase domain (PHD) enzymes, which otherwise targets HIFs for degradation. Thus, the mammalian mechanism for sensing elevated Mn likely relates to PHD inhibition. Moreover, 1) Mn substitutes for a catalytic iron (Fe) in PHD structures; and 2) exchangeable cellular levels of Fe and Mn are comparable. Therefore, we hypothesized that elevated Mn directly inhibits PHD by replacing its catalytic Fe. In vitro assays using catalytically active PHD2, the primary PHD isoform, revealed that Mn inhibited, and Fe supplementation rescued, PHD2 activity. However, a mutation in PHD2 (D315E) that selectively reduced Mn binding without substantially impacting Fe binding or enzymatic activity resulted in complete insensitivity of PHD2 to Mn in vitro. Additionally, hepatic cells expressing full-length PHD2D315E were less sensitive to Mn-induced HIF activation and SLC30A10 upregulation than PHD2wild-type. These results: 1) define a fundamental Mn sensing mechanism for controlling Mn homeostasis-elevated Mn inhibits PHD2, which functions as a Mn sensor, by outcompeting its catalytic Fe, and PHD2 inhibition activates HIF signaling to up-regulate SLC30A10; and 2) identify a unique mode of metal sensing that may have wide applicability.
Collapse
Affiliation(s)
- Kerem C. Gurol
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA95064
| | - Eun Jeong Cho
- College of Pharmacy, Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX78712
| | - Walter Fast
- Division of Chemical Biology and Drug Discovery, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Kevin N. Dalby
- College of Pharmacy, Targeted Therapeutic Drug Discovery and Development Program, The University of Texas at Austin, Austin, TX78712
- Division of Chemical Biology and Drug Discovery, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA95064
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
22
|
Prajapati M, Zhang JZ, Chiu L, Chong GS, Mercadante CJ, Kowalski HL, Delaney B, Anderson JA, Guo S, Aghajan M, Bartnikas TB. Hepatic HIF2 is a key determinant of manganese excess and polycythemia in SLC30A10 deficiency. JCI Insight 2024; 9:e169738. [PMID: 38652538 PMCID: PMC11141921 DOI: 10.1172/jci.insight.169738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess. The goal of this study was to determine the basis of erythropoietin excess in SLC30A10 deficiency. Here, we demonstrate that transcription factors hypoxia-inducible factor 1a (Hif1a) and 2a (Hif2a), key mediators of the cellular response to hypoxia, are both upregulated in livers of Slc30a10-deficient mice. Hepatic Hif2a deficiency corrected erythropoietin expression and polycythemia and attenuated aberrant hepatic gene expression in Slc30a10-deficient mice, while hepatic Hif1a deficiency had no discernible impact. Hepatic Hif2a deficiency also attenuated manganese excess, though the underlying cause of this is not clear at this time. Overall, our results indicate that hepatic HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency and expand our understanding of the contribution of HIFs to human disease.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Jared Z. Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Grace S. Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Courtney J. Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Heather L. Kowalski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Bradley Delaney
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Jessica A. Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
23
|
Nishito Y, Kamimura Y, Nagamatsu S, Yamamoto N, Yasui H, Kambe T. Zinc and manganese homeostasis closely interact in mammalian cells. FASEB J 2024; 38:e23605. [PMID: 38597508 DOI: 10.1096/fj.202400181r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Understanding the homeostatic interactions among essential trace metals is important for explaining their roles in cellular systems. Recent studies in vertebrates suggest that cellular Mn metabolism is related to Zn metabolism in multifarious cellular processes. However, the underlying mechanism remains unclear. In this study, we examined the changes in the expression of proteins involved in cellular Zn and/or Mn homeostatic control and measured the Mn as well as Zn contents and Zn enzyme activities to elucidate the effects of Mn and Zn homeostasis on each other. Mn treatment decreased the expression of the Zn homeostatic proteins metallothionein (MT) and ZNT1 and reduced Zn enzyme activities, which were attributed to the decreased Zn content. Moreover, loss of Mn efflux transport protein decreased MT and ZNT1 expression and Zn enzyme activity without changing extracellular Mn content. This reduction was not observed when supplementing with the same Cu concentrations and in cells lacking Cu efflux proteins. Furthermore, cellular Zn homeostasis was oppositely regulated in cells expressing Zn and Mn importer ZIP8, depending on whether Zn or Mn concentration was elevated in the extracellular milieu. Our results provide novel insights into the intricate interactions between Mn and Zn homeostasis in mammalian cells and facilitate our understanding of the physiopathology of Mn, which may lead to the development of treatment strategies for Mn-related diseases in the future.
Collapse
Affiliation(s)
- Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiki Kamimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shino Nagamatsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nao Yamamoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Mattison DR, Momoli F, Alyanak C, Aschner M, Baker M, Cashman N, Dydak U, Farhat N, Guilarte TR, Karyakina N, Ramoju S, Shilnikova N, Taba P, Krewski D. Diagnosis of manganism and manganese neurotoxicity: A workshop report. MEDICINE INTERNATIONAL 2024; 4:11. [PMID: 38410758 PMCID: PMC10895461 DOI: 10.3892/mi.2024.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
With declining exposures to manganese (Mn) in occupational settings, there is a need for more sensitive exposure assessments and clinical diagnostic criteria for manganism and Mn neurotoxicity. To address this issue, a workshop was held on November 12-13, 2020, with international experts on Mn toxicity. The workshop discussions focused on the history of the diagnostic criteria for manganism, including those developed by the Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST) in Quebec in 2005 and criteria developed by the Chinese government in 2002 and updated in 2006; the utility of biomarkers of exposure; recent developments in magnetic resonance imaging (MRI) for assessing Mn accumulation in the brain and diagnosing manganism; and potential future applications of metabolomics. The suggestions of the participants for updating manganism diagnostic criteria included the consideration of: i) A history of previous occupational and environmental exposure to Mn; ii) relevant clinical symptoms such as dystonia; iii) MRI imaging to document Mn accumulation in the neural tissues, including the basal ganglia; and iv) criteria for the differential diagnosis of manganism and other neurological conditions. Important research gaps include the characterization of Mn exposure and other co-exposures, exploration of the roles of different brain regions with MRI, understanding the complexity of metal ion transporters involved in Mn homeostasis, and a need for information on other neurotransmitter systems and brain regions underlying the pathophysiology of manganism.
Collapse
Affiliation(s)
- Donald R. Mattison
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Franco Momoli
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Cemil Alyanak
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marissa Baker
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Neil Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- ProMIS Neurosciences, Inc., Toronto, ON M4S 3E2, Canada
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Nawal Farhat
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Tomás R. Guilarte
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | | | - Siva Ramoju
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
| | - Natalia Shilnikova
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- R. Samuel McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
- Neurology Clinic, Tartu University Hospital, 50406 Tartu, Estonia
| | - Daniel Krewski
- Risk Sciences International, Ottawa, ON K1P 5J6, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
- R. Samuel McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| |
Collapse
|
25
|
Warden A, Mayfield RD, Gurol KC, Hutchens S, Liu C, Mukhopadhyay S. Loss of SLC30A10 manganese transporter alters expression of neurotransmission genes and activates hypoxia-inducible factor signaling in mice. Metallomics 2024; 16:mfae007. [PMID: 38285613 PMCID: PMC10883138 DOI: 10.1093/mtomcs/mfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
The essential metal manganese (Mn) induces neuromotor disease at elevated levels. The manganese efflux transporter SLC30A10 regulates brain Mn levels. Homozygous loss-of-function mutations in SLC30A10 induce hereditary Mn neurotoxicity in humans. Our prior characterization of Slc30a10 knockout mice recapitulated the high brain Mn levels and neuromotor deficits reported in humans. But, mechanisms of Mn-induced motor deficits due to SLC30A10 mutations or elevated Mn exposure are unclear. To gain insights into this issue, we characterized changes in gene expression in the basal ganglia, the main brain region targeted by Mn, of Slc30a10 knockout mice using unbiased transcriptomics. Compared with littermates, >1000 genes were upregulated or downregulated in the basal ganglia sub-regions (i.e. caudate putamen, globus pallidus, and substantia nigra) of the knockouts. Pathway analyses revealed notable changes in genes regulating synaptic transmission and neurotransmitter function in the knockouts that may contribute to the motor phenotype. Expression changes in the knockouts were essentially normalized by a reduced Mn chow, establishing that changes were Mn dependent. Upstream regulator analyses identified hypoxia-inducible factor (HIF) signaling, which we recently characterized to be a primary cellular response to elevated Mn, as a critical mediator of the transcriptomic changes in the basal ganglia of the knockout mice. HIF activation was also evident in the liver of the knockout mice. These results: (i) enhance understanding of the pathobiology of Mn-induced motor disease; (ii) identify specific target genes/pathways for future mechanistic analyses; and (iii) independently corroborate the importance of the HIF pathway in Mn homeostasis and toxicity.
Collapse
Affiliation(s)
- Anna Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kerem C Gurol
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Hutchens
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chunyi Liu
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
26
|
Giannini R, Agolini E, Palumbo G, Novelli A, Garone G, Grasso M, Colafati GS, Matraxia M, Piccirilli E, Deodati A, Ceglie G. Case Report: A rare form of congenital erythrocytosis due to SLC30A10 biallelic variants-differential diagnosis and recommendation for biochemical and genetic screening. Front Pediatr 2024; 12:1319885. [PMID: 38283630 PMCID: PMC10811125 DOI: 10.3389/fped.2024.1319885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Congenital erythrocytosis recognizes heterogeneous genetic basis and despite the use of NGS technologies, more than 50% of cases are still classified as idiopathic. Herein, we describe the case of a 3-year-old boy with a rare metabolic disorder due to SLC30A10 bi-allelic mutations and characterized by hypermanganesemia, congenital erythrocytosis and neurodegeneration, also known as hypermanganesemia with dystonia 1 (HMNDYT1). The patient was treated with iron supplementation and chelation therapy with CaNa2EDTA, resulting in a significative reduction of blood manganese levels and erythrocytosis indexes. Although it couldn't be excluded that the patient's developmental impairment was part of the phenotypic spectrum of the disease, after three months from starting treatment no characteristic extrapyramidal sign was detectable. Our findings suggest the importance of assessing serum manganese levels in patients with unexplained polycythemia and increased liver enzymes. Moreover, we highlight the importance of extended genetic testing as a powerful diagnostic tool to uncover rare genetic forms of congenital erythrocytosis. In the described patient, identifying the molecular cause of erythrocytosis has proven essential for proper clinical management and access to therapeutic options.
Collapse
Affiliation(s)
- Rosalinda Giannini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giuseppe Palumbo
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giacomo Garone
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Melissa Grasso
- Neurological and Neurosurgical Diseases Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Marta Matraxia
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Annalisa Deodati
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Endocrinology and Diabetes Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giulia Ceglie
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
27
|
Croucher KM, Fleming SM. ATP13A2 (PARK9) and basal ganglia function. Front Neurol 2024; 14:1252400. [PMID: 38249738 PMCID: PMC10796451 DOI: 10.3389/fneur.2023.1252400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
ATP13A2 is a lysosomal protein involved in polyamine transport with loss of function mutations associated with multiple neurodegenerative conditions. These include early onset Parkinson's disease, Kufor-Rakeb Syndrome, neuronal ceroid lipofuscinosis, hereditary spastic paraplegia, and amyotrophic lateral sclerosis. While ATP13A2 mutations may result in clinical heterogeneity, the basal ganglia appear to be impacted in the majority of cases. The basal ganglia is particularly vulnerable to environmental exposures such as heavy metals, pesticides, and industrial agents which are also established risk factors for many neurodegenerative conditions. Not surprisingly then, impaired function of ATP13A2 has been linked to heavy metal toxicity including manganese, iron, and zinc. This review discusses the role of ATP13A2 in basal ganglia function and dysfunction, potential common pathological mechanisms in ATP13A2-related disorders, and how gene x environment interactions may contribute to basal ganglia dysfunction.
Collapse
Affiliation(s)
- Kristina M. Croucher
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, United States
| | - Sheila M. Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
28
|
Smerchek DT, Rients EL, McLaughlin AM, Henderson JA, Ortner BM, Thornton KJ, Hansen SL. The influence of steroidal implants and manganese sulfate supplementation on growth performance, trace mineral status, hepatic gene expression, hepatic enzyme activity, and circulating metabolites in feedlot steers. J Anim Sci 2024; 102:skae062. [PMID: 38456567 PMCID: PMC10959487 DOI: 10.1093/jas/skae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Angus-cross steers (n = 144; 359 kg ± 13.4) were used to assess the effect of dietary Mn and steroidal implants on performance, trace minerals (TM) status, hepatic enzyme activity, hepatic gene expression, and serum metabolites. Steers (n = 6/pen) were stratified by BW in a 3 × 2 factorial. GrowSafe bunks recorded individual feed intake (experimental unit = steer; n = 24/treatment). Dietary treatments included (MANG; 8 pens/treatment; Mn as MnSO4): (1) no supplemental Mn (analyzed 14 mg Mn/kg DM; Mn0); (2) 20 mg supplemental Mn/kg DM (Mn20); (3) 50 mg supplemental Mn/kg DM (Mn50). Within MANG, steers received a steroidal implant treatment (IMP) on day 0: (1) no implant; NO; or (2) combination implant (Revalor-200; REV). Liver biopsies for TM analysis and qPCR, and blood for serum glucose, insulin, non-esterified fatty acids, and urea-N (SUN) analysis were collected on days 0, 20, 40, and 77. Data were analyzed as a randomized complete block with a factorial arrangement of treatments including fixed effects of Mn treatment (MANG) and implant (IMP) using PROC MIXED of SAS 9.4 using initial BW as a covariate. Liver TM, serum metabolite, enzyme activity, and gene expression data were analyzed as repeated measures. No MANG × IMP effects were noted (P ≥ 0.12) for growth performance or carcass characteristic measures. Dietary Mn did not influence final body weight, overall ADG, or overall G:F (P ≥ 0.14). Liver Mn concentration increased with supplemental Mn concentration (MANG; P = 0.01). An IMP × DAY effect was noted for liver Mn (P = 0.01) where NO and REV were similar on day 0 but NO cattle increased liver Mn from days 0 to 20 while REV liver Mn decreased. Relative expression of MnSOD in the liver was greater in REV (P = 0.02) compared to NO and within a MANG × IMP effect (P = 0.01) REV increased liver MnSOD activity. These data indicate current NASEM Mn recommendations are adequate to meet the demands of finishing beef cattle given a steroidal implant. Despite the roles of Mn in metabolic pathways and antioxidant defense, a basal diet containing 14 mg Mn/kg DM was sufficient for the normal growth of finishing steers. This study also provided novel insight into how implants and supplemental Mn influence genes related to arginine metabolism, urea synthesis, antioxidant capacity, and TM homeostasis as well as arginase and MnSOD activity in hepatic tissue of beef steers.
Collapse
Affiliation(s)
- Dathan T Smerchek
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Emma L Rients
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Amy M McLaughlin
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Jacob A Henderson
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Brock M Ortner
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Kara J Thornton
- Department of Animal, Dairy, and Veterinary Science, Utah State University, Logan, UT, 84322, USA
| | - Stephanie L Hansen
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
29
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
30
|
Shi JH, Chen YX, Feng Y, Yang X, Lin J, Wang T, Wei CC, Ma XH, Yang R, Cao D, Zhang H, Xie X, Xie Z, Zhang WJ. Fructose overconsumption impairs hepatic manganese homeostasis and ammonia disposal. Nat Commun 2023; 14:7934. [PMID: 38040719 PMCID: PMC10692208 DOI: 10.1038/s41467-023-43609-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Arginase, a manganese (Mn)-dependent enzyme, is indispensable for urea generation and ammonia disposal in the liver. The potential role of fructose in Mn and ammonia metabolism is undefined. Here we demonstrate that fructose overconsumption impairs hepatic Mn homeostasis and ammonia disposal in male mice. Fructose overexposure reduces liver Mn content as well as its activity of arginase and Mn-SOD, and impairs the clearance of blood ammonia under liver dysfunction. Mechanistically, fructose activates the Mn exporter Slc30a10 gene transcription in the liver in a ChREBP-dependent manner. Hepatic overexpression of Slc30a10 can mimic the effect of fructose on liver Mn content and ammonia disposal. Hepatocyte-specific deletion of Slc30a10 or ChREBP increases liver Mn contents and arginase activity, and abolishes their responsiveness to fructose. Collectively, our data establish a role of fructose in hepatic Mn and ammonia metabolism through ChREBP/Slc30a10 pathway, and postulate fructose dietary restriction for the prevention and treatment of hyperammonemia.
Collapse
Affiliation(s)
- Jian-Hui Shi
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yu-Xia Chen
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yingying Feng
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaohang Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Lin
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Ting Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chun-Chun Wei
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Xian-Hua Ma
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Rui Yang
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Dongmei Cao
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Hai Zhang
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhifang Xie
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Weiping J Zhang
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China.
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
31
|
Hao X, Shao Z, Zhang N, Jiang M, Cao X, Li S, Guan Y, Wang C. Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture. Nat Commun 2023; 14:7498. [PMID: 37980427 PMCID: PMC10657403 DOI: 10.1038/s41467-023-43400-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
Kidney stone disease (KSD) is a complex disorder with high heritability and prevalence. We performed a large genome-wide association study (GWAS) meta-analysis for KSD to date, including 720,199 individuals with 17,969 cases in European population. We identified 44 susceptibility loci, including 28 novel loci. Cell type-specific analysis pinpointed the proximal tubule as the most relevant cells where susceptibility variants might act through a tissue-specific fashion. By integrating kidney-specific omics data, we prioritized 223 genes which strengthened the importance of ion homeostasis, including calcium and magnesium in stone formation, and suggested potential target drugs for the treatment. The genitourinary and digestive diseases showed stronger genetic correlations with KSD. In this study, we generate an atlas of candidate genes, tissue and cell types involved in the formation of KSD. In addition, we provide potential drug targets for KSD treatment and insights into shared regulation with other diseases.
Collapse
Affiliation(s)
- Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Zhonghe Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ning Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Minghui Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xi Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yunlong Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
32
|
Baj J, Flieger W, Barbachowska A, Kowalska B, Flieger M, Forma A, Teresiński G, Portincasa P, Buszewicz G, Radzikowska-Büchner E, Flieger J. Consequences of Disturbing Manganese Homeostasis. Int J Mol Sci 2023; 24:14959. [PMID: 37834407 PMCID: PMC10573482 DOI: 10.3390/ijms241914959] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Manganese (Mn) is an essential trace element with unique functions in the body; it acts as a cofactor for many enzymes involved in energy metabolism, the endogenous antioxidant enzyme systems, neurotransmitter production, and the regulation of reproductive hormones. However, overexposure to Mn is toxic, particularly to the central nervous system (CNS) due to it causing the progressive destruction of nerve cells. Exposure to manganese is widespread and occurs by inhalation, ingestion, or dermal contact. Associations have been observed between Mn accumulation and neurodegenerative diseases such as manganism, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. People with genetic diseases associated with a mutation in the gene associated with impaired Mn excretion, kidney disease, iron deficiency, or a vegetarian diet are at particular risk of excessive exposure to Mn. This review has collected data on the current knowledge of the source of Mn exposure, the experimental data supporting the dispersive accumulation of Mn in the brain, the controversies surrounding the reference values of biomarkers related to Mn status in different matrices, and the competitiveness of Mn with other metals, such as iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), lead (Pb), calcium (Ca). The disturbed homeostasis of Mn in the body has been connected with susceptibility to neurodegenerative diseases, fertility, and infectious diseases. The current evidence on the involvement of Mn in metabolic diseases, such as type 2 diabetes mellitus/insulin resistance, osteoporosis, obesity, atherosclerosis, and non-alcoholic fatty liver disease, was collected and discussed.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Aleksandra Barbachowska
- Department of Plastic, Reconstructive and Burn Surgery, Medical University of Lublin, 21-010 Łęczna, Poland;
| | - Beata Kowalska
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Michał Flieger
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (W.F.); (A.F.)
| | - Grzegorz Teresiński
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | - Piero Portincasa
- Clinica Medica A. Murri, Department of Biomedical Sciences & Human Oncology, Medical School, University of Bari, 70124 Bari, Italy;
| | - Grzegorz Buszewicz
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.F.); (G.T.); (G.B.)
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
33
|
Hutchens S, Jursa TP, Melkote A, Grant SM, Smith DR, Mukhopadhyay S. Hepatic and intestinal manganese excretion are both required to regulate brain manganese during elevated manganese exposure. Am J Physiol Gastrointest Liver Physiol 2023; 325:G251-G264. [PMID: 37461848 PMCID: PMC10511180 DOI: 10.1152/ajpgi.00047.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Manganese (Mn) is essential but neurotoxic at elevated levels. Under physiological conditions, Mn is primarily excreted by the liver, with the intestines playing a secondary role. Recent analyses of tissue-specific Slc30a10 or Slc39a14 knockout mice (SLC30A10 and SLC39A14 are Mn transporters) revealed that, under physiological conditions: 1) excretion of Mn by the liver and intestines is a major pathway that regulates brain Mn; and surprisingly, 2) the intestines compensate for loss of hepatic Mn excretion in controlling brain Mn. The unexpected importance of the intestines in controlling physiological brain Mn led us to determine the role of hepatic and intestinal Mn excretion in regulating brain Mn during elevated Mn exposure. We used liver- or intestine-specific Slc30a10 knockout mice as models to inhibit hepatic or intestinal Mn excretion. Compared with littermates, both knockout strains exhibited similar increases in brain Mn after elevated Mn exposure in early or later life. Thus, unlike physiological conditions, both hepatic and intestinal Mn excretion are required to control brain Mn during elevated Mn exposure. However, brain Mn levels of littermates and both knockout strains exposed to elevated Mn only in early life were normalized in later life. Thus, hepatic and intestinal Mn excretion play compensatory roles in clearing brain Mn accumulated by early life Mn exposure. Finally, neuromotor assays provided evidence consistent with a role for hepatic and intestinal Mn excretion in functionally modulating Mn neurotoxicity during Mn exposure. Put together, these findings substantially enhance understanding of the regulation of brain Mn by excretion.NEW & NOTEWORTHY This article shows that, in contrast with expectations from prior studies and physiological conditions, excretion of manganese by the intestines and liver is equally important in controlling brain manganese during human-relevant manganese exposure. The results provide foundational insights about the interorgan mechanisms that control brain manganese homeostasis at the organism level and have important implications for the development of therapeutics to treat manganese-induced neurological disease.
Collapse
Affiliation(s)
- Steven Hutchens
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Thomas P Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California, United States
| | - Ashvini Melkote
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Stephanie M Grant
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California, United States
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, and Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
34
|
Liu Q, Jenkitkasemwong S, Prami TA, McCabe SM, Zhao N, Hojyo S, Fukada T, Knutson MD. Metal-ion transporter SLC39A8 is required for brain manganese uptake and accumulation. J Biol Chem 2023; 299:105078. [PMID: 37482277 PMCID: PMC10457451 DOI: 10.1016/j.jbc.2023.105078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
Manganese (Mn) is an essential nutrient, but is toxic in excess. Whole-body Mn levels are regulated in part by the metal-ion influx transporter SLC39A8, which plays an essential role in the liver by reclaiming Mn from bile. Physiological roles of SLC39A8 in Mn homeostasis in other tissues, however, remain largely unknown. To screen for extrahepatic requirements for SLC39A8 in tissue Mn homeostasis, we crossed Slc39a8-inducible global-KO (Slc39a8 iKO) mice with Slc39a14 KO mice, which display markedly elevated blood and tissue Mn levels. Tissues were then analyzed by inductively coupled plasma-mass spectrometry to determine levels of Mn. Although Slc39a14 KO; Slc39a8 iKO mice exhibited systemic hypermanganesemia and increased Mn loading in the bone and kidney due to Slc39a14 deficiency, we show Mn loading was markedly decreased in the brains of these animals, suggesting a role for SLC39A8 in brain Mn accumulation. Levels of other divalent metals in the brain were unaffected, indicating a specific effect of SLC39A8 on Mn. In vivo radiotracer studies using 54Mn in Slc39a8 iKO mice revealed that SLC39A8 is required for Mn uptake by the brain, but not most other tissues. Furthermore, decreased 54Mn uptake in the brains of Slc39a8 iKO mice was associated with efficient inactivation of Slc39a8 in isolated brain microvessels but not in isolated choroid plexus, suggesting SLC39A8 mediates brain Mn uptake via the blood-brain barrier. These findings establish SLC39A8 as a candidate therapeutic target for mitigating Mn uptake and accumulation in the brain, the primary organ of Mn toxicity.
Collapse
Affiliation(s)
- Qingli Liu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Supak Jenkitkasemwong
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Tamanna Afrin Prami
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Shannon Morgan McCabe
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Ningning Zhao
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Fukada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
35
|
Lucchini R, Tieu K. Manganese-Induced Parkinsonism: Evidence from Epidemiological and Experimental Studies. Biomolecules 2023; 13:1190. [PMID: 37627255 PMCID: PMC10452806 DOI: 10.3390/biom13081190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Manganese (Mn) exposure has evolved from acute, high-level exposure causing manganism to low, chronic lifetime exposure. In this latter scenario, the target areas extend beyond the globus pallidus (as seen with manganism) to the entire basal ganglia, including the substantia nigra pars compacta. This change of exposure paradigm has prompted numerous epidemiological investigations of the occurrence of Parkinson's disease (PD), or parkinsonism, due to the long-term impact of Mn. In parallel, experimental research has focused on the underlying pathogenic mechanisms of Mn and its interactions with genetic susceptibility. In this review, we provide evidence from both types of studies, with the aim to link the epidemiological data with the potential mechanistic interpretation.
Collapse
Affiliation(s)
- Roberto Lucchini
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
36
|
Golara A, Kozłowski M, Guzik P, Kwiatkowski S, Cymbaluk-Płoska A. The Role of Selenium and Manganese in the Formation, Diagnosis and Treatment of Cervical, Endometrial and Ovarian Cancer. Int J Mol Sci 2023; 24:10887. [PMID: 37446063 DOI: 10.3390/ijms241310887] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Selenium (Se) and manganese (Mn) are essential micronutrients that are important elements of cell metabolism. They are involved in the composition of enzyme systems and regulate enzyme activity. Disturbances in the homeostasis of these micronutrients affect the development of many diseases and carcinogenesis, which can be linked to increased levels of oxidative stress and impaired antioxidant properties of many enzymes. Selenium has a very important function in maintaining immune-endocrine, metabolic and cellular homeostasis. Manganese, on the other hand, is important in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activity. We review the role of selenium and manganese and their effects on tumor growth, metastasis potential and remodeling of the microenvironment. We also describe their role as potential biomarkers in the diagnosis and the potential for the use of Se- and Mn-containing compounds in composition for the treatment of cancer of the reproductive organs.
Collapse
Affiliation(s)
- Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paweł Guzik
- Clinical Department of Gynecology and Obstetrics, City Hospital, 35-241 Rzeszów, Poland
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
37
|
Firth G, Georgiadou E, Griffiths A, Amrahli M, Kim J, Yu Z, Hu M, Stewart TJ, Leclerc I, Okamoto H, Gomez D, Blower PJ, Rutter GA. Impact of an SLC30A8 loss-of-function variant on the pancreatic distribution of zinc and manganese: laser ablation-ICP-MS and positron emission tomography studies in mice. Front Endocrinol (Lausanne) 2023; 14:1171933. [PMID: 37396167 PMCID: PMC10313231 DOI: 10.3389/fendo.2023.1171933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Common variants in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8 (expressed largely in pancreatic islet alpha and beta cells), are associated with altered risk of type 2 diabetes. Unexpectedly, rare loss-of-function (LoF) variants in the gene, described in heterozygous individuals only, are protective against the disease, even though knockout of the homologous SLC30A8 gene in mice leads to unchanged or impaired glucose tolerance. Here, we aimed to determine how one or two copies of the mutant R138X allele in the mouse SLC30A8 gene impacts the homeostasis of zinc at a whole-body (using non-invasive 62Zn PET imaging to assess the acute dynamics of zinc handling) and tissue/cell level [using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the long-term distribution of zinc and manganese in the pancreas]. Methods Following intravenous administration of [62Zn]Zn-citrate (~7 MBq, 150 μl) in wild-type (WT), heterozygous (R138X+/-), and homozygous (R138X+/+) mutant mice (14-15 weeks old, n = 4 per genotype), zinc dynamics were measured over 60 min using PET. Histological, islet hormone immunohistochemistry, and elemental analysis with LA-ICP-MS (Zn, Mn, P) were performed on sequential pancreas sections. Bulk Zn and Mn concentration in the pancreas was determined by solution ICP-MS. Results Our findings reveal that whereas uptake into organs, assessed using PET imaging of 62Zn, is largely unaffected by the R138X variant, mice homozygous of the mutant allele show a substantial lowering (to 40% of WT) of total islet zinc, as anticipated. In contrast, mice heterozygous for this allele, thus mimicking human carriers of LoF alleles, show markedly increased endocrine and exocrine zinc content (1.6-fold increase for both compared to WT), as measured by LA-ICP-MS. Both endocrine and exocrine manganese contents were also sharply increased in R138X+/- mice, with smaller increases observed in R138X+/+ mice. Discussion These data challenge the view that zinc depletion from the beta cell is the likely underlying driver for protection from type 2 diabetes development in carriers of LoF alleles. Instead, they suggest that heterozygous LoF may paradoxically increase pancreatic β-cell zinc and manganese content and impact the levels of these metals in the exocrine pancreas to improve insulin secretion.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | | | - Maral Amrahli
- London Metallomics Facility, King’s College London, London, United Kingdom
| | - Jana Kim
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Zilin Yu
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Ming Hu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | | | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
- Centre hospitalier de l’Université de Montréal (CHUM) Research Center and Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Daniel Gomez
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Philip J. Blower
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
- Centre hospitalier de l’Université de Montréal (CHUM) Research Center and Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological, University, Singapore, Singapore
| |
Collapse
|
38
|
Rey Hipolito AG, van der Heijden ME, Sillitoe RV. Physiology of Dystonia: Animal Studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:163-215. [PMID: 37482392 DOI: 10.1016/bs.irn.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is currently ranked as the third most prevalent motor disorder. It is typically characterized by involuntary muscle over- or co-contractions that can cause painful abnormal postures and jerky movements. Dystonia is a heterogenous disorder-across patients, dystonic symptoms vary in their severity, body distribution, temporal pattern, onset, and progression. There are also a growing number of genes that are associated with hereditary dystonia. In addition, multiple brain regions are associated with dystonic symptoms in both genetic and sporadic forms of the disease. The heterogeneity of dystonia has made it difficult to fully understand its underlying pathophysiology. However, the use of animal models has been used to uncover the complex circuit mechanisms that lead to dystonic behaviors. Here, we summarize findings from animal models harboring mutations in dystonia-associated genes and phenotypic animal models with overt dystonic motor signs resulting from spontaneous mutations, neural circuit perturbations, or pharmacological manipulations. Taken together, an emerging picture depicts dystonia as a result of brain-wide network dysfunction driven by basal ganglia and cerebellar dysfunction. In the basal ganglia, changes in dopaminergic, serotonergic, noradrenergic, and cholinergic signaling are found across different animal models. In the cerebellum, abnormal burst firing activity is observed in multiple dystonia models. We are now beginning to unveil the extent to which these structures mechanistically interact with each other. Such mechanisms inspire the use of pre-clinical animal models that will be used to design new therapies including drug treatments and brain stimulation.
Collapse
Affiliation(s)
- Alejandro G Rey Hipolito
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
39
|
Tabatabaee SN, Effat Nejad S, Nikkhah A, Hashemi N, Alavi A, Lang AE, Rohani M, Emamikhah M. Familial Hypermanganesemia in Iran. Mov Disord Clin Pract 2023; 10:850-853. [PMID: 37205251 PMCID: PMC10186995 DOI: 10.1002/mdc3.13723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/08/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
- Seyedeh Narges Tabatabaee
- Division of Neurology, Firoozgar Hospital, School of MedicineIran University of Medical SciencesTehranIran
| | - Sajjad Effat Nejad
- Division of Neurology, Firoozgar Hospital, School of MedicineIran University of Medical SciencesTehranIran
| | - Ali Nikkhah
- Mofid Children Hospital, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Narges Hashemi
- Department of Pediatrics, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Afagh Alavi
- Genetics Research CenterUniversity of Social Welfare and Rehabilitation SciencesTehranIran
| | - Anthony E. Lang
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoOntarioCanada
- Edmond J. Safra Program in PD and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western HospitalTorontoOntarioCanada
- Krembil Brain Institute, University Health NetworkTorontoOntarioCanada
| | - Mohammad Rohani
- Department of Neurology, Rasool Akram Hospital, School of MedicineIran University of Medical SciencesTehranIran
| | - Maziar Emamikhah
- Department of Neurology, Rasool Akram Hospital, School of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
40
|
Taylor CA, Grant SM, Jursa T, Melkote A, Fulthorpe R, Aschner M, Smith DR, Gonzales RA, Mukhopadhyay S. SLC30A10 manganese transporter in the brain protects against deficits in motor function and dopaminergic neurotransmission under physiological conditions. Metallomics 2023; 15:mfad021. [PMID: 36990693 PMCID: PMC10103839 DOI: 10.1093/mtomcs/mfad021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Loss-of-function mutations in SLC30A10 induce hereditary manganese (Mn)-induced neuromotor disease in humans. We previously identified SLC30A10 to be a critical Mn efflux transporter that controls physiological brain Mn levels by mediating hepatic and intestinal Mn excretion in adolescence/adulthood. Our studies also revealed that in adulthood, SLC30A10 in the brain regulates brain Mn levels when Mn excretion capacity is overwhelmed (e.g. after Mn exposure). But, the functional role of brain SLC30A10 under physiological conditions is unknown. We hypothesized that, under physiological conditions, brain SLC30A10 may modulate brain Mn levels and Mn neurotoxicity in early postnatal life because body Mn excretion capacity is reduced in this developmental stage. We discovered that Mn levels of pan-neuronal/glial Slc30a10 knockout mice were elevated in specific brain regions (thalamus) during specific stages of early postnatal development (postnatal day 21), but not in adulthood. Furthermore, adolescent or adult pan-neuronal/glial Slc30a10 knockouts exhibited neuromotor deficits. The neuromotor dysfunction of adult pan-neuronal/glial Slc30a10 knockouts was associated with a profound reduction in evoked striatal dopamine release without dopaminergic neurodegeneration or changes in striatal tissue dopamine levels. Put together, our results identify a critical physiological function of brain SLC30A10-SLC30A10 in the brain regulates Mn levels in specific brain regions and periods of early postnatal life, which protects against lasting deficits in neuromotor function and dopaminergic neurotransmission. These findings further suggest that a deficit in dopamine release may be a likely cause of early-life Mn-induced motor disease.
Collapse
Affiliation(s)
- Cherish A Taylor
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephanie M Grant
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas Jursa
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ashvini Melkote
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rebecca Fulthorpe
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rueben A Gonzales
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; and Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
41
|
Yu S, Zhao N. The Regulation of ZIP8 by Dietary Manganese in Mice. Int J Mol Sci 2023; 24:ijms24065962. [PMID: 36983036 PMCID: PMC10056016 DOI: 10.3390/ijms24065962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
ZIP8 is a newly identified manganese transporter. A lack of functional ZIP8 results in severe manganese deficiency in both humans and mice, indicating that ZIP8 plays a crucial role in maintaining body manganese homeostasis. Despite a well-acknowledged connection between ZIP8 and manganese metabolism, how ZIP8 is regulated under high-manganese conditions remains unclear. The primary goal of this study was to examine the regulation of ZIP8 by high-manganese intake. We used both neonatal and adult mouse models in which mice were supplied with dietary sources containing either a normal or a high level of manganese. We discovered that high-manganese intake caused a reduction in liver ZIP8 protein in young mice. Since a decrease in hepatic ZIP8 leads to reduced manganese reabsorption from the bile, our study identified a novel mechanism for the regulation of manganese homeostasis under high-manganese conditions: high dietary manganese intake results in a decrease in ZIP8 in the liver, which in turn decreases the reabsorption of manganese from the bile to prevent manganese overload in the liver. Interestingly, we found that a high-manganese diet did not cause a decrease in hepatic ZIP8 in adult animals. To determine the potential reason for this age-dependent variation, we compared the expressions of liver ZIP8 in 3-week-old and 12-week-old mice. We found that liver ZIP8 protein content in 12-week-old mice decreases when compared with that of 3-week-old mice under normal conditions. Overall, results from this study provide novel insights to facilitate the understanding of ZIP8's function in regulating manganese metabolism.
Collapse
Affiliation(s)
- Suetmui Yu
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
| | - Ningning Zhao
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
42
|
Distelmaier F, Klopstock T. Neuroimaging in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:173-185. [PMID: 36813312 DOI: 10.1016/b978-0-12-821751-1.00016-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The anatomic complexity of the brain in combination with its high energy demands makes this organ specifically vulnerable to defects of mitochondrial oxidative phosphorylation. Therefore, neurodegeneration is a hallmark of mitochondrial diseases. The nervous system of affected individuals typically shows selective regional vulnerability leading to distinct patterns of tissue damage. A classic example is Leigh syndrome, which causes symmetric alterations of basal ganglia and brain stem. Leigh syndrome can be caused by different genetic defects (>75 known disease genes) with variable disease onset ranging from infancy to adulthood. Other mitochondrial diseases are characterized by focal brain lesions, which is a core feature of MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes). Apart from gray matter, also white matter can be affected by mitochondrial dysfunction. White matter lesions vary depending on the underlying genetic defect and may progress into cystic cavities. In view of the recognizable patterns of brain damage in mitochondrial diseases, neuroimaging techniques play a key role in diagnostic work-up. In the clinical setting, magnetic resonance imaging (MRI) and MR spectroscopy (MRS) are the mainstay of diagnostic work-up. Apart from visualization of brain anatomy, MRS allows the detection of metabolites such as lactate, which is of specific interest in the context of mitochondrial dysfunction. However, it is important to note that findings like symmetric basal ganglia lesions on MRI or a lactate peak on MRS are not specific, and that there is a broad range of disorders that can mimic mitochondrial diseases on neuroimaging. In this chapter, we will review the spectrum of neuroimaging findings in mitochondrial diseases and discuss important differential diagnoses. Moreover, we will give an outlook on novel biomedical imaging tools that may provide interesting insights into mitochondrial disease pathophysiology.
Collapse
Affiliation(s)
- Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Network for mitochondrial disorders (mitoNET), Munich, Germany
| |
Collapse
|
43
|
Prajapati M, Zhang JZ, Mercadante CJ, Kowalski HL, Delaney B, Anderson JA, Guo S, Aghajan M, Bartnikas TB. Hypoxia-inducible factor 2 is a key determinant of manganese excess and polycythemia in SLC30A10 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529270. [PMID: 36865210 PMCID: PMC9980069 DOI: 10.1101/2023.02.20.529270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane transport protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to severe manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess, but the basis of erythropoietin excess in SLC30A10 deficiency has yet to be established. Here we demonstrate that erythropoietin expression is increased in liver but decreased in kidneys in Slc30a10-deficient mice. Using pharmacologic and genetic approaches, we show that liver expression of hypoxia-inducible factor 2 (Hif2), a transcription factor that mediates the cellular response to hypoxia, is essential for erythropoietin excess and polycythemia in Slc30a10-deficient mice, while hypoxia-inducible factor 1 (HIF1) plays no discernible role. RNA-seq analysis determined that Slc30a10-deficient livers exhibit aberrant expression of a large number of genes, most of which align with cell cycle and metabolic processes, while hepatic Hif2 deficiency attenuates differential expression of half of these genes in mutant mice. One such gene downregulated in Slc30a10-deficient mice in a Hif2-dependent manner is hepcidin, a hormonal inhibitor of dietary iron absorption. Our analyses indicate that hepcidin downregulation serves to increase iron absorption to meet the demands of erythropoiesis driven by erythropoietin excess. Finally, we also observed that hepatic Hif2 deficiency attenuates tissue manganese excess, although the underlying cause of this observation is not clear at this time. Overall, our results indicate that HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Jared Z. Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Courtney J. Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Heather L. Kowalski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Bradley Delaney
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Jessica A. Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | | | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| |
Collapse
|
44
|
Gurol KC, Li D, Broberg K, Mukhopadhyay S. Manganese efflux transporter SLC30A10 missense polymorphism T95I associated with liver injury retains manganese efflux activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G78-G88. [PMID: 36414535 PMCID: PMC9829465 DOI: 10.1152/ajpgi.00213.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The activity of the manganese (Mn) efflux transporter SLC30A10 in the liver and intestines is critical for Mn excretion and preventing Mn toxicity. Homozygous loss-of-function mutations in SLC30A10 are a well-established cause of hereditary Mn toxicity. But, the relationship between more common SLC30A10 polymorphisms, Mn homeostasis, and disease is only recently emerging. In 2021, the first coding SNP in SLC30A10 (T95I) was associated with liver disease raising the hypothesis that the T95I substitution may induce disease by inhibiting the Mn efflux function of SLC30A10. Here, we test this hypothesis using structural, viability, and metal quantification approaches. Analyses of a predicted structure of SLC30A10 revealed that the side chain of T95 pointed away from the putative Mn-binding cavity, raising doubts about the impact of the T95I substitution on SLC30A10 function. In HeLa or HepG2 cells, overexpression of SLC30A10-WT or T95I resulted in comparable reductions of intracellular Mn levels and protection against Mn-induced cell death. Furthermore, ΔSLC30A10 HepG2 cells, generated using CRISPR/Cas9, exhibited elevated Mn levels and heightened sensitivity to Mn-induced cell death, and these phenotypic changes were similarly rescued by expression of SLC30A10-WT or T95I. Finally, turnover rates of SLC30A10-WT or T95I were also comparable. In summary, our results indicate that the Mn transport activity of SLC30A10-T95I is essentially comparable to the WT protein. Our findings imply that SLC30A10-T95I either has a complex association with liver injury that extends beyond the simple reduction in SLC30A10 activity or alternatively the T95I mutation lacks a causal role in liver disease.NEW & NOTEWORTHY This study demonstrates that the T95I polymorphism in the manganese transporter SLC30A10, which has been associated with liver disease in human GWAS studies, does not impact transporter function in cell culture. These findings raise doubts about the causal relationship of the T95I polymorphism with human disease and highlight the importance of validating GWAS findings using mechanistic approaches.
Collapse
Affiliation(s)
- Kerem C Gurol
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Danyang Li
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
45
|
Zhang X, Liu J, Wang H. The cGAS-STING-autophagy pathway: Novel perspectives in neurotoxicity induced by manganese exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120412. [PMID: 36240967 DOI: 10.1016/j.envpol.2022.120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chronic high-level heavy metal exposure increases the risk of developing different neurodegenerative diseases. Chronic excessive manganese (Mn) exposure is known to lead to neurodegenerative diseases. In addition, some evidence suggests that autophagy dysfunction plays an important role in the pathogenesis of various neurodegenerative diseases. Over the past decade, the DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signal-efficient interferon gene stimulator (STING), as well as the molecular composition and regulatory mechanisms of this pathway have been well understood. The cGAS-STING pathway has emerged as a crucial mechanism to induce effective innate immune responses by inducing type I interferons in mammalian cells. Moreover, recent studies have found that Mn2+ is the second activator of the cGAS-STING pathway besides dsDNA, and inducing autophagy is a primitive function for the activation of the cGAS-STING pathway. However, overactivation of the immune response can lead to tissue damage. This review discusses the mechanism of neurotoxicity induced by Mn exposure from the cGAS-STING-autophagy pathway. Future work exploiting the cGAS-STING-autophagy pathway may provide a novel perspective for manganese neurotoxicity.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
46
|
Rodichkin AN, Guilarte TR. Hereditary Disorders of Manganese Metabolism: Pathophysiology of Childhood-Onset Dystonia-Parkinsonism in SLC39A14 Mutation Carriers and Genetic Animal Models. Int J Mol Sci 2022; 23:12833. [PMID: 36361624 PMCID: PMC9653914 DOI: 10.3390/ijms232112833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Over the last decade, several clinical reports have outlined cases of childhood-onset manganese (Mn)-induced dystonia-parkinsonism, resulting from loss-of-function mutations in the Mn influx transporter gene SLC39A14. These clinical cases have provided a wealth of knowledge on Mn toxicity and homeostasis. However, our current understanding of the underlying neuropathophysiology is severely lacking. The recent availability of Slc39a14 knockout (KO) murine and zebrafish animal models provide a powerful platform to investigate the neurological effects of elevated blood and brain Mn concentrations in vivo. As such, the objective of this review was to organize and summarize the current clinical literature and studies utilizing Slc39a14-KO animal models and assess the validity of the animal models based on the clinical presentation of the disease in human mutation carriers.
Collapse
|
47
|
Garg D, Yoganathan S, Shamim U, Mankad K, Gulati P, Bonifati V, Botre A, Kalane U, Saini AG, Sankhyan N, Srivastava K, Gowda VK, Juneja M, Kamate M, Padmanabha H, Panigrahi D, Pachapure S, Udani V, Kumar A, Pandey S, Thomas M, Danda S, Iqbalahmed SA, Subramanian A, Pemde H, Singh V, Faruq M, Sharma S. Clinical Profile and Treatment Outcomes of Hypermanganesemia with Dystonia 1 and 2 among 27 Indian Children. Mov Disord Clin Pract 2022; 9:886-899. [PMID: 36247901 PMCID: PMC9547147 DOI: 10.1002/mdc3.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022] Open
Abstract
Background Hypermanganesemia with dystonia 1 and 2 (HMNDYT1 and 2) are rare, inherited disorders of manganese transport. Objectives We aimed to describe clinical, laboratory features, and outcomes among children with HMNDYT. Methods We conducted a retrospective multicenter study involving tertiary centers across India. We enrolled children between 1 month to 18 years of age with genetically confirmed/clinically probable HMNDYT. Clinical, laboratory profile, genetic testing, treatment details, and outcomes scored by treating physicians on a Likert scale were recorded. Results We enrolled 27 children (19 girls). Fourteen harbored SLC30A10 mutations; nine had SLC39A14 mutations. The SLC39A14 cohort had lower median age at onset (1.3 [interquartile range (IQR), 0.7-5.5] years) versus SLC30A10 cohort (2.0 [IQR, 1.5-5.1] years). The most frequent neurological features were dystonia (100%; n = 27), gait abnormality (77.7%; n = 21), falls (66.7%; n = 18), and parkinsonism (59.3%; n = 16). Median serum manganese (Mn) levels among SLC39A14 (44.9 [IQR, 27.3-147.7] mcg/L) cohort were higher than SLC30A10 (29.4 [17.1-42.0] mcg/L); median hemoglobin was higher in SLC30A10 (16.3 [IQR, 15.2-17.5] g/dL) versus SLC39A14 cohort (12.5 [8.8-13.2] g/dL). Hepatic involvement and polycythaemia were observed exclusively in SLC30A10 variants. A total of 26/27 children underwent chelation with disodium calcium edetate. Nine demonstrated some improvement, three stabilized, two had marked improvement, and one had normalization. Children with SLC39A14 mutations had poorer response. Two children died and nine were lost to follow-up. Conclusions We found female predominance. Children with SLC39A14 mutations presented at younger age and responded less favorably to chelation compared to SLC30A10 mutations. There is emerging need to better define management strategies, especially in low resource settings.
Collapse
Affiliation(s)
- Divyani Garg
- Department of NeurologyLady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | | | - Uzma Shamim
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Kshitij Mankad
- Department of RadiologyGreat Ormond Street Hospital NHS Foundation TrustLondonUnited Kingdom
| | - Parveen Gulati
- Department of RadiodiagnosisDoctor Gulati Imaging InstituteNew DelhiIndia
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | | | - Umesh Kalane
- Department of PediatricsDeenanath Mangeshkar HospitalPuneIndia
| | - Arushi Gahlot Saini
- Department of Pediatrics, Advanced Pediatric CenterPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Naveen Sankhyan
- Department of Pediatrics, Advanced Pediatric CenterPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Kavita Srivastava
- Department of PediatricsBharati Vidyapeeth Deemed University Medical CollegePuneIndia
| | - Vykuntaraju K. Gowda
- Division of Pediatric NeurologyIndira Gandhi Institute of Child HealthBangaloreIndia
| | - Monica Juneja
- Department of Pediatrics, Lok Nayak Hospital, Maulana Azad Medical CollegeUniversity of DelhiNew DelhiIndia
| | - Mahesh Kamate
- Child Development and Pediatric Neurology Division, Department of PediatricsKAHER's J N Medical CollegeBelgaumIndia
| | - Hansashree Padmanabha
- Department of NeurologyNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | | | - Shaila Pachapure
- Department of Pediatrics, KAHER's J N Medical CollegeBelgaumIndia
| | - Vrajesh Udani
- Department of Child NeurologyPD Hinduja Hospital and Medical Research CentreMumbaiIndia
| | - Atin Kumar
- Department of RadiodiagnosisAll India Institute of Medical SciencesNew DelhiIndia
| | - Sanjay Pandey
- Department of NeurologyGovind Ballabh Pant Institute of Postgraduate medical education and researchNew DelhiIndia
| | - Maya Thomas
- Department of Neurological SciencesChristian Medical CollegeVelloreIndia
| | - Sumita Danda
- Department of Clinical GeneticsChristian Medical CollegeVelloreIndia
| | | | | | - Harish Pemde
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | - Varinder Singh
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| | - Mohammed Faruq
- Genomics and Molecular MedicineCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Suvasini Sharma
- Department of Pediatrics (Neurology division)Lady Hardinge Medical College and Associated HospitalsNew DelhiIndia
| |
Collapse
|
48
|
Spaur M, Nigra AE, Sanchez TR, Navas-Acien A, Lazo M, Wu HC. Association of blood manganese, selenium with steatosis, fibrosis in the National Health and Nutrition Examination Survey, 2017-18. ENVIRONMENTAL RESEARCH 2022; 213:113647. [PMID: 35691383 PMCID: PMC10031575 DOI: 10.1016/j.envres.2022.113647] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND & AIMS Chronic liver disease is a growing health burden worldwide. Chronic metal exposures may be associated with non-alcoholic fatty liver disease (NAFLD). We aimed to evaluate the association of blood cadmium (Cd), mercury (Hg), lead (Pb), manganese (Mn), and selenium (Se) with two hallmark features of NAFLD: liver steatosis and fibrosis in the general U.S. METHODS We analyzed transient liver elastography data from participants of the National Health and Nutrition Examination Survey (NHANES) 2017-18, using ordinal logistic regression analyses to evaluate the cross-sectional association between blood metal concentrations and clinical stages of steatosis and fibrosis. We applied survey weights, strata, and primary sampling units and analyses were conducted using the R survey package. RESULTS 4,154 participants were included. Median (IQR) for blood Mn and blood Se were 9.28 (7.48-11.39) and 191.08 (176.55-207.16) μg/L, respectively. Per interquartile range increase of natural log transformed blood Mn, the adjusted odds ratio (OR) (95% CI) was 1.59 (1.13-2.23) for a higher grade of steatosis and 1.16 (0.67-2.00) for liver fibrosis. The corresponding OR for steatosis was 2.00 (1.24-3.24) and 2.14 (1.04-4.42) in Black and Mexican American participants, respectively. The corresponding OR for liver fibrosis was 2.96 (1.42-6.17) for females. Per interquartile range increase of natural log transformed blood Se, the adjusted OR was 2.25 (1.30-3.89) for steatosis but 0.31 (0.13-0.72) for liver fibrosis. The inverse association of blood Se with liver fibrosis was also observed in males and White participants. Blood Cd, Hg, and Pb were not associated with liver steatosis and fibrosis in fully-adjusted models overall. CONCLUSIONS In NHANES 2017-18, higher blood Mn was positively associated with liver steatosis, and higher Se was positively associated with liver steatosis but negatively associated with liver fibrosis. Longitudinal studies are needed to examine the association of Mn and Se with fibrosis progression.
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, W 168th St, Room 1107, New York, NY, USA.
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, W 168th St, Room 1107, New York, NY, USA.
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, W 168th St, Room 1107, New York, NY, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, W 168th St, Room 1107, New York, NY, USA.
| | - Mariana Lazo
- Department of Community Health and Prevention, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA.
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, W 168th St, Room 1107, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
49
|
Werner E, Gokhale A, Ackert M, Xu C, Wen Z, Roberts AM, Roberts BR, Vrailas-Mortimer A, Crocker A, Faundez V. The mitochondrial RNA granule modulates manganese-dependent cell toxicity. Mol Biol Cell 2022; 33:ar108. [PMID: 35921164 PMCID: PMC9635304 DOI: 10.1091/mbc.e22-03-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
Prolonged manganese exposure causes manganism, a neurodegenerative movement disorder. The identity of adaptive and nonadaptive cellular processes targeted by manganese remains mostly unexplored. Here we study mechanisms engaged by manganese in genetic cellular models known to increase susceptibility to manganese exposure, the plasma membrane manganese efflux transporter SLC30A10 and the mitochondrial Parkinson's gene PARK2. We found that SLC30A10 and PARK2 mutations as well as manganese exposure compromised the mitochondrial RNA granule composition and function, resulting in disruption of mitochondrial transcript processing. These RNA granule defects led to impaired assembly and function of the mitochondrial respiratory chain. Notably, cells that survived a cytotoxic manganese challenge had impaired RNA granule function, thus suggesting that this granule phenotype was adaptive. CRISPR gene editing of subunits of the mitochondrial RNA granule, FASTKD2 or DHX30, as well as pharmacological inhibition of mitochondrial transcription-translation, were protective rather than deleterious for survival of cells acutely exposed to manganese. Similarly, adult Drosophila mutants with defects in the mitochondrial RNA granule component scully were safeguarded from manganese-induced mortality. We conclude that impairment of the mitochondrial RNA granule function is a protective mechanism for acute manganese toxicity.
Collapse
Affiliation(s)
- E. Werner
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - A. Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - M. Ackert
- School of Biological Sciences, Illinois State University, Normal, IL 617901
| | - C. Xu
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322
| | - Z. Wen
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322
| | - A. M. Roberts
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - B. R. Roberts
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | | | - A. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753
| | - V. Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
50
|
Rodichkin AN, Edler MK, McGlothan JL, Guilarte TR. Pathophysiological studies of aging Slc39a14 knockout mice to assess the progression of manganese-induced dystonia-parkinsonism. Neurotoxicology 2022; 93:92-102. [PMID: 36152728 DOI: 10.1016/j.neuro.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Over the last decade, several clinical reports have outlined cases of early-onset manganese (Mn)-induced dystonia-parkinsonism, resulting from loss of function mutations of the Mn transporter gene SLC39A14. Previously, we have performed characterization of the behavioral, neurochemical, and neuropathological changes in 60-day old (PN60) Slc39a14-knockout (KO) murine model of the human disease. Here, we extend our studies to aging Slc39a14-KO mice to assess the progression of the disease. Our results indicate that 365-day old (PN365) Slc39a14-KO mice present with markedly elevated blood and brain Mn levels, similar to those found in the PN60 mice and representative of the human cases of the disease. Furthermore, aging Slc39a14-KO mice consistently manifest a hypoactive and dystonic behavioral deficits, similar to the PN60 animals, suggesting that the behavioral changes are established early in life without further age-associated deterioration. Neurochemical, neuropathological, and functional assessment of the dopaminergic system of the basal ganglia revealed absence of neurodegenerative changes of dopamine (DA) neurons in the substantia nigra pars compacta (SNc), with no changes in DA or metabolite concentrations in the striatum of Slc39a14-KO mice relative to wildtype (WT). Similar to the PN60 animals, aging Slc39a14-KO mice expressed a marked inhibition of potassium-stimulated DA release in the striatum. Together our findings indicate that the pathophysiological changes observed in the basal ganglia of aging Slc39a14-KO animals are similar to those at PN60 and aging does not have a significant effect on these parameters.
Collapse
Affiliation(s)
- Alexander N Rodichkin
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States.
| | - Melissa K Edler
- Department of Anthropology and Brain Health Research Institute, Kent State University, Kent, OH 44242, United States.
| | - Jennifer L McGlothan
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States.
| | - Tomás R Guilarte
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|